
entropy

Article

Application of Imbalanced Data Classification
Quality Metrics as Weighting Methods of the
Ensemble Data Stream Classification Algorithms

Weronika Wegier and Pawel Ksieniewicz *

Department of Systems and Computer Networks, Wroclaw University of Science and Technology,
50-370 Wroclaw, Poland; 225935@student.pwr.edu.pl
* Correspondence: pawel.ksieniewicz@pwr.edu.pl

Received: 15 June 2020; Accepted: 28 July 2020; Published: 31 July 2020
����������
�������

Abstract: In the era of a large number of tools and applications that constantly produce massive
amounts of data, their processing and proper classification is becoming both increasingly hard and
important. This task is hindered by changing the distribution of data over time, called the concept
drift, and the emergence of a problem of disproportion between classes—such as in the detection of
network attacks or fraud detection problems. In the following work, we propose methods to modify
existing stream processing solutions—Accuracy Weighted Ensemble (AWE) and Accuracy Updated
Ensemble (AUE), which have demonstrated their effectiveness in adapting to time-varying class
distribution. The introduced changes are aimed at increasing their quality on binary classification
of imbalanced data. The proposed modifications contain the inclusion of aggregate metrics, such
as F1-score, G-mean and balanced accuracy score in calculation of the member classifiers weights,
which affects their composition and final prediction. Moreover, the impact of data sampling on the
algorithm’s effectiveness was also checked. Complex experiments were conducted to define the
most promising modification type, as well as to compare proposed methods with existing solutions.
Experimental evaluation shows an improvement in the quality of classification compared to the
underlying algorithms and other solutions for processing imbalanced data streams.

Keywords: data streams; imbalanced data; classification; classifier ensembles; oversampling

1. Introduction

Data stream analysis has recently become an increasingly popular topic in the pattern recognition
field [1,2]. A multitude of tools and applications constantly produces huge volumes of data that
should—most often in a limited time—be processed to extract valuable information. Examples of such
sources include, for example, social media and recommendation systems [3], or particularly, increased
network traffic during the era of coronavirus and remote work [4]. Such data differ significantly
from static data sets, introducing additional difficulties in constructing effective models to solve
learning tasks. In addition, more and more often, for example, in the case of fraud detection [5] or
network attacks [6], they introduce an imbalance problem [7,8], which is not negligible already when
training on static data sets, making streaming classification even more challenging.

The problem of imbalanced data occurs when the size of one of the problem classes far exceeds
the count of the other. It is not precisely determined by what numbers we may talk about imbalance,
but it is often assumed [8] that in the 9:1 ratio we have a slight imbalance, and when it is 1000:1 or more,
we are dealing with a very high imbalance.

Imbalanced data classification is a demanding task, because the dominant majority of recognition
algorithms were designed with the assumption of proportional prior probability of classes.

Entropy 2020, 22, 849; doi:10.3390/e22080849 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-9339-2669
https://orcid.org/0000-0001-9578-8395
http://dx.doi.org/10.3390/e22080849
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/8/849?type=check_update&version=2

Entropy 2020, 22, 849 2 of 17

The assumption of most traditional recognition models is to minimize the prediction error, often
ignoring the presence of disproportions in the class counts, which leads to the bias of the build model
towards the majority class, thus significantly worsening the discriminatory abilities regarding the
minority class. In addition, it is very important to carefully select the experimental protocol and the
quality assessment metrics used [9], because the most commonly applied classification metrics, such as
accuracy, do not take into account the disparities in the problem classes and thus incorrectly assess the
quality of the model. One of the available choices is aggregated metrics, such as F1-score, G-mean or
balanced accuracy score [10], which by taking into account the recognition quality for all the problem
classes are much better suited to the problem of imbalanced data.

Data streams are ordered sequences of information, arriving at high speed [11]. They are also
potentially infinite and may change over time. One of the most important phenomena distinguishing
the classification of data streams and static data is the so-called concept drift. It consists of changing the
distribution of classes in the set—the posterior probability or even the proportion between individual
classes [12]. This significantly affects the quality of the prediction, because it often turns out that
they were trained on outdated data. One possible taxonomy of this phenomenon is division into
three types, due to the dynamics and characteristics of the changes. Sudden drift occurs when the
posterior probability at t + 1 is completely different from that at t. In the case of gradual drift, the
change in the concept is slower, and the data from both concepts (before and after the change) are
mixed up. The last type is the incremental drift, in which the first concept smoothly changes into the
second, without mixing them together.

The characteristics of data streams leads to some indefeasible requirements for classifiers operating
in their environment: fast data processing in which each object may be presented for training only
once, low memory consumption, the possibility of prediction at any time and the ability to adapt to
the changing distribution of problem classes [13].

Data for the model can be provided in two ways-online or in batches. In the first case, the objects
are processed individually at the moment they arrive, while in the second case the data is grouped
into chunks of the same size and processed together. Online learning allows faster detection of concept
drifts [14], while learning in batches is easier to implement and more computationally efficient.

The problem of imbalanced streams can be even more difficult to solve than each of its struggles
separately. Not all standard methods for solving the imbalanced data problem are feasible in
a streaming environment. If the model is learned incrementally, most of the popular sampling
algorithms cannot be used, and even the very determination of the imbalance ratio is not trivial [15].
In the case of a data chunk, it is easier to specify at least temporary proportions between classes,
but depending on the size of the chunk and number of minority patterns, not all sampling will be
equally effective. In addition, due to the characteristics of the streams and speeds at which the data
arrives, the computational efficiency of algorithms should also be taken into account.

There are three main groups of methods for improving model performance over imbalanced data:
methods at the data level, at the algorithm level, and hybrid methods that most often use an ensemble
approach to classification. Data-level methods are based on adapting the training set by changing
the number of samples to allow standard machine learning algorithms to train and classify correctly.
The simplest and most popular approach is random sampling, where objects are duplicated (over-)
or removed (undersampling) in a random manner. It may, however, lead to the removal of patterns
potentially valuable for recognition or duplication of non-valuable samples (e.g., noise or outliers).
More complex methods are, for example, the SMOTE (Synthetic Minority Over-sampling Technique)
algorithm [16], creating new synthetic samples based on neighboring minority class objects, ADASYN,
creating more synthetic samples near objects difficult to classify [17], or the NCL (Neighborhood
Cleaning Rule) algorithm, removing majority class objects that affect the misclassification of the
remaining samples [18]. The methods of preventing data imbalance at the algorithm level transform
the machine learning model in such a way as to alleviate its bias in choosing the majority class.
One such approach is methods interfering with the cost function of the model [19]. It is modified in

Entropy 2020, 22, 849 3 of 17

such a way that it grants a greater cost of minority class object recognition error. The disadvantage
of such methods is the difficulty of choosing the correct cost of errors in the case of real problems.
Another algorithm-based method can be the one-class classifiers [20]. By building each classifier on
only one class, we get rid of the problem of favoring other classes. However, choosing the right
classifiers may be difficult for more complex problems.

For the case of data streams, there are several ways to classify them. The basic model from
single classifiers is VFDT (Very Fast Decision Tree)—a decision tree using the Hoeffding boundary
(Hoeffding bound) to create branches. Other examples are traditional incremental classifiers that
have been adapted to the requirements of data streams, such as neural networks, Bayesian methods,
and minimum-distance algorithms. Another approach is classifier ensembles that, thanks to their
modularity, easily adapt to non-stationary data streams [21]. In batch learning, a new classifier is often
created when new instances appear that may replace the weakest model in the pool. Examples of
classifier assembly algorithms are AWE (Accuracy Weighted Ensemble) [22], AUE (Accuracy Updated
Ensemble) [23,24] or WAE (Weighted Aging Ensemble) [13].

Several approaches have been proposed to solve the problem of imbalanced data streams. One of
them is to expand the window with minority class data [25]. This is to reduce imbalance based
on non-synthetic data (as opposed to artificially increasing the number). This solution, however,
does not take into account the possibility of changing the distribution of minority class over time,
and also violates the principle stating that one sample should be used once. Another method is used,
for example, by the incremental OOB and UOB [15]. They are based on online bagging, where for
each member classifier the samples obtained are duplicated according to the Poisson distribution,
and sampling (oversampling in the case of OOB and undersampling at UOB) is done by controlling the λ

parameter. The disadvantage of incremental learning, however, is the problem with determining the
proportion of classes.

The aim of the following work is to propose the modification of popular ensemble models so
that they employ the imbalanced classification metrics in the weighting of classifier members and
compare them with existing data stream processing solutions. The created algorithms may achieve
higher quality classification on imbalanced streams, and the proposed methods may slightly improve
the currently used algorithms. The paper shows preliminary research of the topic, thus it will focus on
the binary classification task.

2. Methods

2.1. Accuracy Weighted Ensemble

Accuracy Weighted Ensemble is an example of a batch processing classifier that processes data in
the form of chunks. Each of the models entering the pool uses the same training procedure, but is built
around a different data block.

A significant problem in processing data streams is recognizing the point in time when the data
has become obsolete. The method of deleting the oldest objects is often used. However, this creates
another problem of choosing the appropriate time window after which the data will be forgotten.
In the case of too large window, objects from the previous concept are further used in the prediction
of the new concept. On the other hand, if the window size is too small, the classifiers may have
insufficient data for proper generalization, which may result in overfitting and poor quality of the
model. For this reason, AWE does not use window mechanics, only the evaluation of stored data
(in the form of classifiers trained on them) in relation to the current concept, and not the time spent in
the pool.

It has been proven that an ensemble trained on k blocks in a manner where each model is built on
a different block achieves better quality (less prediction error) than a single classifier learned on all k
blocks. The condition for this is, however, the assumption that each member classifier has a weight
assigned in accordance with its adaptation to the current data distribution. In the case of AWE, it is

Entropy 2020, 22, 849 4 of 17

assessed by estimating the error made by each member on the latest block, which is considered to best
reflect the current distribution of classes. In its basic version, the member weights are equal to the
difference between the mean square error of each classifier and the estimated mean square error of the
random classifier.

wi = MSEr −MSEi, (1)

where MSEr equals
MSEr = ∑

c
p(c)(1− p(c))2, (2)

for p(c) being the prior probability of class c.
MSEi is calculated as follows

MSEi =
1
|Sn| ∑

(x,c)∈Sn

(1− f i
c(x))2, (3)

where Sn is the latest data chunk in a form where x is a feature vector with label c, |Sn| is the number
of patterns building the chunk and f i

c states the posterior probability of i-th classifier assigning pattern
x to class c.

Steps of the AWE algorithm in the form of pseudocode are presented in Algorithm 1.

Algorithm 1 AWE pseudocode.

Input: S: new data chunk

K: size of the ensemble

C: ensemble of K classifiers
Output: C: ensemble of K classifiers with updated weights

Train new classifier C′ with S;
Calculate weight of C′ based on 1 using cross-validation on S;
for Ci in C do

Calculate weight wi based on 1;
end for
C← K classifiers with highest weights from C ∪ C′;
return C;

2.2. Accuracy Updated Ensemble

The second algorithm analyzed in the following work, Accuracy Updated Ensemble, is inspired
by the AWE, but at the same time gets solved some disadvantages, which are the problem with the
selection of the correct size of the chunk and the function of weight selection.

The first disadvantage is caused by the fact that each member classifier is trained only on one
chunk of data, and then remains unchanged. If the chunk size is too small, the classifier will not have
enough data to build a proper model. On the other hand, if it is too large, it may include data from
different concepts. The solution proposed by AUE is to update models of classifiers stored in the pool,
not just to change their weights according to changes in concept. Thanks to this, if the distribution of
classes between chunks remains unchanged, classifiers well matched to it will improve their quality
(as if they were trained on a larger number of samples from the beginning). As a result, it is possible
to reduce the size of the chunk without a fear that this will cause a deterioration in the quality of
individual members. Training occurs when the weight of the ensemble member is greater than the
estimated weight of the random classifier.

Entropy 2020, 22, 849 5 of 17

The other disadvantage of AWE is its weighting function. By its definition and procedure (cutting
off classifiers weaker than the random classifier) it may silence the entire ensemble and make it
impossible to predict. AUE proposes the following weight function for i-th team member:

wi =
1

MSEi + ε
(4)

MSEi is calculated according to Equation (3), and ε guarantees that dividing by 0 should
never occur.

In addition to the introduced corrections, AUE retains all the advantages of AWE: assigning
weights when a new chunk arrives, so classifiers modeled on the outdated concepts do not have a
big impact on the result of the final prediction. As a result, AUE achieves better than AWE quality for
streams with a stationary concept or streams including gradual drifts, and for sudden drifts, quality is
at least the same.

Pseudocode of the AUE algorithm is presented in Algorithm 2.

Algorithm 2 AUE pseudocode.

Input: S: new data chunk

K: size of the ensemble

C:ensemble of K classifiers
Output: C: ensemble of K updated classifiers with updated weights

Train new classifier C′ on S;
Estimate the weight of C′ based on 4 using cross-validation on S;
for Ci ∈ C do

Calculate weight wi based on 4;
end for
C← K classifiers with the highest weights from C ∪ C′;
for Ce in C do

if we >
1

MSEr
and Ce 6= C′ then

update Ce with S
end if

end for

The presented algorithms are not adapted to the classification of imbalanced data. The main
reasons are the methods of assigning weights to ensemble members. They not only affect the fusion of
classifiers (mostly being conducted by weighted voting), but also their composition as classifiers with
the lowest weights are removed. In addition, in AUE, only members with sufficiently high weights
are trained. The mean square error on which the weights are based in both AWE and AUE, as well as
typical accuracy score, is not suitable for assessing the quality of a classifier for imbalanced problems.
Its low value, which translates into a high weight value, may come from a significant bias towards the
majority class, which is best demonstrated by the case of the model that always gives the object the
prediction for the majority class [26].

2.3. Proposed Changes in AUE and AWE Algorithms to Deal with Imbalanced Classification Problem

For the aforementioned reasons, this paper proposes the application of metrics much better at
assessing the quality of algorithms aimed for binary classification of imbalanced data. The first of the
selected metrics is the F1-score [27], which aggregates the simple metrics of sensitivity—determining
the accuracy of the minority class classification, and precision—indicating the probability of its
correct detection.

F1− score = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

(5)

Entropy 2020, 22, 849 6 of 17

The subsequent selected metrics aggregate, using different approaches, the sensitivity
and the specificity score, which in the binary case indicates the accuracy of recognizing the
negative (majority) class. The first is G-mean [28]—the geometric mean of sensitivity and
specificity (Equation (6)), and the last one is balanced accuracy score [26]—their arithmetic mean
(Equation (7)). The advantage of both these metrics is that they consider both improving the minority
class classification, but also avoiding deteriorating the majority class classification.

G−mean =
√

Sensitivity ∗ Speci f icity (6)

balanced accuracy score =
Sensitivity + Speci f icity

2
(7)

In the proposed models, these metrics were used to calculate the weights of ensemble members,
and in the case of the AUE model—to estimate the weight of a random classifier based on the prior
probability of classes.

In addition, the conducted study verified the impact of data sampling on the quality of
classification. Random over- and undersampling methods were chosen because of their simplicity and
low computational complexity in stream processing. In addition, in the case of large imbalance leading
to a small number of minority class objects, they give similar results to other popular sampling methods.

Pseudocodes of AWE and AUE with added proposed modifications are presented in Algorithms 3
and 4.

Algorithm 3 Pseudocode of imbalanced metric-driven models based on AWE.

Input: S: new data chunk

C: ensemble of classifiers

K: size of the ensemble
Output: C: ensemble of classifiers with updated weights

X← sampled S
Train new classifier C′ on X;
Estimate weight of C′ with cross-validation on S based on (5), (6) or (7);
for Ci in C do

Calculate weight wi of Ci on S based on (5), (6) or (7);
end for
C← K classifiers with the highest weights from C ∪ C′;
for Ci in C do

wi ← wi
∑CiinC∪C′ wi

end for
return C;

Entropy 2020, 22, 849 7 of 17

Algorithm 4 Pseudocode of imbalanced metric-driven models based on AUE.

Input: S: new data chunk

C: ensemble of classifiers

K: size of the ensemble
Output: C: ensemble of updated classifiers with updated weights

X← sampled S
Train new classifier C′ na X;
Estimate weight of C′ using cross-validation on S based on 5, 6 or 7;
for Ci in C do

Calculate weight of Ci on S based on 5, 6 or 7;
end for
Calculate weight wR of random classifier on S based on 5, 6 or 6 and a priori probabilities;
for Ci in C do

if wi > wR then

Update Ci with S;
end if

end for
C← K classifiers with the highest weights from C ∪ C′;
for Ci in C do

wi ← wi
∑CiinC∪C′ wi

end for
return C;

3. Experimental Set-Up

When testing the quality of the proposed algorithms, it was decided to use synthetic data streams.
Although they do not show how the models would cope with real problems, artificially generated
data allow for more accurate analysis due to, among others, the fixed location of the concept drifts
and the possibility of any number of replications. The data was provided by the generator from the
stream-learn module, employing the Madelon principle [29] of problem synthetization, being present
also in the popular scikit-learn module, adding the ability to change data distribution over time and
other properties known in the field of stream classification. Additionally, in order to make recognition
more difficult, a fixed label noise was inducted to 1% of samples.

In order to thoroughly analyze the behavior of the models, streams with different imbalance
levels were created, where the minority class accounts for, respectively, 5%, 10%, 20% and 30% of the
entire data stream. For each proportion, five occurrences of different types of concept drift—sudden or
gradual—were included in streams and evenly distributed over time. The data stream was delivered to
the incremental models in the form of 100 chunks, each with 500 patterns. The stream consisted, like in
many analyses of this field [15], of two informative features. Each stream type has been replicated five
times, with different random states. Descriptions of generated stream types are shown in Table 1.

Entropy 2020, 22, 849 8 of 17

Table 1. Comparison of data streams processed during experimental evaluation of modified models,
consisting of the type of occurring concept drifts, information on what percent of all samples belong to
minority class and the ratio between samples from both classes.

DRIFT TYPE MINORITY
CLASS %

CLASS RATIO

1 sudden 5% 1:19
2 sudden 10% 1:90
3 sudden 20% 1:40
4 sudden 30% 3:70

5 gradual 5% 1:19
6 gradual 10% 1:90
7 gradual 20% 1:40
8 gradual 30% 3:70

For each data stream, ensembles of 10 members were built, with the Hoeffding tree chosen as
the base classifier. Combined models were created with each combination of parameters—(1) the
base algorithm, (2) weighing method and (3) type of sampling, which gave 22 considered solutions,
presented in Table 2. In addition, they were compared with the non-modified AWE and AUE algorithms,
as well as with the WAE, OOB and UOB approaches.

Table 2. Description of proposed models, including base ensemble algorithms, implemented
changes—the way weights are calculated and used data sampling—and labels shown on plots.

BASE ENSEMBLE WEIGHTING METHOD SAMPLING PLOT LABEL

1

AWE

proportional to G-mean undersampling u-AWE-g
2 proportional to balanced accuracy score undersampling u-AWE-b
3 proportional to F1-score undersampling u-AWE-f
4 proportional to G-mean oversampling o-AWE-g
5 proportional to balanced accuracy score oversampling o-AWE-b
6 proportional to F1-score oversampling o-AWE-f
7 proportional to G-mean — AWE-g
8 proportional to balanced accuracy score — AWE-b
9 proportional to F1-score — AWE-f

10 in inverse proportion to MSE undersampling u-AWE
11 in inverse proportion to MSE oversampling o-AWE

12

AUE

proportional to G-mean undersampling u-AUE-g
13 proportional to balanced accuracy score undersampling u-AUE-b
14 proportional to F1-score undersampling u-AUE-f
15 proportional to G-mean oversampling o-AUE-g
16 proportional to balanced accuracy score oversampling o-AUE-b
17 proportional to F1-score oversampling o-AUE-f
18 proportional to G-mean — AUE-g
19 proportional to balanced accuracy score — AUE-b
20 proportional to F1-score — AUE-f
21 in inverse proportion to MSE undersampling u-AUE
22 in inverse proportion to MSE oversampling o-AUE

The models were tested using the Test-Then-Train experimental protocol, in which the incoming
chunk is used first to evaluate the model and then to train it. The metrics used in model construction,
i.e., F1-score, G-mean and balanced accuracy score, were selected also for evaluation. After conducting
the experiments, the Wilcoxon test [30] was carried out on the results for observation pairs with four
degrees of freedom and a significance level of 0.05.

Entropy 2020, 22, 849 9 of 17

The experiments were carried out in the Python environment using the scikit-learn [31],
stream-learn [32], imbalanced-learn [33] and scikit-multiflow [34] libraries and own implementations
of modified AWE and AUE methods. The source code of used algorithms as well as experimental
procedure is published in a public repository on GitHub (https://github.com/w4k2/imbalanced-
stream-ensembles).

4. Experimental Evaluation

As it may be observed from Tables 3–5, larger differences between the results of individual models
occur in the case of streams with a greater imbalance—both in terms of the average of all scores
achieved during processing as well as in accordance with statistical tests. Only a large disproportion
between classes, on the order of, for example, 1:19, 1:9, seems to be a proper challenge, significantly
differentiating the quality of the presented algorithms.

As it was expected according to the AUE description, algorithms based on AUE achieve better
results than methods where the AWE is the base ensemble approach. This is due to, in the case of AWE,
the use of a limited number of samples for each member, which impairs their discriminatory ability.
Classifiers in AUE-based ensembles generally receive more samples from the same concept and thus
better recognize the patterns they represent. For a similar reason, in the case of high imbalance models
using oversampling cope better with the problem. It is related to the size of the received chunk, and
more specifically to the number of received minority class objects. For the stream with the highest
disparity between classes, each chunk contains only 25 samples of the minority class. After conducting
undersampling, individual classifiers use very few samples to train, which results in their lower quality.

The obtained results show that changes in the weighting method have the greatest impact in the
case of the F1-score metric (Table 3). What is more, introducing data sampling degrades the quality of
ensembles using imbalanced metrics to calculate weights of member classifiers (Figure 1). Sampling
directly affects the frequency of pointing to the minority class, which, by increasing the number of
correctly recognized samples, also increases the number of samples falsely identified as a positive
class-indicated with the precision metric used by the F1-score. Especially at high imbalance levels,
when there are very few minority class samples, even a small percentage of poorly recognized majority
class samples rapidly reduces the value of the precision metric. This also explains the significant
difference between the values of the F1-score metric and the G-mean and balanced accuracy score in
the case of the highest imbalance streams. The latter uses the specificity instead of precision, which,
due to the large size of the majority class, responds much more mildly to incorrect classification of
individual samples.

The results for the G-mean (Table 4) and balanced accuracy score (Table 5) metrics show that the
mere modification of the method of assigning weights to team members is insufficient—models using
sampling alone were statistically significantly better than models without sampling. Both under-and
oversampling significantly increased the quality of recognition of majority class objects with a slight
deterioration in the classification of the majority class. Still, however, the addition of modification
of weight allocation increases the quality of classification, which in some cases is also supported by
statistical tests (Figures 2 and 3).

According to the results, the best method to assign weights seems to be in proportion to the
F1-score and the second is in proportion to the G-mean metric. Both methods of calculating weights
improve the quality of classifiers not only in relation to the own metrics used, but also in all the others.
In addition, models using them are in most cases much better than almost all others, which also finds
confirmation in performed statistical tests (Figure 4).

It is also worth noting that the proposed models with modifications are also suitable for problems
with low imbalance and achieve much better quality than models created strictly for the problem of
imbalanced data streams.

https://github.com/w4k2/imbalanced-stream-ensembles
https://github.com/w4k2/imbalanced-stream-ensembles

Entropy 2020, 22, 849 10 of 17

Table 3. Average value of the F1-score metric for all compared models and every data stream type,
with subscript containing a list of other methods, that are statistically worse for the given stream type.

METHOD SUDDEN DRIFT GRADUAL DRIFT
5% 10% 20% 30% 5% 10% 20% 30%

1 AWE 0.385 0.496 0.690 0.780 0.358 0.495 0.674 0.760
undersampling+gmean − − 27 26:27 27 27 27 26:27

2 AWE 0.384 0.486 0.704 0.781 0.355 0.483 0.681 0.758
undersampling+bac − − 26:27 26:27 27 27 27 26:27

3 AWE 0.415 0.515 0.722 0.785 0.380 0.505 0.690 0.761
undersampling+ f score − 10,27 26:27 26:27 11,27 27 27 26:27

4 AWE 0.410 0.547 0.720 0.783 0.375 0.507 0.690 0.761
oversampling+gmean − 10,27 26:27 26:27 27 27 27 26:27

5 AWE 0.433 0.577 0.720 0.784 0.393 0.539 0.688 0.763
oversampling+bac − 1:2,10,27 26:27 26:27 11,27 11,27 27 26:27

6 AWE 0.476 0.612 0.734 0.791 0.426 0.567 0.699 0.767
oversampling+ f score 1:2,10,22,27 1:3,10:11,27 10,26:27 26:27 11,27 10:11,27 27 26:27

7 AWE 0.451 0.579 0.722 0.784 0.419 0.538 0.681 0.755
gmean − 10,27 26:27 26:27 11,27 27 27 26:27

8 AWE 0.421 0.600 0.725 0.785 0.377 0.548 0.686 0.756
bac − 1:2,10:11,27 26:27 26:27 − 27 27 26:27

9 AWE 0.486 0.627 0.742 0.791 0.445 0.569 0.692 0.760
f score − 1:3,10:11,27 10,26:27 26:27 11,27 10:11,27 27 26:27

10 AWE 0.359 0.429 0.628 0.740 0.345 0.449 0.624 0.744
undersampling − − − − 27 − − 27

11 AWE 0.358 0.464 0.663 0.741 0.305 0.442 0.646 0.741
oversampling − − − − − − − 27

12 AWE 0.397 0.550 0.674 0.744 0.348 0.518 0.679 0.763
− 27 − − − 27 27 26:27

13 AUE 0.410 0.582 0.740 0.810 0.377 0.548 0.707 0.787
undersampling+gmean − 2,10,27 10,26:27 11:12,26:27 11,27 10:11,27 26:27 26:27

14 AUE 0.403 0.567 0.733 0.807 0.374 0.541 0.708 0.786
undersampling+bac − 10,27 26:27 26:27 27 10:11,27 26:27 26:27

15 AUE 0.429 0.598 0.750 0.818 0.394 0.557 0.714 0.791
undersampling+ f score − 1:2,10:11,27 10,26:27 10:12,26:27 11,27 10:11,27 26:27 26:27

16 AUE 0.509 0.657 0.776 0.828 0.458 0.604 0.741 0.805
oversampling+gmean 1:2,10:11,14,22,27 1:3,10:11,22,26:27 1:2,10:12,26:27 10:12,26:27 1:2,10:11,22,27 1:3,10:11,27 10:11,26:27 10:11,26:27

17 AUE 0.494 0.645 0.756 0.819 0.454 0.607 0.737 0.803
oversampling+bac 1:2,10:11,22,27 1:3,10:11,22,26:27 10:12,26:27 10:12,26:27 1:2,10:11,27 1:3,10:11,27 10:11,26:27 10:11,26:27

18 AUE 0.523 0.663 0.779 0.831 0.464 0.610 0.743 0.806
oversampling+ f score 1:3,10:11,13:14,22,27 1:4,10:11,22,26:27 1:2,10:12,26:27 10:12,26:27 1:2,10:11,22,25,27 1:3,10:11,27 10:11,26:27 10:11,26:27

19 AUE 0.544 0.671 0.775 0.821 0.470 0.613 0.735 0.796
gmean 1:4,10:11,13:14,22,27 1:5,10:12,14,22,26:27 1:2,10:12,26:27 10:12,26:27 11,27 1:3,10:11,27 10,26:27 26:27

20 AUE 0.499 0.646 0.757 0.815 0.456 0.611 0.732 0.794
bac − 1:3,10:11,22,26:27 10:12,26:27 10:12,26:27 11,27 1:3,10:11,27 10,26:27 26:27

21 AUE 0.546 0.682 0.780 0.827 0.479 0.618 0.740 0.797
f score 1:4,10:11,13:14,22,27 1:5,10:14,22,26:27 1:2,10:12,26:27 10:12,26:27 10:11,27 1:3,10:11,27 10:11,26:27 26:27

22 AUE 0.393 0.543 0.746 0.813 0.366 0.522 0.707 0.788
undersampling − 10,27 10,26:27 10:12,26:27 11,27 27 27 26:27

23 AUE 0.467 0.610 0.760 0.820 0.421 0.563 0.724 0.800
oversampling 10 1:3,10:11,27 10:12,26:27 10:12,26:27 11,27 10:11,27 10,26:27 26:27

24 AUE 0.447 0.642 0.766 0.820 0.347 0.547 0.736 0.798
− 1:3,10:11,26:27 1,10:12,26:27 10:12,26:27 − 27 10:11,26:27 26:27

25 WAE 0.382 0.571 0.745 0.805 0.299 0.460 0.698 0.774
− − 10,26:27 26:27 − − 27 26:27

26 OOB 0.488 0.529 0.624 0.679 0.424 0.524 0.624 0.682
− 10,27 − − 11,27 27 − −

27 UOB 0.349 0.440 0.605 0.682 0.250 0.412 0.581 0.678
− − − − − − − −

Entropy 2020, 22, 849 11 of 17

Table 4. Average value of the G-mean metric for all compared models and every data stream type,
with subscript containing a list of other methods, that are statistically worse for the given stream type.

METHOD SUDDEN DRIFT GRADUAL DRIFT
5% 10% 20% 30% 5% 10% 20% 30%

1 AWE 0.792 0.791 0.826 0.845 0.781 0.804 0.822 0.832
undersampling+gmean 7:9,11:12,19:21,24:26 10:12,26 12,26:27 26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 26:27 26:27

2 AWE 0.791 0.771 0.836 0.845 0.781 0.777 0.826 0.831
undersampling+bac 7:9,11:12,19:21,24:26 10,12,26 10,12,26:27 26:27 7:9,11:12,19:21,24:27 11:12,24:26 12,26:27 26:27

3 AWE 0.804 0.780 0.844 0.848 0.788 0.789 0.828 0.833
undersampling+ f score 7:12,19:21,24:26 10,12,26 10,12,26:27 12,26:27 7:9,11:12,19:21,24:27 8,10:12,19:21,24:27 12,26:27 26:27

4 AWE 0.781 0.799 0.842 0.846 0.773 0.785 0.827 0.833
oversampling+gmean 7:9,12,19:21,24:25 10:12,20,26 10,12,26:27 26:27 7:9,11:12,19:21,24:27 11:12,24:26 12,26:27 26:27

5 AWE 0.789 0.819 0.842 0.847 0.779 0.810 0.826 0.834
oversampling+bac 7:9,11:12,19:21,24:26 2,7:12,19:21,24:27 10,12,26:27 26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 12,26:27 26:27

6 AWE 0.801 0.831 0.847 0.851 0.784 0.815 0.830 0.836
oversampling+ f score 7:12,19:21,24:26 1:3,7:12,19:21,24:27 10:12,26:27 12,26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 10,12,26:27 26:27

7 AWE 0.683 0.733 0.807 0.836 0.678 0.725 0.786 0.817
gmean 25 − 26 26:27 12,24:25 − − 26:27

8 AWE 0.583 0.729 0.809 0.837 0.573 0.712 0.786 0.818
bac − − 26 26:27 − − − 26:27

9 AWE 0.649 0.735 0.815 0.840 0.631 0.714 0.786 0.820
f score − − 26 26:27 24:25 − − 26:27

10 AWE 0.753 0.704 0.761 0.804 0.764 0.744 0.769 0.815
undersampling 8:9,12,19:21,24:25 − − − 7:9,11:12,19:21,24:26 11:12,25 − 26:27

11 AWE 0.718 0.707 0.783 0.805 0.723 0.709 0.780 0.810
oversampling 12,24:25 − − − 12,19:21,24:26 − − −

12 AWE 0.543 0.681 0.762 0.798 0.474 0.647 0.769 0.819
− − − − − − − 26:27

13 AUE 0.805 0.832 0.858 0.868 0.794 0.822 0.843 0.853
undersampling+gmean 7:12,19:21,24:26 1:3,7:12,19:21,24:27 7:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 2:3,7:12,19:21,24:27 7:12,25:27 26:27

14 AUE 0.801 0.824 0.852 0.865 0.791 0.819 0.843 0.853
undersampling+bac 7:9,11:12,19:21,24:26 2,7:12,19:21,24:27 7,10:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 2:3,7:12,19:21,24:27 7:12,25:27 26:27

15 AUE 0.811 0.840 0.863 0.874 0.795 0.823 0.845 0.856
undersampling+ f score 7:12,19:21,24:27 1:3,7:12,19:21,24:27 7:12,20,25:27 7:8,10:12,26:27 7:9,11:12,19:21,24:27 2:3,7:12,19:21,24:27 7:12,25:27 11,26:27

16 AUE 0.824 0.859 0.881 0.881 0.811 0.844 0.865 0.867
oversampling+gmean 1:2,4:12,19:21,24:27 1:5,7:12,19:22,24:27 1:12,19:21,24:27 1:5,7:12,26:27 4:5,7:12,19:21,24:27 2:4,7:12,19:21,24:27 1,7:12,19:21,24:27 7:12,26:27

17 AUE 0.820 0.853 0.866 0.874 0.812 0.846 0.862 0.866
oversampling+bac 1,4:5,7:12,19:21,24:27 1:5,7:12,19:22,24:27 7:12,20,25:27 7:8,10:12,26:27 1,4:5,7:12,19:21,24:27 2:4,7:12,19:21,24:27 7:12,19:21,24:27 7:12,26:27

18 AUE 0.830 0.866 0.882 0.883 0.816 0.849 0.866 0.868
oversampling+ f score 1:2,4:12,19:21,23:27 1:14,19:22,24:27 1:12,19:21,24:27 1:5,7:12,25:27 1:2,4:12,19:21,23:27 1:5,7:12,19:21,24:27 1,7:12,19:21,24:27 7:12,26:27

19 AUE 0.639 0.749 0.837 0.863 0.581 0.712 0.810 0.847
gmean − − 10,12,26:27 10:12,26:27 − − 26:27 26:27

20 AUE 0.595 0.733 0.824 0.858 0.562 0.708 0.808 0.845
bac − − 12,26:27 11:12,26:27 − − 26:27 26:27

21 AUE 0.643 0.756 0.839 0.868 0.592 0.713 0.813 0.848
f score − 26 10,12,26:27 10:12,26:27 25 − 26:27 26:27

22 AUE 0.804 0.814 0.859 0.868 0.789 0.813 0.840 0.854
undersampling 7:12,19:21,24:26 7:12,19:21,24:27 7:12,25:27 10:12,26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 10:12,26:27 26:27

23 AUE 0.804 0.841 0.869 0.875 0.783 0.822 0.852 0.863
oversampling 7:12,19:21,24:26 1:3,7:12,19:21,24:27 7:12,20,25:27 10:12,26:27 7:9,11:12,19:21,24:27 2,7:12,19:21,24:27 7:12,25:27 7:8,10:12,26:27

24 AUE 0.531 0.726 0.830 0.862 0.428 0.632 0.808 0.847
− − 12,26:27 10:12,26:27 − − 26 26:27

25 WAE 0.480 0.669 0.815 0.852 0.377 0.547 0.781 0.830
− − 26 12,26:27 − − − 26:27

26 OOB 0.708 0.686 0.735 0.754 0.641 0.706 0.745 0.759
12,24:25 − − − 12,24:25 − − −

27 UOB 0.757 0.757 0.776 0.774 0.718 0.744 0.763 0.772
8:9,12,19:21,24:25 12,26 − − 12,19:21,24:26 11:12,25 − −

Entropy 2020, 22, 849 12 of 17

Table 5. Average value of the balanced accuracy score metric for all compared models and every data
stream type, with subscript containing a list of other methods, that are statistically worse for the given
stream type.

METHOD SUDDEN DRIFT GRADUAL DRIFT
5% 10% 20% 30% 5% 10% 20% 30%

1 AWE 0.795 0.796 0.827 0.846 0.784 0.806 0.823 0.833
undersampling+gmean 7:9,12,19:21,24:25 10:12,26 26:27 26:27 7:9,11:12,19:21,24:27 10:12,24:27 26:27 26:27

2 AWE 0.794 0.791 0.837 0.846 0.784 0.794 0.827 0.832
undersampling+bac 7:9,12,19:21,24:25 10:12,26 10,12,26:27 26:27 7:9,11:12,19:21,24:27 10:12,24:27 26:27 26:27

3 AWE 0.807 0.805 0.846 0.849 0.791 0.803 0.830 0.834
undersampling+ f score 7:12,19:21,24:26 10:12,26:27 10,12,26:27 26:27 7:9,11:12,19:21,24:27 8,10:12,20,24:27 26:27 26:27

4 AWE 0.785 0.801 0.843 0.848 0.777 0.787 0.829 0.834
oversampling+gmean 7:9,12,19:21,24:25 10:12,26 10,12,26:27 26:27 7:9,11:12,19:21,24:27 11:12,25 26:27 26:27

5 AWE 0.794 0.821 0.843 0.848 0.783 0.812 0.827 0.835
oversampling+bac 7:9,12,19:21,24:25 7:8,10:12,20,24:27 10,12,26:27 26:27 7:9,11:12,19:21,24:27 7:8,10:12,20,24:27 26:27 26:27

6 AWE 0.807 0.834 0.849 0.852 0.791 0.818 0.832 0.838
oversampling+ f score 7:12,19:21,24:26 1:2,7:12,19:21,24:27 10:12,26:27 12,26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 10,26:27 26:27

7 AWE 0.711 0.753 0.816 0.840 0.711 0.744 0.795 0.822
gmean − − 26 26:27 25 − − 26:27

8 AWE 0.690 0.758 0.818 0.840 0.686 0.744 0.797 0.822
bac − − 26 26:27 − − − 26:27

9 AWE 0.705 0.765 0.825 0.844 0.696 0.747 0.799 0.825
f score − − 26:27 26:27 − − − 26:27

10 AWE 0.757 0.710 0.762 0.806 0.767 0.750 0.771 0.816
undersampling 12,25 − − − 9,11:12,19:21,24:26 11 − 27

11 AWE 0.727 0.712 0.785 0.806 0.728 0.714 0.782 0.812
oversampling − − − − 12,24:26 − − −

12 AWE 0.650 0.712 0.771 0.802 0.636 0.706 0.786 0.825
− − − − − − − 26:27

13 AUE 0.809 0.835 0.859 0.869 0.797 0.825 0.844 0.855
undersampling+gmean 7:12,19:21,24:26 2,7:12,19:21,24:27 7,10:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 2,7:12,19:21,24:27 7,10:12,26:27 26:27

14 AUE 0.805 0.828 0.853 0.866 0.794 0.822 0.844 0.854
undersampling+bac 7:9,11:12,19:21,24:25 7:12,20,24:27 10:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 2,7:12,19:21,24:27 10:12,26:27 26:27

15 AUE 0.815 0.843 0.864 0.875 0.799 0.826 0.846 0.857
undersampling+ f score 7:12,19:21,24:27 1:3,7:12,19:21,24:27 7:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 2,7:12,19:21,24:27 7:12,26:27 11,26:27

16 AUE 0.829 0.861 0.882 0.882 0.816 0.846 0.866 0.868
oversampling+gmean 1:2,4:5,7:12,19:21,24:271:5,7:12,19:22,24:27 1:12,19:21,24:27 1:5,7:12,26:27 1,4:5,7:12,19:21,24:27 2:4,7:12,19:21,24:27 1,7:12,19:20,24:27 7:12,26:27

17 AUE 0.825 0.855 0.867 0.875 0.817 0.848 0.863 0.867
oversampling+bac 1:2,4:5,7:12,19:21,24:271:5,7:12,19:22,24:27 1,7:12,25:27 7,10:12,26:27 1:2,4:5,7:12,19:21,24:272:4,7:12,19:21,24:27 7:12,20,25:27 7:12,26:27

18 AUE 0.835 0.868 0.883 0.884 0.821 0.851 0.867 0.869
oversampling+ f score 1:12,19:21,24:27 1:14,19:22,24:27 1:12,19:20,24:27 1:5,7:12,26:27 1:2,4:5,7:12,19:21,24:271:5,7:12,19:21,24:27 1:2,5,7:12,19:20,24:27 7:12,26:27

19 AUE 0.713 0.781 0.846 0.867 0.683 0.756 0.824 0.851
gmean − 10,26 10,12,26:27 10:12,26:27 − − 26:27 26:27

20 AUE 0.694 0.768 0.833 0.862 0.676 0.754 0.822 0.850
bac − − 10,12,26:27 10:12,26:27 − − 26:27 26:27

21 AUE 0.714 0.787 0.849 0.872 0.687 0.757 0.826 0.853
f score − 10:12,26 10:12,26:27 10:12,26:27 − − 26:27 26:27

22 AUE 0.807 0.819 0.861 0.870 0.792 0.816 0.841 0.855
undersampling 7:12,19:21,24:26 7:8,10:12,20,25:27 7:8,10:12,26:27 10:12,26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 10:12,26:27 26:27

23 AUE 0.809 0.843 0.870 0.876 0.789 0.824 0.853 0.864
oversampling 7:12,19:21,24:26 1:3,7:12,19:21,24:27 1,7:12,25:27 10:12,26:27 7:9,11:12,19:21,24:27 7:12,19:21,24:27 7:12,26:27 7:8,10:12,26:27

24 AUE 0.676 0.766 0.839 0.865 0.634 0.726 0.824 0.853
− − 10,12,26:27 10:12,26:27 − − 26:27 26:27

25 WAE 0.654 0.739 0.826 0.855 0.620 0.691 0.802 0.836
− − 26:27 11:12,26:27 − − − 26:27

26 OOB 0.743 0.724 0.755 0.766 0.695 0.735 0.760 0.768
12 − − − 25 − − −

27 UOB 0.761 0.759 0.778 0.776 0.722 0.747 0.765 0.773
12,24:25 26 − − 12,24:25 − − −

Entropy 2020, 22, 849 13 of 17

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.348

AUE
0.347

AWE-G
0.419

AUE-G
0.470

AWE-B
0.377

AUE-B
0.456

AWE-F
0.445

AUE-F
0.479

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.348

AUE
0.347

o-AWE
0.305

o-AUE
0.421

o-AWE-G
0.375

o-AUE-G
0.458

o-AWE-B
0.393

o-AUE-B
0.454

o-AWE-F
0.426

o-AUE-F
0.464

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.348

AUE
0.347

u-AWE
0.345

u-AUE
0.366

u-AWE-G
0.358

u-AUE-G
0.377

u-AWE-B
0.355

u-AUE-B
0.374

u-AWE-F
0.380

u-AUE-F
0.394

Gradual drift with 5% of minority class for f-score metric.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.397

AUE
0.447

AWE-G
0.451

AUE-G
0.544

AWE-B
0.421

AUE-B
0.499

AWE-F
0.486

AUE-F
0.546

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.397

AUE
0.447

o-AWE
0.358

o-AUE
0.466

o-AWE-G
0.410

o-AUE-G
0.509

o-AWE-B
0.433

o-AUE-B
0.494

o-AWE-F
0.476

o-AUE-F
0.523

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.397

AUE
0.447

u-AWE
0.359

u-AUE
0.393

u-AWE-G
0.385

u-AUE-G
0.410

u-AWE-B
0.384

u-AUE-B
0.403

u-AWE-F
0.415

u-AUE-F
0.429

Sudden drift with 5% of minority class for f-score metric.

Figure 1. Comparison of base algorithms and their modifications, showing average F1-score value for
each chunk of the stream with gradual and sudden concept drifts and 5% of minority class samples.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.474

AUE
0.428

AWE-G
0.678

AUE-G
0.581

AWE-B
0.573

AUE-B
0.562

AWE-F
0.631

AUE-F
0.592

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.474

AUE
0.428

o-AWE
0.723

o-AUE
0.783

o-AWE-G
0.773

o-AUE-G
0.811

o-AWE-B
0.779

o-AUE-B
0.812

o-AWE-F
0.784

o-AUE-F
0.816

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.474

AUE
0.428

u-AWE
0.764

u-AUE
0.789

u-AWE-G
0.782

u-AUE-G
0.794

u-AWE-B
0.781

u-AUE-B
0.791

u-AWE-F
0.788

u-AUE-F
0.795

Gradual drift with 5% of minority class for gmean metric.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.543

AUE
0.531

AWE-G
0.683

AUE-G
0.639

AWE-B
0.583

AUE-B
0.595

AWE-F
0.649

AUE-F
0.643

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.543

AUE
0.531

o-AWE
0.718

o-AUE
0.804

o-AWE-G
0.781

o-AUE-G
0.824

o-AWE-B
0.789

o-AUE-B
0.820

o-AWE-F
0.801

o-AUE-F
0.830

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.543

AUE
0.531

u-AWE
0.753

u-AUE
0.804

u-AWE-G
0.792

u-AUE-G
0.805

u-AWE-B
0.791

u-AUE-B
0.801

u-AWE-F
0.804

u-AUE-F
0.811

Sudden drift with 5% of minority class for gmean metric.

Figure 2. Comparison of base algorithms and their modifications, showing average G-mean value for
each chunk of the stream with gradual and sudden concept drifts and 5% of minority class samples.

Entropy 2020, 22, 849 14 of 17

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.636

AUE
0.634

AWE-G
0.711

AUE-G
0.683

AWE-B
0.686

AUE-B
0.676

AWE-F
0.696

AUE-F
0.687

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.636

AUE
0.634

o-AWE
0.728

o-AUE
0.789

o-AWE-G
0.777

o-AUE-G
0.816

o-AWE-B
0.783

o-AUE-B
0.817

o-AWE-F
0.791

o-AUE-F
0.821

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.636

AUE
0.634

u-AWE
0.767

u-AUE
0.792

u-AWE-G
0.784

u-AUE-G
0.797

u-AWE-B
0.784

u-AUE-B
0.794

u-AWE-F
0.792

u-AUE-F
0.799

Gradual drift with 5% of minority class for bac metric.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with modified weights

AWE
0.650

AUE
0.676

AWE-G
0.711

AUE-G
0.713

AWE-B
0.690

AUE-B
0.694

AWE-F
0.705

AUE-F
0.714

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with oversampling

AWE
0.650

AUE
0.676

o-AWE
0.727

o-AUE
0.809

o-AWE-G
0.786

o-AUE-G
0.829

o-AWE-B
0.794

o-AUE-B
0.825

o-AWE-F
0.808

o-AUE-F
0.835

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
models with undersampling

AWE
0.650

AUE
0.676

u-AWE
0.757

u-AUE
0.807

u-AWE-G
0.795

u-AUE-G
0.809

u-AWE-B
0.794

u-AUE-B
0.805

u-AWE-F
0.808

u-AUE-F
0.815

Sudden drift with 5% of minority class for bac metric.

Figure 3. Comparison of base algorithms and their modifications, showing average balanced accuracy
score for each chunk of the stream with gradual and sudden concept drifts and 5% of minority
class samples.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
f-score metric

AUE-F
0.479

WAE
0.299

o-AUE-G
0.458

OOB
0.424

o-AUE-B
0.454

UOB
0.250

o-AUE-F
0.464

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
gmean metric

AUE-F
0.592

WAE
0.377

o-AUE-G
0.811

OOB
0.641

o-AUE-B
0.812

UOB
0.718

o-AUE-F
0.816

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
bac metric

AUE-F
0.687

WAE
0.619

o-AUE-G
0.816

OOB
0.695

o-AUE-B
0.817

UOB
0.722

o-AUE-F
0.821

Gradual drift with 5% of minority class.

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
f-score metric

AUE-F
0.546

WAE
0.382

o-AUE-G
0.509

OOB
0.488

o-AUE-B
0.494

UOB
0.349

o-AUE-F
0.523

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
gmean metric

AUE-F
0.643

WAE
0.480

o-AUE-G
0.824

OOB
0.708

o-AUE-B
0.820

UOB
0.757

o-AUE-F
0.830

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0
bac metric

AUE-F
0.714

WAE
0.654

o-AUE-G
0.829

OOB
0.743

o-AUE-B
0.825

UOB
0.762

o-AUE-F
0.835

Sudden drift with 5% of minority class.

Figure 4. Comparison of the best proposed models with other methods of stream processing using the
Test-Then-Train procedure on the stream with gradual and sudden concept drifts and 5% of minority
class samples.

5. Conclusions

This paper presents a novel proposition extending state-of-the-art streaming data processing
methods with modified weighting metrics for member-classifiers, taking into account the prior

Entropy 2020, 22, 849 15 of 17

probability of classes present during the flow of data stream containing various types of concept
drift phenomenon. An in-depth experimental analysis of the proposed methods was carried out,
including three standard aggregated metrics used to assess the quality prediction models constructed
on imbalanced classification problems, as well as statistical testing to verify the significance of
differences between models. Experiments were conducted using various types of class imbalance
and drift types to thoroughly study the characteristics of evaluated algorithms. In comparison with
the standard methods of solving the problem of imbalanced data streams, based on the resampling
of the training set, greater usefulness potential of the presented proposal has been demonstrated in
all types of examined imbalance levels and occurring concept drifts. Nonetheless, the considerable
limitation of this study was the lack of evaluation on real-life data, which should be included in further
research, together with the additional introduction of proposed modifications to different stream
processing algorithms.

The modifications introduced in the AWE and AUE methods allow a noticeable improvement in
the predictive capabilities of ensemble models both in cases of high imbalance and with relatively
small disproportions between the problem classes. The proposed method only modifies the method of
establishing weights for individual classifiers in the ensemble pool, and therefore does not create any
additional computational overhead, so without major contraindications it may be recommended to
use in solving problems of imbalanced stream classification with any imbalance ratio.

Author Contributions: W.W. was responsible for formulation of overarching research goals and aims, conducting
a research and investigation process, implementation of the computer code and supporting algorithms and writing
the initial draft. P.K. was accountable for annotating and maintain research data, verification of research outputs
and oversight and leadership responsibility for the research activity planning and execution.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Polish National Science Centre under the grant
No. 2017/27/B/ST6/01325 as well as by the statutory funds of the Department of Systems and Computer
Networks, Faculty of Electronics, Wroclaw University of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream
analysis: A survey. Inf. Fusion 2017, 37, 132–156. [CrossRef]

2. Gomes, H.M.; Barddal, J.P.; Enembreck, F.; Bifet, A. A survey on ensemble learning for data stream
classification. Acm Comput. Surv. (CSUR) 2017, 50, 1–36. [CrossRef]

3. Adeniyi, D.A.; Wei, Z.; Yongquan, Y. Automated web usage data mining and recommendation system using
K-Nearest Neighbor (KNN) classification method. Appl. Comput. Inform. 2016, 12, 90–108. [CrossRef]

4. CISCO. Cisco Visual Networking Index: Forecast and Trends, 2017–2022 . Available online: https:
//www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/
knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf (accessed date: 15 December 2018).

5. Dal Pozzolo, A.; Caelen, O.; Le Borgne, Y.A.; Waterschoot, S.; Bontempi, G. Learned lessons in credit card
fraud detection from a practitioner perspective. Expert Syst. Appl. 2014, 41, 4915–4928. [CrossRef]

6. Yuan, X.; Li, C.; Li, X. DeepDefense: identifying DDoS attack via deep learning. In Proceedings of the 2017
IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 29–31 May 2017;
pp. 1–8.

7. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
8. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 2016,

5, 221–232. [CrossRef]
9. Jeni, L.A.; Cohn, J.F.; De La Torre, F. Facing imbalanced data–recommendations for the use of performance

metrics. In Proceedings of the 2013 Humaine association conference on affective computing and intelligent
interaction, Geneva, Switzerland , 2–5 September 2013; pp. 245–251.

10. Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for
classification. Pattern Recognit. Lett. 2009, 30, 27–38. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2017.02.004
http://dx.doi.org/10.1145/3054925
http://dx.doi.org/10.1016/j.aci.2014.10.001
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
http://dx.doi.org/10.1016/j.eswa.2014.02.026
http://dx.doi.org/10.1007/s13748-016-0094-0
http://dx.doi.org/10.1016/j.patrec.2008.08.010

Entropy 2020, 22, 849 16 of 17

11. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and issues in data stream systems.
In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database
Systems, Madison, WI, USA, 3–5 June 2002; pp. 1–16.

12. Tsymbal, A. The problem of concept drift: definitions and related work. Comput. Sci. Dep. Trinity Coll. Dublin
2004, 106, 58.

13. Woźniak, M.; Kasprzak, A.; Cal, P. Weighted aging classifier ensemble for the incremental drifted data
streams. In Proceedings of the International Conference on Flexible Query Answering Systems, Granada,
Spain, 18–20 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 579–588.

14. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with drift detection. In Brazilian Symposium on
Artificial Intelligence; Springer: Berlin/Heidelberg, Germany 2004; pp. 286–295.

15. Wang, S.; Minku, L.L.; Yao, X. Online class imbalance learning and its applications in fault detection. Int. J.
Comput. Intell. Appl. 2013, 12, 1340001. [CrossRef]

16. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

17. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
In Proceedings of the 2008 IEEE international joint conference on neural networks (IEEE world congress on
computational intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

18. Laurikkala, J. Improving identification of difficult small classes by balancing class distribution.
In Proceedings of the Conference on Artificial Intelligence in Medicine in Europe, Cascais, Portugal,
1–4 July 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 63–66.

19. Burduk, R.; Kurzyński, M. Two-stage binary classifier with fuzzy-valued loss function. Pattern Anal. Appl.
2006, 9, 353–358. [CrossRef]

20. Krawczyk, B.; Woźniak, M. One-class classifiers with incremental learning and forgetting for data streams
with concept drift. Soft Comput. 2015, 19, 3387–3400. [CrossRef]

21. Zyblewski, P.; Ksieniewicz, P.; Woźniak, M. Classifier selection for highly imbalanced data streams with
minority driven ensemble. In Proceedings of the International Conference on Artificial Intelligence and Soft
Computing, Zakopane, Poland, 16–20 June 2019; Springer: Cham, Switzerland, 2019; pp. 626–635.

22. Wang, H.; Fan, W.; Yu, P.S.; Han, J. Mining concept-drifting data streams using ensemble classifiers.
In Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery And Data
Mining, Washington, DC, USA, 24–27 August 2003; pp. 226–235.

23. Brzeziński, D.; Stefanowski, J. Accuracy updated ensemble for data streams with concept drift.
In Proceedings of the International Conference On Hybrid Artificial Intelligence Systems, Wroclaw, Poland,
23–25 May 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 155–163.

24. Brzezinski, D.; Stefanowski, J. Reacting to different types of concept drift: The accuracy updated ensemble
algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2013, 25, 81–94. [CrossRef] [PubMed]

25. Spyromitros-Xioufis, E.; Spiliopoulou, M.; Tsoumakas, G.; Vlahavas, I. Dealing with concept drift and class
imbalance in multi-label stream classification. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.

26. Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The balanced accuracy and its posterior
distribution. In Proceedings of the 2010 20th International Conference on Pattern Recognition,
Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124.

27. Chinchor, N. MUC-4 Evaluation Metrics. In Proceedings of the 4th Conference on Message Understanding
(MUC4’92), McLean, VA, USA, 16–18 June 1992; Association for Computational Linguistics: Stroudsburg,
PA, USA, 1992; pp. 22–29. [CrossRef]

28. Kubat, M.; Matwin, S. Addressing the curse of imbalanced training sets: One-sided selection. In Proc. 14th
International Conference on Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1997; Volume 97,
pp. 179–186.

29. Guyon, I. Design of experiments of the NIPS 2003 variable selection benchmark. In Proceedings of the NIPS
2003 Workshop on Feature Extraction And Feature Selection, Whistler, British Columbia, Canada, 11–13
December 2003.

30. Gehan, E.A. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 1965,
52, 203–224. [CrossRef] [PubMed]

http://dx.doi.org/10.1142/S1469026813400014
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/s10044-006-0043-9
http://dx.doi.org/10.1007/s00500-014-1492-5
http://dx.doi.org/10.1109/TNNLS.2013.2251352
http://www.ncbi.nlm.nih.gov/pubmed/24806646
http://dx.doi.org/10.3115/1072064.1072067
http://dx.doi.org/10.1093/biomet/52.1-2.203
http://www.ncbi.nlm.nih.gov/pubmed/14341275

Entropy 2020, 22, 849 17 of 17

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

32. Ksieniewicz, P.; Zyblewski, P. stream-learn–open-source Python library for difficult data stream batch
analysis. arXiv 2020, arXiv:2001.11077.

33. Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of
Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5.

34. Montiel, J.; Read, J.; Bifet, A.; Abdessalem, T. Scikit-Multiflow: A Multi-output Streaming Framework.
J. Mach. Learn. Res. 2018, 19, 2915–2914.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Accuracy Weighted Ensemble
	Accuracy Updated Ensemble
	Proposed Changes in aue and awe Algorithms to Deal with Imbalanced Classification Problem

	Experimental Set-Up
	Experimental Evaluation
	Conclusions
	References

