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Abstract: Medical image segmentation is an important part of medical image analysis. With the
rapid development of convolutional neural networks in image processing, deep learning methods
have achieved great success in the field of medical image processing. Deep learning is also used in
the field of auxiliary diagnosis of glaucoma, and the effective segmentation of the optic disc area
plays an important assistant role in the diagnosis of doctors in the clinical diagnosis of glaucoma.
Previously, many U-Net-based optic disc segmentation methods have been proposed. However, the
channel dependence of different levels of features is ignored. The performance of fundus image
segmentation in small areas is not satisfactory. In this paper, we propose a new aggregation channel
attention network to make full use of the influence of context information on semantic segmentation.
Different from the existing attention mechanism, we exploit channel dependencies and integrate
information of different scales into the attention mechanism. At the same time, we improved the basic
classification framework based on cross entropy, combined the dice coefficient and cross entropy,
and balanced the contribution of dice coefficients and cross entropy loss to the segmentation task,
which enhanced the performance of the network in small area segmentation. The network retains
more image features, restores the significant features more accurately, and further improves the
segmentation performance of medical images. We apply it to the fundus optic disc segmentation
task. We demonstrate the segmentation performance of the model on the Messidor dataset and
the RIM-ONE dataset, and evaluate the proposed architecture. Experimental results show that our
network architecture improves the prediction performance of the base architectures under different
datasets while maintaining the computational efficiency. The results render that the proposed
technologies improve the segmentation with 0.0469 overlapping error on Messidor.

Keywords: information aggregation; attention mechanism; improved cross entropy; optic disc;
segmentation network

1. Introduction

Because the vision loss caused by glaucoma is irreversible [1], early screening for glaucoma
disease is particularly important. Early detection relies on manual observation by an ophthalmologist,
but it is time-consuming and laborious for each doctor to observe one by one, and the medical skills
of the needed doctor are also very high. The judgment results of different doctors are also different,
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which is not suitable for crowd screening. Therefore, in the large-scale screening of glaucoma diseases,
an automated method that saves manpower is needed. In the clinic, the cup-to-disk ratio (CDR) [2] of
the fundus image is an important indicator for clinical diagnosis of glaucoma. In general, the greater
the CDR, the greater the risk of glaucoma, and vice versa. Using computer technology to segment the
fundus image becomes the key. The automatic segmentation method of the fundus image optic disc
is mainly divided into two categories, methods based on image processing and hand-made features,
and methods based on deep learning.

Image processing-based methods include threshold-based algorithms and active contour algorithms.
The algorithm based on threshold makes use of the color difference of each region of the fundus image
to generate binary images. Joshi et al. proposed a cup boundary detection scheme based on the
appearance of pallor in Lab color space and the expected cup symmetry [3]. Cheng et al. proposed a disc
segmentation method based on peripapillary atrophy elimination [4]. Noor et al. proposed a method
for glaucoma detection using digital fundus images with color multi-thresholding segmentation [5].
Issac et al. used the identification parameters of glaucoma infection as features and were input into
a learning algorithm for glaucoma diagnosis [6]. However, threshold-based methods are not robust
enough for fundus images with low contrast or presence of pathologies [7]. The active contour algorithm
divides different regions of medical images by minimizing the energy function. Joshi et al. proposed
a method to integrate local image information around each point of interest in a multi-dimensional
feature space [8]. However, these methods are prone to fall into the local minimum, and the performance
depends largely on the model initialization. Chen et al. [9] proposed to subdivide the disc image into
super pixels, and then use manual features to classify the super pixels. Wong et al. [10] proposed a
method of automatic segmentation of image region by detecting vascular kinks.

Deep learning describes various computing models composed of multiple processing layers.
These layers mainly learn abstract representations of different levels of data. Deep learning has
powerful feature extraction capabilities. In recent years, more and more deep learning-based methods
have been applied to the field of fundus image segmentation. In particular, the success of U-Net [11] has
promoted the development of medical image segmentation. This network aggregates low-resolution
features (providing a basis for object category recognition) and high-resolution features (providing
accurate pixel positioning basis), and largely solves the problem of neglecting useful information.
The research direction of fundus image segmentation methods focuses on extracting more abstract
image features. CE-Net [12] uses multi-branch atrous convolution to extract features of different
receptive fields. M-Net [13] uses multi-label networks and polar coordinate transformation in fundus
image segmentation tasks. These methods aggregate information of different scales. After extracting
features from the encoding path, high-level features fuse feature information of different scales.
Zhang et al. [14] used the edge guidance module to learn the edge attention representation in the
early coding layer, and then transferred it to the multi-scale decoding layer, using the weighted
aggregation module fusion. Although these methods based deep learning have achieved significant
results, the dependencies between channel mappings of different resolutions have been ignored.

Attention mechanism is gradually gaining popularity in medical segmentation. The attention
mechanism can be viewed as using feature map information to select and locate the most significant
part of the input signal [15]. Hu et al. [16] used global average pooling to aggregate feature map
information, then reduced it to a single channel feature map, and finally used an activation gate to
highlight salient features. Wang et al. [17] added an attention module to the residual network for
image classification. Fu et al. [18] proposed a dual attention network based on spatial and channel
attention mechanism. Li et al. [19] proposed a pyramid attention network that combines attention
mechanisms with spatial pyramids to extract accurate features for pixel labeling. Guo et al. [20] used
the residual block in the channel attention mechanism and proposed that the channel attention residual
block improves the recognition ability of the network. Mou et al. [21] used a self-attention mechanism
in the encoder and decoder to combine local features and global correlation. However, these attention
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mechanisms do not take the impact of multi-scale image features on the attention gate into account,
and the channel dependence between different scales is ignored.

Inspired by the successful application of the channel attention mechanism in the field of medical
image segmentation [19–21], we introduced an aggregation channel attention network to improve the
performance of optic disc segmentation of fundus images. First, in order to alleviate the disappearance
of gradients and reduce the number of parameters [22], we use DenseNet blocks to extract high-level
features. Second, high-level features are more effective in classifying categories, but weaker in
reconstructing the original resolution binary prediction, while low-level features are the opposite.
Therefore, we propose an aggregation channel attention upsampling module, which guides the
reconstruction of the original resolution by aggregating feature information of different resolutions.
Third, in the task of fundus optic disc segmentation, the optic disc often occupies a small area in the
image. The imbalance of the foreground and background ratio often leads to the learning process
falling into the local minimum of the loss function. Dice coefficients perform well in small area image
segmentation in the field of medical image segmentation [12]. To solve this problem, we combine the
dice coefficients with cross entropy to balance the contribution of the two loss functions.

As illustrated above, in our paper, the main contributions to the fundus image segmentation are
the following four aspects:

(1) In order to avoid overfitting and save model calculation, we propose using DenseNet blocks to
extract features in the encoding layer. This is particularly important in the field of medical image
segmentation where data sets are generally small.

(2) We propose an effective semantic segmentation decoder, called the aggregation channel attention
upsampling module. We use different layers of features to guide the attention mechanism, so as
to fuse the information of different scales to restore pixel categories. We use squeeze excitation
blocks and generalized average pooling to integrate channel information.

(3) We improved the basic classification framework based on cross entropy to optimize the network.
This loss function balances the contribution of dice coefficients and cross-entropy loss to the
segmentation task.

(4) In order to verify the effectiveness of our method, we validated our method on the Messidor [23]
and RIM-ONE [24] datasets. Compared with the existing methods, the segmentation performance
of our method on these fundus image datasets has been significantly improved. This further
develops the application of attention mechanism and entropy in the field of image segmentation,
and promotes deep learning research in the field of optic disc segmentation of fundus images.

We would like to present the organization of our paper as follows: We give a detailed interpretation
of our proposed method and the framework of the aggregation channel attention network with our
method in Section 2. In Section 3, we give some details of our experiments and present their results
and analysis. Lastly, we present the conclusions of our paper.

2. Materials and Methods

2.1. Aggregation Channel Attention Network Architecture for Medical Image Segmentation

As shown in Figure 1, in the encoder–decoder network structure, the encoder aims to gradually
reduce the spatial size of the feature map and capture more advanced semantic features. The decoder
restores the details and spatial dimensions of the object and retains more spatial information. Among the
many algorithms that improve U-Net, there are improvements to the encoder and decoder, respectively.
In order to obtain more significant advanced semantic features, we chose the DenseNet block that
performs well in the encoder path. Similarly, in the decoding path, we propose an aggregation
channel attention upsampling (ACAU) module to retain more spatial information. In order to extract
contextual semantic information and generate more advanced features, in bottleneck, we use the Dense
Atrous Convolution module (DAC) composed of multi-branch atous convolution and the Residual
Multi-kernel pooling (RMP) composed of multi-scale pooling [12].
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Figure 2. Illustration of the proposed aggregation channel attention network. 

2.2. Dense Convolutional Network for Encoding  

In the U-Net [11] architecture, encoding is achieved through continuous convolution and 
pooling operations. Continuous pooling operations and convolution reduce the feature resolution to 
learn increasingly abstract features. This operation hinders the intensive prediction task of detailed 
spatial information. Maintaining high resolution requires more training resources, so there is a trade-
off between saving training resources and maintaining high resolution. In order to capture more 
advanced features, we need to use an encoding structure that efficiently extracts advanced features 
and does not take up too many training resources. 

Figure 1. Illustration of the encoder–decoder network.

Figure 2 shows the proposed network structure framework. As with typical architecture for semantic
segmentation, our framework, as shown in Figure 2, includes an encoder, a decoder, and a bottleneck
connecting the two parts. First, the initial features of the input image are extracted through the convolution
layer. The initial convolutional layer is 7 × 7 convolution with a step size of 2 and a padding of 3. In the
encoder path, we used the DenseNet [22] block structure to extract image features. DenseNet block
includes dense block (feature extraction) and transition block (reduced feature map size). It consists of
four DenseNet blocks for different feature resolution. The bottleneck structure further extracts features at
different scales through dense atrous convolution (DAC) and residual multi-kernel pooling (RMP) [12].
The decoder path is composed of four aggregation channel attention upsampling modules, which
maintains the high-level features of the encoder and restores the spatial resolution of the feature map.
Finally, the output feature map is subjected to deconvolution and continuous ReLU function and 3 × 3
convolution, and then processed by the sigmoid function to obtain a prediction map.
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2.2. Dense Convolutional Network for Encoding

In the U-Net [11] architecture, encoding is achieved through continuous convolution and pooling
operations. Continuous pooling operations and convolution reduce the feature resolution to learn
increasingly abstract features. This operation hinders the intensive prediction task of detailed spatial
information. Maintaining high resolution requires more training resources, so there is a trade-off

between saving training resources and maintaining high resolution. In order to capture more advanced
features, we need to use an encoding structure that efficiently extracts advanced features and does not
take up too many training resources.

In a traditional feed-forward convolutional network, the information of (l− 1)th layer is
transmitted to the layer l-th layer in the following form:



Entropy 2020, 22, 844 5 of 13

ul = Hl(ul−1), (1)

where u is the feature map in the information flow, and H is the convolution calculation. As shown in
Figure 3a, residual block [25] adds a skip-connection so that the gradient can flow directly from the
later layer to the earlier layer through the identity function:

ul = Hl(ul−1) + ul−1 (2)
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As shown in Figure 3b, dense block [22] further improves the information flow between the layers,
adding direct connections from any previous layer to all subsequent layers:

ul = Hl([u0, u1, . . . , ul−1]). (3)

This allows each layer to directly access the loss function and the gradient of the original input
signal, which facilitates the training of deeper network structures. In addition, in the task of fundus
optic disc segmentation, the training set size is generally small. This dense connection structure has
a regularization effect, which can reduce the risk of overfitting for tasks with a small training set size.

2.3. Aggregation Channel Attention Upsampling Module

We now introduce the aggregation channel attention upsampling module (ACAU). Figure 4 shows
the proposed ACAU module. Recently, the attention mechanism has been well applied in the field of
image segmentation [19–21]. Squeeze and Excitation Block has also been verified to be applicable to
medical image segmentation [26]. Similarly, in our proposed ACAU, in order to improve the quality
of the representation generated by the network, we use Squeeze and Excitation Block [16] in each
upsampling block, adaptively weight the channel, use global information, and selectively emphasize
Information features, suppress useless features. Formally, vl is generated by shrinking xl through its
spatial dimensions Hl ×Wl, such that the c-th channel of vl is calculated by:

vc
l = FGAP

(
xc

l

)
=

1
Hl ×Wl

Hl∑
i=1

Wl∑
i=1

xc
l (i, j) (4)
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Then, in order to take advantage of the global information in the above channel descriptor, we need
to capture channel dependencies. We chose a simple gating mechanism and a sigmoid activation:

vc
o = Fex(vl, W) = δ (W2σ(W1vl)) (5)

where σ refers to the ReLU function, δ refers to the sigmoid function, and W1 and W2 are the weights of
the fully connected layer. Finally, multiply the global information with xl to get the weighted features:

yl = voxl (6)

The current decoder modules lack the feature map information of different scales, and may not be
conducive to pixel restoration positioning [19]. In image segmentation networks, the image features of
lower layers excite informative features in a class-agnostic manner, and are better at restoring binary
prediction of image resolution. Features at higher levels have more category information [16]. The main
function of the decoder module is to repair category pixel positioning. We use high-level features with
rich category information to weight low-level features to select accurate resolution details.

Therefore, we perform GeM pooling [27] on high-level features to provide global context
information to guide low-level features. In detail, we use 1 × 1 convolution to change the number of
channels of high-level features to match low-level features. The GeM pooling features descriptor is to
produce an embedding of the global distribution of channel-wise feature responses [16], so that the
information of the global acceptance domain of this layer is aggregated, and this information is used to
guide the lower layer features. GeM pooling can be expressed as:

vc
h = FGeM

(
xc

h

)
=

 1
Hh ×Wh

Hh∑
i=1

Wh∑
i=1

xc
h(i, j)pk


1

pk

(7)

where pk is the pooling effect parameter, and the effect of pooling can be changed by adjusting pk [27].
Next, the feature vector is processed by the sigmoid function and multiplied by the low-level features:

xout = δ(vh)yl (8)

This can effectively combine feature information of different resolutions, and use high-level
features to provide guidance for low-level features.

2.4. Improved Cross-Entropy Loss for Optic Disc Segmentation

At the end of the network, we perform a softmax operation to get the prediction map. The softmax
operation is performed to ensure that the prediction result is finally mapped into the (0,1) interval,
which is used to represent the probability that the pixels are the background or the disc. As the most
commonly used loss function, cross-entropy loss examines each pixel independently and compares the
class prediction vector with ground-truth [15]. Then, cross entropy (CE) can be defined as:

CE(pi, ti) = −(ti log(pi) + (1− ti) log(1− pi)) (9)

where ti ∈ {0, 1} is the groundtruth class, and pi ∈ [0, 1] is the prediction class. The dice coefficient is
a measure of the overlapping area of the picture difference area, which is used to measure the difference
between the prediction map and the ground-truth. It has a better effect on the measurement of small
targets [12]. Dice coefficient (DC) can be defined as:

DC(pi,ti) =
2
∑N

i=1 piti∑N
i=1 pi +

∑N
i=1 ti

(10)
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To leverage dice coefficient loss to deal with imbalances and small areas, while taking the
advantages of cross-entropy loss into account, we have merged two functions, which combine the
advantages of the above two functions:

L = α

− 1
N

N∑
I=1

ti log(pi) + (1− ti) log(1− pi)

+ (1− α)

1−
2
∑N

i=1 piti + S∑N
i=1 pi +

∑N
i=1 ti + S

, (11)

where ti ∈ {0, 1} is the ground-truth class corresponding to each pixel, and pi ∈ [0, 1] is the pixel class
prediction output by the softmax function. N is the number of pixels. To prevent division by zero,
we use add-one smoothing [28], which adds a unity constant S to both the numerator and denominator.
α controls the contribution of cross-entropy loss and dice coefficients to fusion loss.

3. Experiment and Results

3.1. Experimental Setup

3.1.1. Implementation Details

We installed CUDA10.0 and CUDNN7.0 on Ubuntu 16.04 with a single 2080Ti GPU and 64 GB
RAM. The experimental system is Pytorch based. As the initial network, the ImageNet-trained
DenseNet was used. During the training process, we used Adam’s optimization method, using the

learning rate decay set to
(
1− iter

max_iter

)0.9
, and the basic learning rate was 0.0002. The input picture size

is 448 × 448. The default batchsize is set to 1. The network was trained for 200 epochs on the Messidor
and RIM-ONE-R1 datasets. We follow the partition in [29] to get the training and testing images in the
Messidor and RIM-ONE-R1 datasets. To evaluate the segmentation performance, we used overlapping
errors as the evaluation criteria:

E = 1−
Area(X∩Y)
Area(X∪Y)

=
TP

TP + FP + FN
(12)

where X is the predicted disc area, and Y is the ground-truth disc area, Area(X∩Y) represents the
overlapping part of the predicted disc area and the ground-truth disc area, and Area(X ∪Y) represents
the union of the predicted disc area and the ground-truth disc area.

3.1.2. Data Augmentation Preprocessing

Because the number of pictures in the dataset is too small, in order to avoid overfitting, we have
performed data augmentation on the dataset. We perform random horizontal flip, vertical flip,
and diagonal flip on each picture, so that the number of pictures in the dataset is expanded eight times
as the original data. In addition, we also randomly adjust the brightness of the picture and move it left
and right to further increase the effect of data augmentation.

3.1.3. Dataset and Data Processing

We performed experiments on two fundus optic disc segmentation datasets: the Messidor dataset
and the RIM-ONE-R1 dataset. We want to introduce these benchmark datasets as follows.

The Messidor [23] dataset was created by the Messidor project and mainly includes color images
of the eye fundus. These images are obtained in routine clinical examinations, and the optic disc area
is manually annotated by ophthalmologists. The image is saved in TIFF format with a resolution of
1440 × 960. We take the center of the optic disc as the picture center and crop it into a picture of size
448 × 448. According to [12,29], the dataset is randomly divided into 1000 and 200 images are used for
training and testing, respectively.

The RIM-ONE [24] dataset has three sub-datasets, RIM-ONE-R1, RIM-ONE-R2, and RIM-ONE-R3,
and their numbers are 169, 455, and 159. Among them, RIM-ONE-R1 has only the disc ROI area,
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and there are labels manually labeling the optic disc area, which are marked by five ophthalmologists.
In this experiment, we use the pictures labeled by expert 1 as the training set, and the pictures labeled
by the other experts as the testing set. Since the proportions of pictures in RIM-ONE-R1 are not the
same, we preprocess all pictures to make them uniform in size to 448 × 448 for training and testing.

3.2. Ablation Study

In this section, we show the effectiveness of the proposed improvements adopted in the proposed
network. We validate the dense block and ACAU module on the Messidor. In detail, we combine
denseblock with U-Net and CE-Net, respectively, direct upsampling is the same as baseline, and then
ACAU module is combined with U-Net and CE-Net. Downsampling is the same as baseline.

DenseNet block has a significant effect in extracting features and reducing parameters. We use
it to extract more valuable features. In the experiment, we applied DenseNet block to the classic
image segmentation model in order to prove its effectiveness. As shown in Table 1, the combination
of DenseNet block and U-Net improves the performance from 0.055 to 0.0532, and the overlapping
error of prediction decreases by 0.0018. For CE-Net, the result is improved from 0.0518 to 0.0502,
and the error of prediction decreases by 0.0016. Therefore, the experiment proves that DenseNet block
improves the performance of fundus image segmentation.

Table 1. Detailed performance of Aggregation Channel Attention with different settings on Messidor.
All results are achieved by us under the same experimental conditions. The best results would be
highlighted in bold.

Method E

U-Net [11] 0.055
U-Net+Denseblock 0.0532

U-Net+ACAUm 0.0519
U-Net+Denseblock+ACAUm 0.0502

CE-Net [12] 0.0518
CE-Net+Denseblock 0.0502

CE-Net+ACAUm 0.0496
ACAU-Net 0.0469

In our method, in order to improve the performance of image segmentation and better restore the
pixel category, we propose the ACAU module. In order to show the effectiveness of retaining image
information, we combined it with a classic image segmentation model and verified the segmentation
effect on the Messidor dataset. As shown in Table 1, the combination of ACAU and U-Net improves the
performance from 0.055 to 0.0519, and the error of prediction decreases by 0.0031. For CE-Net, the result
improves from 0.0518 to 0.0496, and the error of prediction decreases by 0.0022. The experiment proves
the effectiveness of ACAU for the task of fundus optic disc segmentation. The ACAU module plays a
role in integrating scale features and retaining category information.

We also combined DenseNet block and ACAU into U-Net and CE-Net. For U-Net, the result was
increased from 0.055 to 0.0502, the error of prediction decreases by 0.0048, and the combination of the
two modules into CE-Net is ACAU-Net. The performance was improved from 0.0518 to 0.0469 and
increased by 0.0049. The experiment confirmed the effectiveness of our proposed method. Bold text
highlights the best results.

3.3. Comparison with the Baselines

In order to prove the effectiveness of our proposed model, we compare the proposed model in this
paper with more advanced algorithms at this stage. Because the ORIGA dataset is not publicly available
on the Internet, we use the other two datasets Messidor and RIM-ONE in CE-Net. We compared it with
the method proposed by Gu et al. [12]. In addition, we compared the performance of U-Net [11] and
M-Net [13] in fundus image segmentation. Similarly, we also compared with Faster RCNN method [30]
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and the DeepDisc method [31]. We will directly use the results obtained in their work as a reference for
comparison. We compare our proposed method with the baseline in the fundus image segmentation
task. Herein, we refer to the proposed aggregation channel attention network as ACAU-Net. We set
the hyperparameter pk to 5, α to 0.5, and work number to 4, and use the Adam optimization method to
optimize the model. We present the results in Table 2.

Table 2. Comparison with different methods for OD segmentation. The best results would be
highlighted in bold.

Method Messidor R-Exp1 R-Exp2 R-Exp3 R-Exp4 R-Exp5

U-Net [11] 0.069 0.137 0.149 0.156 0.171 0.149
M-Net [13] 0.113 0.128 0.135 0.153 0.142 0.117

Faster RCNN [30] 0.079 0.101 0.152 0.161 0.149 0.104
DeepDisc [31] 0.064 0.077 0.107 0.119 0.101 0.079
CE-Net [12] 0.051 0.058 0.112 0.125 0.080 0.059
ACAU-Net 0.0469 0.0533 0.0658 0.0674 0.080 0.066

We can see from Table 2 that our aggregation channel attention network has obtained the
most advanced performance on the Messidor dataset and the RIM-ONE-R1 dataset. On Messidor,
we achieved the best results, an improvement of 0.0041 over CE-Net. We also achieved considerable
performance on RIM-ONE-R1. The RIM-ONE-R1 dataset has five independent annotations.
Compared with CE-Net, the first expert’s annotation label is improved by 0.0047, from 0.058 to
0.0533; the second group of labels is improved from 0.107 to 0.0658, and the effect is improved by 0.0412,
compared with the best performing DeepDisc before; the third group of labels has increased from 0.119
to 0.0674, the error of prediction decreases by 0.0516; and the fourth group of labels is the same as the
previous best effect. Although our method does not perform as well as the best results in the fifth set of
labels, the overall results still show that ACAU-Net is better than CE-Net and other methods.

We also show three sample results in Figure 5 to visually compare our method with some
competing methods, including U-Net and CE-Net. The image shows that our method obtained more
accurate segmentation results.
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3.4. Parameter Analysis

In this section, we analyze the hyper-parameters of aggregation channel attention network.
We give more details as follows.
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3.4.1. Hyper-Parameter Analysis

In the process of aggregating information, it is essential to squeeze effective high-level information
to obtain more distinguishing features, which plays a key role in guiding the resolution restoration of
low-level features. In order to extract more distinguishing features, we use a generalized mean pooling
(GeM) to integrate features. Among them, in GeM pooling, the pk parameter plays a role in adjusting
the global pooling effect in the aggregation channel attention upsampling module. When pk = 1, it is
average pooling, and when pk approaches infinity, it is maximum pooling [27]. When pk is other values,
pooling will have different feature aggregation effects. In order to obtain the best performance in
the segmentation task, we adjust pk as follows. Table 3 shows the performance of the segmentation
experiments when the pk is different.

Table 3. The E on different pk with 3,4,5,6,7,8 on Messidor with α = 0.5. The best results would be
highlighted in bold.

pk 3 4 5 6 7 8

E 0.0494 0.0495 0.0469 0.0487 0.0504 0.0543

We can conclude from Table 3 that, when pk is less than 5, the segmentation effect gradually
becomes better. Conversely, when pk is larger than 5, performance will decrease. When pk is 5, we can
get the best effect of 0.0469. We will set pk = 5 in the experiment. When we set pk to 5, the feature
vectors obtained by squeezing the feature map have the best guidance on the restoration resolution.

3.4.2. Loss Function Contribution Parameter

Dice coefficient has a good performance in the measurement field of small area images. In order to
obtain a better segmentation effect, we combined the advantages of dice coefficients and cross-entropy
loss, and added the two loss functions to weigh their contributions by adjusting α. We set α between
0–1 to adjust the contribution of cross-entropy loss and dice coefficient to fusion loss. To obtain the
best performance in the segmentation task, we adjust α as follows.

From Table 4, we can conclude that, when α is less than 0.5, the segmentation effect gradually
becomes better. Conversely, when α is greater than 0.5, performance will decrease. When α is 0.5,
we can get the best effect of 0.0469. We will set α = 0.5 in the experiment. When we set α to 0.5,
the contribution of the two parts of the loss function we designed was the most reasonable, and the
experiment achieved the best performance.

Table 4. The E on different α with 0-1 on Messidor with pk = 5. The best results would be highlighted
in bold.

α 0 0.2 0.3 0.4 0.5 0.6 0.7 1

E 0.0531 0.0517 0.0485 0.0514 0.0469 0.0516 0.0515 0.0522

4. Discussion

In the experiment, we found that the proposed segmentation network architecture has a great
advantage over the previous algorithm. It has significant characteristics, especially in the medical
fundus optic disc image segmentation, that is, the medical image segmentation is not obvious. First,
we verify the validity of the DenseNet block module on the Messidor dataset. The experimental results
show that, in this study, the fundus optic disc segmentation task, DenseNet block, has a significant
effect on extracting features and reducing parameters, and extracts more valuable features, which has
improved U-Net and CE-Net. We verify the validity of the AUAU module on the Messidor dataset.
The experimental results show that the ACAU module has improved the baseline method model.
We use the ACAU module to collect information at different scales, fuse low-level features that are good
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for pixel recovery with advanced features that contain a lot of category information, and largely help
restore image resolution. This provides ideas for the development of medical small area segmentation
fields such as fundus optic disc segmentation and attention mechanism in the field of medical images.
In the experiment, we verified the effectiveness of the loss function we used. This loss function
combines the dice coefficient and cross-entropy loss to enhance the performance of the loss function
in a small area. We will verify the proposed network on the Messidor dataset and the RIM-ONE
dataset. The experimental results show that our network has significantly improved the efficiency of
fundus optic disc segmentation compared with the previous method. This means that ACAU-Net
has made a good contribution in the field of medical image segmentation, and provides a new idea
to aggregate the image features of different scales to guide the attention mechanism to improve the
resolution recovery accuracy. On the Messidor dataset and the RIM-ONE dataset, our experimental
results are impressive, and the segmentation performance has been significantly improved.

In the clinical field, early glaucoma screening is particularly important. Early screening relies on
manual observation by an ophthalmologist, which is inefficient and different doctors have different
evaluation criteria. Manual observation is not suitable for mass screening. Therefore, in recent years,
many automatic segmentation algorithms have emerged for segmentation of the fundus optic disc.
In this article, we provide a new efficient fundus image segmentation algorithm. Compared with
previous segmentation algorithms, the segmentation accuracy is improved, which facilitates the
rapid diagnosis of glaucoma screening and unified evaluation criteria. Therefore, in the clinical
field, our method can help doctors to make rapid diagnosis, and can unify the diagnostic standards,
which liberates the energy of the doctor, and makes the contribution of deep learning in medical
diagnosis worthy of attention.

5. Conclusions

We have proposed a new medical image segmentation model, the aggregation channel attention
network, for more accurate fundus optic disc segmentation. Compared with CE-Net, we use
a pre-trained DenseNet block in the encoding layer. We add the feature information of different
resolutions of the decoding layer into the attention mechanism, and use the high-level feature
information to guide the low-level features to preserve spatial information. Experimental results
show that our method has a good effect on the task of fundus image segmentation. In a few cases,
however, the experimental results are lower than previous methods. This may be due to factors such as
data preprocessing and hyperparameter adjustment. In addition, due to the limitation of Denseblock,
the number of channels in the network is relatively large. In future work, we will continue to design
deep architectures with less computation and suitable for small datasets in the field of medical image
processing, and extend the method to other medical imaging fields, such as retinal vessel segmentation,
lung segmentation, and CT image segmentation.
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