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Abstract: In this paper, various stochastic ordering properties of a parametric family of weighted
distributions and the associated mixture model are developed. The effect of stochastic variation of
the output random variable with respect to the parameter and/or the underlying random variable is
specifically investigated. Special weighted distributions are considered to scrutinize the consistency
as well as the usefulness of the results. Stochastic comparisons of coherent systems made of identical
but dependent components are made and also a result for comparison of Shannon entropies of
weighted distributions is developed.
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1. Introduction

In the literature, weighted distributions have been exhaustively applied and put to use to model
data in nature, as they provide more insights to provide more adequacy in modelling as a result of
variety of sampling surveys (cf. Rao [1], Patil and Rao [2] and Patil [3]). Let X be a random variable
with cumulative distribution function (cdf) F and probability density function (pdf) f and let w(·, θ) is
a non-negative function such that E(w(X, θ)) exists and is finite for all θ ∈ χ, where χ is an arbitrary
subset of R. Then Xw is taken to be a random variable with weighted distribution associated with f ,
having pdf

fw(x, θ) =
w(x, θ) f (x)
E[w(X, θ)]

. (1)

Many families of statistical distributions hold at the disposal of the family of weighted distributions
in (1) (see, e.g., the typical weighted distributions in Sections 3.1 and 3.2). Suppose that the hazard rate
function h corresponds to the pdf f so that h(x) = f (x)/F̄(x) where F̄ ≡ 1− F is the survival function
of X. In spirit of Jain et al. [4], the hazard rate of Xw is characterized by

hw(x, θ) =
w(x, θ)

B(x, θ)
h(x), (2)

in which B(x, θ) = E[w(X, θ) | X > x]. As for the reversed hazard rate of Xw we have from Sunoj and
Maya [5]

h̃w(x, θ) =
w(x, θ)

A(x, θ)
h̃(x), (3)
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where A(x, θ) = E[w(X, θ) | X ≤ x] and h̃(x) = f (x)/F(x) is the reversed hazard rate function of X.
The density in (1) may be used to model data randomly drawn from population at a certain

level θ of some quantity of interest. For example, θ could be a particular age for an individual,
a certain time point or a given threshold with a specific amount. In many realistic circumstances it
is acknowledged that the parameter θ may not be constant so that the occurrence of heterogeneity is
sometimes incalculable and unexplained. In addition, it often takes place in practical situations where
data from several populations is mixed. To model such data sets mixture models are used. For example,
the measurements on the life lengths of a device may be gathered regardless of the manufacturer,
or data may be gathered on humans without regard, say, to blood type. If the ignored variable has a
bearing on the characteristic which is being measured, then the data follow a mixture model. To all
intents and purposes, it is hard to find data that are not some kind of a mixture, because there is almost
always some relevant covariate that is not observed.

The study of reliability properties of various mixture models has recently received much attention
in the literature. When a mixture model is fitted to survival data, the mixing operation can change
the pattern of aging for the lifetime unit under consideration in some favorite way (see, for example,
Finkelstein and Esaulova [6], Alves and Dias [7], Arbel et al. [8], Cole and Bauer [9], Bordes and
Chauveau [10], Li and Liu [11], Amini-Seresht and Zhang [12], Misra and Naqvi [13] and Badía and
Lee [14]).

Mixture models capture heterogeneity in data by decomposing the population into latent
subgroups, each of which is governed by its own subgroup-specific set of parameters. To represent a
general formulation of the mixture model in the case of our study, consider the density

f ∗(x) =
∫

θ∈χ
fw(x, θ) dG(θ) = f (x)

∫
θ∈χ

w(x, θ)

µ(θ)
dG(θ), (4)

associated with (1), where µ(θ) = E(w(X, θ)) and G is the cdf of the random varaible Θ. It is known
that f ∗(x) = f (x)v(x) with

v(x) = E
(

w(x, Θ)

µ(Θ)

)
, (5)

playing the role of the weight function through which f is altered to f ∗. This signifies that the mixture
density in (4) can be thought as the density of a weighted distribution with weight function v for
which E(v(X)) = 1. In situations where Θ is designated by a discrete random variable, a finite mixture
model is considered. To this end, the model (4) is developed as

f ∗(x) = f (x)
∞

∑
i=1

w(x, θi)

µ(θi)
g(θi), (6)

where g(θi) represents the value of the probability mass function (pmf) of Θ at θi for i = 1, 2, · · · .
Throughout the paper, it is assumed that the output random variables following the mixture weighted
distribution (4) have absolutely continuous distribution functions.

To the best of our knowledge, there has not been a work on the literature to argue different
stochastic properties of the parametric weighted distributions as well as their mixtures in general to
be attractive for broader audiences. There is a need for an effective study in this direction. The main
objective of this paper is to initiate such a study to investigate the impact of the association of the
model to a parameter on some general stochastic aspects of the model.

The rest of the paper is organized as follows. In Section 2, some useful notions of stochastic orders
and some further stochastic properties are presented. In Section 3, some special applied weighted
distributions are introduced. In Section 4, preservation of several ordinary as well as relative stochastic
orderings is studied in Section 4.1. In Section 4.2, preservation properties of some stochastic orders in
the extended mixture model of weighted distributions are secured and in the long run in Section 4.3,
a link to information theory is provided.
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2. Preliminaries

Assume that the random variables X and Y have distribution functions F and G, survival functions
F̄ = 1− F and Ḡ = 1− G, density functions f and g, hazard rate functions hX = f /F̄ and hY = g/Ḡ
and reversed hazard rate functions h̃X = f /F and h̃Y = g/G, respectively. To compare the magnitude
of random variables some notions of stochastic orders are introduced below.

Definition 1. The random variable X is said to be smaller than the random variable Y in the

(i) usual stochastic order (denoted by X ≤st Y ) if F̄(x) ≤ Ḡ(x) for all x;
(ii) hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄(x) is non-decreasing in x, or equivalently, if hX(x) ≥

hY(x) for all x;
(iii) reversed hazard rate order (denoted by X ≤rh Y) if G(x)/F(x) is non-decreasing in x, or equivalently,

if h̃X(x) ≤ h̃Y(x) for all x;
(iv) likelihood ratio order (denoted by X ≤lr Y) if g(x)/ f (x) is non-decreasing in x.
(v) relative hazard rate order (denoted by X ≤rhr Y) if hY(x)/hX(x) is non-increasing in x.

(vi) relative reversed hazard rate order (denoted by X ≤rrh Y) whenever h̃Y(x)/h̃X(x) is non-decreasing in x.

It is known that the following implications hold:

X ≤lr Y ⇒ X ≤hr[rh] Y ⇒ X ≤st Y.

The notions of the totally positive of order 2 (TP2) and the reverse regular of order 2 (RR2) are defined
as follows.

Definition 2 (Karlin [15]). A function h(x, y) is said to be Sign-Regular of order 2 (SR2) if ε1h(x, y) ≥ 0 and

ε2

∣∣∣∣∣h(x1, y1) h(x1, y2)

h(x2, y1) h(x2, y2)

∣∣∣∣∣ ≥ 0,

for all x1 ≤ x2 and for all y1 ≤ y2 for ε1 and ε2 equaling to +1 or −1.

If ε1 = +1 and ε2 = +1, then h is said to be TP2. If ε1 = +1 and ε2 = −1, then h is said to
be RR2. It is readily pointed out that the TP2 [RR2] property of h(t, x) is equivalent to saying that
h(t, x2)/h(t, x1) is non-decreasing [non-increasing] in t whenever x1 ≤ x2 after making the conventions
that a/0 = +∞ when a > 0 and a/0 = 0 if a = 0. In view of the foregoing statements and by assuming
hY = h2 and hX = h1 and also h̃Y = h̃2 and h̃X = h̃1, one observes X1 ≤rhr X2 holds if, and only if,
hi(x) is RR2 as a function of (i, x) ∈ {1, 2} × ζ, where ζ is the common support of X and Y. In a similar
manner we can establish that X1 ≤rrh X2 is equivalent to h̃i(x) being TP2 in (i, x) ∈ {1, 2} × ζ.

3. Special Weighted Distributions

In this section, several special parametric weight functions are presented making the investigation
of the main model of (4) more developed. First, some general formations of the weight function are
considered by which many important families of weighted distributions are included. In all of the
cases we assume that the weight function has a finite mean with respect to the underlying distribution.

3.1. Distribution-Free Weight Functions

Here, several weight functions which do not depend on the underlying distribution are given.
Suppose that wi, i = 1, 2 are two non-negative functions of x and that ki, i = 1, 2 are two proper
functions of θ so that the following weight functions satisfy the requirement that µ(θ) < ∞. Substituting
any of these weight functions in the density (4) leads to a particular model that might be of some
interest in a context.
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(i) (weighted power) w(x, θ) = w1(x)(w2(x))k1(θ)

(ii) (weighted exponentiated) w(x, θ) = w1(x)(k1(θ))
w2(x)

(iii) (multiplicative) w(x, θ) = w1(x)k1(θ)

(iv) (additive-multiplicative) w(x, θ) = w1(x) + k1(θ)w2(x)
(v) (weighted left-truncated) w(x, θ) = w1(x)I[w2(x) > k1(θ)]

(vi) (weighted right-truncated) w(x, θ) = w1(x)I[w2(x) ≤ k1(θ)]

3.2. Semiparametric Models

Models where the parameters of interest are finite-dimensional and the nuisance parameters
are infinite-dimensional are called semiparametric models. There are some choices for the weight
function w(x, θ) that are functional of the underlying distribution function F, including the parameter
θ within. Below, we list some kinds of those choices whose associated weight function depend on the
underlying distribution.

(i) (Proportional hazards) w(x, θ) = F̄θ−1(x), where θ > 0.
(ii) (Proportional reversed hazards) w(x, θ) = Fθ−1(x) where θ > 0.
(iii) (Proportional odds ratio) w(x, θ) = 1/((1− θ̄F̄(x))2) where θ > 0, and θ̄ = 1− θ.

(iv) (Upper records) w(x, θ) = − lnθ(F̄(x)), in which θ ∈ N.

(v) (Lower records) w(x, θ) = − lnθ(F(x)), in which θ ∈ N.
(vi) (Residual life) w(x, θ) = f (θ + x)/ f (x), where θ > 0 is the guaranteed survival time.
(viii) (Inactivity time) w(x, θ) = f (θ − x)/ f (x), in which θ > 0 is the time of observation of failure.
(viii) (Scale) w(x, θ) = f (θx)/ f (x), in which θ > 0.

4. Stochastic Orderings

In this section, preservation properties of some stochastic orders under the formation of the
weighted model in the fixed as well as the random levels of the parameter θ are studied.

4.1. Weighted Distribution with Specific Parameter

Here, in the same vein as Misra et al. [16] several preservation properties on likelihood ratio,
hazard rate and reversed hazard rates orders can be established in the sense of the model (1). Suppose
that Xi is a random variable with pdf fi and cdf Fi, for i = 1, 2, and assume that Xiwi follows the
weighted distribution of Xi with weight function wi(x) = w(x, θi) having pdf

fiwi (x, θi) =
w(x, θi) fi(x)
E[w(Xi, θi)]

, i = 1, 2, (7)

where θ1 and θ2 are two fixed numbers in χ. In the next round, as will be presented, conditions for
stochastic orders made of X1w1 and X2w2 to emulate the same type of stochastic orders between X1

and X2 are obtained.
The following Proposition is a direct conclusion of Theorem 3.2 in Misra et al. [16].

Proposition 1. Let Xi, i = 1, 2 have support ζ and let w(x, θ) be TP2 in (x, θ) ∈ ζ × χ. Then

(i) If θ1 ≤ θ2, then X1 ≤lr X2 implies that X1w1 ≤lr X2w2 .
(ii) If θ1 ≤ θ2 and w(x, θ) is non-decreasing in x, then X1 ≤hr X2 implies that X1w1 ≤hr X2w2 .
(iii) If θ1 ≤ θ2 and w(x, θ) is non-increasing in x, then X1 ≤rh X2 implies that X1w1 ≤rh X2w2 .

Preservation properties of the stochastic orders considered in Proposition 1 have been procured
for some special weighted distributions by Izadkhah et al. [17] including the models of proportional
(reversed) hazard rates, upper (lower) records, right (left) truncation, moment generating and
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size-biased distributions. Izadkhah et al. [18] obtained sufficient conditions for preservation of reversed
mean residual life order and Izadkhah et al. [19] presented some conditions under which the mean
residual life order is preserved under weighting. For the sake of completeness, the preservation
properties of the likelihood ratio, the hazard rate and the reversed hazard rates orders are studied for
some of the parametric weighted distributions considered in Sections 3.1 and 3.2. Suppose that X1 and
X2 are two non-negative random variables with distribution functions F1 and F2, survival functions
F̄1 = 1− F1 and F̄2 = 1− F2 and density functions f1 and f2, respectively.

Example 1 (Weighted power distribution). Assume that

w(x, θi) = w1(x)(w2(x))k1(θi), i = 1, 2,

in which θ1 ≤ θ2 ∈ χ. Suppose that w2 and k1 are both non-decreasing (or non-increasing) functions.
By Proposition 1(i), if X1 ≤lr X2 then X1w1 ≤lr X2w2 . Let us further assume that k1(θi) > 0 for i = 1, 2.
Then, by Proposition 1(ii) X1 ≤hr X2 implies X1w1 ≤hr X2w2 provided that w1 and w2 are both non-decreasing.
In parallel, if w1 and w2 are both non-increasing then using Proposition 1(iii), X1 ≤rh X2 concludes that
X1w1 ≤rh X2w2 .

Example 2 (Weighted exponentiated distribution). Consider the weight function

w(x, θi) = w1(x)(k1(θi))
w2(x), i = 1, 2

such that θ1 ≤ θ2 ∈ χ in which k1(θi) > 0 for i = 1, 2. Presume that w2 and k1 are both non-decreasing (or
non-increasing) functions. From Proposition 1(i), X1 ≤lr X2 yields X1w1 ≤lr X2w2 . If w1 is non-decreasing,
w2 is non-decreasing and k1(θi) > 1 (resp. w2 is non-increasing and k1(θi) < 1) for i = 1, 2 then by
Proposition 1(ii) X1 ≤hr X2 gives X1w1 ≤hr X2w2 . Besides, if w1 is non-increasing, w2 is non-increasing and
k1(θi) > 1 (resp. w2 is non-decreasing and k1(θi) < 1) for i = 1, 2 then on applying by Proposition 1(iii)
X1 ≤rh X2 implies X1w1 ≤rh X2w2 .

Example 3 (Additive-Multiplicative weighted distribution). Let

w(x, θi) = w1(x) + k1(θi)w2(x), i = 1, 2,

where θ1 ≤ θ2 ∈ χ. Suppose that w1/w2 is non-increasing (resp. non-decreasing) and k1 is non-decreasing
(resp. non-increasing). Proposition 1(i) provides that X1 ≤lr X2 implies X1w1 ≤lr X2w2 . If, moreover, we assume
that k1(θi) > 0, i = 1, 2 then when w1 and w2 are both non-decreasing by Proposition 1(ii) we deduce that
X1 ≤hr X2 gives X1w1 ≤hr X2w2 and once w1 and w2 are both non-increasing by Proposition 1(iii) X1 ≤rh X2

entails that X1w1 ≤rh X2w2 . In a suchlike manner, whenever k1(θi) ≤ 0, i = 1, 2 then if w1 is non-decreasing
and w2 is non-increasing, on applying Proposition 1(ii) X1 ≤hr X2 assures that X1w1 ≤hr X2w2 and similarly
when w1 is non-increasing and w2 is non-decreasing by Proposition 1(iii) it is deducible that X1 ≤rh X2 gives
X1w1 ≤rh X2w2 .

Example 4 (Weighted left-truncated distribution). Let

w(x, θi) = w1(x)I[w2(x) > k1(θi)], i = 1, 2

with θ1 ≤ θ2 ∈ χ. Let us suppose that w2 and k1 are both non-decreasing (or non-increasing) functions.
By Proposition 1(i), X1 ≤lr X2 implies X1w1 ≤lr X2w2 . If w1, w2 and k1 are all non-decreasing functions then
Proposition 1(ii) establishes that X1 ≤hr X2 implicate X1w1 ≤hr X2w2 . In a similar manner, if w1, w2 and k1 are
all non-increasing functions then from Proposition 1(iii) it is deduced that X1 ≤rh X2 implies X1w1 ≤rh X2w2 .
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Example 5 (Weighted right-truncated distribution). Let

w(x, θi) = w1(x)I[w2(x) ≤ k1(θi)], i = 1, 2,

in which θ1 ≤ θ2 ∈ χ. We assume that w2 and k1 are both non-decreasing (or non-increasing) functions.
Proposition 1(i) guarantees that X1 ≤lr X2 implies X1w1 ≤lr X2w2 . If w1 is non-decreasing and w2 and k1 are
non-increasing functions then by Proposition 1(ii) X1 ≤hr X2 yields X1w1 ≤hr X2w2 . In the dual case, if w1 is
non-increasing and further w2 and k1 are both non-decreasing functions then Proposition 1(iii) concludes that
X1 ≤rh X2 gives X1w1 ≤rh X2w2 .

Some relative stochastic orders including the relative (reversed) hazard rate and relative mean
residual life orders have attracted the attention of researchers in the last decade (cf. Di-Crescenzo and
Longobardi [20], Kayid et al. [21], Misra and Francis [22], Misra et al. [23], Ding et al. [24], Ding and
Zhang [25], Misra and Francis [26] and Misra and Francis [27]). We reminisce about the definition of
these orders from Rezaei et al. [28] and Kayid et al. [21] [see, for example, Definition 1(v) and (vi)].
In the next theorem, the study of preservation of the relative hazard rate and the relative reversed
hazard rate orders are initiated for a well-known class of semiparamtric distributions. For i = 1, 2,
denote by hiwi (t, θi) (h̃iwi (t, θi)) the hazard rate (resp. the reversed hazard rate) of Xiwi , where wi and
is supposed to be valid as a weight function. Before stating the result, we introduce some notations.
Let wi(t, θi) = v(F̄i(t), θi), i = 1, 2 be two appropriate weight functions and set

ξ(x, θ) =

∫ x
0 v(u, θ) du

xv(x, θ)
, x ∈ [0, 1], θ ∈ χ.

Denote by ξ ′(x, θ) partial derivative of ξ(x, θ) with respect to x, that is, ξ ′(x, θ) = ∂
∂x ξ(x, θ). The symbol

sign
= is used to denote the similar sign.

Theorem 1. Suppose that wi(t, θi) = v(F̄i(t), θi), i = 1, 2 so that θ1 ≤ θ2 and X1 ≤hr X2.
Let xξ ′(x, θ)/ξ(x, θ) is non-increasing (resp. non-decreasing) in x, for all θ and non-increasing (resp.
non-decreasing) in θ, for all x where ξ(x, θ) is non-decreasing (resp. non-increasing) in x, for all θ ∈ χ.
Then, X1 ≤rhr X2 implies that X1w1 ≤rhr X2w2 .

Proof. From (2), one has hiwi (i, θi) = wi(t, θi)hi(t)/Bi(t, θi), where

Bi(t, θi) = E[v(F̄i(Xi), θi) | Xi > t]

=
1

F̄i(t)

∫ ∞

t
v(F̄i(x), θi) dFi(x)

=
1

F̄i(t)

∫ F̄i(t)

0
v(u, θi) du, i = 1, 2.

Thus, for all t > 0, we have:

h2w2(t, θ2)

h1w1(t, θ1)
=

h2(t)
h1(t)

w2(t, θ2)

w1(t, θ1)

B1(t, θ1)

B2(t, θ2)

=
h2(t)
h1(t)

∫ F̄1(t)
0 v(u, θ1) du/(F̄1(t)v(F̄1(t), θ1))∫ F̄2(t)
0 v(u, θ2) du/(F̄2(t)v(F̄2(t), θ2))

.

=
h2(t)
h1(t)

ξ(F̄1(t), θ1)

ξ(F̄2(t), θ2)
.

By assumption, h2(t)/h1(t) is non-increasing in t > 0. It suffices only to prove that:



Entropy 2020, 22, 843 7 of 19

ξ(F̄1(t), θ1)/ξ(F̄2(t), θ2) is non-increasing in t > 0.

The assumption X1 ≤hr X2 yields h1(t) ≥ h2(t), for all t > 0, which further concludes that F̄1(t) ≤
F̄2(t), for all t > 0. Therefore,

d
dt

ξ(F̄1(t), θ1)

ξ(F̄2(t), θ2)

sign
= f2(t)ξ ′(F̄2(t), θ2)ξ(F̄1(t), θ1)− f1(t)ξ ′(F̄1(t), θ1)ξ(F̄2(t), θ2)

=
f2(t)
F̄2(t)

F̄2(t)ξ ′(F̄2(t), θ2)ξ(F̄1(t), θ1)−
f1(t)
F̄1(t)

F̄1(t)ξ ′(F̄1(t), θ1)ξ(F̄2(t), θ2)

= h2(t)F̄2(t)ξ ′(F̄2(t), θ2)ξ(F̄1(t), θ1)− h1(t)F̄1(t)ξ ′(F̄1(t), θ1)ξ(F̄2(t), θ2),

is non-positive (resp. non-negative) for all t > 0, if, and only if, for all x1 ≤ x2 and for all θ1 ≤ θ2 it
holds that

x1ξ ′(x1, θ1)

ξ(x1, θ1)
≥ (resp. ≤) x2ξ ′(x2, θ2)

ξ(x2, θ2)
,

which is validated by assumption.

To present the result about the preservation of the relative reversed hazard rate order we introduce
some other notation. Let us define for x ∈ [0, 1],

ξ∗(x, θ) =

∫ 1
x v(u, θ) du

(1− x)v(x, θ)
, θ ∈ χ.

Suppose ξ∗′(x, θ) stands for the partial derivative of ξ∗(x, θ) with respect to x, that is ξ∗′(x, θ) =
∂

∂x ξ∗(x, θ).

Theorem 2. Let wi(t, θi) = v(F̄i(t), θi), i = 1, 2 so that θ1 ≤ θ2 and X1 ≤rh X2. If (1− x)ξ∗′(x, θ)/ξ∗(x, θ)

is non-decreasing (resp. non-increasing) in x, for all θ and non-decreasing (resp. non-increasing) in θ, for all
x, in which ξ∗(x, θ) is non-decreasing (non-increasing) in x for all θ ∈ χ, then X1 ≤rrh X2 implies that
X1w1 ≤rrh X2w2 .

Proof. In spirit of (3), we can write h̃iwi (i, θi) = wi(t, θi)h̃i(t)/Ai(t, θi), in which

Ai(t, θi) = E[v(F̄i(Xi), θi) | Xi ≤ t]

=
1

1− F̄i(t)

∫ t

0
v(F̄i(x), θi) dFi(x)

=
1

1− F̄i(t)

∫ 1

F̄i(t)
v(u, θi) du, for any i = 1, 2.

For all t > 0, one obtains

h̃2w2(t, θ2)

h̃1w1(t, θ1)
=

h̃2(t)
h̃1(t)

w2(t, θ2)

w1(t, θ1)

A1(t, θ1)

A2(t, θ2)

=
h̃2(t)
h̃1(t)

∫ 1
F̄1(t)

v(u, θ1) du/((1− F̄1(t))v(F̄1(t), θ1))∫ 1
F̄2(t)

v(u, θ2) du/((1− F̄2(t))v(F̄2(t), θ2))
.

=
h̃2(t)
h̃1(t)

ξ∗(F̄1(t), θ1)

ξ∗(F̄2(t), θ2)
.

Since X1 ≤rrh X2, thus h̃2(t)/h̃1(t) is non-decreasing in t > 0. It remains to demonstrate that
ξ∗(F̄2(t), θ1)/ξ∗(F̄1(t), θ2) is non-increasing in t > 0. It is known that X1 ≤hr X2 implies h̃1(t) ≤ h̃2(t),
for all t > 0, which in turn yields F̄1(t) ≤ F̄2(t), for all t > 0. For that reason,
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d
dt

ξ∗(F̄2(t), θ2)

ξ∗(F̄1(t), θ1)

sign
= − f2(t)ξ∗′(F̄2(t), θ2)ξ

∗(F̄1(t), θ1) + f1(t)ξ∗′(F̄1(t), θ1)ξ
∗(F̄2(t), θ2)

=
f1(t)
F1(t)

F1(t)ξ∗′(F̄1(t), θ1)ξ
∗(F̄2(t), θ2)−

f2(t)
F2(t)

F2(t)ξ∗′(F̄2(t), θ2)ξ
∗(F̄1(t), θ1)

= h̃1(t)F1(t)ξ∗′(F̄1(t), θ1)ξ
∗(F̄2(t), θ2)− h̃2(t)F2(t)ξ∗′(F̄2(t), θ2)ξ

∗(F̄1(t), θ1),

is non-positive (resp. non-negative) for all t > 0, if, and only if, for all x1 ≤ x2 and for all θ1 ≤ θ2:

(1− x1)ξ
∗′(x1, θ1)

ξ∗(x1, θ1)
≤ (resp. ≥) (1− x2)ξ

∗′(x2, θ2)

ξ∗(x2, θ2)
,

which holds by assumption.

The weight functions considered in Theorems 1 and 2 encompass some particular cases which
may be of independent interest. In that regard, the following corollary is resulted.

Corollary 1. Let wi(t) = v(F̄i(t)), i = 1, 2 such that X1 ≤hr X2. Set

ξ(x) =
1

xv(x)

∫ x

0
v(u)du and ξ∗(x) =

1
(1− x)v(x)

∫ 1

x
v(u)du.

(i) If xξ ′(x)/ξ(x) is non-increasing (resp. non-decreasing) in x ∈ [0, 1], in which ξ(x) is non-decreasing
(non-increasing) in x, then X1 ≤rhr X2 implies that X1w1 ≤rhr X2w2 .

(ii) If (1 − x)ξ∗′(x)/ξ(x) is non-decreasing (resp. non-increasing) in x ∈ [0, 1], in which ξ∗(x) is
non-decreasing (non-increasing) in x, then X1 ≤rrh X2 implies that X1w1 ≤rrh X2w2 .

Theorem 3. Let wi(t, θi) = vi(F̄(t), θi) and set ξi(x, θi) = (1/vi(x, θi))
∫ x

0 vi(u, θi) du and ξ∗i (x, θi) =

(1/vi(x, θi))
∫ 1

x vi(u, θi) du for i = 1, 2. Then

(i) X1w1 ≤rhr X2w2 if, and only if, ξ2(x,θ2)
ξ1(x,θ1)

is non-increasing in x.

(ii) X1w1 ≤rrh X2w2 if, and only if, ξ∗2 (x,θ2)
ξ∗1 (x,θ1)

is non-decreasing in x.

Proof. We only prove the assertion (i) as the proof of (ii) is similarly accomplished. Note that
analogously as in the proof of Theorem 1, we can get

h2w2(t, θ2)

h1w1(t, θ1)
=

w2(t, θ2)

w1(t, θ1)

∫ ∞
t v1(F̄(x), θ1) f (x) dx∫ ∞
t v2(F̄(x), θ2) f (x) dx

=
v2(F̄(t), θ2)

v1(F̄(t), θ1)

∫ F̄(t)
0 v1(u, θ1) du∫ F̄(t)
0 v2(u, θ2) du

=
ξ1(F̄(t), θ1)

ξ2(F̄(t), θ2)
, for all t > 0.

It can be seen that, for all t ≥ 0,

d
dt

ξ1(F̄(t), θ1)

ξ2(F̄(t), θ2)

sign
= f (t)[ξ ′2(F̄(t), θ2)ξ1(F̄(t), θ1)− ξ ′1(F̄(t), θ1)ξ2(F̄(t), θ2)]

which is non-positive if, and only if,

ξ ′2(x, θ2)

ξ2(x, θ2)
≤

ξ ′1(x, θ1)

ξ1(x, θ1)
, for all x ∈ [0, 1],
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or equivalently if ξ2(x, θ2)/ξ1(x, θ1) is non-increasing in x ∈ [0, 1] according which the ratio
h2w2(t, θ2)/h1w1(t, θ2) is also non-increasing in t > 0, that is, X1w1 ≤rhr X2w2 . The proof is complete.

The following corollary is a useful observation in the context of Theorem 3 as it illustrates that a
typical parametric family of weighted distributions enjoys the relative hazard rate and the relative
reversed hazard rate ordering properties in some cases.

Corollary 2. Suppose that the random variable X(θ1) and X(θ2) for θ1, θ2 ∈ χ have density functions

fθ1(t) =
v(F̄(t), θ1) f (t)∫ ∞

0 v(F̄(t), θ1) f (t) dt
and fθ2(t) =

v(F̄(t), θ2) f (t)∫ ∞
0 v(F̄(t), θ2) f (t) dt

.

For ξ(x, θ) = (1/v(x, θ))
∫ x

0 v(u, θ) du and ξ∗(x, θ) = (1/v(x, θ))
∫ 1

x v(u, θ) du, we have:

(i) X(θ1) ≤rhr X(θ2), for all θ1 ≤ θ2 ∈ χ if, and only if, ξ(x, θ) is RR2 in (x, θ).
(ii) X(θ1) ≤rrh X(θ2), for all θ1 ≤ θ2 ∈ χ if, and only if, ξ∗(x, θ) TP2 in (x, θ).

In reliability and survival theories, feature of ordering for lifetime of coherent systems is a relevant
subject to be studied. To this end, Navarro et al. [29] obtained a representation of the system reliability
F̄Sys as a distorted function of the common component reliability F̄ such that F̄Sys(t) = F̄(t), where h
is an non-decreasing function depending on the structure of the underlying system and the survival
copula of the joint distribution of the component lifetimes. In this context, they have shown that the
reliability function of a coherent system with dependent identically distributed (DID) components can
be written as a distorted function of the common component reliability function. The following lemma
is due to Navarro et al. [29].

Lemma 1. Let τ(X) be the lifetime of a coherent system formed by n DID components with the vector of random
lifetimes X = (X1, X2, . . . , Xn) with common survival function F̄. Then the reliability function of τ(X) can be
written as

F̄τ(X)(x) = h(F̄(x)),

where h(·) : [0, 1] → [0, 1] is an non-decreasing continuous function such that h(0) = 0 and h(1) = 1.
The function h is called the domination (or distortion) function which is characterized through the structure
function φ(·) of the system (see, e.g., Barlow and Proschan [30]) and on the survival copula Ĉ of X1, X2, . . . , Xn.

In the set up of the particular weighted distributions given in Section 3.2 , the survival function of
the arisen weighted distribution can be commuted to a distorted survival function, as specified earlier
in Lemma 1, for which the domination function is characterized by the associated weight function.
To this purpose, consider the weight function w(x, θ) = v(F̄(x), θ) and notice that in this case Xw has
the survival function

F̄w(t, θ) =

∫ ∞
t v(F̄(x), θ) dF(x)∫ ∞
−∞ v(F̄(x), θ) dF(x)

=

∫ F̄(t)
0 v(u, θ) du∫ 1

0 v(u, θ) du
= hθ(F̄(t)),

where

hθ(x) =

∫ x
0 v(u, θ) du∫ 1
0 v(u, θ) du

, x ∈ [0, 1]

plays the role of a parametric domination function. Note that hθ(·) : [0, 1]→ [0, 1] is a non-decreasing
continuous function with hθ(0) = 0 and hθ(1) = 1. In the reversed direction, if hθ is a distortion
(domination) function and v(x, θ) = h′θ(x), for any x ∈ [0, 1] then

∫ 1
0 v(x, θ) dx = 1 and thus F̄w(t, θ) =

hθ(F̄(t)). Therefore, there is a unique relationship between v(·, θ) and hθ(·) that is the studies of
weighted distributions in the context of semiparametric models entertain the studies of distorted
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survival functions and vice versa. The parameter θ may be an appropriate quantity that affects the
magnitude of system’s lifetime. In the case when DID components construct the system, θ may be
related to the dependency of the component lifetimes in a way that the survival copula in Lemma 1
depends on θ. For instance, in the case where the Archimedean copula or the FGM copula is adopted
to model the association of lifetime of components in a coherent system. The following results are
useful to analysis of relative ordering properties of coherent systems as to the best of our knowledge
such a study has not been developed in the literature thus far. The following proposition is a direct
consequence of Theorem 3.

Proposition 2. Let ξi(x) = hi(x)/h′i(x) and ξ∗i (x) = (1− hi(x))/h′i(x) for i = 1, 2 where h1 and h2 are
two domination functions. Let T1 and T2 have respective survival functions h1(F̄) and h2(F̄). Then,

(i) T1 ≤rhr T2, if, and only if, ξi(x) is RR2 in (i, x) ∈ {1, 2} × [0, 1].
(ii) T1 ≤rrh T2, if, and only if, ξ∗i (x) is TP2 in (i, x) ∈ {1, 2} × [0, 1].

The following example illustrates an application of Proposition 2.

Example 6. Suppose that Xi, i = 1, 2, 3, 4 denote the lifetime of four components having survival function F̄. Let

T1 = max{min{X1, X2}, min{X2, X3}, min{X3, X4}} and T2 = max{min{X1, X2}, min{X3, X4}}

denote the lifetime of two coherent systems. According to Table I in Navarro et al. [29], when Xi’s are independent,
T1 and T2 have survival functions h1(F̄) and h2(F̄), respectively, in which h1(u) = 3u2 − 2u3 and h2(u) =
2u2 − u4. For all x ∈ [0, 1], we have

d
dx

ξ2(x)
ξ1(x)

=
d

dx
2− x2

(1 + x)(3− 2x)
= − 1 + (1− x)2

((1 + x)(3− 2x))2 ≤ 0.

Hence, ξi(x) is RR2 in (i, x) ∈ {1, 2} × [0, 1]. That is, Proposition 2(i) concludes that T1 ≤rhr T2.

In the following example, we show that Proposition 2 can also be applied to systems with DID
components.

Example 7. Suppose that (X1, X2, X3) are dependent with a Farlie-Gumbel-Morgenstern (FGM) joint
reliability function given by

F̄(x1, x2, x3) = F̄(x1)F̄(x2)F̄(x3)(1− αF(x1)F(x2)F(x3)),

where α ∈ [−1, 1], F the marginal distribution of Xi’s and F̄ = 1− F. Consider the parallel system with lifetime
Tα = max{X1, X2, X3} for which

F̄α(x) = F̄(x, x, x)− 3F̄(x, x, 0) + 3F̄(x)

= F̄3(x)− α(F̄(x)− F̄2(x))3 − 3F̄2(x) + 3F̄(x).

Thus, F̄α(x) = hα(F̄(x)), where hα(u) = u3 − α(u − u2)3 − 3u2 + 3u. It can be shown that if h1(x) =

x3 − 0.5(x− x2)3 − 3x2 + 3x and h2(x) = x3 − 0.75(x− x2)3 − 3x2 + 3x then ξ∗i (x) = (1− hi(x))/h′i(x)
is TP2 in (i, x) ∈ {1, 2} × [0, 1] because the function ξ∗2(x)/ξ∗1(x) is non-decreasing in x ∈ [0, 1] as the
Figure 1 indicates. Hence, according to Proposition 2(ii) one obtains T0.5 ≤rrh T0.75.

The following example reveals a relative ordering property in the Marshall-Olkin family of
distributions.

Example 8. Suppose that the incorporated weight function is
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w(x, θ) = v(F̄(x), θ) =
1

(1− θ̄F̄(x))2 ,

where θ̄ = 1− θ and θ > 0. The random variable Xw has survival function

F̄w(x, θ) =
θF̄(x)

(1− θ̄F̄(x))
= hθ(F̄(x)), (8)

so that hθ(u) = θu/(1− θ̄u) which is considered to be the relevant domination function. Note that the family of
distributions characterized via (8) is called the proportional odds family of distributions which is due to Marshall
and Olkin [31]. Let T1 and T2 be two random variables with respective survival functions hθ1(F̄) and hθ2(F̄)
such that θ1 > θ2. It can be seen that

ξi(x) =
hθi (x)
h′θi

(x)
= x(1− θ̄ix), i = 1, 2.

It follows that
d

dx
ξ2(x)
ξ1(x)

=
θ2 − θ1

(1− θ̄1x)2 < 0,

that is ξi(x) is RR2 in i = 1, 2 and x > 0. Thus, according to Proposition 2(i) we deduce that T1 ≤rhr T2.
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Figure 1. Plot of ξ2(x)/ξ1(x) (left); Plot of ξ∗2(x)/ξ∗1(x) (right).

4.2. Comparisons of Mixture Weighted Distribution

In this segment, the problem of preservation of a number of stochastic orderings in the mixture
weighted model is investigated. The study is carried out in two different settings, where firstly the
random parameter varies in distribution while the underlying distribution remains unchanged and
secondly the underlying distribution is changed in the case when the random parameter is fixed
in distribution. The results obtained by Kayid et al. [32] are developed to entertain more dynamic
weighted distributions.

It is followed up that some stochastic orders of random parameters as well as the underlying
random variables are transmitted to the random variables with the associated mixture weighted
distribution. Give thought to Θi as a random variable with the pdf gi, the cdf Gi and the sf Ḡi = 1−Gi,
for i = 1, 2. Contemplate the random variable X∗i , i = 1, 2 having pdf

f ∗i (x) = f (x)
∫

θ∈χ

w(x, θ)

µ(θ)
gi(θ) dθ = f (x) E

[
w(x, Θi)

µ(Θi)

]
(9)

from which the cdf F∗i and the sf F̄∗i = 1− F∗i of X∗i are procured after somewhat plain algebraic
calculations, respectively, by
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F∗i (x) = F(x)E
(

A(x, Θi)

µ(Θi)

)
and F̄∗i (x) = F̄(x)E

(
B(x, Θi)

µ(Θi)

)
, i = 1, 2, (10)

where the bivariate functions A and B and the function µ are all determined as earlier in Section 1.
In the rest of the paper, it is taken for granted that the random variables Θ1 and Θ2 are independent.
Denote by h∗i and h̃∗i the hazard rate and the reversed hazard rate of X∗i , respectively. It can be seen,
after some integral calculation, that

h∗i (x) =
∫

θ∈χ

fw(x, θ)

F̄∗i (x)
dGi(θ) = h(x) E

[
w(x, Θi)

B(x, Θi)

∣∣∣∣X∗i > x
]

(11)

and

h̃∗i (x) =
∫

θ∈χ

fw(x, θ)

F∗i (x)
dGi(θ) = h̃(x) E

[
w(x, Θi)

A(x, Θi)

∣∣∣∣X∗i ≤ x
]

(12)

The following result demonstrates the likelihood ratio order preservation in the model (9).

Theorem 4. Let w(x, θ) be TP2 (resp. RR2) in (x, θ) ∈ ζ×χ. Then, Θ1 ≤lr Θ2 implies X∗1 ≤lr (resp. ≥lr)X∗2 .

Proof. It is not impenetrable to realize that X∗1 ≤lr X∗2 if, and only if, f ∗i (x) is TP2 in (i, x) ∈ {1, 2} × ζ.
In spirit of (9), one gets

f ∗i (x) =
∫

θ∈χ
fw(x, θ)gi(θ) dθ =

∫
θ∈χ

w(x, θ) f (x)
µ(θ)

gi(θ) dθ, i = 1, 2.

By the assumption of Θ1 ≤lr Θ2 we can rely on the fact that gi(θ) is TP2 (resp. RR2) in (i, θ) ∈ {1, 2}×χ.
It is also obvious that f (x)w(x,θ)

µ(θ)
is TP2 in (x, θ) ∈ ζ × χ. The general composition theorem of Karlin [15]

concludes the desired result.

Theorem 5. Let w(x, θ) be TP2 (resp. RR2) in (x, θ) ∈ ζ×χ. Then, Θ1 ≤hr Θ2 implies X∗1 ≤hr (resp. ≥hr)X∗2 .

Proof. We prove the non-parenthetical part. The parenthetical part of the theorem can be similarly
proved. In consideration of the second identity in (10) one observes

F̄∗i (x) =
∫

θ∈χ
Ψ(θ, x) dGi(θ), i = 1, 2;

where

Ψ(θ, x) =
F̄(x) B(x, θ)

µ(θ)
.

Take into account that

B(x, θ) =
∫ ∞

x
w(x′, θ)

f (x′)
F̄(x)

dx′

=
∫ ∞

−∞
Φ(x, x′)w(x′, θ) dx′

such that

Φ(x, x′) =


0, for x′ ≤ x

f (x′)
F̄(x) , for x′ > x.

By assumption w(x′, θ) is TP2 in (x′, θ) ∈ ζ× χ and Φ(x, x′) is TP2 in (x, x′) ∈ ζ× ζ. Hence, the general
composition theorem of Karlin [15] concludes that B(x, θ) is TP2 in (x, θ) ∈ ζ × χ. Since µ(θ) =

B(−∞, θ) and since B(x, θ) is TP2 in (x, θ), then B(x, θ)/µ(θ) is non-decreasing in θ ∈ χ thus Ψ(θ, x) is
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TP2 in (θ, x) ∈ χ× ζ and further it is non-decreasing in θ ∈ χ. It can be readily claimed by assumption
that Ḡi(θ) is TP2 in (i, θ) ∈ {1, 2} × χ. On account of Lemma 4.2 in Li and Xu [33] we deduce that
F̄∗i (x) is TP2 in (i, x) ∈ {1, 2} × ζ and the result follows.

In the setup of the model (9), the reversed hazard rate order of the random parameters is relocated
into the overall random variables.

Theorem 6. Let w(x, θ) be TP2 (resp. RR2) in (x, θ) ∈ ζ× χ. Then, Θ1 ≤rh Θ2 implies X∗1 ≤rh (resp. ≥rh)X∗2 .

Proof. The non-parenthetical part is only proved since the proof for the parenthetical part is
analogously carried out. In view of the former identity in (10), it is inferred that X∗1 ≤rh X∗2 if,
and only if,

E
[

A(x1, Θ1)

µ(Θ1)

A(x2, Θ2)

µ(Θ2)

]
≥ E

[
A(x1, Θ2)

µ(Θ2)

A(x2, Θ1)

µ(Θ1)

]
for all x1 ≤ x2 ∈ ζ. Let us explicate that

φ1(θ1, θ2) =
A(x1, θ2)

µ(θ2)
× A(x2, θ1)

µ(θ1)
,

and

φ2(θ1, θ2) =
A(x1, θ1)

µ(θ1)
× A(x2, θ2)

µ(θ2)
.

It can be seen that

A(x, θ) =
∫ x

0
w(x′, θ)

f (x′)
F(x)

dx′

=
∫ ∞

0
φ(x, x′)w(x′, θ) dx′

so that

φ(x, x′) =


f (x′)
F(x) , for x′ ≤ x

0, for x′ > x.

From assumption w(x′, θ) is TP2 in (x′, θ) ∈ ζ × χ and φ(x, x′) is TP2 in (x, x′) ∈ ζ × ζ. The general
composition theorem of Karlin [15] therefore is applied to draw the inference that A(x, θ) is TP2 in
(x, θ) ∈ ζ × χ. For that reason, for all θ1 ≤ θ2 ∈ χ and x1 ≤ x2 ∈ ζ

∆φ21(θ1, θ2) = φ2(θ1, θ2)− φ1(θ1, θ2)

=
1

µ(θ1)µ(θ2)
[A(x1, θ1)A(x2, θ2)− A(x1, θ2)A(x2, θ1)]

≥ 0.

It is clearly seen that µ(θi) = A(∞, θi), for i = 1, 2. Since A(x, θ) is TP2 in (x, θ) ∈ ζ × χ thus
A(x1, θ1)/µ(θ1) is non-increasing in θ1 ∈ χ and in addition A(x2, θ1)/µ(x1, θ1) is non-decreasing in
θ1χ. On that account,

∆φ21(θ1, θ2) =
A(x1, θ1)

µ(θ1)µ(θ2)

[
A(x2, θ2)− A(x1, θ2)

A(x2, θ1)

A(x1, θ1)

]
is non-negative and also non-increasing in θ1 ∈ χ, for all θ1 ≤ θ2 ∈ χ and for all x1 ≤ x2 ∈ ζ. The proof
is completed by Theorem 1.B.48 of Shaked and Shanthikumar [34].
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The weight functions brought in Sections 3.1 and 3.2 are all TP2 (or RR2) at least under some
(mild) condition. That is, they are applicable to develop the ≤lr, the ≤hr and the ≤rh orders from the
random parameter into the mixture (average) variable in the model of (9) according to the result of
Theorems 4–6, respectively. It is remarkable that

(i) w(x, θ) = w1(x)(w2(x))k1(θ) is TP2 in (x, θ) ∈ ζ × χ whenever w2(x) is non-decreasing (resp.
non-increasing) in x ∈ ζ and k1(θ) is non-decreasing (resp. non-increasing) in θ ∈ χ.

(ii) w(x, θ) = w1(x)(k1(θ))
w2(x) is TP2 in (x, θ) ∈ ζ × χ whenever w2(x) is non-decreasing (resp.

non-increasing) in x ∈ ζ and k1(θ) is non-decreasing (resp. non-increasing) in θ ∈ χ.
(iii) w(x, θ) = w1(x)k1(θ) is TP2 in (x, θ) ∈ ζ × χ.
(iv) w(x, θ) = w1(x) + k1(θ)w2(x) is TP2 in (x, θ) ∈ ζ × χ whenever w1(x)/w2(x) is non-increasing

(resp. non-decreasing) in x ∈ ζ and k1(θ) is non-decreasing (resp. non-increasing) in θ ∈ χ.
(v) w(x, θ) = w1(x)I[w2(x) > k1(θ)] is TP2 in (x, θ) ∈ ζ× χ whenever w2(x) is non-decreasing (resp.

non-increasing) in x ∈ ζ and k1(θ) is non-decreasing (resp. non-increasing) in θ ∈ χ.
(vi) (w(x, θ) = w1(x)I[w2(x) ≤ k1(θ)] is TP2 in (x, θ) ∈ ζ × χ whenever w2(x) is non-decreasing

(resp. non-increasing) in x ∈ ζ and k1(θ) is non-decreasing (resp. non-increasing) in θ ∈ χ.
(vii) w(x, θ) = F̄θ−1(x) is RR2 in (x, θ) ∈ ζ ×R+.
(viii) w(x, θ) = Fθ−1(x) is TP2 in (x, θ) ∈ ζ ×R+.
(ix) w(x, θ) = 1/((1− θ̄F̄(x))2) is TP2 in (x, θ) ∈ ζ ×R+.

(x) w(x, θ) = − lnθ(F̄(x)) is TP2 in (x, θ) ∈ ζ ×N.

(xi) w(x, θ) = − lnθ(F(x)) is RR2 in (x, θ) ∈ ζ ×N.
(xii) w(x, θ) = f (θ + x)/ f (x) is TP2 in (x, θ) ∈ ζ × R+ whenever f , as the density function of X,

is log-convex on ζ and it is RR2 in (x, θ) ∈ ζ ×R+ provided that f is log-concave on ζ.
(xiii) w(x, θ) = f (θ − x)/ f (x) is RR2 in (x, θ) ∈ ζ ×R+ whenever f is log-convex on ζ and it is TP2 in

(x, θ) ∈ ζ ×R+ when f is log-concave on ζ.
(xiv) w(x, θ) = f (θx)/ f (x) is TP2 in (x, θ) ∈ ζ×R+ whenever ln(X) has a log-convex density function

while it is RR2 in (x, θ) ∈ ζ ×R+ provided that ln(X) has a log-concave density function.

In a modified setup of the mixture weighted model, we consider the case where Xi is a lifespan
with pdf fi and cdf Fi, for i = 1, 2. Then X∗∗i is taken as the random variable with average density

f ∗∗i (x) = fi(x)
∫

θ∈χ

w(x, θ)

µi(θ)
g(θ) dθ = fi(x) E

[
w(x, Θ)

µi(Θ)

]
, (13)

where g stands for the pdf of Θ and µi(θ) = E[w(Xi, θ)], for i = 1, 2. In the new setting with the
mixture model given in (13) two baseline variables X1 and X2 are implicated. The random lifetimes
X∗∗1 and X∗∗2 are assumed to have density functions f ∗∗1 and f ∗∗1 , respectively. The mixing variable Θ
shares an equal impact upon the construction of the mixture densities.

Theorem 7. Let (Θ | X∗∗1 > x) ≤st (Θ | X∗∗2 > x), for all x > 0. Let w(x, θ) be TP2 in (x, θ) ∈ ζ × χ and
that it is non-decreasing in x ∈ ζ, for all θ ∈ χ. Then X1 ≤hr X2 implies X∗∗1 ≤hr X∗∗2 .

Proof. For i = 1, 2, suppose that hi and h∗∗i represent the hazard rate functions of Xi and X∗∗i ,
respectively. In a same manner as in (12),

h∗∗i (x) = hi(x) E
[

w(x, Θ)

Bi(x, Θ)
| X∗∗i > x

]
,

where Bi(x, θ) = E(w(Xi, θ) | Xi > x), for i = 1, 2. It is known that X1 ≤hr X2 if, and only if, (X1 |
X1 > x) ≤st (X2 | X2 > x), for all x > 0. Therefore,
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B1(x, θ) = E(w(X1, θ) | X1 > x)

≤ B2(x, θ) = E(w(X2, θ) | X2 > x),

for all x > 0 and θ ∈ χ. By assumption, h1(x) ≥ h2(x), for all x > 0. Hence,

h∗∗1 (x)− h∗∗2 (x) =
∫ ∞

0

w(x, θ)h1(x)
B1(x, θ)

dΠ(θ | X∗∗1 > x)

−
∫ ∞

0

w(x, θ)h2(x)
B2(x, θ)

dΠ(θ | X∗∗2 > x)

≥ h2(x)
∫ ∞

0

w(x, θ)

B2(x, θ)
d [Π(θ | X∗∗1 > x)−Π(θ | X∗∗2 > x)] . (14)

Since w(x, θ)/B2(x, θ) is non-increasing in θ ∈ χ, thus by assumption,

∫ T

0
d [Π(θ | X∗∗1 > x)−Π(θ | X∗∗2 > x)] ≥ 0,

for all T > 0. By Lemma 7.1(b) of Barlow and Proschan [30] to (14) we attain the proof.

The last result establishes the reversed hazard rate ordering preservation in the baseline-varied
mixture weighted model of (13).

Theorem 8. Let (Θ | X∗∗1 ≤ x) ≤st (Θ | X∗∗2 ≤ x), for all x > 0, and let (X∗∗1 | Θ = θ1) ≤rh (X∗∗2 |
Θ = θ2), for all θ1 ≤ θ2 ∈ χ. Furthermore, let w(x, θ) be TP2 in (x, θ) ∈ ζ × χ. Then X1 ≤rh X2 implies
X∗∗1 ≤rh X∗∗2 .

Proof. First, we denote by h̃i and h̃∗∗i the reversed hazard rate functions of Xi and X∗∗i , respectively,
for i = 1, 2. For all x > 0,

h̃∗∗i (x) = h̃i(x) E
[

w(x, Θ)

Ai(x, Θ)
| X∗∗i ≤ x

]
,

where Ai(x, θ) = E [w(Xi, θ) | Xi ≤ x] , for i = 1, 2. The order relation (X∗∗1 | Θ = θ1) ≤rh (X∗∗2 |
Θ = θ2), for all θ1 ≤ θ2 ∈ χ yields

w(x, θ)h̃2(x)
A2(x, θ)

=
w(x, θ) f2(x)∫ x

0 w(x′, θ) f2(x′) dx′

≥ w(x, θ) f1(x)∫ x
0 w(x′, θ) f1(x′) dx′

=
w(x, θ)h̃1(x)

A1(x, θ)
,

for all x > 0, and θ ∈ χ. Thus

h̃∗∗2 (x)− h̃∗∗1 (x) =
∫ ∞

0

w(x, θ)h̃2(x)
A2(x, θ)

dΠ(θ | X∗∗2 ≤ x)−
∫ ∞

0

w(x, θ)h̃1(x)
A1(x, θ)

dΠ(θ | X∗∗1 ≤ x)

≥ h̃1(x)
∫ ∞

0

w(x, θ)

A1(x, θ)
d [Π(θ | X∗∗2 ≤ x)−Π(θ | X∗∗1 ≤ x)] . (15)

It can be seen that w(x, θ)/A1(x, θ) is non-decreasing in θ ∈ χ. From assumption,
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∫ ∞

T
d [Π(θ | X∗∗2 ≤ x)−Π(θ | X∗∗1 ≤ x)] ≥ 0,

for all T ≥ 0. Lemma 7.1(a) of Barlow and Proschan [30] is applicable in (15) and provides the proof.

4.3. A Link to Information Theory

The concept of entropy in information theory has played a prominent role in a broad area of
science including statistical thermodynamics, urban and regional planning, business, economics,
finance, operations research, queueing theory, spectral analysis, image reconstruction, biology and
manufacturing (see, for example, El Gamal and Kim [35], Brillouin [36], Khinchin [37] and Grant [38]).

Stochastic comparisons of distributions have found a link to information theory in the literature
(see, for instance, Ebrahimi et al. [39], Belzunce et al. [40], Nanda and Prasanta [41], Qiu [42],
Toomaj and Di Crescenzo [43] and Toomaj and Di Crescenzo [44]).

Here before closing the paper, we impose a stochastic ordering property that leads to ordering of
entropies of weighted distributions with weight functions given in Section 3.2. The extension of the
Shannon entropy from the discrete case to the absolutely continuous case when dealing with lifetime
random variables is defined by

H(X) = −
∫ ∞

0
f (x) log( f (x)) dx,

where f is the pdf of non-negative random variable X with an absolutely continuous distribution
function. Note that log, with convention 0 log(0) = 0 stands for the natural logarithm.

However, it is found that the entropy is related to the concept of dispersion of (random) variables.
Being aware of this certitude, it is useful to concentrate on dispersion measures of probability
distributions as well as their related stochastic dispersion orderings.

Let us recall from Shaked and Shanthikumar [34] that X with the pdf f and the cdf F is less (or
equal) than (with) Y with the pdf g and the cdf G in dispersive order (denoted by X ≤disp Y) whenever

F−1(β)− F−1(α) ≤ G−1(β)− G−1(α), for all 0 < α ≤ β < 1.

It follows from (3.B.25) in Shaked and Shanthikumar [34] that

X ≤disp Y =⇒ Var(X) ≤ Var(Y).

In spirit of Theorem 3.B.20(a) and Theorem 3.B.20(b) in Shaked and Shanthikumar [34] if X or Y has an
increasing hazard rate function, then

X ≤disp Y =⇒ X ≤hr Y,

and if X or Y has a decreasing hazard rate function, then

X ≤hr Y =⇒ X ≤disp Y.

In accordance with Corollary 4.4 in Bartoszewicz [45], if X or Y has a decreasing reversed hazard rate
function, then

X ≤disp Y =⇒ X ≤rh Y,

and if X or Y has an increasing reversed hazard rate function, then

X ≤rh Y =⇒ X ≤disp Y.

If X and Y are two random variables with supports SX = (lX , uX) and SY = (lY, uY), respectively, then
according to Theorem 3.B.13(a) in Shaked and Shanthikumar [34] when lX = lY > −∞,
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X ≤disp Y =⇒ X ≤st Y,

and also according to Theorem 3.B.13(b) in Shaked and Shanthikumar [34] when uX = uY < ∞,

X ≤disp Y =⇒ X ≥st Y.

The weight functions wθ(x) and vθ(x) considered in the following theorem depend on x only through
F(x) and G(x), respectively.

Theorem 9. Let Xwθ
and Yvθ

be the weighted versions of X and Y with weight functions wθ(x) = dθ(F(x))
and vθ(x) = dθ(G(x)), respectively, where θ ∈ χ is a parameter and dθ is a non-negative function so that∫ 1

0 dθ(u)du < ∞ for any θ ∈ χ. Then, X ≤disp Y implies H(Xwθ
) ≤ H(Yvθ

) for all θ ∈ χ.

Proof. Take b(θ) =
∫ 1

0 dθ(u)du and observe that, for all θ ∈ χ,

E(wθ(X)) =
∫ ∞

0
dθ(F(x)) f (x) dx = b(θ)

and also
E(vθ(Y)) =

∫ ∞

0
dθ(G(y))g(y) dy = b(θ).

Note that

H(Xwθ
) = −

∫ ∞

0
log
(

dθ(F(x)) f (x)
b(θ)

)
dθ(F(x)) f (x)

b(θ)
dx

= −
∫ ∞

0
log
(

dθ(F(x))
b(θ)

)
dθ(F(x))

b(θ)
f (x) dx− 1

b(θ)

∫ ∞

0
dθ(F(x)) f (x) log( f (x)) dx

= c(θ)− 1
b(θ)

∫ 1

0
dθ(u) log( f (F−1(u))) du,

where c(θ) = −
∫ 1

0 (dθ(u)/b(θ)) log (dθ(u)/b(θ)) du is obviously independent of the underlying
distribution. In a similar manner,

H(Yvθ
) = c(θ)− 1

b(θ)

∫ 1

0
dθ(u) log(g(G−1(u))) du.

From (3.B.23) in Shaked and Shanthikumar [34], X ≤disp Y implies that f (F−1(u)) ≥ g(G−1(u)), for all
u ∈ (0, 1). Thus, we conclude that

log
(

f (F−1(u))
g(G−1(u))

)
≥ 0, for all u ∈ (0, 1).

As a result, for all θ ∈ χ, we deduce H(Yvθ
)− H(Xwθ

) = 1
b(θ)

(∫ 1
0 dθ(u) log( f (F−1(u))

g(G−1(u)) ) du
)
≥ 0.
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