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Abstract: This paper is devoted to shedding some light on the advantages of using tight frame systems
for solving some types of fractional Volterra integral equations (FVIEs) involved by the Caputo fractional
order derivative. A tight frame or simply framelet, is a generalization of an orthonormal basis. A lot of
applications are modeled by non-negative functions; taking this into account in this paper, we consider
framelet systems generated using some refinable non-negative functions, namely, B-splines. The FVIEs
we considered were reduced to a set of linear system of equations and were solved numerically based
on a collocation discretization technique. We present many important examples of FVIEs for which
accurate and efficient numerical solutions have been accomplished and the numerical results converge
very rapidly to the exact ones.

Keywords: framelets; numerical solution; fractional calculus; generalization of Unequal Error Protection
(UEP); wavelets; harmonic numerical analysis; volterra integral equations

1. Introduction

Fractional calculus is an old topic; it was started from some fractional order derivative questions raised
by Leibniz in 1695 and Euler 1730 but a yet novel one. It has been developed through extensive work to
date. Many mathematicians have been involved and contributed dramatically to the field, such as Fourier,
Laplace, Riesz and many more. Most recently, numerous scientists provided new definitions of fractional
order derivatives and integrals that opened a new era in the history of fractional derivatives, such as the
Atangana–Baleanu fractional integral [1], the Caputo fractional derivative [2] and the Caputo–Fabrizio
fractional derivative [3]. There is a series of new lines of research that is devoted to fractional calculus and
its applications in many disciplines, such as physics, engineering and modeling [4–38].

In the literature, there are plenty of contributions on the use of wavelets and their generalizations to
model and solve several problems of differential and integral equations of different types and applications
in pure mathematics, engineering and physics; see, for example [39–55]. In this paper, we use framelets
with three generators generated via set of B-splines in order to solve fractional Volterra integral equations
(FVIEs). Usually, it is difficult and sometimes impossible to find exact solutions for such types of integral
equations. Therefore, developing numerical algorithms aimed to find a numerical approximation is
essential.
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In this paper, we consider the following form of fractional Volterra integral equation (FVIE)

Dλu(x) = a(x)u(x) + b(x) +∫
x

0
K(x, t)u(t)dt, x ∈ [0, 1], λ > 0, (1)

with the following initial conditions (ICs)

u(p)(0) = dp, p = 0, 1, 2, . . . , m − 1, and λ ∈ (n, n + 1], n ∈ N, (2)

where Dλu is the known Caputo fractional order derivative given by

Dλu(x) = 1
Γ(n − λ) ∫

x

0
(x − t)n−λ−1 dnu(t)

dt
dt.

The purpose here is to provide an approximate solution of the fractioal Volterra initial value problem
(FVIVP) given in Equations (1) and (2) in the form of the truncated expansions of a framelet system, where
a set of functions {uj, j = 1, . . . ,∞} is called a framelet for L2(R) if there exists a positive number c, C such
that the inequality

c∥v∥2 ≤
∞
∑
j=1

∣⟨v, uj⟩∣
2 ≤ C∥v∥2, (3)

holds for any function v ∈ L2(R).
Note that according to the inequality (3), for a function g ∈ L2(R) it is obvious to obtain the following

associated framelet representation
g = ∑

j∈Z
⟨g, uj⟩uj. (4)

The framelets are constructed using B-spline functions. The B-splines BM of order M are defined
recursively by the following equation

BM (x) = ∫
1

0
BM−1 (x − t) dt, M = 1, 2, . . . ,

where B1(x) is the indicator function over [0, 1).
B-splines are non-negative refinable functions in the sense that

B̂M(ξ) = â(ξ/2)φ̂(ξ/2),

where
â(ξ) = 2−n(1+ e−iξ)n p(ξ),

such that p(ξ) is a polynomial of trigonometric functions with p(0) = 1, and â is 2π-periodic function in
the frequency domain and called the low mask of BM.

The framelet system X(Ξ) is constructed via the oblique extension principle (OEP) [39] and has
the form

X(Ξ) == {u`,j,k = 2j/2u(2jx − k) ∶ ` = 1,⋯, r; j, k are integers}

and satisfies the following equations

r
∑
`=0

∣â`(ξ)∣2 = 1 and
r
∑
`=0

â`(ξ)â`(ξ +π) = 0,
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where â0, â`, ` = 1, . . . , r, are the low and high masks of the u = BM, respectively.
The representation in Equation (4) is truncated by the series Pn, such that

Png =
r
∑
`=1

n
∑

j=−n
∑
k∈Z

⟨g, u`,j,k⟩u`,j,k. (5)

Let us present some examples of framelet systems.

Example 1. Consider the refinable function, B2(x). Then, based on the OEP presented in [39] we are able to
construct the following framelets explicitly,

ψ̂1(ω) = 2
√

2e
iω
2

πω2 + e−iω

4
√

2πω2
− 9eiω

4
√

2πω2
+ e2iω

4
√

2πω2
− 9

4
√

2πω2
,

ψ̂2(ω) = −
√

2e
iω
2

πω2 −
√

2e
3iω

2

πω2 + 3eiω
√

2πω2
+ e2iω

2
√

2πω2
+ 1

2
√

2πω2
,

ψ̂3(ω) = − 3eiω

4
√

2πω2
+ 3e2iω

4
√

2πω2
− e3iω

4
√

2πω2
+ 1

4
√

2πω2
.

Then, the system X(Ξ1) where Ξ1 = {ψ1, ψ2, ψ3} forms a framelet system for ∈ L2(R). The graphs of the framelets
are plotted in Figure 1.
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Figure 1. The graphs of the functions in X(Ξ1) for Example 1.

Example 2. Consider the refinable function, B4(x). Then, again based on the OEP we have

ψ̂1(ω) = 0.0241443e−5iω (−1+ eiω/2)
8
(8eiω/2 + eiω + 1)ω−4,

ψ̂2(ω) = 0.132663 (−1+ e−iω/2)
8
(8e−iω/2 + 28.52e−iω + 8e−3iω/2 + e−2iω + 1)ω−4,

ψ̂3(ω) = 0.143418 (−1+ e−iω/2)
8
(26.4789 (e−iω + e−2iω) + 8e−iω/2 + 43.8315e−3iω/2 + 8e−5iω/2 + e−3iω + 1)ω−4.
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Then, the system X(Ξ2) where Ξ2 = {ψ1, ψ2, ψ3} forms a framelet system for ∈ L2(R). The graphs of the framelets
are plotted in Figure 2.
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Figure 2. The graphs of the functions in X(Ξ2) for Example 2.

2. Matrix Formulation Using Framelets

In this section, we provide the general framework of the aforementioned numerical scheme based
on the collocation discretization of the domain. We also provide two results related to the existence and
uniqueness of the solution.

Consider the FVIE defined in Equation (1). Based on the truncated expansion obtained in Equation (5),
we have

Dλu(x) = a(x)In(Pmu(x)) + b(x) +∫
x

0
K(x, t)In(Pmu(t))dt,

where the nth derivative is approximated by the truncated framelet expansion as follows:

u(n) = Pmu,

and Iλ is the Riemann–Liouville fractional-integral operator defined by

Iλ(g)(x) = 1
Γ(λ) ∫

x

0

g(t)
(x − t)1−λ

dt.

Therefore, using the Caputo derivative, we then get

1
Γ(n − λ) ∫

x

0

Pmu(t)
(x − t)n+1−λ

dt = b(x) + 1
Γ(λ) ∫

x

0

a(x)Pmu(t)
(x − t)1−λ

dt + 1
Γ(λ) ∫

x

0
∫

t

0

K(x, y)Pmu(y)
(x − y)1−λ

dydt. (6)
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With a little algebra, Equation (6) can be simplified to the following

1
Γ(n − λ) ∫

x

0

u(n)(t)
(x − t)n+1−λ

dt − 1
Γ(λ) ∫

x

0

r
∑
`=1
∑

j≤m,k

c`j,k(u)a(x)ψ`,j,k(t)
(x − t)1−λ

dt +

− 1
Γ(λ) ∫

x

0
∫

t

0

r
∑
`=1
∑

j≤m,k

r
∑
`=1
∑

j≤m,k

c`j,k(u)K(x, y)ψ`,j,k(y)
(x − y)1−n dydt = b(x).

Now, based on a dyadic discretization points of the domain of the framelet system being used, say,
{ξq, q ∈ ∆}, and by plugging these point into the equations above, we have

1
Γ(n − λ) ∫

ξq

0

u(n)(t)
(ξq − t)n+1−λ

dt − 1
(n − 1)! ∫

ξq

0
∫

t

0

r
∑
`=1
∑

j≤m,k

c`j,k(u)a(ξq)ψ`,j,k(s)
(ξq − s)1−n dsdt +

−∫
ξq

0
∫

t

0

r
∑
`=1
∑

j≤m,k

r
∑
`=1
∑

j≤m,k

c`j,k(u)K(ξq, y)ψ`,j,k(y)
(ξq − y)1−n dydt = b(ξq).

The above equation yields a system of equations that can be easily solved to obtain the unknown
coefficients c`j,k(u) in order to get the approximate solution of order m.

We now provide two main results with regard to the existence and uniqueness of the FVIVP defined
in Equations (1) and (2).

Theorem 1 (Existence). Assume that a, b and K are continuous functions on [0, 1]. Then there exists a real-valued
function u defined on [0, ξ] solving the FVIVP given in Equations (1) and (2) such that

ξ1 = min
⎧⎪⎪⎨⎪⎪⎩

1,( ε1Γ(λ + 1)
∥a∥∞∥u∥∞ + ∥b∥∞

)
1/λ⎫⎪⎪⎬⎪⎪⎭

,

and

ξ2 = min
⎧⎪⎪⎨⎪⎪⎩

1,( ε2Γ(λ + 1)
∥K∥∞∥u∥∞

)
1/(λ+1)⎫⎪⎪⎬⎪⎪⎭

,

where ξ = min{ξ1, ξ2} , ε1 + ε2 < ε, and ε1, ε2 > 0.

Proof. Apply the Riemann–Liouville integral operator of both sides of Equation (1), and using the ICs we
have,

L(u)(x) = u(x) = dp +
1

Γ(λ) (∫
x

0

a(t)u(t) + b(t)
(x − t)1−λ

dt +∫
x

0
∫

s

0

K(s, t)u(t)
(s − t)1−λ

dtds) .

The idea is to show that L is a self mapping operator on the non-empty set Υ where

Υ = {u ∈ C[0, ξ] ∶ ∥u − dp∥∞ < ε} ,
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and has a fixed point in Υ. Hence

∣L(u)(x) − dp∣ = 1
Γ(λ) ∣∫

x

0

a(t)u(t) + b(t)
(x − t)1−λ

dt +∫
x

0
∫

s

0

K(s, t)u(t)
(s − t)1−λ

dtds∣

∣L(u)(x) − dp∣ ≤ 1
Γ(λ) ∣∫

x

0

a(t)u(t) + b(t)
(x − t)1−λ

dt∣ + 1
Γ(λ) ∣∫

x

0
∫

s

0

K(s, t)u(t)
(s − t)1−λ

dtds∣

≤ 1
Γ(λ + 1) (∥a∥∞∥u∥∞ + ∥b∥∞) xλ + ∥K∥∞∥u∥∞

Γ(λ + 2) xλ+1

≤ ε1 + ε2

< ε.

Which means L(u) ∈ Υ is a self mapping function and this completing the proof.

Theorem 2 (Uniqueness). Assume that a, b and K are continuous functions on [0, 1]. Let Ca, Cb and CK are
upper bounds for a, b and K, respectively. Then, the FVIVP defined in Equations (1) and (2) has a unique solution if

0 < (λ + 1)Ca +CK
Γ(λ + 2) < 1.

Proof. Assume that the FVIVP has two solutions u1 and u2. Then, we have

Dλu1 = a(x)u1(x) + b(x) +∫
x

0
K(x, t)u1(t)dt,

and
Dλu2 = a(x)u2(x) + b(x) +∫

x

0
K(x, t)u2(t)dt.

By taking the Riemann–Liouville integral, we get

u1(x) − dp =
1

Γ(λ) ∫
x

0

a(x)u1(x) + b(x)
(x − t)1−λ

dt + 1
Γ(λ) ∫

x

0
∫

s

0

K(s, t)u1(t)
(s − t)1−λ

dtds,

and
u2(x) − dp =

1
Γ(λ) ∫

x

0

a(x)u2(x) + b(x)
(x − t)1−λ

dt + 1
Γ(λ) ∫

x

0
∫

s

0

K(s, t)u2(t)
(s − t)1−λ

dtds.

Note that

∣u2 − u1∣ ≤ 1
Γ(λ) ∣∫

x

0

a(t)(u2(t) − u1(t))
(x − t)λ

dt +∫
x

0
∫

s

0

K(s, t)(u2(t) − u1(t))
(s − t)1−λ

dtds∣

≤ 1
Γ(λ) ∣∫

x

0

∣a(t)(u2(t) − u1(t))∣
(x − t)λ

dt +∫
x

0
∫

s

0

∣K(s, t)(u2(t) − u1(t))∣
(s − t)1−λ

dtds∣

≤ Ca

λΓ(λ) ∣u2 − u1∣ ∣x∣λ +
CK

(λ + 1)λΓ(λ) ∣x∣
λ+1

≤ Γ(λ + 1)Ca +CK
Γ(λ + 2) ∣u2 − u1∣.

Therefore, as
∣u2 − u1∣(η − 1) ≥ 0,
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where 0 < η = Γ(λ + 1)Ca +CK
Γ(λ + 2) < 1, the result is concluded.

3. Numerical Performance

In this section we consider some examples to test the proposed algorithm. The absolute errors is
given by

Emu = ∣u − In(Pmu)∣, λ ≤ n.

Example 3. Consider the following FVIE,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D1/2u(x) −∫
x

0
u(t)dt = 8x3/2

3
√

π
− x3

3
− x2,

u(0) = 0,

u′(0) = 0.

(7)

Note that, Equation (7) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(1/2) ∫

x

0

u′(t)
(x − t)1/2 dt −∫

x

0
u(t)dt = 8x3/2

3
√

π
− x3

3
− x2,

u(0) = 0,

u′(0) = 0.

The exact solution for this equation is u(x) = x2. Applying the above scheme yields the numerical results presented
in Tables 1 and 2 and the graphical illustration for the comparison of exact, approximate and error results in Figures
3 and 4.

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(a) Based on X(Ξ1)

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(b) Based on X(Ξ2)

Figure 3. A Comparison between the exact and approximate solutions of Example 3 for m = 3 using the
framelet systems X(Ξ1) and X(Ξ2).



Entropy 2020, 22, 824 8 of 16

Error

0.2 0.4 0.6 0.8 1.0

0.0005

0.0010

0.0015

(a) Based on X(Ξ1)

Error

0.2 0.4 0.6 0.8 1.0

0.00002

0.00004

0.00006

0.00008

0.00010

(b) Based on X(Ξ2)

Figure 4. Error plots for Example 3 when m = 4 and using the framelet systems X(Ξ1) and X(Ξ2).

Table 1. Numerical results of Example 3 using the framelet systems X(Ξ1) and X(Ξ2) for m = 3.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 7.26467 × 10−4 1.85352 × 10−5

0.2 0.04 9.10220 × 10−4 6.91144 × 10−5

0.3 0.09 1.82277 × 10−4 1.51510 × 10−4

0.4 0.16 3.51120 × 10−3 2.67941 × 10−4

0.5 0.25 4.47280 × 10−3 4.28731 × 10−4

0.6 0.36 8.36896 × 10−3 7.18203 × 10−3

0.7 0.49 1.17160 × 10−3 1.06917 × 10−3

0.8 0.64 1.64979 × 10−2 1.51795 × 10−2

0.9 0.81 2.29604 × 10−2 2.08445 × 10−2

1.0 1.00 2.99714 × 10−2 2.72612 × 10−2

Table 2. Numerical results of Example 3 using the framelet systems X(Ξ1) and X(Ξ2) for m = 4.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 3.64554 × 10−6 1.73553 × 10−6

0.2 0.04 5.91254 × 10−5 2.96533 × 10−6

0.3 0.09 4.66455 × 10−5 1.09373 × 10−5

0.4 0.16 2.51037 × 10−5 2.35522 × 10−5

0.5 0.25 2.46092 × 10−5 4.22966 × 10−4

0.6 0.36 4.63545 × 10−4 7.11944 × 10−4

0.7 0.49 1.30932 × 10−3 1.55358 × 10−4

0.8 0.64 2.35355 × 10−3 1.24774 × 10−4

0.9 0.81 1.38865 × 10−3 1.04342 × 10−3

1.0 1.00 3.53446 × 10−3 3.39882 × 10−3
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Example 4. Consider the following FVIE.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D3/4u(x) −∫
x

0
x sin(t)u(t)dt = 1

Γ(5/4)x1/4 + (x sin(x + π
2 ) − sin(x))u(x),

u(0) = 0.
(8)

Note that Equation (8) can be reduced to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Γ(1/4) ∫

x

0

u′(t)
(x − t)3/4 dt −∫

x

0
x sin(t)u(t)dt = 1

Γ(5/4)x1/4 + (x sin(x + π
2 ) − sin(x))u(x).

u(0) = 0.

The exact solution for this equation is u(x) = x. Again, applying the proposed algorithm yields the numerical results
presented in Tables 3 and 4 and the graphical illustration for comparison of exact, approximate and error results in Figures 5
and 6.

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(a) Based on X(Ξ1)

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(b) Based on X(Ξ2)

Figure 5. A Comparison between the exact and approximate solutions of Example 4 for m = 3 using the
framelet systems X(Ξ1) and X(Ξ2).

Table 3. Numerical results of Example 4 using the framelet systems X(Ξ1) and X(Ξ2) for m = 3.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 7.88293 × 10−8 2.92921 × 10−9

0.2 0.04 7.67236 × 10−7 1.36504 × 10−8

0.3 0.09 2.36706 × 10−6 1.05287 × 10−7

0.4 0.16 1.09108 × 10−5 2.91769 × 10−6

0.5 0.25 1.27581 × 10−5 4.42031 × 10−6

0.6 0.36 1.69445 × 10−5 5.90872 × 10−6

0.7 0.49 2.44359 × 10−5 1.06485 × 10−5

0.8 0.64 3.32952 × 10−5 1.27942 × 10−5

0.9 0.81 4.33451 × 10−5 2.18122 × 10−5

1.0 1.00 5.43243 × 10−5 2.98557 × 10−5
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Error

0.2 0.4 0.6 0.8 1.0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

0.000010

0.000012

0.000014

(a) Based on X(Ξ1)

Error

0.2 0.4 0.6 0.8 1.0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

6.×10-6

7.×10-6

(b) Based on X(Ξ2)

Figure 6. Error plots for Example 4 when m = 4 using the framelet systems X(Ξ1) and X(Ξ2).

Table 4. Numerical results of Example 4 using the framelet systems X(Ξ1) and X(Ξ2) for m = 4.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 1.31612 × 10−8 1.91626 × 10−9

0.2 0.04 51.7061 × 10−7 1.45913 × 10−9

0.3 0.09 6.39942 × 10−7 1.06851 × 10−8

0.4 0.16 0.41406 × 10−6 3.21467 × 10−7

0.5 0.25 0.49218 × 10−6 6.80432 × 10−7

0.6 0.36 0.60156 × 10−6 1.20816 × 10−6

0.7 0.49 0.69531 × 10−6 3.03948 × 10−6

0.8 0.64 8.53345 × 10−6 4.26697 × 10−6

0.9 0.81 1.10689 × 10−5 5.81013 × 10−6

1.0 1.00 1.38297 × 10−5 7.36015 × 10−6

Example 5. Consider the following FVIE.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D
√

3u(x) −∫
x

0
(sin(t) sin(x) + cos(t) cos(x))u(t)dt =

2(
√

3+2)

Γ(2−
√

3)
x2−
√

3 + 2(x − sin(x)),

u(0) = 0

u′(0) = 1.

(9)

Note that Equation (9) can be reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(2−

√
3) ∫

x

0

u′′(t)
(x − t)

√
3−1

dt −∫
x

0
(sin(t) sin(x) + cos(t) cos(x))u(t)dt =

2(
√

3+2)

Γ(2−
√

3)
x2−
√

3 + 2(x − sin(x)),

u(0) = 0

u′(0) = 1.
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The exact solution for this equation is u(x) = x. Again, applying the proposed algorithm yields the numerical results
presented in Table 5 and the graphical illustration for the comparison of exact, approximate and error results in
Figures 7 and 8. We also provide the matrix plot of the coefficients of the approximate solution based on different
framelet systems and when m = 2. The matrix plots are depicted in Figure 9.

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(a) Based on X(Ξ1)

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(b) Based on X(Ξ2)

Figure 7. A Comparison between the exact and approximate solutions of Example 5 for m = 3 using the
framelet systems X(Ξ1) and X(Ξ2).

Error

0.2 0.4 0.6 0.8 1.0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

(a) Based on X(Ξ1)

Error

0.2 0.4 0.6 0.8 1.0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

(b) Based on X(Ξ2)

Figure 8. Error plots for Example 4 using the framelet systems X(Ξ1) and X(Ξ2)when m = 4 .
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Table 5. Numerical results of Example 5 using the framelet systems X(Ξ1) and X(Ξ2) for m = 4.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 1.62034 × 10−8 8.34395 × 10−9

0.2 0.04 1.03814 × 10−7 5.23015 × 10−8

0.3 0.09 3.56716 × 10−7 1.85430 × 10−7

0.4 0.16 7.48135 × 10−7 3.84891 × 10−7

0.5 0.25 1.45995 × 10−6 6.85008 × 10−7

0.6 0.36 2.32864 × 10−6 1.10671 × 10−6

0.7 0.49 3.47190 × 10−6 1.73964 × 10−6

0.8 0.64 5.19781 × 10−6 2.46654 × 10−6

0.9 0.81 7.05227 × 10−6 3.56779 × 10−6

1.0 1.00 9.28981 × 10−6 4.45749 × 10−6

1 5 10 17

1

5

10

16

1 5 10 17

1

5

10

(a) Based on X(Ξ1)

1 5 10 17

1

5

10

16

1 5 10 17

1

5

10

16

(b) Based on X(Ξ2)

Figure 9. Matrix plot of the coefficients of the approximate solution E2u of Example 5 based on the framelet
systems X(Ξ1) and X(Ξ2).

Example 6. Consider the following FVIE.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

D1/3u(x) −∫
x

0
(xt + x2t2)u(t)dt =

√
π 6√x

2Γ( 7
6 )

− 2
35 x7/2 (5x2 + 7) ,

u(0) = 0.
(10)

Note that Equation (10) can be reduced to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Γ(2/3) ∫

x

0

u′(t)
(x − t)1/3 dt −∫

x

0
(xt + x2t2)u(t)dt =

√
π 6√x

2Γ( 7
6 )

− 2
35 x7/2 (5x2 + 7) ,

u(0) = 0.
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The exact solution for this equation is u(x) =
√

x. Again, applying the proposed algorithm yields the numerical
results presented in Table 6 and the graphical illustration for the comparison of exact and approximate solutions in
Figure 10.

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(a) Based on X(Ξ1)

Exact

Approximate

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

(b) Based on X(Ξ2)

Figure 10. A Comparison between the exact and approximate solutions of Example 6 for m = 4 using the
framelet systems X(Ξ1) and X(Ξ2).

Table 6. Numerical results of Example 6 using the framelet systems X(Ξ1) and X(Ξ2) for m = 4.

x Exact Emu via X(Ξ1) Emu via X(Ξ2)

0.1 0.01 1.65534 × 10−6 3.23863 × 10−7

0.2 0.04 2.34587 × 10−6 5.74663 × 10−7

0.3 0.09 2.63882 × 10−7 0.64773 × 10−8

0.4 0.16 8.38292 × 10−7 1.33748 × 10−8

0.5 0.25 6.37474 × 10−7 2.92292 × 10−8

0.6 0.36 7.38381 × 10−6 7.35377 × 10−7

0.7 0.49 1.22234 × 10−6 4.43444 × 10−7

0.8 0.64 4.10292 × 10−6 1.92556 × 10−6

0.9 0.81 5.37333 × 10−5 2.01111 × 10−5

1.0 1.00 2.32444 × 10−5 2.22298 × 10−5

4. Conclusions

The framelet system we used in this paper was generated using three wavelet frame functions with
compact support and constructed based on using the non-negative functions, B-splines.

We have also established two important results on the existence and uniqueness of the Equations (1)
and (2) considered in this paper. The proposed method was tested by numerically solving many important
examples of fractional Volterra integral equations. This work is an extension of the work published in [47]
by involving the fractional order derivative, namely, the Caputo fractional derivative sense.
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The approximate solutions are supported by numerical evidence given in Tables 1–6, and graphical
illustrations in Figures 3–10, wherein excellent agreement with the exact solutions was accomplished with
only a few framelet truncated partial sums.

Based on the graphical and numerical evidence, we conclude that the accuracy of the method is
increased by two important factors:

1. Number of terms of the partial sum of the framelet truncated expansion being used;
2. The vanishing moments order of the framelet system being used, where increasing these terms will

result an increase in the accuracy as well as the efficiency of the algorithm.
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