
entropy

Article

Variable Selection Using Nonlocal Priors in
High-Dimensional Generalized Linear Models With
Application to fMRI Data Analysis

Xuan Cao 1 and Kyoungjae Lee 2,*
1 Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;

caox4@ucmail.uc.edu
2 Department of Statistics, Inha University, Incheon 22212, Korea
* Correspondence: leekjstat@gmail.com

Received: 8 June 2020; Accepted: 21 July 2020; Published: 23 July 2020
����������
�������

Abstract: High-dimensional variable selection is an important research topic in modern statistics.
While methods using nonlocal priors have been thoroughly studied for variable selection in linear
regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized
linear models have not been investigated. In this paper, we consider a hierarchical generalized
linear regression model with the product moment nonlocal prior over coefficients and examine its
properties. Under standard regularity assumptions, we establish strong model selection consistency in
a high-dimensional setting, where the number of covariates is allowed to increase at a sub-exponential
rate with the sample size. The Laplace approximation is implemented for computing the posterior
probabilities and the shotgun stochastic search procedure is suggested for exploring the posterior
space. The proposed method is validated through simulation studies and illustrated by a real data
example on functional activity analysis in fMRI study for predicting Parkinson’s disease.
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1. Introduction

With the increasing ability to collect and store data in large scales, we are facing the opportunities
and challenges to analyze data with a large number of covariates per observation, the so-called
high-dimensional problem. When this situation arises, variable selection is one of the most commonly
used techniques, especially in radiological and genetic research, due to the nature of high-dimensional
data extracted from imaging scans and gene sequencing. In the context of regression, when the number
of covariates is greater than the sample size, the parameter estimation problem becomes ill posed,
and variable selection is usually the first step for dimension reduction.

A good amount of work has recently been done for variable selection from both frequentist
and Bayesian perspectives. On the frequentist side, extensive studies on variable selection have
emerged ever since the appearance of least absolute shrinkage and selection operator (Lasso) [1].
Other penalization approaches for sparse model selection including smoothly clipped absolute
deviation (SCAD) [2], minimum concave penalty (MCP) [3] and many variations have also been
introduced. Most of these methods are first considered in the context of linear regression and then
extended to generalized linear models. Because all the methods share the basic desire of shrinkage
toward sparse models, it has been understood that most of these frequentist methods can be interpreted
from a Bayesian perspective and many analogous Bayesian methods have also been proposed. See for
example [4–6] that discuss the connection between penalized likelihood-based methods and Bayesian
approaches. These Bayesian methods employed local priors, which still preserve positive values at
null parameter values, to achieve desirable shrinkage.
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In this paper, we are interested in nonlocal densities [7] that are identically zero whenever a
model parameter is equal to its null value. Compared to local priors, nonlocal prior distributions have
relatively appealing properties for Bayesian model selection. In particular, nonlocal priors discard
spurious covariates faster as the sample size grows, while preserving exponential learning rates to
detect nontrivial coefficients [7]. Johnson and Rossell [8] and Shin et al. [9] study the behavior of
nonlocal densities for variable selection in a linear regression setting. When the number of covariates
is much smaller than the sample size, [10] establish the posterior convergence rate for nonlocal priors
in a logistic regression model and suggest a Metropolis–Hastings algorithm for computation.

To the best of our knowledge, a rigorous investigation of high-dimensional posterior consistency
properties for nonlocal priors has not been undertaken in the context of generalized linear regression.
Although [11] investigated the model selection consistency of nonlocal priors in generalized linear
models, they assumed a fixed dimension p. Motivated by this gap, our first goal was to examine the
model selection property for nonlocal priors, particularly, the product moment (pMOM) prior [8]
in a high-dimensional generalized linear model. It is known that the computation problem can
arise for Bayesian approaches due to the non-conjugate structure in generalized linear regression.
Hence, our second goal was to develop efficient algorithms for exploring the massive posterior space.
These were challenging goals of course, as the posterior distributions are not available in closed form
for this type of nonlocal priors.

As the main contributions of this paper, we first establish model selection consistency for
generalized linear models with pMOM prior on regression coefficients (Theorems 1–3) when the
number of covariates grows at a sub-exponential rate of the sample size. Next, n terms of computation,
we first obtain the posteriors via Laplace approximation and then implement an efficient shotgun
stochastic search (SSS) algorithm for exploring the sparsity pattern of the regression coefficients.
In particular, the SSS-based methods have been shown to significantly reduce the computational time
compared with standard Markov chain Monte Carlo (MCMC) algorithms in various settings [9,12,13].
We demonstrate that our model can outperform existing state-of-the-art methods including both
penalized likelihood and Bayesian approaches in different settings. Finally, the proposed method is
applied to a functional Magnetic Resonance Imaging (fMRI) data set for identifying alternative brain
activities and for predicting Parkinson’s disease.

The rest of paper is organized as follows. Section 2 provides background material regarding
generalized linear models and revisits the pMOM distribution. We detail strong selection consistency
results in Section 3, and proofs are provided in the Appendix A. The posterior computation algorithm
is described in Section 4, and we show the performance of the proposed method and compare it
with other competitors through simulation studies in Section 5. In Section 6, we conduct a real data
analysis for predicting Parkinson’s disease and show our method yields better prediction performance
compared with other contenders. To conclude our paper, a discussion is given in Section 7.

2. Preliminaries

2.1. Model Specification for Logistic Regression

We first describe the framework for Bayesian variable selection in logistic regression followed
by our hierarchical model specification. Let y ∈ {0, 1}n be the binary response vector and
X = (xij) ∈ Rn×p be the design matrix. Without loss of generality, we assume that the columns of X
are standardized to have zero mean and unit variance. Let xi ∈ Rp denote the ith row vector of X that
contains the covariates for the ith subject. Let β be the p× 1 vector of regression coefficients. We first
consider the following standard logistic regression model:

P (yi = 1 | xi, β) =
exp

(
x>i β

)
1 + exp

(
x>i β

) , i = 1, 2, . . . , n, (1)
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We will work in a scenario where the dimension of predictors, p grows with the sample size n.
Thus, we consider the number of predictors is function of n, i.e., p = pn, but we denote it as p for
notational simplicity.

Our goal is variable selection, i.e., the correct identification of all non-zero regression coefficients.
In light of that, we denote a model by k =

{
k1, k2, . . . , k|k|

}
⊆ [p] =: {1, 2, . . . , p} if and only if all

the nonzero elements of β are βk1 , βk2 , . . . , βk|k| and denote βk =
(

βk1 , βk2 , . . . , βk|k|

)>, where |k| is the

cardinality of k. For any m× p matrix A, let Ak ∈ Rm×|k| denote the submatrix of A containing the
columns of A indexed by model k. In particular, for 1 ≤ i ≤ n, we denote xik as the subvector of xi
containing the entries of xi corresponding to model k.

The class of pMOM densities [8] can be used for model selection through the following
hierarchical model

π (βk | τ, k) = dk(2π)−
|k|
2 (τ)−r|k|− |k|2 |Uk|

1
2 exp

(
− β>k Uk βk

2τ

)
∏
|k|
i=1 β2r

ki
, (2)

π(k) ∝ I(|k| ≤ mn). (3)

Here U is a p× p nonsingular matrix, r is a positive integer referred to as the order of the density
and dk is the normalizing constant independent of the positive constant τ. Please note that prior
(2) is obtained as the product of the density of multivariate normal distribution and even powers of
parameters, ∏

|k|
i=1 β2r

ki
. This results in π(βk | τ, k) = 0 at βk = 0, which is desirable because (2) is a

prior for the nonzero elements of β. Some standard regularity assumptions on the hyperparameters
will be provided later in Section 3. In (3), mn ∈ [p] is a positive integer restricting the size of the largest
model, and a uniform prior is placed on the model space restricting our analysis to models having size
less than or equal to mn. Similar structure has also been considered in [5,9,14]. An alternative is to use
a complexity prior [15] that takes the form of

π(k) ∝ c−|k|1 p−c2|k|,

for some positive constants c1, c2. The essence is to force the estimated model to be sparse by penalizing
dense models. As noted in [9], the model selection consistency result based on the nonlocal priors
derives strength directly from the marginal likelihood and does not require strong penalty over model
size. This is indeed reflected in the simulation studies in [14], where the authors compare the model
selection performance under uniform prior and complexity prior. The result under uniform prior
is much better than that under complexity prior, as the complexity prior always tends to prefer the
sparse models.

By the hierarchical model (1) to (3) and Bayes’ rule, the resulting posterior probability for model
k is denoted by,

π(k|y) = π(k)
π(y)

mk(y), (4)

where π(y) is the marginal density of y, and mk(y) is the marginal density of y under model k given by

mk(y) =
∫

exp
{

Ln(βk)
}

π (βk | k) dβk

=
∫

exp
{

Ln(βk)
}

dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

(
−

β>k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk, (5)
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where

Ln(βk) = log

(
n

∏
i=1

{
exp

(
x>ikβk

)
1 + exp

(
x>ikβk

)}yi{ 1
1 + exp

(
x>ikβk

)}1−yi
)

(6)

is the log likelihood function. In particular, these posterior probabilities can be used to select a model
by computing the posterior mode defined by

k̂ = arg maxkπ(k|y). (7)

Of course, the closed form of these posterior probabilities cannot be obtained due to not only
the nature of logistic regression but also the structure of nonlocal prior. Therefore, special efforts
need to be devoted to both consistency analysis and computational strategy as we shall see in the
following sections.

2.2. Extension to Generalized Linear Model

We can easily extend our previous discussion on logistic regression to a generalized linear
model (GLM) [16]. Given predictors xi and an outcome yi for 1 ≤ i ≤ n, a probability density
function (or probability mass function) of a generalized linear model has the following form of the
exponential family

p(yi|θ) = exp
{

a(θ)yi + b(θ) + c(yi)
}

,

in which a(·) is a continuously differentiable function with respect to θ with nonzero derivative, b(·) is
also a continuously differentiable function of θ, c(·) is some constant function of y, and θ is also
known as the natural parameter that relates the response to the predictors through the linear function
θi = θi(β) = x>i β. The mean function is µ = E(yi|xi) = −b′(θi)/a′(θi) , φ(θi), where φ(·) is the
inverse of some chosen link function.

The class of pMOM densities specified in (2) can still be used for model selection in this generalized
setting by noting that the log likelihood function in (5) and (6) now takes the general form of

Ln(βk) =
n

∑
i=1

{
a(θi(βk))yi + b(θi(βk)) + c(yi)

}
. (8)

After obtaining the posterior probabilities in (4) with the log likelihood substituted as (8), we can
select a model by computing the posterior mode. In Section 4, we will adopt some search algorithm
that use these posterior probabilities to target the mode in a more efficient way.

3. Main Results

In this section, we show that the proposed Bayesian model enjoys desirable theoretical properties.
Let t ⊆ [p] be the true model, which means that the nonzero locations of the true coefficient vector
are t = (j, j ∈ t). We consider t to be a fixed vector. Let β0 ∈ Rp be the true coefficient vector and
β0,t ∈ R|t| be the vector of the true nonzero coefficients. In the following analysis, we will focus on
logistic regression, but our argument can be easily extended to any other GLM as well. In particular,

Hn(βk) = −∂2Ln(βk)

∂βk∂β>k
=

n

∑
i=1

σ2
i (βk)xix>i = X>k Σ(βk)Xk

as the negative Hessian of Ln(βk), where Σ(βk) ≡ Σk = diag(σ2
1 (βk), . . . , σ2

n(βk)),
σ2

i (βk) = µi(βk)(1− µi(βk)) and

µi(βk) =
exp

(
x>ikβk

)
1 + exp

(
x>ikβk

) .



Entropy 2020, 22, 807 5 of 22

In the rest of the paper, we denote Σ = Σ(βt) and σ2
i = σ2

i (βt) for simplicity.
Before we establish our main results, the following notations are needed for stating our

assumptions. For any a, b ∈ R, a ∨ b and a ∧ b mean the maximum and minimum of a and b,
respectively. For any sequences an and bn, we denote an . bn, or equivalently an = O(bn), if there
exists a constant C > 0 such that |an| ≤ C|bn| for all large n. We denote an � bn, or equivalently
an = o(bn), if an/bn −→ 0 as n → ∞. Without loss of generality, if an ≥ bn > 0 and there exist
constants C1 > C2 > 0 such that C2 < bn/an ≤ an/bn < C1, we denote an ∼ bn. For a given vector
v = (v1, . . . , vp)> ∈ Rp, the vector `2-norm is denoted as ‖v‖2 = (∑

p
j=1 v2

j )
1/2. For any real symmetric

matrix A, λmax(A) and λmin(A) are the maximum and minimum eigenvalue of A, respectively.
To attain desirable asymptotic properties of our posterior, we assume the following conditions:

Condition (A1) log n . log p = o(n1/2) and mn = O
(
(n/ log p)

1−d′
2 ∧ log p

)
for some

0 ≤ d < (1 + d)/2 ≤ d′ ≤ 1.
Condition (A1) ensures our proposed method can accommodate high dimensions where the

number of predictors grows at a sub-exponential rate of n. Condition (A1) also specifies the
parameter mn in the uniform prior (3) that restricts our analysis on a set of reasonably large models.
Similar assumptions restricting the model size have been commonly assumed in the sparse estimation
literature [4,5,9,17].

Condition (A2) For some constant C ∈ (0, ∞) and 0 ≤ d < (1 + d)/2 ≤ d′ ≤ 1,

max
i,j
|xij| ≤ C,

0 < λ ≤ min
k:|k|≤mn+|t|

λmin

(
n−1Hn(β0,k)

)
≤ Λmn+|t| ≤ C2(log p)d,

and Λζ = maxk:|k|≤ζ λmax(n−1X>k Xk) for any integer ζ > 0. Furthermore, ‖β0,t‖2
2 = O

(
(log p)d).

Condition (A2) gives lower and upper bounds of n−1Hn(β0,k) and n−1X>k Xk, respectively,
where k is a large model satisfying |k| ≤ mn + |t|. The lower bound condition can be regarded as a
restricted eigenvalue condition for `0-sparse vectors. Restricted eigenvalue conditions are routinely
assumed in high-dimensional theory to guarantee some level of curvature of the objective function
and are satisfied with high probability for sub-Gaussian design matrices [5]. Similar conditions have
also been used in the linear regression literature [18–20]. The last assumption in Condition (A2) says
that the magnitude of true signals is bounded above (log p)d up to some constant, which allows the
magnitude of signals to increase to infinity.

Condition (A3) For some constant c0 > 0,

min
j∈t

β2
0,j ≥ c0

( |t|Λ|t| log p
n

∨ 1
log p

)
. (9)

Condition (A3) gives a lower bound for nonzero signals, which is called the beta-min condition.
In general, this type of condition is necessary for catching every nonzero signal. Please note that due
to Conditions (A1) and (A2), the right-hand side of (9) decreases to zero as n→ ∞. Thus, it allows the
smallest nonzero coefficients to tend to zero as we observe more data.

Condition (A4) For some small constant δ > 0, the hyperparameters τ and r satisfy

τr+1/2 ∼ n−1/2 p2+δ.

Condition (A4) suggests appropriate conditions for the hyperparameter τ in (2). A similar
assumption has also been considered in [9]. The scale parameter τ in the nonlocal prior density reflects
the dispersion of the nonlocal prior density around zero, and implicitly determines the size of the
regression coefficients that will be shrunk to zero [8,9]. For the below theoretical results, we assume
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that U = I for simplicity, but our results are still valid for other choices of U as long as λmax(U) = O(1)
and λmin(U) = O(1).

Theorem 1 (No super set). Under conditions (A1), (A2) and (A4),

π
(
k ) t | y

) P−→ 0, as n→ ∞.

Theorem 1 says that, asymptotically, our posterior will not overfit the model, i.e., not include
unnecessarily many variables. Of course, it does not guarantee that the posterior will concentrate on
the true model. To capture every significant variable, we require the magnitudes of nonzero entries
in β0,t not to be too small. Theorem 2 shows that with an appropriate lower bound specified in
Condition (A3), the true model t will be the mode of the posterior.

Theorem 2 (Posterior ratio consistency). Under conditions (A1)–(A4) with c0 = {(1− ε0)λ}−1{2(3 +

δ) + 5{(1− ε0)λ}−1} for some small constant ε0 > 0,

max
k 6=t

π
(
k | y

)
π
(
t | y

) P−→ 0, as n→ ∞.

Posterior ratio consistency is a useful property especially when we are interested in the point
estimation with the posterior mode, but does not provide how large probability the posterior puts
on the true model. In the following theorem, we state that our posterior achieves strong selection
consistency. By strong selection consistency, we mean that the posterior probability assigned to the
true model t converges to 1. Since strong selection consistency implies posterior ratio consistency,
it requires a slightly stronger condition on the lower bound for the magnitudes of nonzero entries in
β0,t, i.e., a larger value of c0, compared to that in Theorem 2.

Theorem 3 (Strong selection consistency). Under conditions (A1)–(A4) with c0 = {(1− ε0)λ}−1{2(9 +
2δ) + 5{(1− ε0)λ}−1} for some small constant ε0 > 0, the following holds:

π
(
t | y

) P−→ 1, as n→ ∞.

4. Computational Strategy

In this section, we describe how to approximate the marginal density of the data and to conduct
the model selection procedure. The integral formulation in (4) leads to the posterior probabilities
not available in closed form. Hence, we use Laplace approximation to compute mk(y) and π(k|y).
A similar approach to compute posterior probabilities has been used in [8–10].

Please note that for any model k, when Uk = Ik, the normalization constant dk in (2) is given by

dk =
{
(2r− 1)!!

}−|k|. Let

f (βk) = log
(

exp
{

Ln(βk)
}

π (βk | k)
)

= ∑n
i=1

{
yix>ikβk − log

(
1 + exp(x>ikβk)

)}
− |k| log ((2r− 1)!!)− |k|2 log(2π)−

(
r|k|+ |k|

2

)
log τ

− β>k βk
2τ + ∑

|k|
i=1 2r log

(
|βki
|
)
.

For any model k, the Laplace approximation of mk(y) is given by

(2π)
|k|
2 exp

{
f (β̂k)

}
|V(β̂k)|−

1
2 , (10)
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where β̂k = arg maxβk
f (βk) obtained via the optimization function optim in R using a quasi-Newton

method and V(β̂k) is a |k| × |k| symmetric matrix which can be calculated as:

−
n

∑
i=1

xikx>ik exp(x>ikβk){
1 + exp(x>ikβk)

}2 −
1
τ

Ik − diag
(

2r
β2

k1

, . . . ,
2r

β2
k|k|

)
.

The above Laplace approximation can be used to compute the log of the posterior probability
ratio between any given model k and true model t, and select a model k with the highest probability.

We then adopt the shotgun stochastic search (SSS) algorithm [9,12] to efficiently navigate through
the massive model space and identify the global maxima. Using the Laplace approximations of the
marginal probabilities in (10), the SSS method aims at exploring “interesting” regions of the resulting
high-dimensional model spaces and quickly identifies regions of high posterior probability over models.
Let nbd(k) = {Γ+, Γ−, Γ0} containing all the neighbors of model k, in which Γ+ =

{
k ∪ {j} : j /∈ k

}
,

Γ− =
{

k \ {j} : j ∈ k
}

and Γ0 =
{

k \ {j} ∪ {l} : j ∈ k, l /∈ k
}

. The SSS procedure is described in
Algorithm 1.

Algorithm 1 Shotgun Stochastic Search (SSS)

Choose an initial model k(1)

for i = 1 to i = N − 1 do
Compute π(k|y) for all k ∈ nbd

(
k(i))

Sample k+, k− and k0, from Γ+, Γ− and Γ0 with probabilities proportional to π(k|y)
Sample the next model k(i+1) from {k+, k−, k0} with probability proportional to{

π(k+|y), π(k−|y), π(k0|y)
}

end for

5. Simulation Studies

In this section, we demonstrate the performance of the proposed method in various settings.
Let X be the design matrix whose first |t| columns correspond to the active covariates for which we
have nonzero coefficients, while the rest correspond to the inactive ones with zero coefficients. In all

the simulation settings, we generate xi
i.i.d.∼ Np(0, Σ) for i = 1, . . . , n under the following two different

cases of Σ:

• Case 1: Isotropic design, where Σ = Ip, i.e., no correlation imposed between different covariates.
• Case 2: Autoregressive correlated design, where Σij = 0.3|i−j|, for all 1 ≤ i ≤ j ≤ p.

The correlations among different covariates are set to different values.

Following the simulation settings in [9,10], we consider the following two designs, each with the
same sample size n = 100 and number of predictors being either p = 100 or 150:

• Design 1 (Dense model): The number of predictors p = 100 and |t| = 8.
• Design 2 (High-dimensional): The number of predictors p = 150 and |t| = 4.

We investigate the following two settings for the true coefficient vector β0,t to include different
combinations of small and large signals.

• Setting 1: All the entries of β0,t are set to 3.
• Setting 2: All the entries of β0,t are generated from Unif(1.5, 3).

Finally, for given X and 1 ≤ i ≤ n, we sample yi from the following logistic model as in (1)

P (yi = 1 | xi, β0) =
exp

(
x>i β0

)
1 + exp

(
x>i β0

) .
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We will refer to our proposed method as “nonlocal” and its performance will then be
compared with other existing methods including Spike and Slab prior-based model selection [21],
empirical Bayesian LASSO (EBLasso) [22], Lasso [23] and SCAD [24]. The tuning parameters in
the regularization approaches are chosen by 5-fold cross-validation. Spike and slab prior method is
implemented via the BoomSpikeSlab package in R. For the nonlocal prior, the hyperparameters are set
at U = I, r = 1 and we tune τ = 10−in−1/2 p2+0.05 for four different values of i = 0, 1, 2, 3. We choose
the optimal τ by the mean squared prediction error through 5-fold cross-validation. Please note that
this implies that τ is data-dependent and the resulting procedure is similar to an empirical-Bayesian
approach in the high-dimensional Bayesian literature given the prior knowledge about the sparse true
model [13]. For the SSS procedure, the initial model was set by randomly taking three coefficients to be
active and the remaining to be inactive. The detailed steps for our method are coded in R and publicly
available at https://github.com/xuan-cao/Nonlocal-Logistic-Selection. In particular, the stochastic
search is implemented via the SSS function in the R package BayesS5.

To evaluate the performance of variable selection, the precision, sensitivity, specificity, Matthews
correlation coefficient (MCC) [25] and mean-squared prediction error (MSPE) are reported at Tables 1–4,
where each simulation setting is repeated for 20 times. The criteria are defined as

Precision =
TP

TP + FP
, Sensitivitiy =

TP
TP + FN

, Specificity =
TN

TN + FP
,

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, MSPE =

1
ntest

ntest

∑
i=1

(
ŷi − ytest,i

)2,

where TP, TN, FP and FN are true positive, true negative, false positive and false negative, respectively.
Here we denote ŷi = x>i β̂, where β̂ is the estimated coefficient based on each method. For Bayesian
methods, the usual GLM estimates based on the selected support are used as β̂. We generated test
samples ytest,1, . . . , ytest,ntest with ntest = 50 to calculate the MSPE.

Table 1. The summary statistics for Design 1 (Dense model design) are represented for each setting
of the true regression coefficients under the first isotropic covariance case. Different setting means
different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.02
Spike and Slab 1 0.38 1 0.60 0.21

Lasso 0.67 1 0.96 0.80 0.17
EBLasso 1 0.38 1 0.60 0.22
SCAD 0.57 1 0.93 0.73 0.14

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.73 1 0.97 0.84 0.18
Spike and Slab 1 0.13 1 0.34 0.23

Lasso 0.54 0.88 0.93 0.65 0.15
EBLasso 1 0.63 1 0.78 0.22
SCAD 0.47 0.88 0.91 0.60 0.13

https://github.com/xuan-cao/Nonlocal-Logistic-Selection
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Table 2. The summary statistics for Design 1 (Dense model design) are represented for each setting
of the true regression coefficients under the second autoregressive covariance case. Different setting
means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.89 1 0.99 0.94 0.13
Spike and Slab 0.71 0.63 0.98 0.64 0.20

Lasso 0.70 0.88 0.98 0.76 0.16
EBLasso 1 0.50 1 0.69 0.23
SCAD 0.67 0.75 0.97 0.68 0.17

Setting 2

Precision Sensitivity Specificity MCC MSPE
Nonlocal 0.88 0.88 0.99 0.86 0.14

Spike and Slab 0.83 0.63 0.99 0.70 0.13
Lasso 0.63 0.88 0.96 0.72 0.14

EBLasso 1 0.38 1 0.60 0.22
SCAD 0.47 0.88 0.91 0.60 0.13

Table 3. The summary statistics for Design 2 (High-dimensional design) are represented for each
setting of the true regression coefficients under the first isotropic covariance case. Different setting
means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.08
Spike and Slab 0.75 0.75 0.99 0.74 0.09

Lasso 0.80 1 0.99 0.89 0.14
EBLasso 1 0.75 1 0.86 0.21
SCAD 0.67 1 0.99 0.81 0.12

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 1 1 1 0.10
Spike and Slab 0.75 0.75 0.99 0.74 0.11

Lasso 0.67 1 0.99 0.81 0.14
EBLasso 1 0.75 1 0.86 0.23
SCAD 0.44 1 0.97 0.66 0.12

Table 4. The summary statistics for Design 2 (High-dimensional design) are represented for each
setting of the true regression coefficients under the second autoregressive covariance case. Different
setting means different choice of the true coefficient β0.

Setting 1

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 0.75 1 0.86 0.11
Spike and Slab 1 0.50 1 0.71 0.10

Lasso 0.57 1 0.98 0.75 0.10
EBLasso 1 0.50 1 0.70 0.18
SCAD 0.44 1 0.97 0.66 0.12

Setting 2

Precision Sensitivity Specificity MCC MSPE

Nonlocal 1 0.75 1 0.86 0.15
Spike and Slab 0.50 0.50 0.99 0.49 0.14

Lasso 0.44 1 0.97 0.66 0.13
EBLasso 1 0.50 1 0.70 0.21
SCAD 0.40 1 0.96 0.62 0.14
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Based on the above simulation results, we notice that under the first isotropic covariance case,
the nonlocal-based approach overall works better than other methods especially in the strong signal
setting (i.e., Setting 1), where our method is able to consistently achieve perfect estimation accuracy.
This is because as signal strength gets stronger, the consistency conditions of our method are easier
to satisfy which leads to better performance. When the covariance is autoregressive, our method
suffers from lower sensitivity compared with the frequentist approaches in high-dimensional design
(Table 4), but still has higher precision, specificity and MCC. The poor precision of the regularization
methods has also been discussed in previous literature in the sense that selection of the regularization
parameter using cross-validation is optimal with respect to prediction but tends to include too many
noise predictors [26]. Again we observe under the autoregressive design, the performance of our
method improves as the true signals strengthen. To sum up, the above simulation studies indicate
that the proposed method can perform well under a variety of configurations with different data
generation mechanisms.

6. Application to fMRI Data Analysis

In this section, we apply the proposed model selection method to an fMRI data set for identifying
aberrant functional brain activities to aid the diagnosis of Parkinson’s Disease (PD) [27]. Data consists
of 70 PD patients and 50 healthy controls (HC). All the demographic characteristics and clinical
symptom ratings have been collected before MRI scanning. In particular, we adopt the mini-mental
state examination (MMSE) for cognitive evaluation and the Hamilton Depression Scale (HAMD) for
measuring the severity of depression.

6.1. Image Feature Extraction

Functional imaging data for all subjects are collected and retrieved from the archive by
neuroradiologists. Image preprocessing procedure is carried out via Statistical Parametric Mapping
(SPM12) operated on the Matlab platform. For each subject, we first discard the first 5 time points for
signal equilibrium and the remaining 135 images underwent slice-timing and head motion corrections.
Four subjects with more than 2.5 mm maximum displacement in any of the three dimensions or 2.5◦

of any angular motion are removed. The functional images are spatially normalized to the Montreal
Neurological Institute space with 3× 3× 3 mm3 cubic voxels and smoothed with a 4 mm full width
at half maximum (FWHM) Gaussian kernel. We further regress out nuisance covariates and applied
temporal filter (0.01 Hz < f < 0.08 Hz) to diminish high-frequency noise.

Zang et al. [28] proposed the method of Regional Homogeneity (ReHo) to analyze characteristics
of regional brain activity and to reflect the temporal homogeneity of neural activity. Since some
preprocessing methods especially spatial smoothing fMRI time series may significantly change the
ReHo magnitudes [29], preprocessed fMRI data without the spatial smoothing step are used for
calculating ReHo. In particular, we focus on the mReHo maps obtained by dividing the mean ReHo of
the whole brain within each voxel in the ReHo map. We further segment the mReHo maps and extract
all the 112 ROI signals based on the Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data
Analysis Toolkit.

Slow fluctuations in activity are fundamental features of the resting brain for determining
correlated activity between brain regions and resting state networks. The relative magnitude of
these fluctuations can discriminate between brain regions and subjects. Amplitude of Low Frequency
Fluctuations (ALFF) [30] are related measures that quantify the amplitude of these low frequency
oscillations. Leveraging the preprocessed data, we retain the standardized mALFF maps after
dividing the ALFF of each voxel by the global mean ALFF. Using the HOA, we again obtain
112 mALFF values via extracting the ROI signals based on the mALFF maps. Voxel-Mirrored
Homotopic Connectivity (VMHC) quantifies functional homotopy by providing a voxel-wise measure
of connectivity between hemispheres [31]. By segmenting the VMHC maps according to HOA, we also
extract 112 VHMC values.
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6.2. Results

Our candidate features consist of 336 radiomic variables along with all the clinical characteristics.
We now consider a standard logistic regression model with the binary disease indicator as the outcome
and all the radiomic variables together with five clinical factors as predictors. Various models including
the proposed and other competing methods will then be implemented for classifying subjects based
on these extracted features. The dataset is randomly divided into a training set (80%) and a testing
set (20%) while maintaining the PD:HC ratio in both sets. For Bayesian methods, we first obtain the
identified variables, and then evaluate the testing set performance using standard GLM estimates
based on the selected features. The penalty parameters in all frequentist methods are tuned via
5-fold cross validation in the training set. The hyperparameters for the proposed method are set as in
simulation studies.

The HAMD score and nine radiomic features including five mALFFs, two ReHos, two VHMCs
are selected by the SSS procedure under pMOM prior. In Figure 1, we plot the histograms of selected
radiomic features with different colors representing different groups. The predictive performance
of various methods in the test set is summarized in Table 5. We can tell from Table 5 that the
nonlocal prior-based approach has overall better prediction performance compared with other methods.
Our nonlocal approach has higher precision and specificity compared with all the other methods,
but yields a lower sensitivity than the frequentist approaches. Based on the most comprehensive
measure MCC, our method outperforms all the other methods.
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Figure 1. Histograms of selected radiomic features for PD and HC subjects with darker color
representing overlapping values. Purple: PD group; Green: HC group.
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Table 5. The summary statistics for prediction performance on the testing set for all methods.

Precision Sensitivity Specificity MCC MSPE

Nonlocal 0.77 0.83 0.73 0.56 0.21
Spike and Slab 0.53 0.75 0.27 0.40 0.29

Lasso 0.67 1 0.45 0.55 0.18
EBLasso 0.57 1 0.18 0.32 0.28
SCAD 0.58 1 0.37 0.41 0.19

7. Conclusions

In this paper, we propose a Bayesian hierarchical model with a pMOM prior specification
over regression coefficients to perform variable selection in high-dimensional generalized linear
models. The model selection consistency of our method is established under mild conditions
and the shotgun stochastic search algorithm can be used for the implementation of our proposed
approach. Our simulation and real data studies indicate that the proposed method has better
performance for variable selection compared to a variety of state-of-the-art competing methods.
In the fMRI data analysis, our method is able to identify abnormal functional brain activities for PD
that occur in the regions of interest including cingulate gyrus, central opercular cortex, occipital pole,
brainstem, left amygdala, occipital pole, inferior temporal gyrus, and juxtapositional lobule cortex.
These findings suggest disease-related alterations of functional activities that provide physicians
sufficient information to get involved with early diagnosis and treatment. Our findings are also
coherent with the alternative functional features in cortical regions, brainstem, and limbic regions
discovered in previous studies [32–35].

Our fMRI study certainly has limitations. First, we would like to note that fMRI data are typically
treated as spatio-temporal objects and a generalized linear model with spatially varying coefficients
can be implemented for brain decoding [36]. However, in our application, for each subject, a total of
135 fMRI scans were obtained, each with the dimension of 64× 64× 31. If we take each voxel as a
covariate to perform the whole-brain functional analysis, it would be computationally challenging and
impractical given the extremely high dimension. Hence, we adopt the radiomics approach to extract
three different types of features that can summarize the functional activity of the brain, and take these
radiomic features as covariates in our generalized linear model. For future studies, we will focus on
several regions of interest rather than the entire brain and take the spatio-temporal dependency among
voxels into consideration.

Second, although ReHo, ALFF, and VHMC are different types of radiomic features that quantify
the functional activity of the brain, it is definitely possible that in some regions, three measures are
highly correlated with each other. Our current theoretical and computational strategy can accommodate
a reasonable amount of correlations among covariates, but might not work in the presence of high
correlation structure. For future studies, we will first carefully examine the potential correlations
among features and might only retain one feature for each region if significant correlations are detected.

One possible extension of our methodology is to address the potential misspecification of the
hyperparameter τ. The scale parameter τ is of particular importance in the sense that it can reflect
the dispersion of the nonlocal density around zero, and implicitly determine the size of the regression
coefficients that will be shrunk to zero [8]. Cao et al. [14] investigated the model selection consistency
for the hyper-pMOM priors in linear regression setting, where an additional inverse-gamma prior
is placed over τ. Wu et al. [11] proved the model selection consistency using hyper-pMOM prior
in generalized linear models, but assumed a fixed dimension p. For future study, we will consider
this fully Bayesian approach to carefully examine the theoretical and empirical properties for such
hyper-pMOM prior in the context of high-dimensional generalized linear regression. We can also
extend our method to develop a Bayesian approach for growth models in the context of non-linear
regression [37], where the log-transformation is typically used to recover the additive structure.
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However, then the model does not fall into the category of GLMs, which is beyond the current setting
in this paper. Therefore, we leave it as a future work.
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Lasso least absolute shrinkage and selection operator
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pMOM product moment
SSS shotgun stochastic search
MCMC Markov chain Monte Carlo
fMRI functional Magnetic Resonance Imaging
GLM generalized linear model
EBLasso empirical Bayesian LASSO
MCC Matthews correlation coefficient
MSPE mean-squared prediction error
PD Parkinson’s Disease
HC healthy controls
MMSE mini-mental state examination
HAMD Hamilton Depression Scale
SPM12 Statistical Parametric Mapping
FWHM full width at half maximum
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ALFF Amplitude of Low Frequency Fluctuations
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Appendix A

Throughout the Supplementary Material, we assume that for any

u ∈ {u ∈ Rn : u is in the space spanned by the columns of Σ1/2Xk}

and any model k ∈ {k ⊆ [r] : |k| ≤ mn + |t|}, there exists δ∗ > 0 such that

E
[

exp
{

u>Σ−1/2(y− µ)
}]

≤ exp
{ (1 + δ∗)u>u

2

}
, (A1)

for any n ≥ N(δ∗). However, as stated in [5], there always exists δ∗ > 0 satisfying inequality (A1), so it
is not really a restriction. Since we will focus on sufficiently large n, δ∗ can be considered an arbitrarily
small constant, so we can always assume that δ > δ∗.
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Proof of Theorem 1. Let M1 = {k : k ) t, |k| ≤ mn} and

PR(k, t) =
π(k | y)
π(t | y)

,

where t ⊆ [r] is the true model. We will show that

∑
k:k∈M1

PR(k, t) P−→ 0 as n→ ∞. (A2)

By Taylor’s expansion of Ln(βk) around β̂k, which is the MLE of βk under the model k, we have

Ln(βk) = Ln(β̂k)−
1
2
(βk − β̂k)

>Hn(β̃k)(βk − β̂k)

for some β̃k such that ‖β̃k − β̂k‖2 ≤ ‖βk − β̂k‖2. Furthermore, by Lemmas A.1 and A.3 in [5] and
Condition (A2), with probability tending to 1,

Ln(βk)− Ln(β̂k) ≤ −1− ε

2
(βk − β̂k)

>Hn(β0,k)(βk − β̂k)

for any k ∈ M1 and βk such that ‖βk − β0,k‖2 < c
√
|k|Λ|k| log p/n =: cwn, where ε = εn :=

c′
√

m2
nΛmn log p/n = o(1), for some constants c, c′ > 0. Please note that for βk such that

‖βk − β̂k‖2 = cwn/2,

Ln(βk)− Ln(β̂k) ≤ −1− ε

2
‖βk − β̂k‖2

2 λmin
{

Hn(β0,k)
}

≤ −1− ε

2
c2w2

n
4

nλ = −1− ε

8
c2λ|k|Λ|k| log p −→ −∞ as n→ ∞,

where the second inequality holds due to Condition (A2). It also holds for any βk such that
‖βk − β̂k‖2 > cwn/2 by concavity of Ln(·) and the fact that β̂k maximizes Ln(βk).

Define the set B :=
{

βk : ‖βk − β̂k‖2 ≤ cwn/2
}

, then we have B ⊂ {βk : ‖βk − β0,k‖2 ≤ cwn}
for some large c > 0 and any k ∈ M1, with probability tending to 1.

mk(y) =
∫

exp
{

Ln(βk)
}

π (βk | k) dβk

=
∫

exp
{

Ln(βk)
}

dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

(
−

β>k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

≤ dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2 exp

{
Ln(β̂k)

}
(A3)

×
[ ∫

B
exp

{
− 1− ε

2
(βk − β̂k)

>Hn(β0,k)(βk − β̂k)−
β>k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk

+ exp
(
− 1− ε

8
c2λ|k|Λ|k| log p

) ∫
Bc

exp
(
−

β>k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

]
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Please note that for Ak = (1− ε)Hn(β0,k) and β∗k = (Ak + Uk/τ)−1 Ak β̂k, we have

∫
B

exp
{
− 1− ε

2
(βk − β̂k)

>Hn(β0,k)(βk − β̂k)−
β>k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk

≤
∫

exp
{
− 1

2
(βk − β∗k)

>(Ak + Uk/τ)(βk − β∗k)

} |k|
∏
i=1

β2r
ki

dβk

× exp
{
− 1

2
β̂>k
(

Ak − Ak(Ak + Uk/τ)−1 Ak
)

β̂k

}

= (2π)|k|/2 det
(

Ak + Uk/τ
)−1/2 exp

{
−1

2
β̂>k
(

Ak − Ak(Ak + Uk/τ)−1 Ak
)

β̂k

}
Ek
( |k|
∏
i=1

β2r
ki

)
,

where Ek(.) denotes the expectation with respect to a multivariate normal distribution with mean
β∗k and covariance matrix (Ak + Uk/τ)−1. It follows from Lemma 6 in the supplementary material
for [8] that

Ek
( |k|
∏
i=1

β2r
ki

)
≤

(
nΛ|k| + τ−1

nλ + τ−1

)|k|/2{
4V
|k| +

4 [(2r− 1)!!]
1
r

n(λ + τ−2)

}r|k|

≤
(

nΛ|k| + τ−1

nλ + τ−1

)|k|/2

2r|k|−1


(

4V
|k|

)r|k|
+

(
4 [(2r− 1)!!]

1
r

n(λ + τ−1)

)r|k| ,

where V = ‖β∗k‖2
2, and

∫
Bc

exp
{
−

β>k Ukβk

2τ

} |k|
∏
i=1

β2r
ki

dβk ≤ (Cτ)|k|/2,

for some constant C > 0. Further note that

det
{

Hn(β0,k)(1− ε) + τ−1 I
}1/2

≤
(
nΛ|k| + τ−1)|k|/2

≤ exp
{

C|k| log n
}

� exp
{1− ε

8
c2λ|k|Λ|k| log p

}
for some constant C > 0 and some large constant c > 0, by Conditions (A1), (A2) and (A4). Therefore,
it follows from (A3) that

mk(y) ≤ C−|k|/2(τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ε) + τ−1Uk

}−1/2

×
[

Λ|k|
|k|/2

{(
V
|k|

)r|k|
+ n−r|k|

}
+ o(1)

]
(A4)

≤ C−|k|/2(τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ε) + τ−1Uk

}−1/2

×Λ|k|
|k|/2

{(
V
|k|

)r|k|
+ n−r|k|

}
,



Entropy 2020, 22, 807 16 of 22

for some constant C > 0. Next, note that it follows from Lemma A.3 in the supplementary material
for [5] that

V = ‖β∗k‖2
2 ≤ ‖β̂k‖2

2 ≤
(
‖β̂k − β0,k‖2 + ‖β0,k‖2

)2

≤
(√ |k|Λ|k| log p

n
+
√

log p
)2

≤ 2
( |k|Λ|k| log p

n
+ log p

)
.

Therefore, (
V
|k|

)r|k|
≤

(2 log p
|k|

)r|k|
exp

(
r|k|2

Λ|k|
n

)
.

(
2 log p
|k|

)r|k|

by Conditions (A1) and (A2). Combining with (A4), we obtain the following upper bound for mk(y),

mk(y) ≤ (C1τ)−r|k|−|k|/2 exp
{

Ln(β̂k)
}

det
{

Hn(β0,k)(1− ε) + τ−1Uk

}−1/2

×Λ|k|
|k|/2

(
log p
|k|

)r|k|
, (A5)

for any k ∈ M1 and some constant C1 > 0. Similarly, by Lemma 4 in the supplementary material
for [8] and the similar arguments leading up to (A5), with probability tending to 1, we have

mt(y) & (C1τ)−r|t|−|t|/2 exp
{

Ln(β̂t)
}

det
{

Hn(β0,t)(1 + ε) + τ−1Ut

}−1/2

× exp
{
− 1

2
β̂>t
(

At − At(At + τ−2 It)
−1 At

)
β̂t
}(

log p
)−r|t|

& (C1τ)−r|t|−|t|/2 exp
{

Ln(β̂t)
}

det
{

Hn(β0,t)(1 + ε) + τ−1Ut

}−1/2(
log p

)−r|t|

by Lemma A1, where At = (1 + ε)Hn(β0,t). Therefore, with probability tending to 1,

mk(y)
mt(y)

.
{

C1n1/2τr+1/2}−(|k|−|t|) det
{

n−1Hn(β0,t)(1 + ε) + (nτ)−1Ut

}1/2

det
{

n−1Hn(β0,k)(1− ε) + (nτ)−1Uk

}1/2

× exp
{

Ln(β̂k)− Ln(β̂t)
}

Λ|k|
|k|
2

(
log p
|k|

)r|k|
(log p)r|t| (A6)

.
{

C1 p2+δ
}−(|k|−|t|)( 2

λ

)|k|−|t|
exp

{
Ln(β̂k)− Ln(β̂t)

}
(log p)r(2|k|+|t|)

. (C1 p)−(2+δ)(|k|−|t|)
( 2

λ

)|k|−|t|
p(1+δ∗)(1+2w)(|k|−|t|)(log p)r(2|k|+|t|)

for any k ∈ M1, where the second inequality holds by Lemma 2 in [38], Conditions (A2) and (A4),
and the third inequality follows from Lemma 3 in [38], which implies

Ln(β̂k)− Ln(β̂t) ≤ bn(|k| − |t|) (A7)

for any k ∈ M1 with probability tending to 1, where bn = (1 + δ∗)(1 + 2w) log p with some small
constant w > 0 satisfying 1 + δ > (1 + δ∗)(1 + 2w).
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Hence, with probability tending to 1, it follows from (A6) that

∑
k∈M1

PR(k, t) = ∑
k)t

π(k)mk(y)
π(t)mt(y)

≤ ∑
k)t

mk(y)
mt(y)

≤
mn−|t|

∑
|k|−|t|=1

(
p− |t|
|k| − |t|

)
p−(1+c)(|k|−|t|). (A8)

for some constant c > 0. Using (
p−|t|
|k|−|t|) ≤ p|k|−|t| and (A8), we get

∑
k∈M1

PR(k, t) = o(1).

Thus, we have proved the desired result (A2).

Proof of Theorem 2. Let M2 = {k : k + t, |k| ≤ mn}. For any k ∈ M2, let k∗ = k ∪ t, so that
k∗ ∈ M1. Let βk∗ be the |k∗|-dimensional vector including βk for k and zeros for t \ k. Then by
Taylor’s expansion and Lemmas A.1 and A.3 in [5], with probability tending to 1,

Ln(βk∗) = Ln(β̂k∗)−
1
2
(βk∗ − β̂k∗)

>Hn(β̃k∗)(βk∗ − β̂k∗)

≤ Ln(β̂k∗)−
1− ε

2
(βk∗ − β̂k∗)

>Hn(β0,k∗)(βk∗ − β̂k∗)

≤ Ln(β̂k∗)−
n(1− ε)λ

2
‖βk∗ − β̂k∗‖2

2

for any βk∗ such that ‖βk∗ − β0,k∗‖2 ≤ c
√
|k∗|Λ|k∗ | log p/n = cwn for some large constant c > 0.

Please note that
Let Bk = n(1− ε)λIk and β∗k = (Bk + Uk/τ)−1Bk β̂k,

∫
exp

{
− n(1− ε)λ

2
‖βk∗ − β̂k∗‖2

2

}
exp

(
−

β>k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

=
∫

exp
{
− n(1− ε)λ

2
‖βk − β̂k‖2

2 −
1

2τ
β>k Ukβk

} |k|
∏
i=1

β2r
ki

dβk exp
{
− n(1− ε)λ

2
‖β̂t\k‖2

2

}
= (2π)

|k|
2 |Bk + Uk/τ|−1/2 exp

{
−1

2
β̂>k
(

Bk − Bk(Bk + Uk/τ)−1Bk
)

β̂k

}
Ek
( |k|
∏
i=1

β2r
ki

)
× exp

{
− n(1− ε)λ

2
‖β̂t\k‖2

2

}
.

where Ek(.) denotes the expectation with respect to a multivariate normal distribution with mean
β∗k and covariance matrix (Bk + Uk/τ)−1. It follows from Lemma 6 in the supplementary material
for [8] that

Ek

( |k|
∏
i=1

β2r
ki

)
≤

(
nλ + τ−1

nλ + τ−1

)|k|/2{4V
|k| +

4 [(2r− 1)!!]
1
r

n(λ + τ−1)

}r|k|

≤
(

nλ + τ−1

nλ + τ−1

)|k|/2

2r|k|−1


(

4V
|k|

)r|k|
+

(
4 [(2r− 1)!!]

1
r

n(λ + τ−1)

)r|k| ,



Entropy 2020, 22, 807 18 of 22

where V = ‖β∗k‖2
2. Define the set B∗ :=

{
βk : ‖βk∗ − β̂k∗‖2 ≤ cwn/2

}
, for some large constant c > 0,

then by similar arguments used for super sets, with probability tending to 1,

π(k | y) = dk(2π)−|k|/2(τ)−r|k|−|k|/2|Uk|
1
2

∫
B∗∪Bc∗

exp
{

Ln(βGk∗ )
}

exp
(
−

β>k Ukβk

2τ

) |k|
∏
i=1

β2r
ki

dβk

. (C1τ)−r|k|−|k|/2 exp
{

Ln(β̂k∗)
}

det
(

Bk + Uk/τ
)−1/2

×
[

exp
{
− n(1− ε)λ

2
‖β̂t\k‖2

2

}( log p
|k|

)r|k|
+ exp

{
− cC|k∗|Λ|k∗ | log p

}]
for any k ∈ M2 and for some constant C > 0.

Since the lower bound for π(t | y) can be derived as before, it leads to

PR(k, t) .
{

C1n1/2τr+1/2}−(|k|−|t|) det
{
(1 + ε)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

det
{
(1− ε)λIk + (nτ)−1Uk

}1/2

× exp
{

Ln(β̂k∗)− Ln(β̂t)
}

exp
{
− n(1− ε)λ

2
‖β̂t\k‖2

2

}( log p
|k|

)r|k|
(log p)r|t|(A9)

+
{

C1n1/2τr+1/2}−(|k|−|t|)det
{
(1 + ε)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

× exp
{

Ln(β̂k∗)− Ln(β̂t)
}

exp
{
− c C|k∗|Λ|k∗ | log p

}
(log p)r|t| (A10)

for any k ∈ M2 with probability tending to 1.
We first focus on (A9). Please note that

det
{
(1 + ε)n−1Hn(β0,t) + (nτ)−1Ut

}1/2

det
{
(1− ε)λIk + (nτ)−1Uk

}1/2

≤
{
(1 + ε)Λ|t| + (nτ)−1}|t|/2{
(1− ε)λ + (nτ)−1

}|k|/2

=
{ (1 + ε)Λ|t| + (nτ)−1

(1− ε)λ + (nτ)−1

}|t|/2{ 1
(1− ε)λ + (nτ)−1

}(|k|−|t|)/2

. exp
{

C|t| log Λ|t|
} { 1

(1− ε)λ + (nτ)−1

}(|k|−|t|)/2

for some constant C > 0. Furthermore, by the same arguments used in (A7), we have

Ln(β̂k∗)− Ln(β̂t) . C∗(|k∗| − |t|) log p

= C∗|t \ k| log p + C∗(|k| − |t|) log p

for some constant C∗ > 0 and for any k ∈ M2 with probability tending to 1. Here we choose
C∗ = (1 + δ∗)(1 + 2w) if |k| > |t| or C∗ = 3 + δ if |k| ≤ |t| so that

{
C1n1/2τr+1/2}−(|k|−|t|){ 1

(1− ε)λ + (nτ)−1

}(|k|−|t|)/2
pC∗(|k|−|t|)

× exp
{

r|k| log
( log p
|k|

)
+ r|t| log(log p)

}
. p(C∗−2−δ)(|k|−|t|) = o(1),

where the inequality holds by Condition (A4). To be more specific, we divide M2 into two disjoint
sets M′2 = {k : k ∈ M2, |t| < |k| ≤ mn} and M∗2 = {k : k ∈ M2, |k| ≤ |t|}, and will show that
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∑k∈M′2
PR(k, t) + ∑k∈M∗2

PR(k, t) −→ 0 as n→ ∞ with probability tending to 1. Thus, we can choose
different C∗ for M′2 and M∗2 as long as C∗ ≥ (1 + δ∗)(1 + 2w). On the other hand, with probability
tending to 1, by Condition (A3),

exp
{
− n(1− ε)λ

2
‖β̂t\k‖2

2

}
≤ exp

[
− n(1− ε)λ

2

{
‖β0,t\k‖2

2 − ‖β̂t\k − β0,t\k‖2
2

}]
≤ exp

[
− n(1− ε)λ

2

{
|t \ k|2 min

j∈t
β2

0,j − c′w′2n
}]

≤ exp
{
− (1− ε)λ

2
(
c0|t \ k|2|t| − c′|t \ k|

)
Λ|t| log p

}
≤ exp

{
− (1− ε)λ

2
(c0 − c′)|t \ k|2|t|Λ|t| log p

}
for any k ∈ M2 and some large constants c0 > c′ > 0, where w′2n = |t \ k|Λ|t\k| log p/n. Here,
c′ = 5λ−2(1− ε)−2 by the proof of Lemma A.3 in [5].

Hence, (A9) for any k ∈ M2 is bounded above by

exp
{
|t| log Λ|t| + C∗|t \ k| log p− (1− ε)λ

2
(c0 − c′)|t \ k|2|t|Λ|t| log p

}
. exp

{
−
( (1− ε)λ

2
(c0 − c′)− C∗ − o(1)

)
|t \ k|2|t|Λ|t| log p

}
≤ exp

{
−
( (1− ε)λ

2
(c0 − c′)− C∗ − o(1)

)
|t \ k|2|t|Λ|t| log p

}
≤ exp

{
−
( (1− ε)λ

2
(c0 − c′)− C∗ − o(1)

)
|t|Λ|t| log p

}
with probability tending to 1, where the last term is of order o(1) because we assume c0 = 1

(1−ε0)λ

{
2(3+

δ) + 5
(1−ε0)λ

}
> 2

(1−ε)λ
(C∗ + o(1)) + c′ for some small ε0 > 0.

It is easy to see that the maximum (A10) over k ∈ M2 is also of order o(1) with probability tending
to 1 by the similar arguments. Since we have (A2) in the proof of Theorem 1, it completes the proof.

Proof of Theorem 3. Let M2 = {k : k + t, |k| ≤ mn}. Since we have Theorem 1, it suffices to
show that

∑
k:k∈M2

PR(k, t) P−→ 0 as n→ ∞. (A11)

By the proof of Theorem 2, the summation of (A9) over k ∈ M2 is bounded above by

∑k∈M2
p(C∗−2−δ)(|k|−|t|) exp

{
−
(
(1−ε)λ

2 (c0 − c′)− C∗ − o(1)
)
|t \ k|2|t|Λ|t| log p

}
≤ ∑r

|k|=0 ∑
(|t|−1)∧|k|
v=0 (|t|v )(

r−|t|
|k|−v)p−(|k|−|t|) exp

{
−
(
(1−ε)λ

2 (c0 − c′)− C∗ − o(1)
)
(|t| − v)2|t|Λ|t| log p

}
≤ ∑r

|k|=0 ∑
(|t|−1)∧|k|
v=0

(
|t|r
)|t|−v exp

{
−
(
(1−ε)λ

2 (c0 − c′)− C∗ − o(1)
)
(|t| − v)2|t|Λ|t| log p

}
≤ exp

{
−
(
(1−ε)λ

2 (c0 − c′)− C∗ − o(1)
)
|t|Λ|t| log p + 2(|t|+ 2) log p

}
≤ exp

{
−
(
(1−ε)λ

2 (c0 − c′)− C∗ − 6− o(1)
)
|t|Λ|t| log p

}
with probability tending to 1, where C∗ ≤ 3 + δ is defined in the proof of
Theorem 2. Please note that the last term is of order o(1) because we assume
c0 = 1

(1−ε0)λ

{
2(9+ 2δ) + 5

(1−ε0)λ

}
> 2

(1−ε)λ
(C∗ + 6+ o(1)) + c′ for some small ε0 > 0. It is easy

to see that the summation of (A10) over k ∈ M2 is also of order o(1) with probability tending to 1 by the
similar arguments.
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Lemma A1. Under Condition (A2), we have

exp
{1

2
β̂>k
(

Ak − Ak(Ak + τ−1Uk)
−1 Ak

)
β̂k
}

. 1

for any k ∈ M1 with probability tending to 1.

Proof. Please note that by Condition (A2),

(Ak + τ−1Uk)
−1 ≥ (At + (nτλ)−1 Ak)

−1 =
nτλ

nτλ + 1
A−1

k ,

which implies that

1
2

β̂>k
(

Ak − Ak(Ak + τ−1Uk)
−1 Ak

)
β̂k ≤ 1

2(nτλ + 1)
β̂>k Ak β̂k.

Thus, we complete the proof if we show that

1
nτλ

β̂>k Hn(β0,k)β̂k ≤ C

for some constant C > 0 and any k ∈ M1 with probability tending to 1. By Lemma A.3 in [5] and
Condition (A2),

1
nτ

β̂>k Hn(β0,k)β̂k ≤ 1
τ

λmax
{

n−1Hn(β0,k)
}
‖β̂k‖2

2

≤ 1
τ
(log p)d(‖β0,k‖2

2 + o(1)
)

= O
(
1
)

for any k ∈ M1 with probability tending to 1.
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