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Abstract: We discuss a covariant relativistic Boltzmann equation which describes the evolution of a
system of particles in spacetime evolving with a universal invariant parameter τ. The observed time
t of Einstein and Maxwell, in the presence of interaction, is not necessarily a monotonic function of τ.
If t(τ) increases with τ, the worldline may be associated with a normal particle, but if it is decreasing
in τ, it is observed in the laboratory as an antiparticle. This paper discusses the implications for
entropy evolution in this relativistic framework. It is shown that if an ensemble of particles and
antiparticles, converge in a region of pair annihilation, the entropy of the antiparticle beam may
decreaase in time.

Keywords: SHP theory; invariant world time; Einstein-Maxwell time; relativistic Boltzmann equation;
antiparticles; entropy flow

1. Covariant Mechanics

Stueckelberg, in 1941 [1], wrote that the worldline of a particle in spacetime can be thought of as
generated by an event, a point in spacetime, moving according to dynamical laws and generating such
a worldline. In this way, one can write a dynamical Hamiltonian evolution for the event and achieve a
covariant form for classical mechanics, where the eight dimensional phase space consists of {xµ} and
{pµ}, for µ = 0, 1, 2, 3. For a free particle, he proposed a Lorentz invariant Hamiltonian of the form

K = ηµν pµ pν

2M
(1)

where the metric ηµν = diag(−1,+1,+1,+1) may raise indices (we take units for which the velocity of
light c = 1), and its inverse,ηµν can lower indices. The Hamilton equations, applied to this Hamiltonian
results in

ẋµ =
∂K
∂pµ

= ηµν pν

M
=

pµ

M
, (2)

where the dot indicates differentiation with respect to the invariant parameter τ and, for the
free particle,

ṗµ = − ∂K
∂xµ = 0. (3)

From (2), we see that

ẋµ ẋµ =
dxµdxµ

(dτ)2 =
pµ pµ

M2 . (4)

By the usual definition, we take

pµ pµ = −E2 + p2 = −m2, (5)
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and, since the proper time squared is defined as

ds2 = dt2 − dx2, (6)

with dxµdxµ = −dt2 + dx2, (4) implies that

ds2

dτ2 =
m2

M2 . (7)

Since E and p are independent variables, the quantity m, the mass of the particle is necessarily a
dynamical variable, and the theory is therefore called off-shell (the “shell” corresponds to the surface
E2 − p2, usually taken to be a constant, the given particle mass squared). We see from (4) that the
particle proper time and the invariant parameter τ coincide when m2 = M2, called on shell. We further
remark that the Hamilton Equation (2) implies that the proper time (6) is essentially dynamical, since t
and x obey equations of motion, and therefore, in this framework, it is not a suitable parameter
to describe the motion. The theory therefore involves two times, one the invariant universal time,
essentially the time of Newton [2] and the other the observed time t of Einstein and Maxwell.

In Stueckelberg’s original paper [1], he envisaged the possibility of the world line of a particle as
starting as a free particle, straight and increasing in t, but then, under interaction, curving continuously
to return in the negative direction of t. From this he observed, as remarked above, that t is not single
valued, and consequently the introduction of a new parameter along the motion is necessary.

This configuration can be understood as pair annihilation; it was already known at that time [3]
that a particle running backwards in time can be understood, and observed, as an antiparticle going
forward in time. This phenomenon occurs in the solutions of the Dirac equation [3], where the wave
function of a particle going backward in time, under charge conjugation, describes an antiparticle
moving forward in time. Dirac [3], in this way, discovered the positron, the antiparticle of the electron.

Stueckelberg therefore called this configuration pair annihilation in classical mechanics.
The conclusions we have described above are also valid for guage invariant electromagnetic

interaction for which the Hamiltonian is

K = ηµν (pµ − eAµ)(pν − eAν)

2M
, (8)

if Aµ is assumed independent of τ. In the same way as above, one finds that [1]

ds2

dτ2 =
(pµ − eAµ)(pµ − eAµ)

2M
, (9)

which (as in (7) without further interaction or explicit τ dependence in the gauge field) cannot
generate classical pair annihilation. Thus, the usual 4D electromagnetism does not generate classical
pair annihilation. However, just as in the standard Schrödinger equation, where the A0 component
of the electromagnetic potential arises from the time derivative of the wave function, an additional
potential is generated in the gauge transformation of the wave function of the Stueckelberg-Schrödinger
equation [1] corresponding to the quantum theory associated with the Hamiltonian (8), leading to a
5D electrodynamics [4,5] (with, in general, τ dependent fields). In the classical limit, such a theory
can achieve pair annihilation. We shall not discuss this subject further here, but turn to the many
body problem.

In 1973, Horwitz and Piron [6] generalized the Stueckelberg theory to be applicable to many
body systems by postulating that the parameter τ is universal, as for Newtonian time [2]. They were
then able to solve the classical relativistic two-body central potential problem with a Hamiltonian of
the form

K =
p1µ p1µ

2M1
+

p2
µ p2

µ

2M2
+ V(x1 − x2), (10)
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where the potential term is a function of the invariant (x1 − x2)
µ(x1 − x2)µ, in some generality.

The corresponding quantum two body relativistic central potential problem was solved later by
Arshansky and Horwitz [7].

One may think of the many event system as a many particle system since each event traces out
a world line that can be identified with a particle [8,9]. In this sense we can formulate the notion of
probability distributions and, eventually, a Boltzmann equation [10].

2. Boltzmann Equation

As we have mentioned, an event, in the dynamical sense under consideration, in the Minkowski
space, with the properties of four-momentum as well as spacetime position, associated with the
parameter M, can, through its trajectory (world line), be associated with a particle. In the same way,
many events can be associated with many particles according to the world lines generated [8]. Orbits in
the phase space cannot cross since the motion satisfies first order equations. By the postulate of
Horwitz and Piron [6] ineractions between these particles are correlated by the universal invariant
world time τ (discussions with E.C.G. Sudarshan [11]). The two particle interaction Hamiltonian (10)
can be generalized to the N body system in the form

K = Σi
piµ pi

µ

2Mi
+ V(x1, x2 . . . xN), (11)

with V a scalar function (its dependence on x may be such, as in (10), that it is invariant). For the
quantum theory, the wave function ψτ(x1, x2 . . . xN) satisfies the Stueckelberg-Schrödinger equation [1]

∂ψτ

dτ
= Kψτ , (12)

with K given by (11). The wave functions have the same local interpretation as for the non-relativistic
case, i.e.,

p(x1, x2, . . . xN) = |ψτ(x1, x2, . . . xN)|2 (13)

is the probability density per unit (N dimensional) volume d4x1d4x2 . . . d4xN to find the events in
the configuration x1, x2, . . . xN . We remark that in this framework, the momentum operator, unlike
the more complicated form of the Newton-Wigner operator (*) Derived by taking into account the

measure d3p
2E in the momentum space scalar product for the Klein-Gordon on mass-shell theory. [10,12],

is represented on the configuration space as

xµ
i
op = −i

∂

∂piµ

. (14)

For an arbitrary operator A on the Hilbert space L2(R4; d4x)
of wavefunctions {ψτ(x1, x2 . . . xN)}, we may assume with Weyl [13,14] that the operator valued
set eiΣikiµxi

µ+ji
µ piµ is complete, so that we can write

A =
∫

d4k1d4k2 . . . d4kNdj
1, d4 j2 . . . d4 jN A(k1, k2 . . . kN , j1, j2 . . . jN)e

iΣikiµxi
µ+ji

µ piµ , (15)

where the canonical operators satisfy (we take h̄ = 1)

[xi
µ, pjν] = iδijδ

µ
ν, (16)

and the coefficients A(k1, k2 . . . kN , j1, j2 . . . jN) are the numerical valued representers of the operator A.
In a state described by the density matrix ρ, for which the expectation value of A is given by

< A >ρ= Tr(ρA), (17)
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it follows that

< A > =
∫

d4k1d4k2 . . . d4kNd4 j1, d4 j2 . . . d4 jN

A(k1, k2 . . . kN , j1, j2 . . . jN)Tr(ρeiΣikiµxi
µ+ji

µ piµ).
(18)

We now wish to discuss one-particle, two-particle.... states of identical particles corresponding
to the type of measurements to be performed. To do this, it is convenient to describe the many-body
system in term of annihilation-creation operators [14,15], so that a general operator can be represented
as a sum of s-body constituents as

A = ΣN
s=1

1
s!

∫
d4x4

dx2 . . . d4xsψ†(x1)ψ
†(x2) . . . ψ†(xs)Asψ(x1)ψ(x2) . . . ψ(xs), (19)

where As is an operator defined on the s-body subspace.
Consider first the one body case, s = 1. Then, from (17),

< A1 >=
∫

d4x
∫

d4kd4 jA1(k, j)exp(ik · (x +
j
2
))Tr(ρψ†(x + j)), (20)

where the center dot signifies the Lorentz scalar product. As in the work of Dewdney et al. [16],
we define the one-particle Wigner function [17]

f1
W(x, p) = 1

(2π)4

∫
d4 je−ij·pTr(ρψ†(x− j

2 ))ψ(x + j
2 ))

= 1
(2π)4

∫
d4ke−ik·xTr(ρψ†(p− k

2 )ψ(p + k
2 )).

(21)

We can then write (20) as

< A1 >=
∫

d4xd4 pA1(x, p) f1
W(x, p). (22)

It is clear from (21) that the function f1
W(x, p) is not, in general positive, but nevetheless provides

a state dependent measure for the expectation value of the one body operator A1 in terms of the
numerical valued kernel A1(x, p) on the phase space. It has the property, furthermore, that the
(boundary) contraction ∫

d4x f1
W(x, p) = Tr(ρψ†(p)ψ(p) ≥ 0, (23)

and its normalization is determined by∫
d4xd4 p f1

W(x, p) =
∫

d4xTr(ρψ†(x)ψ(x))
= NTrρ = N.

(24)

Let us define the Fourier transform of (21) from x to k,

f1
W(k, p) =

∫
d4xe−ik·x f1

W(x, p) = Tr(ρψ†(p− k
2
)ψ(p +

k
2
). (25)

The Wigner function provides a useful measure for describing the quantum state, very close to that
of a classical measure on the phase space, and, in fact, satisfies an equation of motion, the Boltzmann
equation, similar in form to that of the classical theory.

We now turn to study the dependence of this function on the invariant world time. The world
time dependence is determined by that of the density matrix which, as for any observable, is

∂τρ = i[K, ρ]. (26)
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Cycling under the trace, we have

∂τ f1
W(k, p) = iTrρ[K, ψ†(p− k

2
)ψ(p +

k
2
)]. (27)

We now assume that K has the form

K = K0 + V, (28)

where, as in Stueckelberg’s original work (but here in second quantized form for the many-body
system [18])

K0 =
1

2M

∫
d4xψ†(x)pµ pµψ(x) (29)

and

V =
1
2

∫
d4x′d4x′′ψ†(x′)ψ†(x′′)V(x′ − x′′)ψ(x′′)ψ(x′). (30)

The commutator of K0 with the two body potential does not change the number of
annihilation-creation operators in V, and therefore adds a two event term to the time derivative
of the Wigner function. One finds [10,14] that

∂ f1
W(k1, p1) = L1

0 f1
W(k1, p1) +

∫
d4 p2d4k2δ4(k2)L12 f2

W(k1 p1, k2 p2), (31)

where
L1

0 = − i
M

(k1 · p1) (32)

and, for

Ṽ(`) =
1

(2π)4

∫
d4xe−ix·`V(x), (33)

we have
L12 = −i

∫
d4`Ṽ(`)

[
exp

{
− `µ

2
(

∂
∂p1

µ − ∂
∂p2

µ

)}
− exp

{
`µ

2
(

∂
∂p1

µ − ∂
∂p2

µ

)}]
exp

{
−`µ

(
∂

∂k1
µ − ∂

∂k2
µ

)}
.

(34)

In (31),
f2

W(k1, p1, k2, p2) =
∫

d4x1d4x2e−ik1·x1−ik2·x2 f2
W(x1 p1, x2 p2)

= Tr
(
ρψ†(p1 − k1

2 )ψ
†(p2 − k2

2 )

×ψ(p2 +
k2
2 )ψ(p1 +

k1
2 )
)
,

(35)

where f2
W is defined as the two-body Wigner function.

The evolution of the one-body Wigner function therefore involves the two-body Wigner function.
Continuing this process, each step applied to the s-body Wigner function involves the Wigner function
for (s + 1) events, building the so-called BBGKY hierarchy [10,19]. Since higher order correlations are
expected to be small, the usual procedure is to replace the two event Wigner function by collision terms
which induce transitions between events outside the one event distribution into the distribution and
events in the one-event distribution to events which lie outside. The result is the Boltzmann equation,
often a good approximation to the full evolution, here in relativistically covariant form [10].

We start by observing that the first term of (31) can be understood, in the original space (x, p),
by noting that the classical Liouville theorem implies that (we write here f (x, p) for f1

W(x, p))

f (xµ +
pµ

M
δτ, pµ, τ + δτ) = f (xµ, pµτ), (36)
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from which it follows immediately that

∂τ f (x, p) +
pµ

M
∂

xµ f (x, p) = 0 (37)

for the free flow of non-interacting events, in precise agreement with the first term of (31). Interactions
would cause a departure from this flow, causing events to scatter out of or into the distribution f (x, p),
conventionally called Dc f (x, p), so that, both classically and quantum mechanically, we may write

∂τ f (x, p) +
pµ

M
∂

xµ f (x, p) = Dc f (x, p). (38)

Locally such processes correpond to momentum transfers due to collisions, i.e., for which, in two
body scattering, an event at x with momentum p′, scattering with another of momentum p′1 results in
events with momenta p1 and p, or an event with momentum p scatters with another of momentum p1

to yield events with momentum p′1, p′. The first process, independently of p′1, brings an event into the
distribution f (x, p), and the second, independently of p1, removes and event from the distribution
f (x, p). Multiplying the transition probability densities by the densities f (x, p) with appropriate
momenta, one then finds for the scattering in and out processes,

Dc
+ =

∫
d4 p1d4 p′1d4 p′ Ṗ(p′1 p′ → p1 p) f (x, p′) f (x, p′1), (39)

for events scattering into the distribution, and, for events scattering out,

Dc
− =

∫
d4 p1d4 p′1d4 p′ Ṗ(p1 p→ p′1 p′) f (x, p) f (x, p1), (40)

for the two types of contributions to Dc f (x, p).
The scattering probalities for the two body problem with central potential can be written [20]

in terms of total (conserved) four momentum P = p1 + p2 and relative momentum pr =
1
2 (p1 − p2),

center of mass 1
2 (x1 + x2) and relative coordinate xr = x1 − x2, so that

Ṗ(Pp1 → P′p′1) = δ4(P− P′)Ṗ(p1 → p′1; P). (41)

It then follow from (39) and (40) that

Dc
+ =

∫
d4 prd4 p′r Ṗ(p′r → pr; P) f (x, p′) f (x, p′1)

Dc
− =

∫
d4 prd4 p′r Ṗ(pr → p′r; P) f (x, p) f (x, p1).

(42)

where
P = 2(p + pr) p′ = p + pr − p′r
p′1 = p + pr + p′1 p1 = 2pr + p.

(43)

Using detailed balance, which follows from τ reversal and space-time reflection invariance,

Ṗ(p′r → pr; P) = Ṗ(pr → p′r; P), (44)

the relativistic Boltzman equation then becomes

∂τ f (x, p) + pµ

M
∂

xµ f (x, p) =
∫

d4 prd4 p′r Ṗ(p′r → p1; P)
×{ f (x, p′) f (x, p′1)− f (x, p) f (x, p1)}.

(45)
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The transition rate Ṗ is related to the differential cross section [20]. Assuming narrow distributions,
one finds, in terms of experimentally observed cross sections that

∂τ f (x, p) + pµ

M
∂

xµ f (x, p) = 4π
∫

d3 prd3 p′r
|p′r |
M

dσexp

d3 p1
(p′r → pr; P)

×{ f (x, p′) f (x, p′1)− f (x, p) f (x, p1)}.
(46)

The integrations on d3 p are what remain after carrying out the dp0 integrations on a wave packet.
The relativistic cross section has dimension TL2 (orthogonal to the axis of the beam), and p0 dimension
T−1, leaving the cross section σexp with the usual dimenion L2.

3. Entropy Flow

We are now in a position to discuss the properties of entropy flow associated with the relativistic
Boltzmann Equation (46). This result, that there are intrinsically two types of time, the observable time
t associated with the Maxwell equations and Einstein’s formulation of special relativity (appearing
in the Lorentz transformation), and the underlying universal parameter τ of dynamical evolution,
as originally conceived by Newton [2], is a consequence of the Stueckelberg-Horwitz-Piron formulation
of relativistic mechanics. * J.R. Fanchi [21] has discussed another approach to this theory based on
the covariant current. We shall show that the relativistic Boltzmann equation implies a monotonic
increase of entropy in the universal dynamical time τ. However, as pointed out in the original work of
Stueckelberg [1], an event moving dynamically in the Minkowski spacetime may move in the negative
direction of t; this phenomenon was identified by Stueckelberg as describing an antiparticle moving
forward in t, the usual perception (as in the Maxwell equations) of time as the outcome of observation.
Thus, for a beam of antiparticles, the entropy may appear to decrease.

Let us define the functional (following Boltzmann’s terminology [22])

H =
∫

d4xd4 p f (x, p, τ) ln f (x, p, τ) = −S(τ)/kB, (47)

where S(τ) is the entropy and kB is Boltzmann’s constant. Then the derivative of H, using(46) and
integration by parts of the spacetime derivatives,

dH
dτ =

∫
d4xd4 p[ln f (x, p) + 1]

∫
d4 pτd4 p′τ Ṗ(pτ → p′τ ; P)

×{ f (x, p′) f (x, p′1)− f (x, p) f (x, p1)}.
(48)

Now, replace d4 pτ by d4 p1
16 and pτ by p1−p

2 . The total energy momentum P entering into the binary
collision process is invariant under interchange of p, p1 and p′, p′1. Interchanging these variables in the
integrand and using the symmetry of Ṗ under time reversal and space inversion in relative coordinates,
one obtains the same relation but with ln f (x, p) replaced by ln f (x, p1). Averaging these two forms
and interchanging primed and unprimed momenta, with the detailed balance relation, we obtain

dH
dτ = 1

64

∫
d4xd4 pd4 p1d4 p′1[ln f (x, p1) f (x, p)− ln f (x, p′1) f (x, p′)]

×{ f (x, p′) f (x, p′1)− f (x, p) f (x, p1)}Ṗ
(( p1−p

2 → p′1−p′

2
)
; P
)
.

(49)

Since Ṗ(pτ → p′τ ; P) ≥ 0, and the remaining factor in the integrand is non-positive, we obtain

dH
dτ
≤ 0. (50)

We see that the relativistic Boltzmann equation implies that the entropy S(τ) = −kBH(τ) is
non-decreasing for the flow of particles with binary collision interactions. According, however,
to Stueckelberg’s original formulation, as we have discussed above, a free particle world line for
which the generating event moves in the positive direction of t, as mentioned above, may turn and



Entropy 2020, 22, 804 8 of 9

continue to move in the reverse direction of t due to interaction. This motion in the negative direction
of t is interpreted, consistently with Dirac’s interpretation [3], as an antiparticle moving forward in
t. The transition from forward to backward motion in t, in Stueckelberg’s view, can therefore be
considered as a particle-antiparticle annihilation process. In the case of the flow of an ensemble of
particles, such as a beam, if the particles encounter a region of interaction which can turn the flow
back in time, and the entropy continues to increase in τ for the backward flowing beam, constituting a
beam of antiparticles, one would observe the antiparticLe beam as decreasing in entropy, becoming
less disordered as the beam approaches the annihilation region. This phenomenon may play a role in
general relativity [23,24].

4. Conclusions

We have reviewed and discussed the derivation of the relativistic Boltzmann equation. The flow
of an ensemble of particles governed by this equation is shown to obey the usual H-theorem implying a
non-decreasing entropy in the usual definition of the time t (according to Maxwell and Einstein), as well
as in the invariant world time τ, provided that there are no antiparticles involved. If antiparticles occur
as part of a pair annihilation process, one may observe that the entropy flow of the antiparticle part of
the system may have decreasing entropy in t, and therefore, even on a classical level, the generally
expected increase of entropy may not be universally observed.
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