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Abstract: Bistability is often encountered in association with dissipative systems far from equilibrium,
such as biological, physical, and chemical phenomena. There have been various attempts to
theoretically analyze the bistabilities of dissipative systems. However, there is no universal theoretical
approach to determine the development of a bistable system far from equilibrium. This study shows
that thermodynamic analysis based on entropy production can be used to predict the transition
point in the bistable region during Rayleigh–Bénard convection using the experimental relationship
between the thermodynamic flux and driving force. The bistable region is characterized by two
distinct features: the flux of the second state is higher than that of the first state, and the entropy
production of the second state is lower than that of the first state. This thermodynamic interpretation
provides new insights that can be used to predict bistable behaviors in various dissipative systems.
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1. Introduction

Many attempts have been made to identify a universal function whose extremum determines
the development of a system far from equilibrium. Entropy production characterizes systems during
nonequilibrium processes [1–5], and its extrema may be used for determining the system behavior [6–13].
Recently, theoretical and experimental investigations have suggested the maximization of entropy
production during nonequilibrium processes (the so-called maximum entropy-production principle,
MEPP) [10–12,14–16]. According to MEPP, when a nonequilibrium system transitions from one state to
another, it is characterized by the highest rate of entropy production. Analysis based on MEPP can thus
be used to predict the transition point between two nonequilibrium states, such as those observed in
the morphological changes of crystal growth, mode changes in droplet oscillation, and pattern changes
in thermal convection [12,17–19]. For example, in the case of friction phenomena in the flow field, fluid
velocity is treated as thermodynamic flux, and the transition point is predicted. For a pendant droplet
that changes in the oscillation mode induced by the solutal Marangoni effect with viscous dissipation,
the transition point of the oscillation mode is predicted from the intersection of the entropy-production
curves determined from the velocity of the oscillating droplet, which is considered as thermodynamic
flux [18]. However, dissipative systems far from equilibrium frequently include solutions with several
linearly stable branches, i.e., bistable behavior. In such cases, the selected solution depends on the
initial conditions, and variational principles based on MEPP would not be required. The prediction
of bistable behavior in various dissipative systems is considered an unsolved problem when using
variational principles and overshadows the universality of MEPP. This problem is addressed in this
study by examining these predictions for a situation involving bistable behavior, i.e., where hexagonal
and roll flow patterns coexist during Rayleigh–Bénard convection.
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2. MEPP

The state of a nonequilibrium system is characterized by the thermodynamic flux J expressed
as a function of the driving force of the entire system F, which is proportional to differences in the
temperature, concentration, pressure, etc. [12,17–19]:

Ji = ai(F− bi) (1)

where ai and bi are constant coefficients.
Assume that there is a transition from state α to β as F increases.
Each state is described by a local entropy-production σ curve, which is characterized by the

product of the local thermodynamic force X and thermodynamic flux J [1]. Thus, the relationship
between σ and F can be expressed as [12,17–19]

σi = ai(F− bi)
2 (2)

According to MEPP, a nonequilibrium system develops in a manner that maximizes its entropy
production under the given binding conditions [10,14]. The transition point between states α and β
corresponds to the intersection of the two σ curves A and not that of the two J lines B. Although the
coefficients of F in σi are not strictly equal to ai in Equation (1), there is no change in the intersection.
Thus, for simplicity, we use the same coefficients. Before intersection A, the entropy-production curve
of state α lies above that of state β, whereas after intersection A, the converse is true. It should be
noted that when entropy production is expressed as a function of X, σ(X) cannot distinguish between
the nonequilibrium states because all σ(X) are present on a single quadratic curve σ(X) = LX2 [19],
where L is the phenological coefficient [1]. Furthermore, we cannot predict the transition point
nor even understand whether another kind of nonequilibrium state exists in the system when the
thermodynamic flux expressed as a function of the driving force can be described only on a single line.
Even at equilibrium, if we know the thermodynamic properties of water only in the liquid phase at
1 atm, we cannot predict that water will undergo a phase transition to the gas phase at 100 ◦C. If we
know the dependence of the chemical potential of water in both phases on temperature, we can predict
the boiling point of water from the intersection of their two chemical-potential curves.

As shown in Figure 1, we find that intersection A represents the transition point between the
nonequilibrium states. However, we wish to understand intersection B of the thermodynamic-flux lines
in terms of the physical behavior of the nonequilibrium system. It transpires that this intersection is a
starting point for the coexistence of two different nonequilibrium states. When F > FB, state β begins
to manifest because the thermodynamic flux of state β is higher than that of state α. However, the
system mainly comprises state α because σ(F) of state α remains greater than that of state β. Therefore,
states α and β coexist until F < FA. The thermodynamic flux of state β increases continuously with F,
so the proportion of state β will increase until it represents a major part of the system. Once F > FA,
the system consists only of state β.



Entropy 2020, 22, 800 3 of 8

Entropy 2019, 21, x FOR PEER REVIEW 2 of 8 

 

 

predictions for a situation involving bistable behavior, i.e., where hexagonal and roll flow patterns coexist 41 
during Rayleigh–Bénard convection. 42 

2. MEPP 43 

The state of a nonequilibrium system is characterized by the thermodynamic flux 𝐽 expressed as a function 44 
of the driving force of the entire system 𝐹 , which is proportional to differences in the temperature, 45 
concentration, pressure, etc. [12,17–19]: 46 𝐽௜ = 𝑎௜(𝐹 − 𝑏௜)  () 

 

(1) 

where 𝑎௜  and 𝑏௜ are constant coefficients. 47 
Assume that there is a transition from state 𝛼 to 𝛽 as 𝐹 increases.  48 

Figure 1. Schematic representation of nonequilibrium transition from state 𝛼 (black) to 𝛽 (red). Dependency of 49 
thermodynamic flux on the (a) driving force and (b) entropy production of the driving force. Points A and B are 50 
the intersections of the entropy-production curves and thermodynamic-flux lines, respectively. 51 

Each state is described by a local entropy-production 𝜎 curve, which is characterized by the product of 52 
the local thermodynamic force 𝑋 and thermodynamic flux 𝐽 [1]. Thus, the relationship between 𝜎 and F can 53 
be expressed as [12,17–19] 54 

(a) 

(b) 

Figure 1. Schematic representation of nonequilibrium transition from state α (black) to β (red).
Dependency of thermodynamic flux on the (a) driving force and (b) entropy production of the driving
force. Points A and B are the intersections of the entropy-production curves and thermodynamic-flux
lines, respectively.

3. Thermodynamic Analysis of Rayleigh–Bénard Convection

To verify this MEPP prediction, precise experimental data are required to calculate the relationship
between the thermodynamic flux and driving force of a dissipative system exhibiting bistability.
One example is reported in the literature [20], where hexagonal and roll patterns coexisted during
Rayleigh–Bénard convection, subject to external temporal modulation of the reduced Rayleigh number
ε0 ≡ ∆T/∆Tc − 1, where ∆T is the temperature difference between the bottom and top plates of the
water-filled container and ∆Tc is the critical temperature difference for the onset of convection without
modulation. Here, ε has the form

ε(t) = ε0 + δ cos(ωt) (3)

where the time t and frequency ω are scaled according to the vertical thermal-diffusion time and
δ is the amplitude of modulation. The 13-mode Lorenz model proposed by Hohenberg and Swift
predicts a positive threshold-shift change in the convection onset from ε0 = 0 to ε0 = εc [21]. Above
εc, the roll patterns that appear through supercritical bifurcation are unstable to the hexagonal patterns
(reproduced in the inset of Figure 2a) [21]. This continues as ε0 increases until ε0 = εR, beyond which
the roll patterns are stable. Hexagonal patterns manifest through subcritical bifurcation, first becoming
stable at ε0 = εA < εc, which continues until ε0 = εB > εR, where they are unstable to roll patterns.
For εR < ε < εB, both hexagonal and roll patterns are stable. Meyer reported that the bistable region
for the range of loop εB − εR was approximately two orders of magnitude larger than that for the loop
between εA and εC [22]. Therefore, it is easy to resolve the bistable region experimentally.
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Figure 2. Behavior of the convective heat flux. (a) Relationship between convective heat flux averaged
over one cycle Jconv and ε0, as presented in [20]. The open circles # represent measurements without
modulation, and the solid circles • represent Jconv from measurements taken under modulation, with
ω = 15 and δ = 1.97. The solid curves are predictions of the 13-mode Lorenz model, εc = 0.132,
εR = 0.244, and εB = 0.350 [20,21]. Experimental data reported by Meyer et al. [20] for δ = 0
and δ = 1.97 were used for comparison with the maximum-entropy-production-principle (MEPP)
predictions. (Inset) Bifurcation diagram showing the theoretical relationship between Jconv and ε0,
as presented in [21]. (b) Calculated intersection of the entropy-production curves for the change
from heat conduction to convection without modulation. The red line shows the heat flux for
convection: Jconv = 1.29

(
ε0 − 9.42× 10−4

)
. The red curve shows the entropy production for convection:

σ = 1.29
(
ε0 − 9.42× 10−4

)2
. The black line represents the heat flux and entropy production for

conduction: Jconv = σ = 0. The intersection of the two curves is ε0 = 9.42× 10−4
≈ 0. Reproduced with

permission from [20]; copyright 1988 APS.

Heat flux Jconv is a dimensionless quantity given by the ratio of the convective heat flux to the
heat flux conducted through the fluid. When ε > 0, convective flow occurs and Jconv becomes positive.
Meyer, Cannell, and Ahlers performed experimental observations of Rayleigh–Bénard convection and
the heat flux, as shown in Figure 2a [20]. They detected the bistable region where both hexagonal and
roll patterns were stable. The model quantitatively and qualitatively agrees with the experimental
results in the pure-hexagonal (εc ≤ ε0 < εR), bistable (εR ≤ ε0 < εB), and pure-roll (ε0 > εB) regions
for δ = 1.97, where εc = 0.132, εR = 0.244, and εB = 0.350.

Let us begin by predicting the transition point between heat conduction and heat convection
using MEPP with static measurements without modulation. This is easy to predict because of the
linear relationship between Jconv and ε0 in each state.

Here, ε0 corresponds to the driving force of the entire system F. The values of Jconv may be linearly
fitted as a function of ε0 in each state. The heat flux for heat conduction is obviously zero. The best-fit
line for Jconv of heat convection with ε0 > 0 is Jconv = 1.29

(
ε0 − 9.42× 10−4

)
. The entropy production

of the heat-conduction and heat-convection regions is easily calculated from Equation (2), where σ = 0

and σ = 1.29
(
ε0 − 9.42× 10−4

)2
, respectively. Thus, we obtain the intersection ε0 = 9.42 × 10−4

≈ 0.
It is clear that the transition occurs at ε0 = 0, because of the definition of heat flux wherein the positive
value of Jconv signifies the occurrence of heat flux produced by only convective flow; however, it is
important that this is predicted using MEPP.

Next, we analyze Rayleigh–Bénard convection subject to external temporal modulation on the
MEPP basis. The transition points cannot be distinguished easily because the values of Jconv show
rounded bifurcations due to modulation from heat conduction to convection; for the heat-convection
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region (ε0 > εC), they align approximately along a single line that changes only slightly in slope.
The derivative of Jconv with respect to ε0 enables recognizing the point of change in the slope (Figure 3a).
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Figure 3. Analysis for bistability. (a) Derivative of the convective heat flux with respect to ε0

corresponding to Figure 2a. The open and solid circles represent measurements without and with
modulations, respectively. (b) Calculated intersection of the entropy-production curves A in the
change from hexagons to rolls, and the calculated intersection of the heat flux B where hexagons
and rolls coexist, with modulation for ω = 15 and δ = 1.97. The black and red curves represent
the entropy production for the hexagonal and roll flows, respectively: σ = 1.108(ε0 − 0.116)2 and
σ = 1.197(ε0 − 0.125)2. Intersection A is for ε0 = 0.354. The black and red lines are the heat fluxes
of the hexagonal and roll flows, respectively: Jconv = 1.108(ε0 − 0.116) and Jconv = 1.197(ε0 − 0.125).
Intersection B is for ε0 = 0.238. (Inset) Magnified view of the entropy-production curves.

For 0.13 < ε0 < 0.21, dJconv/dε0 increases monotonically with ε0, whereas for ε0 > 0.21, it remains
approximately constant. Thus, we can divide the heat-convection region in two based on the change in
dJconv/dε0. The values of Jconv in the two regions can be linearly fitted as functions of ε0, yielding
Jconv = 1.108(ε0 − 0.116) and Jconv = 1.197(ε0 − 0.125) (Figure 3b). The former corresponds to the
hexagonal convection and the latter to roll convection. Using the method described above yields two
curves for entropy production of the hexagonal and roll flows, respectively: σ = 1.108(ε0 − 0.116)2 and
σ = 1.197(ε0 − 0.125)2. These curves intersect at one point, ε0 = 0.354, even though the two curves
appear to overlap.

This intersection corresponds to a transition point between the hexagons and rolls, and it is in
good agreement with εB = 0.350, where the rolls become stable to the hexagonal patterns in both the
experimental and theoretical results. Furthermore, the intersection of the two Jconv lines occurs at
ε0 = 0.238. The value of ε0 is close to a starting point for the bistable region, εR = 0.244, where both
hexagonal and roll patterns are stable in the experimental and theoretical results. The actual patterns
obtained by Meyer et al. are shown in Figure 4.

For ε0 > εR, the roll patterns gradually overlap with the stable hexagonal patterns, and coexisting
patterns persist until ε0 = εB. As shown in Figure 3b, the Jconv of the rolls lies above that of the
hexagons, whereas σ of the rolls lies below that of the hexagons. For ε0 > εB, Jconv and σ for the rolls
lie above those for the hexagons, and the actual patterns show that only the rolls are stable.

The experimental values of Jconv represent the total heat flux produced by the three directional
components of heat flux, i.e., x, y, and z. The vertical component, which is aligned with the temperature
difference ∆T between the bottom and top plates, accounts for a large proportion of the total heat
flux; hence, it obscures the slight change produced by the horizontal components [19]. Thus, the
experimental results do not show the jump in Jconv, as indicated by the schematic in Figure 1. If the
effect of the vertical component is removed from the total flux and the heat flux is analyzed only in the
direction perpendicular to ∆T, the jump in Jconv can be observed, and more accurate transition points
may be obtained.



Entropy 2020, 22, 800 6 of 8

Entropy 2019, 21, x FOR PEER REVIEW 6 of 8 

 

 

 173 

 174 
Figure 4. Shadowgraph images of convective flow patterns for 𝜔 = 15, 𝛿 = 1.97, and (a) 𝜀଴ = 0. 214, (b) 175 
0.253, (c) 0.289, (d) 0.325, and (f) 0.398. Reproduced with permission from [22]; copyright 1992 APS. 176 

For 𝜀଴ > 𝜀ோ , the roll patterns gradually overlap with the stable hexagonal patterns, and coexisting patterns 177 
persist until 𝜀଴ = 𝜀஻. As shown in Figure 3b, the 𝐽ୡ୭୬୴ of the rolls lies above that of the hexagons, whereas 𝜎 178 
of the rolls lies below that of the hexagons. For 𝜀଴ > 𝜀஻ , 𝐽ୡ୭୬୴  and 𝜎  for the rolls lie above those for the 179 
hexagons, and the actual patterns show that only the rolls are stable. 180 

The experimental values of 𝐽ୡ୭୬୴  represent the total heat flux produced by the three directional 181 
components of heat flux, i.e., x, y, and z. The vertical component, which is aligned with the temperature 182 
difference 𝛥𝑇 between the bottom and top plates, accounts for a large proportion of the total heat flux; hence, 183 
it obscures the slight change produced by the horizontal components [19]. Thus, the experimental results do 184 
not show the jump in 𝐽ୡ୭୬୴, as indicated by the schematic in Figure 1. If the effect of the vertical component is 185 
removed from the total flux and the heat flux is analyzed only in the direction perpendicular to 𝛥𝑇, the jump 186 
in 𝐽ୡ୭୬୴ can be observed, and more accurate transition points may be obtained 187 

4. Discussion 188 

The state with the highest entropy is the state where intensive variables are uniform in the entire system. 189 
However, the dissipative system applied by external forces, such as difference in temperature, concentration, 190 
and pressure fields, never develops into a uniform state. Under the given binding conditions, in order for the 191 
dissipative system to approach more rapidly the state with a uniform field, heat, molecules, and the fluid 192 
momentum must transfer faster. In Rayleigh–Bénard convection, the heat transfer of the system changes from 193 
heat conduction to heat convection in a hexagonal pattern, and then to heat convection in a roll pattern, and 194 
finally to turbulence as the difference in temperature increases. The state of heat transfer changes such that the 195 
system more rapidly approaches the uniform temperature field. Therefore, the system should realize the state 196 
with higher damping and higher energy consumption by changing the flow state to approach the uniform field 197 
more rapidly. 198 

The accuracy of the transition point predicted from our thermodynamic approach depends on the precision 199 
of the data on the relationship between the thermodynamic flux and driving force. Thus, the predicted 200 
transition point necessarily involves some uncertainty. However, as shown in Figures 2 and 3, in Rayleigh–201 
Bénard convection, the state with the highest entropy production is more stable than a state with lower entropy 202 
production. Bistability occurs when a new state has higher thermodynamic flux and the existing state has higher 203 

Figure 4. Shadowgraph images of convective flow patterns for ω = 15, δ = 1.97, and (a) ε0 = 0.214,
(b) 0.253, (c) 0.289, (d) 0.325, and (f) 0.398. Reproduced with permission from [22]; copyright 1992 APS.

4. Discussion

The state with the highest entropy is the state where intensive variables are uniform in the entire
system. However, the dissipative system applied by external forces, such as difference in temperature,
concentration, and pressure fields, never develops into a uniform state. Under the given binding
conditions, in order for the dissipative system to approach more rapidly the state with a uniform field,
heat, molecules, and the fluid momentum must transfer faster. In Rayleigh–Bénard convection, the
heat transfer of the system changes from heat conduction to heat convection in a hexagonal pattern,
and then to heat convection in a roll pattern, and finally to turbulence as the difference in temperature
increases. The state of heat transfer changes such that the system more rapidly approaches the uniform
temperature field. Therefore, the system should realize the state with higher damping and higher
energy consumption by changing the flow state to approach the uniform field more rapidly.

The accuracy of the transition point predicted from our thermodynamic approach depends on the
precision of the data on the relationship between the thermodynamic flux and driving force. Thus, the
predicted transition point necessarily involves some uncertainty. However, as shown in Figures 2 and 3,
in Rayleigh–Bénard convection, the state with the highest entropy production is more stable than a state
with lower entropy production. Bistability occurs when a new state has higher thermodynamic flux and
the existing state has higher entropy production. It is a significant achievement that Rayleigh–Bénard
convection cannot develop against the above rules.

5. Conclusions

This study shows that thermodynamic analysis based on entropy production can be used to
predict the transition point in the bistable region, i.e., the region where hexagonal and roll flow patterns
coexist during Rayleigh–Bénard convection. This addresses a gap in our understanding of MEPP
with respect to dissipative systems far from equilibrium. These systems frequently require solutions
with several linearly stable branches, and in such cases, the selected solution should depend on the
initial conditions. This work may be used to predict bistable dissipative-system behavior in a wide
range of applications, such as biological switching [23–25], optical switching [26,27], and chemical
switching [28–30].
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