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Abstract: The cosmological singularity of infinite density, temperature, and spacetime curvature is
the classical limit of Friedmann’s general relativity solutions extrapolated to the origin of the standard
model of cosmology. Jacob Bekenstein suggests that thermodynamics excludes the possibility of such
a singularity in a 1989 paper. We propose a re-examination of his particle horizon approach in the
early radiation-dominated universe and verify it as a feasible alternative to the classical inevitability
of the singularity. We argue that this minimum-radius particle horizon determined from Bekenstein’s
entropy bound, necessarily quantum in nature as a quantum particle horizon (QPH), precludes the
singularity, just as quantum mechanics provided the solution for singularities in atomic transitions as
radius r→ 0 . An initial radius of zero can never be attained quantum mechanically. This avoids
the spacetime singularity, supporting Bekenstein’s assertion that Friedmann models cannot be
extrapolated to the very beginning of the universe but only to a boundary that is ‘something like a
particle horizon’. The universe may have begun in a bright flash and quantum flux of radiation and
particles at a minimum, irreducible quantum particle horizon rather than at the classical mathematical
limit and unrealizable state of an infinite singularity.

Keywords: Bekenstein entropy bound; cosmological singularity; holographic entropy bound;
quantum particle horizon

1. Introduction

In a 1989, paper Jacob Bekenstein questions whether the cosmological singularity is
thermodynamically possible [1]. In this paper, he reviews four approaches (exotic matter, modifications
to classical relativity, quantum field effects, and quantum cosmology) to eliminate the initial singularity
from cosmology, concluding that none are satisfactory as they lack information about the microphysics
involved and particularly without a full theory of quantum gravity. Bekenstein understood that
thermodynamics and his entropy bound specifically as in Equation (1) below [2] might provide insight
into the nature of the singularity, stating “Thermodynamics has often been used in such dilemmas,
and it is proposed to answer the question of whether there was a Friedmann-like singularity in the
universe by exploiting the bound on specific entropy that has been established for a finite system” [1].
Bekenstein first suggested that there is entropy associated with a black hole proportional to the surface
area of the black hole, SBH = ηkBA/L2

P, where η ∼1 and LP is the Planck length (1) [3]. (His conjecture
became a full-blown theorem with Hawking’s demonstration of black hole temperature and black
hole evaporation [4,5].) Remarkably, black hole entropy is additive to “ordinary” entropy, such as
the entropy of a hot gas. “The second law is not really transcended provided that it is expressed in a
generalized form: The common entropy in the black-hole exterior plus the black-hole entropy never
decreases” [6]. Bekenstein later proposed that no closed surface at a particular time could contain more

Entropy 2020, 22, 795; doi:10.3390/e22070795 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-9247-7302
http://dx.doi.org/10.3390/e22070795
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/7/795?type=check_update&version=2


Entropy 2020, 22, 795 2 of 12

entropy than that calculated for a black hole horizon of the same size, S ≤ kBA/(4l2P) = 4πkBGM2/(}c),
where A and M are the area and mass of the black hole [2]. This implies that if a complete physical
system with negligible gravity can be enclosed in a sphere of radius R, then 2πR/}c sets an upper
bound on the ratio of the entropy S that the system may contain, to its total energy E:

2πR/(}c) ≥ S/E (1)

Here, } is the reduced Planck constant, and c is the speed of light.
Bekenstein [1] applies this to the universe by considering the connected spatial region within

the particle horizon of a given observer. The classical definition of the particle horizon is the locus
of the most distant points that can be observed by an observer at an event at a specific time t0 in
a cosmology. For a cosmology like the Friedmann models, which are spatially homogeneous and
spherically symmetric around each point, this is the 2−D intersection of the past (3−D) light cone
with cosmic time t = 0. This coordinate sphere is then taken forward in time as a time-like tube to
define a metric sphere with the same coordinate radius at time t = t0 (Hardly ever clearly distinguished,
many authors, Bekenstein included, also use “particle horizon” to refer to the complete past lightcone
of the event at t0, and their meaning can be determined only by a close inspection of their application
in [7,8]. (For more complicated cosmologies, the light cone may become undefined as t→ 0. Bekenstein
dealt with the simple Friedmann case.)). Using an idealized Friedmann cosmological model with
effectively massless radiation as its matter source, Bekenstein postulates the metric surface area of the
particle horizon to define the quantity R in his limit 2πR/(}c) ≥ S/E. Bekenstein notes that explicitly
computing the quantities S and E in the volume bounded by the past light cone at time t0 shows that
the entropy of radiation in such a region can exceed his entropy bound if the observer is placed too
early in the universe; thus, accepting the universality of his entropy bound leads to the conclusion that
Friedmann models cannot be extrapolated back to nearer than t0 ~a few Planck times from the initial
cosmological singularity (A truism concerning the initial cosmological singularity is that it is a feature of
the mathematical model used in the description of a physical system that has no physical relevance since

any physical quantity is by definition measurable). (The Planck time tP =
(
}G/c5

)1/2
∼ 5.39× 10−44 s;

here, G is the gravitational constant.) Thermodynamics thus dictates that an initial Friedmann-like
cosmological singularity is physically impossible. Our analysis is based on Bekenstein’s proposal that
at a particular time t0 there is a finite particle horizon coordinate radius r0 as depicted in [1] Figure 1,
provided as Figure 1 below and in [7]. In Friedmann cosmology, the apparent horizon coordinates
radius r0 → 0 as t0 → 0 , and in singularity theorems [8]; however, this analysis shows that there is a
time t0 before which the universe could not have been Friedmann-like. Hence, we will demonstrate
that the backward null cone never reaches t = 0 in an effective Friedmann cosmology but ends at
an early time ~tP. Additionally, the coordinate radius, and thus the metric radius of the apparent
horizon at t0, is smaller than expected in a classic Friedmann cosmology; and can be represented by a
quantum particle horizon given size and thermal blackbody nature. A particle horizon-like surface at
time ~tP is a boundary where, beyond this minimum radius, the Friedmann universe is undefined and
not observable.

As suggested by Bekenstein in his paper: “Alternatively, were the universe to materialize out
of nothing somewhat after the fashion of Vilenkin’s model [9], we might have a situation where
the region visible to an observer is limited in dimension, but is never smaller than some minimum
size dictated by the radius of curvature of the emergent spacetime. Here again there would be no
singularity but there might be something like a particle horizon. Application of the bound on entropy to
the appropriate region might then tell us that its dimension cannot be smaller than the Planck length

(lP =
(
G}/c3

)1/2
~1.62 × 10−35 m) . . . ” [1], which is our suggested quantum-scale particle horizon

(to be defined precisely later in Section 3). Furthermore, “With the discovery of the expansion of the
universe (Hubble, 1929 [10]) Friedmann’s cosmological models (Friedmann, 1922 [11], 1924 [12]) were
shown to be the right framework for description of the recent universe. Can they be extrapolated to
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the very beginnings of the universe?” [1]. It is not reasonable to expect the current, late-time universe
Friedmann model to hold explicitly to a zero-radius beginning.

Entropy 2020, 22, x FOR PEER REVIEW 3 of 11 

 

  

Figure 1. Particle horizon H of observer O living at time 𝑡0 , and sections of two spacelike 
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∑
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We propose that our quantum-scale particle horizon at the edge of classical Friedmann models
is more reasonable than the desire is to extend Friedmann model validity back beyond the earliest
redshift of z∼1032, the Planck era. Bekenstein continues, “At the end of this cosmic tunnel looms the
initial cosmological singularity. It is the consensus in gravitational theory and cosmology that accepting
the singularity as a real feature of the universe brings with it thorny issues . . . no road guarantees
excision of the singularity . . . whatever the mechanism responsible, the universe is loath to begin
from a singularity” [1]. The singularity is a mathematical conjecture only. The physical beginning is
best characterized by some version of quantum gravity, but consistent with the quantum-size particle
horizon suggested here, and consistent with the long-held view that quantum mechanics holds the
solution to the cosmological singularity. From Berry, “ . . . The initial singularity is a consequence of
the equations of general relativity, and this theory might break down under conditions of very high
density and pressure. The most likely possibility is that quantum effects (his italics) might occur and
prevent localization within infinitely small volumes. (Remember that the first triumph of quantum
mechanics was to solve the problem of the electromagnetic collapse of the atom that would be caused
by classically radiating electrons spiraling into the nucleus.)” [13].

The purpose of this paper is to propose the Bekenstein particle horizon as a quantum particle
horizon alternative to the initial singularity. We look at Friedmann’s model extrapolated to the
beginning; formulate an entropy bound-particle horizon following Bekenstein’s suggestion; examine
the holographic entropy bound approach to particle horizons; show the thermodynamic impossibility
of an infinite singularity; discuss the Wheeler-type information limits of an initial cosmological horizon;
and, lastly, summarize the feasibility of the initial quantum particle horizon.

2. Friedmann Models and the Particle Horizon of an Early Observer

To address whether Friedmann’s cosmological models can be extrapolated to the very beginning
of the universe, we consider the metric of an assumed spatially flat, radiation-dominated Friedmann
model at early times from [1] Equation (2). The spacetime interval is:

ds2 = −c2dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2θdϕ2

)]
(2)
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where a2(t) is the scale factor term, substituted for (b2t) in Bekenstein’s Equation (2). This time coordinate,
t, is called the cosmic time, and the spatial part of the cosmology, a2(t)

[
dr2 + r2

(
dθ2 + sin2θdϕ2

)]
,

is homogeneous 3 −D Euclidean space for any particular choice of t >> tP. One of the Einstein
equations for this cosmology gives the expansion of the universe via its scale factor a:

a−2(da/dt)2 = (8πG/3)ρtotc−2 (3)

where ρtot is the total energy density. (Equation (3) is also called the Friedmann equation).
Our assumption that the matter content near t = 0 consists of massless radiation implies the
usual definitions for energy density ρ = aSBT4, where T is the radiation temperature, and for entropy
density s = (4/3) aSBT3 per species of massless boson, N; and where “N is the effective number of
boson particle species present in the early universe” (To refine the factor N in terms of the statistical
mechanics of particles, we know that N is not a fixed physical constant, but is at least a function
of the physics at various temperatures, so we view it as a slowly varying parameter depending
on T. For instance, Weinberg gives N = 10.75, considering spin states or spin degeneracy [14],
Equation (3.1.15). This number experimentally holds to temperatures ∼ 1011 K approximately 0.01 s
after the beginning in the standard model, or ∼ 1012 K at ~0.0001 s [15]. If we extrapolate beyond the
limit of known particle physics (near the quark-gluon plasma temperature of 1012 K [16] to TP ∼ 1032 K,
this all becomes speculative, but we reasonably assume that the number of effectively massless particles
is never very large, but possibly >> 1 at some time in the early universe. We argue below that N→ 1 as
T→ TP ∼ 1032 K.) (Here, aSB is the Stefan-Boltzmann constant.) Hence, ρtot = Nρ. Simple expanding
Friedmann cosmology allows for the straightforward calculation of entropy density and energy density
at any time. Because this cosmology is spatially homogeneous if the correct cosmic time coordinate
is used, those qualities depend only on that cosmic time. The entropy density scales as the third
power of a temperature and we know that in these Friedmann cosmologies the temperature redshifts
proportional to a−1, so entropy scales as a−3. A different scaling law holds for the energy density; it is
proportional to the fourth power of the temperature so energy density scales as a−4. Because the volume
of any portion of space defined by given spatial coordinates increases as a3 in this cosmology, it is easy
to see that (total entropy in such a volume) = (entropy density × volume) remains constant; thus, in any
particular region, entropy is conserved. On the other hand, because energy density scales as a−4,
the total energy in a particular volume scales as a−1. A consequence of ρTOT ∝ a−4 in Equation (3) is
that the expansion factor is:

a = bt1/2 (4)

The singularity (a = 0) is at t = 0 for all space points. (Here, b is a constant addressed later.) These
relationships lead to our derivation of temperature (modulo factors of order unity) as

T = c5/4 }3/4(GN)−1/4t−1/2 = N−1/4 }(t0tP)
−1/2 (5)

where tP is the Planck time and t0 is a particular specific time (after the singularity) at which the
temperature is evaluated. The backward light cone from an event at that particular time t0 in
this Friedmann cosmology is found by integrating the condition ds2 = 0 for relativistic, ‘probably
massless’ light-like particles. The resulting null 3-surface H, as shown in Figure 1 below, is written in
parameterized form as a Bekenstein hypersurface at time t:

t =
[
t1/2
0 − br/(2c)

]2
(6)

As stated in Ref. [1] Equation (3). At a particular time, t, this defines a spatial 2 − sphere and
gives its coordinate radius, r. If we set t = 0, we obtain the coordinate radius r0 = 2ct1/2

0 /b, Figure 1,
which shows how far in coordinate terms from r = 0 a signal may start at t = 0 and hope to reach an
observer O at the origin at t = t0. “The hypersurface (6), which encloses the part of the universe visible
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to O is therefore called the particle horizon of O” [1]; it is the maximum coordinate distance that an
observer at a particular time t0 can see.

We note here that the Bekenstein calculation of the entropy/energy ratio is “the largest (S/E)
observable to O” with ‘O’ being a “single fiducial observer” [1]. He computes this ratio (S/E) in
Friedmann cosmology by integrating on spacelike surfaces (e.g., t = t f in Figure 1) that intersect the
lightcone that runs into the past from a fiducial event at time t = t0. (Slices like

∑
or

∑
′ in Figure 1

give the same total entropy because, as noted above, the total entropy within a given boundary is
conserved, i.e., independent of time, but

∑
′ gives smaller total energy because of the falloff of total

energy with time, in a volume with a fixed spatial boundary.)
Bekenstein computed the integrals of r and s over bounded spacelike hypersurfaces such as

∑
and∑

′ in Figure 1. Because S/E ∼ (E/T)/E ∼ T−1, these ‘slices’ are dominated by late times (→ t0 )
because temperature decreases with time. Thus, near t0 (again modulo constants of order unity),

S/E = 1/T =
[
G/

(
}3c5

)]1/4
N1/4t1/2

0 = N1/4(t0tP)
1/2/} (7)

From Ref. [1] Equation (14). To write the bound on (S/E) we need to define the sphere bounding
the region with large (S/E). Bekenstein chooses the metric radius R of the particle horizon at t = t0.
Not surprisingly, this evaluates to R = 2ct0, so Bekenstein’s bound now reads:

2πR/(}c) = 4πct0/(}c) = 4πt0/} ∼ t0/} ≥ S/E = N1/4(t0tP)
1/2/} (8)

We simplify this bound further to:

1 ≥ N1/4 (tP/t0)
1/2 (9)

With our assumption that N is a moderately small number (see note above after Equation (3)),
N1/4 is of order unity, so we shall drop the explicit appearance of N subsequently, which is justified
more fully below. We conclude that the constraint for time, then, is that t ≥ (G}/c5)1/2 = tP for
Friedmann equation consistency with entropy bounds. Spacetime becomes classically undefined
earlier than this time; we can go no earlier than tP because the Friedmann model becomes inapplicable.
At time tP, our Equation (7) becomes an equation in terms of the Planck temperature:

(S/E)tP
= 1/TP (10)

The Planck temperature which occurs at the Planck scale can be considered the maximum
temperature of the universe as suggested by Sakharov, Tmax = k−1

B c5/2}1/2G−1/2 = 1.42 × 1032

degrees [17].

3. An Entropy Bound-Particle Horizon Precluding the Cosmological Singularity

From the radiation-dominated Friedmann model, Bekenstein showed how there is a contradiction
with his entropy bound if the model is extrapolated too far back in time, and there is even the
suggestion that the physics of quantum gravity prevents the singularity [1]. The classical definition
of particle horizon is the intersection of the past light cone with the initial singular surface at t = 0.
With Bekenstein’s entropy bound suggesting an earliest time admitting a semiclassical description
at t ∼ tP, we define a quantum particle horizon, which is the coordinate sphere defining the past
light cone at t = tP. This sphere has a smaller coordinate radius than the classical particle horizon
(In our coordinate radius case, the r of the apparent horizon at t = tmin ∼ tP is cf. Equation (6) (above):
r = 2c(t1/2

0 − t1/2
min)/b. Then, from Equation (2), the metric radius RH of the apparent horizon evaluated

at t = t0 is RH = brt1/2
0 = 2ct1/2

0 (t1/2
0 − t1/2

min). Setting tmin = tP shows that, for t0 > tP, this RH is smaller
than that computed with a null cone that goes all the way to t = 0.) but has nonzero metric radius ~lP at
t = tP, while the classical particle horizon has a vanishing metric radius at t = 0. The quantum particle
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nature of the beginning of the universe defines this horizon. In the Friedmann metric Equation (1),
there appears the constant ‘b’ with dimension [t−1/2], which defines the unit of time. We choose
b2 = t−1

P . At the Planck time tP, the Hubble parameter H ∼ t−1
P . So, the metric takes the form:

ds2 = −c2dt2 +
( t

tP

)[
dr2 + r2

(
dθ2 + sin2θdϕ2

)]
(11)

which allows for an easy inspection of the behavior near t = tP. If we consider that the deeper
significance of the constant b at this scale may be quantum in nature, we can make the connection to
blackbody radiation and Planck’s constant at this quantum-thermodynamic limit of general relativity.
To associate a minimum radius r to quantum blackbody radiation released at a particle horizon of this
radius, we have already seen how there is a maximum temperature of the universe, and this limiting
temperature is the Planck temperature TP, Equation (10). By convention, we work in natural units;
any temperature, e.g., TP is an energy, with associated length GTP/c4 = lP, the Planck length. With the
assumption that the initial state is coherent, not squeezed (see [18,19]), Heisenberg uncertainty specifies
a minimum radius greater than zero in the early universe. For massless bosons in one dimension, we can
expand ∆px ∆x∼} with x→r, and, neglecting factors of 2π etc., we restate Heisenberg uncertainty in
terms of r:

∆pr∆r = ∆r∆(}/λ) = ∆r
[
−}

(
∆λ/λ2

)]
∼ } (12)

This means that |∆r∆λ|∼λ2. Assuming both variances are the same (the “not-squeezed”
assumption), then ∆r∼λ and ∆λ∼λ. We can interpret ∆r near the beginning then as rmin∼ lP∼GTP/c4.
Thus, we conclude rmin∼lP, and λ∼lP, and therefore rmin∼λ = rQPH, which is the quantum particle
horizon radius, and a minimum here at the time of transition from quantum to classical behavior.
This connects the large-scale Friedmann model at its minimum radius limit to a quantum initial
wavelength where blackbody radiation is initiated at a quantum particle horizon.

4. The Holographic Entropy Bound and Particle Horizon Approach

To support a minimum radius precluding the singularity, and since the minimum particle horizon
where the entropy bound is contradicted is a spherical surface area, the holographic entropy bound
can be directly applied to the particle horizon approach.

The holographic approach to cosmology originated in a 1998 paper by Fischler and Susskind in
which they state, based on the holographic principle, “ . . . the entropy of a region must not exceed its
(enclosing horizon) surface area in Planck units” [20]. As Diaz, Per, and Segui comment in referring
to Fischler and Susskind, “William (Willy) Fischler and Leonard Susskind proposed a cosmological
holographic principle based on the particle horizon as an alternative form of the entropy bound:

SPH ≤ APH/
(
4l2P

)
(13)

SPH is the holographic entropy at the particle horizon, and APH is the surface area of the particle
horizon. The entropy content inside the particle horizon of a cosmological observer cannot be greater
than one quarter of the horizon area in Planck units” [21]. Equation (13) is the same relation as the
Bekenstein entropy bound of a Schwarzschild black hole. We suggest that the reference to Planck
scale units here takes us naturally to the Planck era of cosmology, where the area of the particle
horizon approaches the Planck area as APH → l2P . The holographic version of the entropy bound is

violated when SPH > APH/
(
4l2P

)
at our minimum particle horizon radius RPH∼lP = rmin (as above after

Equation (12)), thus ‘holding off’ the singularity at this radius; this supports Bekenstein’s approach
with ‘something like a particle horizon’ to prevent the singularity [1]. Again, according to Fischler and
Susskind: “Remarkably . . . The entropy in the universe is as large as it can be without the holographic
principle having been violated in the early universe!” [20]. Equation (13) taken to the Planck scale is
supported by Diaz et al.: “(The Fischler and Susskind) proposal is the enforcement of the intersection
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time near the Planck time; thus, the apparent violation of the holographic prescription will be restricted
at the Planck era” [21]. They also state “concretely, the FS (Fischler-Susskind) prescription gives us
a limit on the entropy density at the Planck time . . . This fact is usually skipped in the literature”.
The result is that both Bekenstein and holographic entropy bounds specify a minimum particle horizon
radius approaching the Planck length as we suggest from Bekenstein [1], and a remarkably small
amount of entropy within that horizon. The size of the apparent horizon at t = tP is of order the Planck
length lP, with area AP = 4π (lP)

2; the Fischler-Susskind entropy bound is then:

AP/
(
4l2P

)
= π (14)

This remarkably small limit on the entropy, which is discussed more fully below in terms of
information, strongly suggests that N→1 as t→tP, justifying our assertion of the smallness of N.

In his seminal work on the holographic principle, Bousso compares Bekenstein and holographic
entropy bounds [22]. He writes that from his Equation (2.9) (Smatter ≤ 2πER, or in full,
Smatter ≤ 2πkBER/(}c)), which is the Bekenstein bound, one thus obtains S ≤ 2πMR ≤ πR2 = A/4,
Equation (2.25) [22], just as in Equation (13). From this, we conclude that the Bekenstein and holographic
entropy bounds both result in rmin∼ lP > 0 near the beginning.

5. Mathematical Conjecture and the Impossibility of an Infinite Singularity

Bekenstein’s search for the non-singular, discrete quantum-nature particle horizon at the beginning
may come from his advisor John Wheeler in his desire to avoid singularities. In a recent biographical
memoir of Wheeler, Kip Thorne reflects, “John was highly skeptical of the Oppenheimer-Snyder
conclusions about the collapse (of a star into a black hole). He focused particularly on the singularity
(with infinite density and infinite curvature of spacetime) predicted to form deep inside the cut-off

sphere (inside what today we call the event horizon). There, he argued, the laws of classical general
relativity must break down, and be replaced by laws of quantum gravity that result from “a fiery
marriage” of general relativity with quantum theory . . . ” [23]. In June 1958, at a Solvay Congress [24],
Wheeler rejected the predicted singularity as physically unreasonable and speculated about the
collapse’s true final state: “ . . . no escape is apparent except to assume that the nucleons at the center
of a highly compressed mass [where the singularity is trying to form] must necessarily dissolve
away into radiation . . . at such a rate or in such numbers as to keep the total number of nucleons
from exceeding a certain critical number . . . ” [23]. Although Thorne and Wheeler refer here to the
gravitational singularity predicted within a black hole, the mathematical limit of infinite density and
space-time curvature is the same as for the cosmological singularity. As an aside, it is interesting
to note again that since singularities in general relativity involve infinities, some physical quantity,
e.g., energy density increasing without limit, it may be that the gravitational singularity where r→0 may
also be unreachable in a black hole. There may be quantum particle horizons preventing the existence
of every mathematically singular point. No naked singularities would exist, and Penrose’s cosmic
censorship hypothesis would be valid without the need of event horizons hiding the singularities [25].
It may be that, rather than no horizon at r = 0, naked singularities may not be observed since physical
singularities do not exist.

As Wheeler rejected the predicted singularity as a physically unrealizable mathematical abstraction,
and argued that the energy density where the singularity is trying to form must necessarily dissolve
away into radiation, his analysis presages the function of a quantum particle horizon as the source
of radiation and particles at the beginning, also with no cosmological singularity. The source at
the minimum radius of this horizon on the order of the Planck length as we propose above and
originally proposed by Bekenstein, would be thermal blackbody radiation~Planck wavelength and
temperature. This is our proposed quantum particle horizon of photons and relativistic particles
around the hypothetical mathematical singularity, preventing its physical materialization.
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An initial ‘quantized’ particle horizon as a quantum hold-off radius avoids dependence on
the unphysical mathematical conjecture of an infinite cosmological singularity. From Ellis [26],
“David Hilbert famously argued that infinity cannot exist in physical reality. The consequence of
this statement—still under debate today—has far-reaching implications”. And from Hilbert himself
in [27], as quoted by Ellis, “The infinite is nowhere to be found in reality, no matter what experiences,
observations, and knowledge are appealed to.” [26]. Ellis goes on to say that just because we have a
symbol (∞) to represent infinity does not mean it is part of the natural order, does not prove that zero
(such as in r = 0) can exist in physical reality either. As he states, “ . . . we can interpret ‘0’ as existence
in spacetime of absolutely nothing—which we know not to be the case following the uncertainty
principle of quantum mechanics . . . ” [26].

Another alternative to the initial singularity suggested by Bekenstein [1] that we take up here is
‘cosmic bounce’. From Ohanian and Ruffini, “One possible explanation is to suppose that the present
expanding universe was preceded by a contracting universe, which passed through a moment of
greatest contraction (as in Figure 9.13 [28]). Such a behavior of (scale factor) a(t) . . . (means) a(t)
must remain finite at the moment of maximum contraction, that is, there must be no singularity.” [28];
see also [29]. If there is a moment of maximum contraction, then there is a peak energy density at some
minimum radius that cannot be exceeded, whether from a previous universe contraction and bounce,
or from an initial release of radiation. Ohanian and Ruffini continue, “The absence of a singularity at
the first moment of the Big Bang would seem to be in contradiction with general singularity theorems
that have been proven for the solutions of Einstein’s equations. But these theorems deal only with the
classical regime; they can be circumvented in the very early universe, where matter is in the form of
quantum fields, and where even the geometry is quantized. Furthermore, if the solution of the Einstein
equations develops a singularity, this merely indicates a breakdown in the equations, not necessarily
an actual singularity in the real world . . . it is natural to seek some modifications of the equations that
avoids the singularity, . . . (Brandenberger, 1985 [30], 1992 [31]). Thus, the question of whether there is
an actual singularity at the first moment of the Big Bang still remains open.” [28]. See also [32,33].

6. Inaccessibility of Information Beyond the Planck Scale Quantum Particle Horizon

The Planck-scale cosmological particle horizon derived above in Section 3 is based on the
Bekenstein entropy bound, and the connection between entropy and information loss may elucidate
this boundary. As we have seen (cf. Equation (14)), at very small scales, ∼lP, S ≤ 4πl2P/

(
4l2P

)
∼π ! Low

entropy near the beginning with corresponding low information loss is described by Penrose as the
‘low entropy conundrum’ and discussed in many of his books and papers [25,34,35]. Low entropy
near the beginning is still a mystery—why is entropy so low in the very early universe? (Or perhaps
entropy is undefined in quantum gravity situations.) High entropy in the observable universe now
means a large information loss since the low entropy beginning; and information loss and entropy are
also characteristics of black hole thermodynamics. Extrapolating high entropy and information loss
now back to the very early universe points to a thermodynamic information limit near the classically
assumed cosmological singularity. To compare high entropy and corresponding information loss in
the observable universe now, with the low initial entropy, Egan and Lineweaver estimated the bound
on the entropy of the observable universe from the current cosmic event horizon:

Sceh = (2.6± 0.3) × 10122kB, (15)

As cited in ref. [36] Equation (40), in Boltzmann units. They estimate the total entropy within the
universe (1.2× 10103kB), almost all of which is from supermassive black holes; clearly, the universe
has ample headroom within the entropy bound. Egan and Lineweaver note, “this is the reason (that)
dissipative processes are ongoing.” Increasing entropy at the expanding cosmic event horizon here
from Egan and Lineweaver is in contrast to the beginning where the Bekenstein and holographic
bounds specify a minimum radius. Since S = kB ln Ω from (15) an estimate of the possible number of



Entropy 2020, 22, 795 9 of 12

microstates in the observable universe now is exp
[
(2.6± 0.3) × 10122

]
≈ 1010122

. This is the very large
increase in the number of microstates (very large information loss) at the cosmic event horizon since
the beginning. Can this information be recovered, or this vast quantity of information be reassembled?
The probability of obtaining the original configuration of microstates at tmin near the unique state Ωi ≈

1 is 10−10122
and very unlikely. Egan and Lineweaver point out that cosmic microwave background

(CMB) photons are the most significant non-black hole contributors to the entropy of the observable
universe. They estimate the size of the observable universe, Robs ∼ 47 Glyr, and compute its volume
assuming the flat 3-space formula 4πR3/3. Equation (13) uses the standard expression for the photon
entropy which results in Sγ∼2× 1089kB [36].

A similar computation had already been done in 1989 by John Wheeler. Wheeler proposed his
radical new idea that all physical reality is fundamentally information, which he termed “It from
Bit” [37]. Wheeler computed the total CMB entropy as an example of the dissipation, or loss of
information, since the “primordial cosmic fireball”. He assumed a 3-sphere (volume 2π2R3) and a
smaller radius (R~13 Glyr), and obtained a result similar to Egan and Lineweaver’s. Wheeler’s intent
was to substantiate “It from Bit”; modulo a factor of order unity, Wheeler’s number of bits equals the
dimensionless entropy. Here, we replicate Wheeler’s calculation,

N bits =
(
log2 e

)
×(number o f nats); ′nats′ = natural logarithms
=

(
log2 e

)
× (entropy/Boltzmann′s constant, kB)

= 1.44 . . .×
[(

8π4/45
)
(radius× kBT/èc)3

]
= 8× 1088 bits

(16)

Ref. [37]. Wheeler equates this to the number of bits of information needed to create the CMB we
now observe, from the primordial cosmic fireball that we cannot observe, quantifying the increase
in its entropy. Since ∆S = −∆I [6,38], this loss of access to the original information is −(8 × 1088) bits,
which is a measure of the irretrievability of this number of bits of information 2 × 1089 above.

The thermodynamic nature of the spacelike particle horizon near the cosmological singularity may
also hint at how to solve the information loss paradox and the conflict with unitarity in quantum
mechanics. From this, we suggest that information may not be destroyed absolutely in the space
containing the singularity behind the event horizon of a black hole, or over time since tmin near the
beginning (both taken together as spacetime), but it has disappeared observationally. Information is
continually being lost in all natural time-dependent processes due to the second law of thermodynamics,
and is not recoverable now in our current spacetime reference frame. Being ‘lost’ to observation does
not necessarily mean destruction of the information, nor that information content is fundamentally
erased—it is just inaccessible—which could resolve the conflict with unitarity. This idea is consistent
with the Penrose cosmic censorship conjecture [25], where naked singularities exist mathematically
as solutions to Einstein’s equations, but may not form or be found in the real world. For black holes,
this means that the gravitational collapse of a (non-singular) mass never results in a naked singularity
in spacetime that might be observed, but rather as a mathematical singular point hidden behind an
event horizon; postulated, but not observable. On the other hand, we conclude that, at the cosmic
level in the very early universe, the cosmological singularity effectively does not exist beyond rmin,
where spacetime is unobservable and thus undefined.

7. Summary of Results and Conclusions

In the standard big bang model of cosmology, before inflation, the universe began with a burst of
high-energy thermal radiation. As Penrose states, “The very early universe was a thermal state . . . the
2.7 K microwave background radiation that represents the actual ‘flash’ of the Big Bang, (is) still in
evidence today, . . . ” [25]. We conclude that this thermal blackbody radiation of photons and relativistic
particles at the beginning, observed now in the cosmic microwave background, could never have had a
wavelength of zero by definition. Additionally, we conclude that the initial particle horizon radius must
also have been non-zero, as a consequence of Heisenberg’s Uncertainty Principle, setting a limit beyond
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which Friedmann’s general relativity models cannot be extrapolated. We argued from Bekenstein’s
universal entropy bound and the holographic bound taken to a time near enough to the Planck time
where these bounds are contradicted, that there could not have been a Friedmann-type singularity.

Therefore, the above supports Bekenstein’s thermodynamically-based argument that the
singularity cannot exist where the entropy bound is contradicted and relates it to the significance of
entropy and information near the beginning following from Wheeler’s principle that everything is
fundamentally information. Our proposed quantum particle horizon derived from the Bekenstein
bound is a spacelike hypersurface that acts as a barrier to any extrapolations at earlier times.
From Penrose, “Particle horizons occur in all standard cosmologies, arising from the past singularity
being spacelike.” [25]. In Section 2, after Equation (6) (above), we calculated the apparent horizon
based on backward null evolution from the observed time back to the initial classical singularity.
However, we have seen that quantum gravity must inevitably become important, and that entropy
becomes very small at some minimum time tmin∼tP. This is a boundary in time, temperature,
and information beyond which we can go no further or know anything more about the beginning
as in Penrose cosmic censorship. As Penrose states, “The situation exhibited by the Big Bang . . . acting
as a spacelike past boundary to the spacetime . . . The spacelike (hypersurface) nature of this initial boundary
leads us to the notion of a particle horizon, which is an important aspect of the Big Bang” (Italics ours) [25].
The microscopic details of this initial state are unknown, requiring a full theory of quantum gravity
where quantum effects dominate gravitation, at the minimum irreducible radius of a quantum particle
horizon, thus removing the classical inevitability of the cosmological singularity. Our approach
parallels that of Bousso [22] and Kaloper and Linde [39], who proposed an ad hoc redefinition of the
particle horizon as terminating or originating at t ∼ tP.

From “Wheeler’s Last Blackboard” [40]. “1. We don’t understand how the universe came into
being . . . ”. “16. The laws of physics reveal as little about the deeper structure of the universe as
the laws of electricity reveal about the quantum mechanics of the solid state. Symmetry principles
summarize law but also hide machinery behind the law . . . ”. “Thus, it appears that we must confront
the breakdown of classical general relativity expected to occur near singularities if we are to understand
the origin of our universe” [41].

Author Contributions: Conceptualization, J.R.P., R.L.-M., and R.A.M.; methodology, J.R.P., R.L.-M., and R.A.M.;
formal analysis, R.L.-M., and R.A.M.; writing—original draft preparation, J.R.P.; writing—review and editing,
J.R.P., R.L.-M., and R.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This paper is dedicated to Jacob Bekenstein who inspired it, and who two of us (R.L.-M.
and J.R.P.) were able to spend five amazing days with at UT San Antonio in April of 2015 before his untimely
passing in August of that year. His 1989 paper on the cosmological singularity is the foundation of this research.
We gratefully acknowledge his insight, and for directing us to the heart of the very early universe from his
entropy bound. What is amazing about Jacob Bekenstein is not only his legacy of major contributions to physics,
but also how he is universally revered for his devout kindness and humble personality which we experienced
firsthand. Hosting Sir Roger Penrose for presentations and discussions at UTSA in December 2013 also contributed
profoundly to these ideas, and for which words cannot adequately express our gratitude. Heartfelt thanks also to
Larry Tankersley of UT San Antonio, formerly of the United States Naval Academy for his tireless assistance and
support. Lastly, to Karlheinz Woehler, former Chair of the Naval Postgraduate School Dept. of Physics, for his
encouragement, inspiration, and patient mentoring of one of us (J.R.P.) over many years and visits.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bekenstein, J.D. Is the cosmological singularity thermodynamically possible? Int. J. Theor. Phys. 1981, 28,
967–989. [CrossRef]

2. Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D
1981, 23, 287–298. [CrossRef]

3. Bekenstein, J.D. Black Holes and the Second Law. Lett. Nuovo Cim. 1972, 4, 737–740. [CrossRef]
4. Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [CrossRef]

http://dx.doi.org/10.1007/BF00670342
http://dx.doi.org/10.1103/PhysRevD.23.287
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1007/BF02345020


Entropy 2020, 22, 795 11 of 12

5. Hawking, S.W. Black holes are white hot. Annals of the New York Academy of Sciences 262, Seventh Texas
Symposium on Relativistic Astrophysics. Ann. N. Y. Acad. Sci. 1975, 262, 289–291. [CrossRef]

6. Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [CrossRef]
7. Penrose, R. Conformal Treatment of Infinity. In Relativity, Groups and Topology; De Witt, B., De Witt, C., Eds.;

Gordon and Breach: New York, NY, USA, 1964.
8. Hawking, S.; Ellis, G.F.R. The Large-Scale Structure of Space-Time; Cambridge University Press: Cambridge,

UK, 1973.
9. Vilenkin, A. The birth of inflationary universes. Phys. Rev. D 1983, 27, 2848–2855. [CrossRef]
10. Hubble, E. A Relation between Distance and Radial Velocity. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173.

[CrossRef]
11. Friedmann, A. On the Curvature of Space. Gen. Relativ. Gravit. 1922, 31, 1991–2000. [CrossRef]
12. Friedmann, A. On the Possibility of a World with Constant Negative Curvature of Space. Gen. Relativ. Gravit.

1924, 34, 2001–2008. [CrossRef]
13. Berry, M.V. Principles of Cosmology and Gravitation; Cambridge University Press: Cambridge, UK, 1976.
14. Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008.
15. Pathria, R.K.; Beale, P.D. Statistical Mechanics, 3rd ed.; Elsevier: Oxford, UK, 2011.
16. The ALICE Collaboration: Performance of the ALICE-experiment at CERN LHC. Int. J. Mod. Phys. A 2014,

29, 1430044. [CrossRef]
17. Sakharov, A. Maximum temperature of thermal radiation. ZhETF Pis’ma 1966, 3, 439–441.
18. Walls, D.F. Squeezed states of light. Nature 1983, 306, 141–146. [CrossRef]
19. Christopher, G.C.; Knight, P.L. Introductory Quantum Optics; Cambridge University Press: Cambridge,

UK, 2014.
20. Fischler, W.; Susskind, L. Holography and cosmology. arXiv 1998, arXiv:Hep-th/9806039.
21. Diaz, P.; Per, M.A.; Segui, A.J. Fischler-Susskind holographic cosmology revisited. Class. Quantum Grav.

2007, 24, 5595–5608. [CrossRef]
22. Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [CrossRef]
23. Thorne, K. John Archibald Wheeler: A biographical memoir. arXiv 2019, arXiv:1901.06623. (to be published

in the Biographical Memoir Series of the National Academy of Sciences).
24. Harrison, B.K.; Wakano, M.; Wheeler, J.A. Matter-Energy at High Density: Endpoint of Thermonuclear

Evolution. In La Structure et l’Evolution de l’Univers, Onzieme Conseil de Physique Solvay; Brussels, R.S., Ed.;
Stoops: Brussels, Belgium, 1958; pp. 124–140.

25. Penrose, R. The Road to Reality; Alfred, A., Ed.; Knopf Random House: New York, NY, USA, 2004.
26. Ellis, G.F.R.; Meissner, K.A.; Nicolai, H. The physics of infinity. Nat. Phys. 2018, 14, 770–772. [CrossRef]
27. Hilbert, D. David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933; Ewald, W., Sieg, W., Eds.;

Springer: Berlin/Heidelberg, Germany, 2013.
28. Ohanian, H.C.; Ruffini, R. Gravitation and Spacetime, 2nd ed.; Cambridge University Press: Cambridge,

UK, 1994.
29. Barrow, J.; Matzner, R. Size of a bouncing mixmaster universe. Phys. Rev. D 1980, 21, 336–340. [CrossRef]
30. Brandenberger, R. The Dynamics of New Inflation. Thessalon. Proc. Part. Universe 1985, 151–176.
31. Brandenberger, R. An Nonsingular Universe. International School of Astrophysics, Current Topics in

Astrofundamental Physics-Proceedings of the 2nd Course. In Current topics in Astrofundamental Physics.
arXiv 1992, arXiv:gr-qc/9210014.

32. Bergeron, H.; Czuchry, E.; Gazeau, J.P.; Małkiewicz, P. Quantum Mixmaster as a Model of the Primordial
Universe. Universe 2019, 6, 7. [CrossRef]

33. Bergeron, H.; Dapor, A.; Gazeau, J.P.; Małkiewicz, P. Smooth Big Bounce from Affine Quantization. Phys. Rev. D
2014, 89, 083522. [CrossRef]

34. Penrose, R. Before the Big Bang: An Outrageous New Perspective and It’s Implications for Particle Physics;
Proceedings of the EPAC: Edinburgh, UK, 2006; pp. 2759–2762.

35. Penrose, R. Cycles of Time; Alfred, A., Ed.; Knopf: New York, NY, USA, 2011.
36. Egan, C.A.; Lineweaver, C.H. A larger estimate of the entropy of the universe. Astrophys. J. 2010, 710,

1825–1834. [CrossRef]

http://dx.doi.org/10.1111/j.1749-6632.1975.tb31443.x
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.27.2848
http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1023/A:1026751225741
http://dx.doi.org/10.1023/A:1026755309811
http://dx.doi.org/10.1142/S0217751X14300440
http://dx.doi.org/10.1038/306141a0
http://dx.doi.org/10.1088/0264-9381/24/22/019
http://dx.doi.org/10.1103/RevModPhys.74.825
http://dx.doi.org/10.1038/s41567-018-0238-1
http://dx.doi.org/10.1103/PhysRevD.21.336
http://dx.doi.org/10.3390/universe6010007
http://dx.doi.org/10.1103/PhysRevD.89.083522
http://dx.doi.org/10.1088/0004-637X/710/2/1825


Entropy 2020, 22, 795 12 of 12

37. Wheeler, J. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of
Information, Proceedings of III, International Symposium on Foundations of Quantum Mechanics, Tokyo, Japan,
28–31 August 1989; Zurek, W., Ed.; Westview Press: Redwood City, CA, USA, 1990.

38. Brillouin, L.N. Science and Information Theory; Academic Press, Elsevier: Cambridge, MA, USA, 1962.
39. Kaloper, N.; Linde, A.D. Cosmology vs. holography. arXiv 1999, arXiv:Hep-th/9904120v3.
40. Misner, C.W.; Thorne, K.S.; Zurek, W. John Wheeler, relativity, and quantum information. Phys. Today 2009,

62, 40–46. [CrossRef]
41. Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.3120895
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Friedmann Models and the Particle Horizon of an Early Observer 
	An Entropy Bound-Particle Horizon Precluding the Cosmological Singularity 
	The Holographic Entropy Bound and Particle Horizon Approach 
	Mathematical Conjecture and the Impossibility of an Infinite Singularity 
	Inaccessibility of Information Beyond the Planck Scale Quantum Particle Horizon 
	Summary of Results and Conclusions 
	References

