

Entropy 2020, 22, 792; doi:10.3390/e22070792 www.mdpi.com/journal/entropy

Article

MADFU: An Improved Malicious Application

Detection Method Based on Features Uncertainty

Hongli Yuan 1,* and Yongchuan Tang 2,*

1 Institute of information engineering, Anhui Xinhua University, Hefei 230088, China
2 School of Big Data and Software Engineering, Chongqing University, Chongqing 401331, China

* Correspondence: yuanhongli@axhu.edu.cn (H.Y.); tangyongchuan@cqu.edu.cn (Y.T.)

Received: 13 June 2020; Accepted: 15 July 2020; Published: 20 July 2020

Abstract: Millions of Android applications (apps) are widely used today. Meanwhile, the number

of malicious apps has increased exponentially. Currently, there are many security detection

technologies for Android apps, such as static detection and dynamic detection. However, the

uncertainty of the features in detection is not considered sufficiently in these technologies.

Permissions play an important role in the security detection of Android apps. In this paper, a

malicious application detection model based on features uncertainty (MADFU) is proposed.

MADFU uses logistic regression function to describe the input (permissions) and output (labels)

relationship. Moreover, it uses the Markov chain Monte Carlo (MCMC) algorithm to solve features’

uncertainty. After experimenting with 2037 samples, for malware detection, MADFU achieves an

accuracy of up to 95.5%, and the false positive rate (FPR) is 1.2%. MADFU's Android app detection

accuracy is higher than the accuracy of directly using 24 dangerous permission. The results also

indicate that the method for an unknown/new sample’s detection accuracy is 92.7%. Compared to

other state-of-the-art approaches, the proposed method is more effective and efficient, by detecting

malware.

Keywords: Android app; detection; MCMC; uncertainty; machine learning

1. Introduction

There are billions of mobile Internet users worldwide currently. Moreover, Android has become

the most popular mobile operating system. Millions of Android apps are installed by mobile devices.

Meanwhile, a large number of Android malicious apps are constantly appearing [1]. AppBrain [2]

shows that, by the end of February 2019, there were more than 2.5 million apps available on Google

Play. Notably, 12% of them are considered as low-quality or potentially harmful apps. Until 30 June

2019, the 360 Security Center intercepted more than 49.663 million mobile phone malicious samples.

Nearly 18,000 new mobile phone malicious samples are intercepted every day [3]. These malicious

apps have brought many inconveniences (including privacy theft, remote control, tariff consumption,

malicious deduction and rogue behavior) to users.

In order to remove malicious apps and low-quality apps from the application market, a large

number of malicious app detection technologies have been applied, such as static detection [4–7] and

dynamic detection [8–10]. Static detection does not need to run the app. It analyzes the files in the

APK package to determine whether the app is benign or malicious [6]. Static detection consumes less

time and resources. However, static detection technology is difficult to detect obfuscated or

repackaged malicious Apps [1]. In contrast, dynamic analysis attempts to identify malicious behavior

after deploying and executing applications on an emulator or real device [9]. However, dynamic

analysis consumes more of the Android Operating System (OS) and takes longer. Moreover, there is

no guarantee that all actions will be executed and detected [11].

Entropy 2020, 22, 792 2 of 13

Whether it is static analysis or dynamic analysis, the machine learning method is widely used in

the classification process [12–17]. It is extremely important to construct features during classification

with machine learning. The quality of the selected features determines the performance of the

detection. K. Zhao et al. [18] presented a Feature Extraction and Selection Tool (FEST). FEST has

nearly 98% accuracy and recall, with only 2% false alarms. D.F. Li et al. [19] presented an automatic

malware family detection tool (FgDetector). FgDetector can extract features from an Android

application and convert it into a low-dimensional feature vector for training the detection model to

detect whether an application is malicious or not. Mahmood D. [20] proposed the ERS model. The

model calculates the risk of permissions through entropy. The ERS values are then used for machine

learning classification.

Although rapid progress has been made in extracting features from applications to detect

malicious applications, there are still some open issues. Firstly, these Android app classification

methods, based on machine learning, all discard the analysis of features uncertainty, but features

uncertainty plays a vital role in malicious detection. Secondly, the extraction of features may be time-

consuming, due to the increasing size and highly complicated behaviors of an APK, resulting in

noneffective detection. Our paper aims to address these two problems. Based on the idea of the

permission risk values proposed by ERS Model, the uncertain value of permission is calculated by

the Markov chain Monte Carlo (MCMC) algorithm and applied to malicious detection.

In this paper, a new method, named a malicious application detection model, based on features

uncertainty (MADFU) is presented. Firstly, MADFU extracted 24 dangerous permissions from the

app. Secondly, the MCMC algorithm is used to calculate the permission uncertainty value in the

detection of a malicious app. Thirdly, based on the uncertainty value, MADFU removes permissions

with small contribution values, and keeps permissions with large contribution values. Finally,

permissions with large contributions are used for classification.

The contributions of our paper are the following.

 MADFU uses the MCMC algorithm to calculate the uncertainty of the permission’s features in

malicious detection. The results show that ignoring uncertainty can lead to false positives in the

analysis.

 MADFU removes the uncertainty permissions and uses purified permissions to classify through

machine learning.

 We used 2037 samples to verify the model. MADFU has good Accuracy for both known samples

and new samples. Meanwhile, MADFU reduces memory consumption and classification times.

The rest of this paper is organized as follows. A brief introduction to the characteristics of

Android permissions and MCMC is given in Section 2. Section 3 introduces the methodology of this

paper. In Section 4 is an evaluation and a discussion. The last section concludes this paper.

2. Background

2.1. Android Permission

In order to protect users’ information security, the Android app uses a permission mechanism

to access the user’s sensitive information [1]. When an app is installed, it will provide users with a

list of permissions for the app. When the user accepts these permissions, the application is installed

on the device. If an app wants to use a resource, they need to declare it in the manifest.XML file. An

undeclared permission Android system cannot be used [11].

There are 135 Android app permissions [11]. App permission is divided into four types

according to security; namely normal, dangerous, signature, and signature/system. Low-Level

permissions, including normal and dangerous levels, are authorized as soon as an app is used.

Signature level and signature/system level permissions are known as advanced permissions [1].

Among them, Google proposed 24 dangerous permissions. Including SEND_SMS, CALL_PHONE,

CAMERA, etc.—these permissions allow one to access users’ sensitive information.

Entropy 2020, 22, 792 3 of 13

There exist many approaches for detecting Android apps by extracting permissions. Some methods

only use permissions to classify the Android app [11,12,21], while other methods combine other features

(such as API, CFG, etc.) to classify [22–24]. Wang et al. [12] analyzed the risks of individual permissions

and collaborative permissions. They ranked the individual permissions with respect to their risks. Sarma

et al. [21] used both the permissions that the app requested, and permissions requested by other apps in

the same category. Peiravian et al. [22] chose not only the requested permissions, but also permissions

based on the app’s API calls, which are called used permissions.

Android permission is the most used and effective static feature. It is because attackers usually

achieve their goals through permission [1]. Therefore, MADFU uses requested permissions and

declared permissions to classify Android apps.

2.2. MCMC

In machine learning, complex probabilistic models usually need to calculate complex high-

dimensional integrals [24]. For example, for a classification task, we need to predict the class of the

instance. Suppose ∫ �(�∗|�∗, �) �(�|�)�� is a prediction model, where �∗ represents the instance, �∗

represents the class, � represents the data, �(�∗|�∗, �) is the likelihood function and �(�|�) is the

posterior distribution. When the probability model becomes complicated, this integral is difficult to

handle. Markov chain Monte Carlo (MCMC) is suitable for approximate integration. MCMC is a powerful

framework, which is widely used to deal with complex and intractable probabilistic models [24].

The Markov chain Monte Carlo method (MCMC) introduces the Markov process into Monte

Carlo simulation [25]. It implements the dynamic simulation of random sampling [26]. It makes up

for the defect that the traditional Monte Carlo method can only simulate statically. The basic idea is

to construct a Markov chain. Make the stable distribution of the Markov chain as the posterior

distribution of the parameters to be estimated [27]. Monte Carlo integration is performed on samples

with posterior distribution [28].

When using the MCMC method, the construction of the Markov chain transfer core is very

important. Different transfer and construction methods will produce different MCMC sampling

results. There are two main MCMC methods in common use: the Gibbs algorithm [29,30] and the

Metropolis–Hastings algorithm [31,32]. The Gibbs algorithm is a special Metropolis algorithm [33,34].

3. MADFU Model

This section mainly introduces the MADFU model proposed in this paper. The MADFU model

consists of three parts: Samples collection and features extraction, features’ uncertainty analysis and

machine learning. As shown in Figure 1.

Figure 1. Overview of a malicious application detection model based on features uncertainty (MADFU).

3.1. Permissions Extraction

The MADFU model uses a python program to crawl the benign app in the website (such as

Wandoujia, Huawei store), and downloads the malicious Apps in the drebin dataset [35]. The APK

file is decompiled by APKTool. The decompiled files include folders such as manifest files and smali

Entropy 2020, 22, 792 4 of 13

files. This model uses the Python program to extract the Android Manifest.xml file and class files

containing the permission statement. The 24 dangerous permissions declared by Android in Google

are extracted in the Android Manifest.xml file. The extracted permission matrix is shown in Figure 2.

Figure 2. Lists of permissions.

3.2. Uncertainty Analysis

In the MCMC calculation, a suitable function needs to be selected for the sampled posterior

distribution model. Logistic regression [36] is a machine learning method used to solve binary

classification (0 or 1) problems, and is used to estimate the likelihood of the object. In order to calculate

the uncertainty of the Android app's security detection process, this model uses a logistic regression model

to express the relationship between app characteristics and app labels (benign or malicious).

The logistic regression function is defined as follows:

� =
1

1 + ��(����)
 (1)

where y is the classified labels (benign or malicious), x is the input value of the feature, β is the weight of

the parameters in the model, α is the measurement noise. Moreover, α and β simulate their values through

MCMC. Logistic regression assumes that the dependent variable y follows the Bernoulli distribution.

�~��������� �
1

1 + ��(����)
� (2)

In order to extract the random values of α and β, it is necessary to assume a prior distribution

for each coefficient. It is assumed that α and β are expected to follow a normal distribution.

� ~ �(��, ��
�) (3)

� ~ �(��, ��
�) (4)

In summary, the parameter relationship in the logistic regression model is shown as Figure 3.

Figure 3. Graphical Model for Android Permission Analysis.

Entropy 2020, 22, 792 5 of 13

Using the Metropolis–Hastings algorithm to sample the posterior distribution of α and β, the

algorithm (Algorithm 1) is shown as below.

Algorithm 1

1: Input:

2: P (x): initial probability distribution;

3: Q: state transition matrix; the corresponding element is q(j|i)

4: Output：

5: X: sample sequence

6: Step1: Initialize the Markov chain state X_0=x_0

7: Step2: for time=0, 1, 2, …, do

8: X_t=x_t sampling y~q(x|x_t)

9: Sampling form uniform distribution: u~uniform[0,1]

10: if u<α(y│x_t)=min{(P(y)q(x_t│y))/(P(x_t)q(y|x_t)),1} then

11: x_(t+1)=y

12: else x_(t+1)=x_t

13: step3: return X

Through MCMC sampling, the 95% confidence interval of the highest probability density

interval of beta can be calculated. The larger the interval, the greater the uncertainty value of the

permission, and the less suitable it is for malicious detection. On the contrary, it is more suitable for

malicious detection.

3.3. Machine Learning Classification

The datasets are trained and tested by naive Bayes (NB), Bayesian network (BN), J48, random tree

(RT) and random forest (RF) machine learning classification algorithms. The test method uses a 10-fold

cross-validation test method.

We evaluate our model with five metrics: false positive rate (FPR), accuracy, F-measure, ROC

and AUC. These metrics are shown in Appendix A.

4. Evaluation

This section mainly introduces the experimental results and discusses the results.

4.1. Datasets

In the experiment, 2037 APKs (1058 benign samples and 979 malware samples) are used for

classification. Overall, 1058 samples were used to analyze the detection performance of MADFU.

Moreover, 892 samples were used to analyze the detection ability of MADFU on unknown samples.

In total, 2037 samples rang from October 2012 to June 2018. All these samples are scanned and

confirmed by malware detection tools (VirusTotal [37] and Virscan [38]).

4.2. Experimental Methods

In order to analyze the uncertainty of dangerous permissions, MADFU uses the Python

language and the data science package (Theano [39] and PyMC3 [40]), to implement the Metropolis

algorithm. We run our Metropolis algorithm on an Intel Core i7-7700HQ fourth-generation processor

with 8 cores clocked at 3.5 GHz, and with 32 GB of on-board memory. The PyMC3 code is shown in

Appendix B.

Entropy 2020, 22, 792 6 of 13

For the MCMC run, MADFU selected 5000 samples for analysis, which ensures that the model

converges before sampling. The traceplot and autocorrplot of the alpha (α) and beta (β) parameters

for READ_PHONE_STATE are shown in Figure 4.

Figure 4. Sampled values of alpha (α) and beta (β) for READ_PHONE_STATE (left is Autocorrplot,

right is Traceplot).

When using MCMC, the initially generated values are often inaccurate. After the Markov chain

converges, the generated parameters are used to model the values. We used 10,000 samples to

calculate. The previous 50% sample was abandoned.

4.3. The Uncertainty of Permissions

After MCMC runs, and the posterior probability of all parameters is calculated, the density

function set of different parameters in MADFU model are obtained, since it is impossible to display

a detailed view of the posterior probabilities of all parameters of the model. Thus, the forest plot is

used to show the uncertainty of � for 24 dangerous permissions, as shown in Figure 5.

Figure 5. Forest Plot of Interesting � Values and their Associated Uncertainties. (Right is benign, left

is malicious.)

Entropy 2020, 22, 792 7 of 13

An interesting result can be seen from Figure 5; β of the ‘SEND_SMS’ is on the right side of the

benign label. This means that although this permission is a dangerous permission, it is used by benign

Apps more often. This is different from what was previously assumed. After analysis, many apps are

registered with a phone number when they are used. A registration verification code needs to be sent

during registration. Benign apps are used more often than malicious apps. In contrast, the probability

that READ_CALENDAR is used in malicious apps is much higher than in benign apps.

READ_CONTACTS and GET_ACCOUNTS, etc. are similar to READ_CALENDAR. Because

permissions which are frequently used in malware (or benign apps) and rarely used in benign apps

(or malware) are more important when distinguishing malware from benign apps. So, these

permissions are used to detect malicious apps.

The β value of ‘ADD_VOICEMAIL’ spans very large. This means that ‘ADD_VOICEMAIL’ has

a high degree of uncertainty in Android app detection. So, the permission ‘ADD_VOICEMAIL’

cannot be accurately distinguished between benign apps and malicious apps. Using

‘ADD_VOICEMAIL’ to classify Android apps is useless.

It can also be seen from Figure 5 that the uncertainty of the permission for ‘WRITE-CONTACTS’,

‘RECEIVE_SMS’ and ‘READ_SMS’ are small. However, their means are close to zero. This means that

the three of them are used similarly in malicious apps and benign apps. Therefore, it is not meaningful

to use them for classification. The mean value of the ‘BODY_SENSORS’ is close to zero, with a high

degree of uncertainty. So, the ‘BODY_SENSORS’ is not suitable for malicious detection.

The value of ‘USE_SIP’ spans more on benign apps, but its uncertain value exceeds 20, and a

portion of it spans on malicious apps. Therefore, it makes little contribution to the detection of

Android apps.

In summary, in MADFU, we removed 6 permissions (WRITE-CONTACTS, ADD_VOICEMAIL,

USE_SIP, BODY_SENSORS, RECEIVE_SMS and READ_SMS) that did not contribute significantly to

malicious detection. MADFU uses the remaining 18 permissions to classify malicious apps.

4.4. Joint Probabilities Analysis

After analyzing the probability distribution of different model parameters in detail, we study their

joint probabilities, in order to discover more interesting patterns. Scatters are used to represent different

permissions relationship, for some highly relevant permission pairs such as ACCESS_FINE_LOCATION

and ACCESS_COARSE_ LOCATION (Figure 6a). Most malicious apps use both permissions at the same

time. However, most benign apps use one alone. We found similar relationships among several other

pairs, such as: READ_CALL_LOG and WRITE_CALL_LOG. On the contrary, READ_CONTACTS and

WRITE_ CONTACTS (Figure 6b) belong to the same group of dangerous permissions. However,

malicious apps prefer to use one of them. Most benign apps use both.

(a) (b)

Figure 6. Joint Probability Distributions of � Values for Different Combinations of Permissions. ((a)

� Values for ACCESS_FINE_LOCATION and ACCESS_COARSE_ LOCATION, (b) � Values for

READ_CONTACTS and WRITE_ CONTACTS)

Entropy 2020, 22, 792 8 of 13

4.5. Performance of Detection

In the following section, we evaluate the detection performance of our method with 5 machine

learning classifiers (NB, BN, J48, RT and RF) on 1145 samples. The experimental results are shown in

Table 1.

Table 1. Classification results of different classifiers.

Classifier False Positive Rate (FPR) Accuracy F-Measure Area under Curve (AUC)

NB 0.083 91.5% 88.3% 0.83

BN 0.088 91.1% 90.3% 0.901

J48 0.012 95.5% 94.7% 0.944

RT 0.081 91.8% 91.4% 0.89

RF 0.47 69.5% 44.5% 0.451

It can be seen from Table 1 that the FPR, accuracy and F-measure of the J48 classifier are 0.012,

95.5% and 94.7%. The AUC of the J48 reaches 0.944. The J48 classifier’s results (FPR, accuracy, F-

measure and AUC) are all superior to other classifiers.

It can be seen from Table 1 that the accuracy of all the classifiers, except RF, exceeded 91%. RF

has advantages for high-dimensional data, feature missing data and unbalanced data, but it may have

unsatisfactory classification effect for small or low-dimensional data. Because MADFU only uses

dangerous permissions, and the dimension is small, the classification effect is not ideal.

The ROC curve of the J48 classifier is shown in Figure 7. From Figure 7, the curve is close to the

upper left, and the area AUC under the curve is 0.944. According to AUC and ROC curves, the J48

classifier has better classification effect. Therefore, J48 is used in the MADFU for classification.

Figure 7. The ROC curves of J48.

Through the analysis of 4.3, we removed 6 dangerous permissions that did not contribute

significantly to Android app detection. We retained 18 dangerous permissions that contribute to

malicious application detection for machine learning and classification. We used the J48 classifier

after 10-fold cross validation; the results are shown in Table 2.

Table 2. MADFU’s classify performance for different datasets.

Datasets Number Method FPR Accuracy F-Measure

1145 (589 begin/556 malicious)
24 Dangerous Permissions 0.057 88.7% 87.5%

MADFU 0.012 95.5% 94.7%

892 (469 begin/423 malicious) MADFU 0.056 92.7% 91.3%

From Table 2, we can see that after 1145 samples are classified with 18 selected dangerous

permissions, MADFU's accuracy can reach 95.5%, F-measure can reach 94.7%, and FPR can be 1.2%.

Entropy 2020, 22, 792 9 of 13

MADFU’s classify performance is higher than using 24 dangerous permissions, because the proposed

approach uses fewer features in learning and classification.

As described before, we have collected 892 real-world datasets. We evaluate the app with MADFU.

It can be obtained from Table 2, for unknown/new samples, that the MADFU’s accuracy can reach

92.7%, and FPR is 5.6%.

4.6. Compare with Other Approach

In this section, we compare MADFU with other state of-the-art malware detection approaches.

We compare it with the method that only uses permissions features. SIGPID [28] is an approach that

applies permission ranking to detection. We reimplemented their approach for comparison.

Moreover, chi-square is a popular feature selection method [1]; so, in our paper, MADUF and chi-

square methods are also compared. The comparison results are shown in Table 3.

Table 3. MADFU compared with other approach.

Method Accuracy F-Measure Learning and Classification Times(s)

SIGPID 94.6% 91.6% 4.5

Chi-Square 93.1% 91.2% 3.1

MADFU 95.5% 94.7% 3

SIGPID uses 22 significant permissions to classify different families of malware and benign apps.

Compared with SIGPID, the F-measure of MADFU is 95.5%, and the SIGPID is 94.6%. SIGPID takes 1.5

times as long to learns and tests data as the method. The MADFU method has a higher F-measure and

less training and learning time. Above all, MADFU performs better than the SIGPID method in this case.

It can be seen from Table 3 that MADFU is superior to chi-square in accuracy and F-measure.

The accuracies of FEST [18] and FgDetector [19] were 98% and 98.15%, respectively. These are

better than MADFU, at 95.5%. However, FEST is detected by 5 types (permission, API, action, IP and

URL) of 398 typical features. FgDetector used the hardware components, requested permissions, app

components, filtered intents, API calls and used permissions etc. for detection. MADFU only uses 18

dangerous permissions for analysis. So, MADFU has small feature dimension and high efficiency in

learning and classification.

5. Discussion and Future Work

In this paper, we use the logistic regression function to model the Android app detection model

and use the MCMC algorithm to sample the model parameters. During the analysis, we found that

there are uncertainties in the features of Android apps’ detection. The uncertainty of these features

affects the detection effect. MADFU solves the uncertainty in the detection process of dangerous

permissions. The detection effect of MADFU is improved compared with the detection effect of

directly using 24 dangerous permissions. In this paper, only 18 dangerous permissions, with the

largest contributions to classification, are used for detection. Compared with other methods, MADFU

learning and classification time and memory consumption are reduced.

Although there are discoveries revealed by these studies, there are also limitations. First,

MADFU only uses dangerous permissions to classify Android apps, but some root-exploit apps do

not have permission for use during the analysis. Therefore, it is impossible to classify such apps only

by permissions. Second, during the analysis, some features with high correlation authority and

negative correlation were found. These correlations may have a greater contribution to the

classification of Android apps. Third, the majority of apps need to connect to a network to send and

receive data, receive updates, and malware may send users' personal data to instruction through

network. Using monitoring network operations of apps on mobile devices is an effective way of

catching the malicious behaviors of apps. We will carry out further research on these open issues.

Entropy 2020, 22, 792 10 of 13

6. Conclusions

In this paper, we present a new static detection technology called MADFU. Through the MCMC

algorithm, MADFU calculates the uncertain value of the permission feature in the machine learning

classification process. After the uncertainty analysis, 18 permission features are retained for machine

learning classification. Compared with the method of directly using 24 dangerous permissions for

classification, MADFU has a higher accuracy for the security detection of the Android app. MADFU's

accuracy can reach 95.5%. At the same time, MADFU has a better detection effect on unknown

Android apps, and its accuracy can reach 92.7%. Compared with SIGPID, MADFU has a shorter

learning and classification time, and has a higher accuracy.

Author Contributions: Conceptualization, H.Y.; methodology, H.Y.; software, H.Y.; validation, Y.T.; formal

analysis, H.Y.; investigation, Y.T.; resources, Y.T.; writing—original draft preparation, Y.T.; writing—review and

editing, Y.T.; supervision, Y.T.; project administration, Y.T.; funding acquisition, H.Y. All authors have read and

agreed to the published version of the manuscript.

Funding: The work was partially supported by Natural Science Foundation of the Anhui Provincial Education

Office (Grant No. KJ2017A621, Grant No. KJ2014A096), Quality Engineering Project of Anhui Xinhua University

(Grant No. 2016JPKCX05), Quality engineering projects of colleges and universities in Anhui (Grant

No.2017JYXM0533).

Acknowledgments: The authors are very grateful to the anonymous referees for the valuable and constructive

comments, which have led to the significant improvement of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The evaluation terms of the classification algorithm are shown in Table A1. The benign samples

are positive and the malicious samples are negative.

Table A1. The evaluation terms of the classification algorithm.

 Positive (Predicted) Negative (Predicted)

Positive (Actual) TP (True Positive) FN (False Negative)

Negative (Actual) FP (False Positive) TN (True Negative)

Other evaluation indicators are defined as follows.

FPR represents the false positives rate that is incorrectly identified as positive. FPR is defined as

follows:

FPR=FP/(FP+TN) (A1)

Accuracy is the percentage of tuples that are correctly classified by the classifier. Accuracy is

defined as follows:

Accuracy=(TP+TN)/(TP+FP+TN+FN) (A2)

F-Measure represents the harmonic mean of �recision = TP/(TP + FP) and Recall = TP/(TP + FN).

F-Measure is defined as follows:

 F-Measure=(2×Precision×Recall)/(Precision+Recall) (A3)

ROC curve refers to the lines drawn by taking FPR as the X-coordinate and TPR as the Y-

coordinate.

Area under curve (AUC) is defined as the area under ROC curve. The ROC curve does not clearly

indicate which classifiers perform better. However, AUC can better evaluate the classifier. The greater

the AUC, the better the classifier.

Entropy 2020, 22, 792 11 of 13

Appendix B

The PyMC3 code is shown in Figure A1.

Figure A1. AADUF Model represented in PyMC3.

References

1. Wang, W.; Zhao, M.; Gao, Z.; Xu, G.; Xian, H.; Li, Y.; Zhang, X. Constructing features for detecting android

malicious applications: Issues, taxonomy and directions. IEEE Access 2019, 7, 67602–67631.

2. Data of AppBrain. Available online: https://www.appbrain.com/stats/number -of-android-apps (accessed

on 20 February 2019

3. 360 Internet Security Center. Available online: http://zt.360.cn/1101061855.php?dtid=1101061451 &did=

610100815 (accessed on 18 February 2019)

4. Li, L.; Bissyand, T.F.; Papadakis, M.; Rasthofer, S.; Bartel, A.; Octeau, D.; Klein, J.; and Traon, L. Static

analysis of android apps: A systematic literature review. Inf. Softw. Technol. 2017, 88, 67–95.

5. Wang, W.; Wang, X.; Feng, D.; Liu, J.; Han, Z.; Zhang, X. Exploring permission-induced risk in Android

applications for malicious application detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1869–1882.

6. Vinod, P.; Zemmari, A.; Conti, M. A machine learning based approach to detect malicious Android apps

using discriminant system calls. Future Gener. Comput. Syst. 2019, 94, 333–350,

doi:10.1016/j.future.2018.11.021.

7. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android malware familial classification and

representative sample selection via frequent subgraph analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13,

1890–1905, doi:10.1109/TIFS.2018.2806891.

8. Cai, H.; Meng, N.; Ryder, B.G.; Yao, D. DroidCat: Effective Android malware detection and categorization

via app-level profiling. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1455–1470, doi:10.1109/TIFS.2018.2879302.

9. Martín, A.; Rodríguez-FerneEdez, V.; Camacho, D.; CANDYMAN: Classifying Android malware families

by modelling dynamic traces with Markov chains. Eng. Appl. Artif. Intell. 2018, 74, 121–133,

doi:10.1016/j.engappai.2018.06.006.

10. Saracino, A.; Sgandurra, D.; Dini, G.; Martinelli, F. MADAM: Effective and Efficient Behavior-based

Android Malware Detection and Prevention. IEEE Trans. Dependable Secur. Comput. 2016, 15, 83–97,

doi:10.1109/tdsc.2016.2536605

11. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-an, W.; Ye, H. Significant permission identification for Machine-learning-

based android malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225.

12. Wang, W.; Zhao, M.; Wang, J. Effective android malware detection with a hybrid model based on deep

autoencoder and convolutional neural network. J. Ambient Intell. Hum. Comput. 2019, 10, 3035–3043,

doi:10.1007/s12652-018-0803-6.

13. Wang, W.; Gao, Z.; Zhao, M.; Li, Y.; Liu, J.; Zhang, X. DroidEnsemble: Detecting Android malicious

applications with ensemble of string and structural static features. IEEE Access 2018, 6, 31798–31807,

doi:10.1109/ACCESS.2018.2835654.

Entropy 2020, 22, 792 12 of 13

14. Kumar, R.; Xiaosong, Z.; Khan, R.U.; Kumar, J.; Ahad, I. Effective and explainable detection of Android

malware based on machine learning algorithms. Proc. Int. Conf. Comput. Artif. Intell. 2018, 35–40,

doi:10.1145/3194452.3194465.

15. Pirscoveanu, R.S.; Hansen, S.S.; Larsen, T.M.; Stevanovic, M.; Pedersen, J.M.; Czech, A. Analysis of malware

behavior: Type classification using machine learning. In Proceedings of the 2015 International Conference

on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), London, UK, 8–9 June 2015;

pp. 1–7.

16. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. Emulator vs. real phone: Android malware detection using machine

learning. In Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics,

New York, NY, USA, 24 March 2017; pp. 65–72.

17. Xu, K.; Li, Y.; Deng, R.H. ICCDetector: ICC-based malware detection on Android. IEEE Trans. Inf. Forensics

Secur. 2016, 11, 1252–1264.

18. Zhao, K.; Zhang, D.; Su, X. Li, W. Fest: A feature extraction and selection tool for Android malware

detection. IEEE Symp. Comput. Commun. 2015, 714–720, doi:10.1109/ISCC.2015.7405 598.

19. Li, D.; Wang, Z; Li, L.; Wang, Z.; Wang, Y.; Xue, Y. FgDetector: Fine-Grained Android Malware Detection.

In Proceedings of the 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC),

Shenzhen, China, June 2017; pp. 311–318, doi:10.1109/DSC.2017.13.

20. Mahmood, D. Entropy-based security risk measurement for Android mobile applications. Soft Comput.

2018, 23, 7303–7319; doi:10.1007/s00500-018-3377-5.

21. Sarma, B.P.; Li, N.; Gates, C.; Potharaju, R.; Nita-Rotaru, C.; and Molloy, I. Android permissions: A

perspective combining risks and benefits. In Proceedings of the 17th ACM Symposium on Access Control

Models and Technologies, New York, NY, USA, 3 June 2012, pp. 13–22.

22. Peiravian, N.; Zhu, X. Machine learning for Android malware detection using permission and api calls. In

Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence,

Washington, DC, USA, 4–6 November 2014; pp. 300–305.

23. Su, D.; Wang, W.; Wang, X.; Liu, J. Anomadroid: Profiling Android applications’ behaviors for identifying

unknown malapps. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26

August 2016; pp. 691–698.

24. Gu, M.; Sun, S.; Liu, Y. Dynamical sampling with langevin normalization flows Entropy 2019, 21, 1096,

doi:10.3390/e21111096.

25. Livingstone, S.; Girolami, M. Information-geometric Markov chain Monte Carlo methods using diffusions.

Entropy 2014, 16, 3074–3102.

26. Hock, K.; Earle, K. Markov chain Monte Carlo used in parameter inference of magnetic resonance spectra.

Entropy 2016, 18, 57–69.

27. Li, Q.; Newton, K. Diffusion equation-assisted Markov chain Monte Carlo methods for the inverse radiative

transfer equation. Entropy 2019, 21, 291–315.

28. Brooks, S.; Gelman, A.; Jones, G.; Meng, X. Handbook of Markov chain Monte Carlo; CRC Press: Boca Raton,

FL, USA, 2011.

29. Mneimneh, S.; Ahmed, S.A. Gibbs/MCMC Sampling for Multiple RNA Interaction with Sub-optimal

Solutions. In Algorithms for Computational Biology; Springer: Cham, Switzerland, 2016.

30. Boland, A.; Friel, N.; Maire, F. Efficient MCMC for Gibbs Random Fields using pre-computation. Electron.

J. Stats., 2017, 12, 1–23, doi:10.1214/18-EJS1504

31. Hill, S.D.; Spall, J.C. Stationarity and convergence of the metropolis-hastings algorithm: Insights into

theoretical aspects. IEEE Control Syst. 2019, 39, 56–67.

32. Seo, Y.M.; Park, K B. Uncertainty analysis for parameters of probability distribution in rainfall frequency

analysis by bayesian MCMC and metropolis hastings algorithm. J. Environ. Sci. Int. 2011, 20, 329–340.

33. Vrugt, J. A., Gupta, H. V., Bouten, W.; Sorooshian, S. A shuffled complex evolution metropolis algorithm

for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39

1–11.

34. Xu, T.; White, L.; Hui, D.; Luo, Y. Probabilistic inversion of a terrestrial ecosystem model: Analysis of

uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles 2006, 20, 27–36.

35. “The Drebin Dataset,” Available online: https://www.sec.tu-bs.de/~danarp/drebin/ (accessed on 2 February

2020).

Entropy 2020, 22, 792 13 of 13

36. Cui, Z.; Zhang, M.; Chen, Y. Deep embedding logistic regression. In Proceedings of the 2018 IEEE

International Conference on Big Knowledge (ICBK), Singapore, 17–18 November 2018; pp. 176–183.

37. Virscan. Available online: http://www.virscan.org/ (accessed on 10 February 2020).

38. Virustotal. Available online: https://www.virustotal.com/ (accessed on 10 February 2020).

39. Theano · PyPI. Available online: https://pypi.org/project/Theano/ (accessed on 12 February 2020).

40. Pymc3 · PyPI. Available online: https://pypi.org/project/pymc3/ (accessed on 12 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

