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Abstract: Millions of Android applications (apps) are widely used today. Meanwhile, the number 

of malicious apps has increased exponentially. Currently, there are many security detection 

technologies for Android apps, such as static detection and dynamic detection. However, the 

uncertainty of the features in detection is not considered sufficiently in these technologies. 

Permissions play an important role in the security detection of Android apps. In this paper, a 

malicious application detection model based on features uncertainty (MADFU) is proposed. 

MADFU uses logistic regression function to describe the input (permissions) and output (labels) 

relationship. Moreover, it uses the Markov chain Monte Carlo (MCMC) algorithm to solve features’ 

uncertainty. After experimenting with 2037 samples, for malware detection, MADFU achieves an 

accuracy of up to 95.5%, and the false positive rate (FPR) is 1.2%. MADFU's Android app detection 

accuracy is higher than the accuracy of directly using 24 dangerous permission. The results also 

indicate that the method for an unknown/new sample’s detection accuracy is 92.7%. Compared to 

other state-of-the-art approaches, the proposed method is more effective and efficient, by detecting 

malware. 
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1. Introduction 

There are billions of mobile Internet users worldwide currently. Moreover, Android has become 

the most popular mobile operating system. Millions of Android apps are installed by mobile devices. 

Meanwhile, a large number of Android malicious apps are constantly appearing [1]. AppBrain [2] 

shows that, by the end of February 2019, there were more than 2.5 million apps available on Google 

Play. Notably, 12% of them are considered as low-quality or potentially harmful apps. Until 30 June 

2019, the 360 Security Center intercepted more than 49.663 million mobile phone malicious samples. 

Nearly 18,000 new mobile phone malicious samples are intercepted every day [3]. These malicious 

apps have brought many inconveniences (including privacy theft, remote control, tariff consumption, 

malicious deduction and rogue behavior) to users. 

In order to remove malicious apps and low-quality apps from the application market, a large 

number of malicious app detection technologies have been applied, such as static detection [4–7] and 

dynamic detection [8–10]. Static detection does not need to run the app. It analyzes the files in the 

APK package to determine whether the app is benign or malicious [6]. Static detection consumes less 

time and resources. However, static detection technology is difficult to detect obfuscated or 

repackaged malicious Apps [1]. In contrast, dynamic analysis attempts to identify malicious behavior 

after deploying and executing applications on an emulator or real device [9]. However, dynamic 

analysis consumes more of the Android Operating System (OS) and takes longer. Moreover, there is 

no guarantee that all actions will be executed and detected [11]. 
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Whether it is static analysis or dynamic analysis, the machine learning method is widely used in 

the classification process [12–17]. It is extremely important to construct features during classification 

with machine learning. The quality of the selected features determines the performance of the 

detection. K. Zhao et al. [18] presented a Feature Extraction and Selection Tool (FEST). FEST has 

nearly 98% accuracy and recall, with only 2% false alarms. D.F. Li et al. [19] presented an automatic 

malware family detection tool (FgDetector). FgDetector can extract features from an Android 

application and convert it into a low-dimensional feature vector for training the detection model to 

detect whether an application is malicious or not. Mahmood D. [20] proposed the ERS model. The 

model calculates the risk of permissions through entropy. The ERS values are then used for machine 

learning classification. 

Although rapid progress has been made in extracting features from applications to detect 

malicious applications, there are still some open issues. Firstly, these Android app classification 

methods, based on machine learning, all discard the analysis of features uncertainty, but features 

uncertainty plays a vital role in malicious detection. Secondly, the extraction of features may be time-

consuming, due to the increasing size and highly complicated behaviors of an APK, resulting in 

noneffective detection. Our paper aims to address these two problems. Based on the idea of the 

permission risk values proposed by ERS Model, the uncertain value of permission is calculated by 

the Markov chain Monte Carlo (MCMC) algorithm and applied to malicious detection. 

In this paper, a new method, named a malicious application detection model, based on features 

uncertainty (MADFU) is presented. Firstly, MADFU extracted 24 dangerous permissions from the 

app. Secondly, the MCMC algorithm is used to calculate the permission uncertainty value in the 

detection of a malicious app. Thirdly, based on the uncertainty value, MADFU removes permissions 

with small contribution values, and keeps permissions with large contribution values. Finally, 

permissions with large contributions are used for classification. 

The contributions of our paper are the following. 

 MADFU uses the MCMC algorithm to calculate the uncertainty of the permission’s features in 

malicious detection. The results show that ignoring uncertainty can lead to false positives in the 

analysis. 

 MADFU removes the uncertainty permissions and uses purified permissions to classify through 

machine learning. 

 We used 2037 samples to verify the model. MADFU has good Accuracy for both known samples 

and new samples. Meanwhile, MADFU reduces memory consumption and classification times. 

The rest of this paper is organized as follows. A brief introduction to the characteristics of 

Android permissions and MCMC is given in Section 2. Section 3 introduces the methodology of this 

paper. In Section 4 is an evaluation and a discussion. The last section concludes this paper. 

2. Background 

2.1. Android Permission 

In order to protect users’ information security, the Android app uses a permission mechanism 

to access the user’s sensitive information [1]. When an app is installed, it will provide users with a 

list of permissions for the app. When the user accepts these permissions, the application is installed 

on the device. If an app wants to use a resource, they need to declare it in the manifest.XML file. An 

undeclared permission Android system cannot be used [11]. 

There are 135 Android app permissions [11]. App permission is divided into four types 

according to security; namely normal, dangerous, signature, and signature/system. Low-Level 

permissions, including normal and dangerous levels, are authorized as soon as an app is used. 

Signature level and signature/system level permissions are known as advanced permissions [1]. 

Among them, Google proposed 24 dangerous permissions. Including SEND_SMS, CALL_PHONE, 

CAMERA, etc.—these permissions allow one to access users’ sensitive information. 
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There exist many approaches for detecting Android apps by extracting permissions. Some methods 

only use permissions to classify the Android app [11,12,21], while other methods combine other features 

(such as API, CFG, etc.) to classify [22–24]. Wang et al. [12] analyzed the risks of individual permissions 

and collaborative permissions. They ranked the individual permissions with respect to their risks. Sarma 

et al. [21] used both the permissions that the app requested, and permissions requested by other apps in 

the same category. Peiravian et al. [22] chose not only the requested permissions, but also permissions 

based on the app’s API calls, which are called used permissions. 

Android permission is the most used and effective static feature. It is because attackers usually 

achieve their goals through permission [1]. Therefore, MADFU uses requested permissions and 

declared permissions to classify Android apps. 

2.2. MCMC 

In machine learning, complex probabilistic models usually need to calculate complex high-

dimensional integrals [24]. For example, for a classification task, we need to predict the class of the 

instance. Suppose ∫ �(�∗|�∗, �) �(�|�)��  is a prediction model, where �∗ represents the instance, �∗ 

represents the class, �  represents the data, �(�∗|�∗, �)  is the likelihood function and �(�|�)  is the 

posterior distribution. When the probability model becomes complicated, this integral is difficult to 

handle. Markov chain Monte Carlo (MCMC) is suitable for approximate integration. MCMC is a powerful 

framework, which is widely used to deal with complex and intractable probabilistic models [24]. 

The Markov chain Monte Carlo method (MCMC) introduces the Markov process into Monte 

Carlo simulation [25]. It implements the dynamic simulation of random sampling [26]. It makes up 

for the defect that the traditional Monte Carlo method can only simulate statically. The basic idea is 

to construct a Markov chain. Make the stable distribution of the Markov chain as the posterior 

distribution of the parameters to be estimated [27]. Monte Carlo integration is performed on samples 

with posterior distribution [28]. 

When using the MCMC method, the construction of the Markov chain transfer core is very 

important. Different transfer and construction methods will produce different MCMC sampling 

results. There are two main MCMC methods in common use: the Gibbs algorithm [29,30] and the 

Metropolis–Hastings algorithm [31,32]. The Gibbs algorithm is a special Metropolis algorithm [33,34]. 

3. MADFU Model 

This section mainly introduces the MADFU model proposed in this paper. The MADFU model 

consists of three parts: Samples collection and features extraction, features’ uncertainty analysis and 

machine learning. As shown in Figure 1. 

 

Figure 1. Overview of a malicious application detection model based on features uncertainty (MADFU). 

3.1. Permissions Extraction 

The MADFU model uses a python program to crawl the benign app in the website (such as 

Wandoujia, Huawei store), and downloads the malicious Apps in the drebin dataset [35]. The APK 

file is decompiled by APKTool. The decompiled files include folders such as manifest files and smali 
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files. This model uses the Python program to extract the Android Manifest.xml file and class files 

containing the permission statement. The 24 dangerous permissions declared by Android in Google 

are extracted in the Android Manifest.xml file. The extracted permission matrix is shown in Figure 2. 

 

Figure 2. Lists of permissions. 

3.2. Uncertainty Analysis 

In the MCMC calculation, a suitable function needs to be selected for the sampled posterior 

distribution model. Logistic regression [36] is a machine learning method used to solve binary 

classification (0 or 1) problems, and is used to estimate the likelihood of the object. In order to calculate 

the uncertainty of the Android app's security detection process, this model uses a logistic regression model 

to express the relationship between app characteristics and app labels (benign or malicious). 

The logistic regression function is defined as follows: 

� =
1

1 + ��(����)
 (1) 

where y is the classified labels (benign or malicious), x is the input value of the feature, β is the weight of 

the parameters in the model, α is the measurement noise. Moreover, α and β simulate their values through 

MCMC. Logistic regression assumes that the dependent variable y follows the Bernoulli distribution. 

�~��������� �
1

1 + ��(����)
� (2) 

In order to extract the random values of α and β, it is necessary to assume a prior distribution 

for each coefficient. It is assumed that α and β are expected to follow a normal distribution. 

� ~ �(��, ��
�) (3) 

� ~ �(��, ��
�) (4) 

In summary, the parameter relationship in the logistic regression model is shown as Figure 3. 

 

Figure 3. Graphical Model for Android Permission Analysis. 
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Using the Metropolis–Hastings algorithm to sample the posterior distribution of α and β, the 

algorithm (Algorithm 1) is shown as below. 

Algorithm 1 

1: Input: 

2:  P (x): initial probability distribution; 

3:  Q: state transition matrix; the corresponding element is q(j|i) 

4: Output： 

5:  X: sample sequence 

6:   Step1: Initialize the Markov chain state X_0=x_0 

7:   Step2: for time=0, 1, 2, …, do 

8:     X_t=x_t sampling y~q(x|x_t) 

9:     Sampling form uniform distribution: u~uniform[0,1] 

10:     if u<α(y│x_t )=min{(P(y)q(x_t│y))/(P(x_t)q(y|x_t)),1} then 

11:      x_(t+1)=y 

12:     else x_(t+1)=x_t 

13:   step3: return X 

Through MCMC sampling, the 95% confidence interval of the highest probability density 

interval of beta can be calculated. The larger the interval, the greater the uncertainty value of the 

permission, and the less suitable it is for malicious detection. On the contrary, it is more suitable for 

malicious detection. 

3.3. Machine Learning Classification 

The datasets are trained and tested by naive Bayes (NB), Bayesian network (BN), J48, random tree 

(RT) and random forest (RF) machine learning classification algorithms. The test method uses a 10-fold 

cross-validation test method.  

We evaluate our model with five metrics: false positive rate (FPR), accuracy, F-measure, ROC 

and AUC. These metrics are shown in Appendix A. 

4. Evaluation 

This section mainly introduces the experimental results and discusses the results. 

4.1. Datasets 

In the experiment, 2037 APKs (1058 benign samples and 979 malware samples) are used for 

classification. Overall, 1058 samples were used to analyze the detection performance of MADFU. 

Moreover, 892 samples were used to analyze the detection ability of MADFU on unknown samples. 

In total, 2037 samples rang from October 2012 to June 2018. All these samples are scanned and 

confirmed by malware detection tools (VirusTotal [37] and Virscan [38]). 

4.2. Experimental Methods 

In order to analyze the uncertainty of dangerous permissions, MADFU uses the Python 

language and the data science package (Theano [39] and PyMC3 [40]), to implement the Metropolis 

algorithm. We run our Metropolis algorithm on an Intel Core i7-7700HQ fourth-generation processor 

with 8 cores clocked at 3.5 GHz, and with 32 GB of on-board memory. The PyMC3 code is shown in 

Appendix B. 
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For the MCMC run, MADFU selected 5000 samples for analysis, which ensures that the model 

converges before sampling. The traceplot and autocorrplot of the alpha (α) and beta (β) parameters 

for READ_PHONE_STATE are shown in Figure 4. 

 

Figure 4. Sampled values of alpha (α) and beta (β) for READ_PHONE_STATE (left is Autocorrplot, 

right is Traceplot). 

When using MCMC, the initially generated values are often inaccurate. After the Markov chain 

converges, the generated parameters are used to model the values. We used 10,000 samples to 

calculate. The previous 50% sample was abandoned. 

4.3. The Uncertainty of Permissions 

After MCMC runs, and the posterior probability of all parameters is calculated, the density 

function set of different parameters in MADFU model are obtained, since it is impossible to display 

a detailed view of the posterior probabilities of all parameters of the model. Thus, the forest plot is 

used to show the uncertainty of � for 24 dangerous permissions, as shown in Figure 5. 

 

Figure 5. Forest Plot of Interesting � Values and their Associated Uncertainties. (Right is benign, left 

is malicious.) 
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An interesting result can be seen from Figure 5; β of the ‘SEND_SMS’ is on the right side of the 

benign label. This means that although this permission is a dangerous permission, it is used by benign 

Apps more often. This is different from what was previously assumed. After analysis, many apps are 

registered with a phone number when they are used. A registration verification code needs to be sent 

during registration. Benign apps are used more often than malicious apps. In contrast, the probability 

that READ_CALENDAR is used in malicious apps is much higher than in benign apps. 

READ_CONTACTS and GET_ACCOUNTS, etc. are similar to READ_CALENDAR. Because 

permissions which are frequently used in malware (or benign apps) and rarely used in benign apps 

(or malware) are more important when distinguishing malware from benign apps. So, these 

permissions are used to detect malicious apps. 

The β value of ‘ADD_VOICEMAIL’ spans very large. This means that ‘ADD_VOICEMAIL’ has 

a high degree of uncertainty in Android app detection. So, the permission ‘ADD_VOICEMAIL’ 

cannot be accurately distinguished between benign apps and malicious apps. Using 

‘ADD_VOICEMAIL’ to classify Android apps is useless. 

It can also be seen from Figure 5 that the uncertainty of the permission for ‘WRITE-CONTACTS’, 

‘RECEIVE_SMS’ and ‘READ_SMS’ are small. However, their means are close to zero. This means that 

the three of them are used similarly in malicious apps and benign apps. Therefore, it is not meaningful 

to use them for classification. The mean value of the ‘BODY_SENSORS’ is close to zero, with a high 

degree of uncertainty. So, the ‘BODY_SENSORS’ is not suitable for malicious detection. 

The value of ‘USE_SIP’ spans more on benign apps, but its uncertain value exceeds 20, and a 

portion of it spans on malicious apps. Therefore, it makes little contribution to the detection of 

Android apps. 

In summary, in MADFU, we removed 6 permissions (WRITE-CONTACTS, ADD_VOICEMAIL, 

USE_SIP, BODY_SENSORS, RECEIVE_SMS and READ_SMS) that did not contribute significantly to 

malicious detection. MADFU uses the remaining 18 permissions to classify malicious apps. 

4.4. Joint Probabilities Analysis 

After analyzing the probability distribution of different model parameters in detail, we study their 

joint probabilities, in order to discover more interesting patterns. Scatters are used to represent different 

permissions relationship, for some highly relevant permission pairs such as ACCESS_FINE_LOCATION 

and ACCESS_COARSE_ LOCATION (Figure 6a). Most malicious apps use both permissions at the same 

time. However, most benign apps use one alone. We found similar relationships among several other 

pairs, such as: READ_CALL_LOG and WRITE_CALL_LOG. On the contrary, READ_CONTACTS and 

WRITE_ CONTACTS (Figure 6b) belong to the same group of dangerous permissions. However, 

malicious apps prefer to use one of them. Most benign apps use both. 

  

(a) (b) 

Figure 6. Joint Probability Distributions of � Values for Different Combinations of Permissions. ((a) 

� Values for ACCESS_FINE_LOCATION and ACCESS_COARSE_ LOCATION, (b) � Values for 

READ_CONTACTS and WRITE_ CONTACTS) 
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4.5. Performance of Detection 

In the following section, we evaluate the detection performance of our method with 5 machine 

learning classifiers (NB, BN, J48, RT and RF) on 1145 samples. The experimental results are shown in 

Table 1. 

Table 1. Classification results of different classifiers. 

Classifier False Positive Rate (FPR) Accuracy F-Measure Area under Curve (AUC) 

NB 0.083 91.5% 88.3% 0.83 

BN 0.088 91.1% 90.3% 0.901 

J48 0.012 95.5% 94.7% 0.944 

RT 0.081 91.8% 91.4% 0.89 

RF 0.47 69.5% 44.5% 0.451 

It can be seen from Table 1 that the FPR, accuracy and F-measure of the J48 classifier are 0.012, 

95.5% and 94.7%. The AUC of the J48 reaches 0.944. The J48 classifier’s results (FPR, accuracy, F-

measure and AUC) are all superior to other classifiers. 

It can be seen from Table 1 that the accuracy of all the classifiers, except RF, exceeded 91%. RF 

has advantages for high-dimensional data, feature missing data and unbalanced data, but it may have 

unsatisfactory classification effect for small or low-dimensional data. Because MADFU only uses 

dangerous permissions, and the dimension is small, the classification effect is not ideal. 

The ROC curve of the J48 classifier is shown in Figure 7. From Figure 7, the curve is close to the 

upper left, and the area AUC under the curve is 0.944. According to AUC and ROC curves, the J48 

classifier has better classification effect. Therefore, J48 is used in the MADFU for classification. 

 

Figure 7. The ROC curves of J48. 

Through the analysis of 4.3, we removed 6 dangerous permissions that did not contribute 

significantly to Android app detection. We retained 18 dangerous permissions that contribute to 

malicious application detection for machine learning and classification. We used the J48 classifier 

after 10-fold cross validation; the results are shown in Table 2. 

Table 2. MADFU’s classify performance for different datasets. 

Datasets Number Method FPR Accuracy F-Measure 

1145 (589 begin/556 malicious) 
24 Dangerous Permissions 0.057 88.7% 87.5% 

MADFU 0.012 95.5% 94.7% 

892 (469 begin/423 malicious) MADFU 0.056 92.7% 91.3% 

From Table 2, we can see that after 1145 samples are classified with 18 selected dangerous 

permissions, MADFU's accuracy can reach 95.5%, F-measure can reach 94.7%, and FPR can be 1.2%. 
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MADFU’s classify performance is higher than using 24 dangerous permissions, because the proposed 

approach uses fewer features in learning and classification. 

As described before, we have collected 892 real-world datasets. We evaluate the app with MADFU. 

It can be obtained from Table 2, for unknown/new samples, that the MADFU’s accuracy can reach 

92.7%, and FPR is 5.6%. 

4.6. Compare with Other Approach 

In this section, we compare MADFU with other state of-the-art malware detection approaches. 

We compare it with the method that only uses permissions features. SIGPID [28] is an approach that 

applies permission ranking to detection. We reimplemented their approach for comparison. 

Moreover, chi-square is a popular feature selection method [1]; so, in our paper, MADUF and chi-

square methods are also compared. The comparison results are shown in Table 3. 

Table 3. MADFU compared with other approach. 

Method Accuracy F-Measure Learning and Classification Times(s) 

SIGPID 94.6% 91.6% 4.5 

Chi-Square 93.1% 91.2% 3.1 

MADFU 95.5% 94.7%  3 

SIGPID uses 22 significant permissions to classify different families of malware and benign apps. 

Compared with SIGPID, the F-measure of MADFU is 95.5%, and the SIGPID is 94.6%. SIGPID takes 1.5 

times as long to learns and tests data as the method. The MADFU method has a higher F-measure and 

less training and learning time. Above all, MADFU performs better than the SIGPID method in this case. 

It can be seen from Table 3 that MADFU is superior to chi-square in accuracy and F-measure. 

The accuracies of FEST [18] and FgDetector [19] were 98% and 98.15%, respectively. These are 

better than MADFU, at 95.5%. However, FEST is detected by 5 types (permission, API, action, IP and 

URL) of 398 typical features. FgDetector used the hardware components, requested permissions, app 

components, filtered intents, API calls and used permissions etc. for detection. MADFU only uses 18 

dangerous permissions for analysis. So, MADFU has small feature dimension and high efficiency in 

learning and classification. 

5. Discussion and Future Work 

In this paper, we use the logistic regression function to model the Android app detection model 

and use the MCMC algorithm to sample the model parameters. During the analysis, we found that 

there are uncertainties in the features of Android apps’ detection. The uncertainty of these features 

affects the detection effect. MADFU solves the uncertainty in the detection process of dangerous 

permissions. The detection effect of MADFU is improved compared with the detection effect of 

directly using 24 dangerous permissions. In this paper, only 18 dangerous permissions, with the 

largest contributions to classification, are used for detection. Compared with other methods, MADFU 

learning and classification time and memory consumption are reduced. 

Although there are discoveries revealed by these studies, there are also limitations. First, 

MADFU only uses dangerous permissions to classify Android apps, but some root-exploit apps do 

not have permission for use during the analysis. Therefore, it is impossible to classify such apps only 

by permissions. Second, during the analysis, some features with high correlation authority and 

negative correlation were found. These correlations may have a greater contribution to the 

classification of Android apps. Third, the majority of apps need to connect to a network to send and 

receive data, receive updates, and malware may send users' personal data to instruction through 

network. Using monitoring network operations of apps on mobile devices is an effective way of 

catching the malicious behaviors of apps. We will carry out further research on these open issues. 
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6. Conclusions 

In this paper, we present a new static detection technology called MADFU. Through the MCMC 

algorithm, MADFU calculates the uncertain value of the permission feature in the machine learning 

classification process. After the uncertainty analysis, 18 permission features are retained for machine 

learning classification. Compared with the method of directly using 24 dangerous permissions for 

classification, MADFU has a higher accuracy for the security detection of the Android app. MADFU's 

accuracy can reach 95.5%. At the same time, MADFU has a better detection effect on unknown 

Android apps, and its accuracy can reach 92.7%. Compared with SIGPID, MADFU has a shorter 

learning and classification time, and has a higher accuracy. 
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Appendix A 

The evaluation terms of the classification algorithm are shown in Table A1. The benign samples 

are positive and the malicious samples are negative. 

Table A1. The evaluation terms of the classification algorithm. 

 Positive (Predicted) Negative (Predicted) 

Positive (Actual) TP (True Positive) FN (False Negative) 

Negative (Actual) FP (False Positive) TN (True Negative) 

Other evaluation indicators are defined as follows. 

FPR represents the false positives rate that is incorrectly identified as positive. FPR is defined as 

follows: 

FPR=FP/(FP+TN) (A1) 

Accuracy is the percentage of tuples that are correctly classified by the classifier. Accuracy is 

defined as follows: 

Accuracy=(TP+TN)/(TP+FP+TN+FN) (A2) 

F-Measure represents the harmonic mean of �recision = TP/(TP + FP) and Recall = TP/(TP + FN). 

F-Measure is defined as follows: 

  F-Measure=(2×Precision×Recall)/(Precision+Recall) (A3) 

ROC curve refers to the lines drawn by taking FPR as the X-coordinate and TPR as the Y-

coordinate. 

Area under curve (AUC) is defined as the area under ROC curve. The ROC curve does not clearly 

indicate which classifiers perform better. However, AUC can better evaluate the classifier. The greater 

the AUC, the better the classifier. 
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Appendix B 

The PyMC3 code is shown in Figure A1. 

 

Figure A1. AADUF Model represented in PyMC3. 
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