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Abstract: In this paper, we consider techniques for establishing lower bounds on the number of arm
pulls for best-arm identification in the multi-armed bandit problem. While a recent divergence-based
approach was shown to provide improvements over an older gap-based approach, we show that
the latter can be refined to match the former (up to constant factors) in many cases of interest under
Bernoulli rewards, including the case that the rewards are bounded away from zero and one. Together
with existing upper bounds, this indicates that the divergence-based and gap-based approaches are
both effective for establishing sample complexity lower bounds for best-arm identification.
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1. Introduction

The multi-armed bandit (MAB) problem [1] provides a versatile framework for sequentially
searching for high-reward actions, with applications including clinical trials [2], online advertising [3],
adaptive routing [4], and portfolio design [5]. The best-arm identification problem seeks to find the arm
with the highest mean using as few arm pulls as possible, and dates back to the works of Bechhofer [6]
and Paulson [7]. More recently, several algorithms have been proposed for best-arm identification,
including successive elimination [8], lower-upper confidence bound algorithms [9,10], PRISM [11],
and gap-based elimination [12]. The latter establishes a sample complexity that is known to be optimal
in the two-arm case [13], and more generally near-optimal.

Complementary to these upper bounds is information-theoretic lower bounds on the performance
of any algorithm. Such bounds serve as a means to assess the degree of optimality of practical
algorithms, and identify where further improvements are possible, thus focusing research towards
directions that can have the greatest practical impact. Lower bounds were given by Mannor and
Tsitsiklis [14] for Bernoulli bandits, and by Kaufmann et al. [15] for more general reward distributions.
Both of these works were based on the difficulty of distinguishing bandit instances that differ in only a
single arm distribution, but the subsequent analysis techniques differed significantly, with [14] using
a direct change-of-measure analysis and introducing gap-based quantities equaling the difference
between two arm means, and [15] using a form of the data processing inequality for KL divergence.
We refer to these as the gap-based and divergence-based approaches, respectively. Further works on
best-arm identification lower bounds include [16–18].

The divergence-based approach was shown in [15] to attain a stronger result than that of [14]
with a simpler proof, as we outline in Section 2.2. In this paper, we address the question of whether
the gap-based approach is fundamentally limited, or can be refined to attain a similar results to [15].
We show that the correct answer is the latter in many cases of interest, by suitable refinements of the
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analysis of [14]. The existing results and our results are presented in Section 2, and our analysis is
presented in Section 3.

2. Overview of Results

2.1. Problem Setup

We consider the following setup:

• There are M arms with Bernoulli rewards; the means are p = (p1, p2, · · · , pM), and this set of
means is said to define the bandit instance. Our analysis will consider instances with arms sorted
such that p1 ≥ p2 · · · ≥ pM, without loss of generality.

• The agent would like to find an arm whose arm mean is within ε of the highest arm mean for
some 0 < ε < 1, i.e., pl > p1 − ε. Even if there are multiple such arms, just identifying one of
them is good enough.

• In each round, the agent can pull any arm l ∈ [M] and observe an reward X(s)
l ∼ Bernoulli(pl),

where s is the number of times the l-th arm has been pulled so far. We assume that the rewards
are independent, both across arms and across times.

• In each round, the agent can alternatively choose to terminate and output an arm index l̂ believed
to be ε-optimal. The index at which this occurs is denoted by T, and is a random variable because
it is allowed to depend on the rewards observed. We are interested in the expected number of
arm pulls (also called the sample complexity) Ep[T] for a given instance p, which should ideally
be as low as possible.

• An algorithm is said to be (ε, δ)-PAC (Probably Approximately Correct) if, for all bandit instances,
it outputs an ε-optimal arm with probability at least 1− δ when it terminates at the stopping
time T.

We will frequently make use of some fundamental quantities. First, the best arm mean and the
gap to the best arm are denoted by

p∗ := p1, (1)

∆l := p∗ − pl . (2)

The set of ε-optimal arms and the set of ε-suboptimal arms are respectively given by

M(p, ε) := {l ∈ [M] : pl > p∗ − ε}, (3)

N (p, ε) := {l ∈ [M] : pl ≤ p∗ − ε}, (4)

and we make use of the binary KL divergence function

KL(p, q) := p log
p
q
+ (1− p) log

1− p
1− q

, (5)

where here and subsequently, log(·) denotes the natural logarithm.

2.2. Existing Lower Bounds

For any fixed p ∈ (0, 1/2), Mannor and Tsitsiklis [14] showed that if an algorithm is (ε, δ)-PAC

with respect to all instances with minl pl ≥ p > 0, and if ε ≤ 1−p∗
4 and δ ≤ e−8/8, then for any

constant α ∈ (0, 2), there exists c1 = O(p2) (depending on α) such that

Ep[T] ≥ c1

[(|M̃(p, ε)| − 1
)+

ε2 + ∑
l∈Ñ (p,ε)

1
∆2

l

]
log

1
8δ

(6)
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where

M̃(p, ε) =M(p, ε) ∩
{

l ∈ [M] : pl ≥
ε + p∗
2− α

}
, (7)

Ñ (p, ε) = N (p, ε) ∩
{

l ∈ [M] : pl ≥
ε + p∗
2− α

}
. (8)

Note that the subsets M̃(p, ε) and Ñ (p, ε) do not always form a partition of the arms, i.e., it may hold
that M̃(p, ε) ∪ Ñ (p, ε) ( [M]. The sets increase in size as α decreases, but implicitly this leads to a
lower value of c1. In addition, as we will see below, the p2 dependence entering via c1 is not necessary.

We also note that the lower bound in (6) depends on the instance-specific quantities M̃(p, ε),
Ñ (p, ε), and ∆l , and is thus an instance-dependent bound. On the other hand, the lower bound is only
stated for (ε, δ)-PAC algorithms, and the PAC guarantee requires the algorithm to eventually succeed
on any instance (subject to the assumptions given on pl , ε, and δ).

Kaufmann et al. [15] improved Mannor and Tsitsiklis’s lower bound by using a form of data
processing inequality for KL divergence, leading to the following whenever δ ≤ 0.15 and 0 < ε <

min{p∗, 1− p∗} [15] (Remark 5):

Ep[T] ≥
[
|M(p, ε)| − 1

KL(p∗ − ε, p∗ + ε)
+ ∑

l∈N (p,ε)

1
KL(pl , p∗ + ε)

]
log

1
2.4δ

. (9)

To directly compare this result with (6), it is useful to apply the following inequality [19](Eq. (2.8)):

2(p− q)2 ≤ KL(p, q) ≤ (p− q)2

q(1− q)
, (10)

which yields

Ep[T] ≥ (p∗ + ε)(1− p∗ − ε)

[
|M(p, ε)| − 1

4ε2 + ∑
l∈N (p,ε)

1
(ε + ∆l)2

]
log

1
2.4δ

. (11)

Even this weakened bound can significantly improve on (6), since (i)M(p, ε) ⊃ M̃(p, ε) andN (p, ε) ⊃
Ñ (p, ε), (ii) the p2 dependence is replaced by (p∗ + ε)(1− p∗ − ε), so the dependence on the smallest
arm mean is avoided (The 1− p∗ − ε term is potentially small when ε is close to 1− p∗, but since (6)
assumes ε ≤ 1−p∗

4 , we can still say that (11) is at least as good as (6)), and (iii) the assumption ε ≤ 1−p∗
4

is avoided.

2.3. Our Result and Discussion

Our lower bound, stated in the following theorem, is developed based on Mannor and Tsitsiklis’s
analysis for best-arm identification [14] (Theorem 1), but uses novel refinements of the techniques
therein to further optimize the bound (see Appendix C for an overview of these refinements).

Theorem 1. For any bandit instance p ∈ (0, p∗]M with p∗ ∈ (0, 1), and any (ε, δ)-PAC algorithm with
0 < ε < 1− p∗ and 0 < δ < δ0 for some δ0 < 1/4, we have

Ep[T] ≥
2γ0(p∗ + ε)(1− p∗ − ε)

7(ξ + 1)

[
|M(p, ε)| − 1

4ε2 + ∑
l∈N (p,ε)

1
(ε + ∆l)2

]
log

1 + 4δ0

4δ
, (12)
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where

γ0 =
1− 4δ0

8
, (13)

θ =
2δ

1− 4γ0
=

4δ

1 + 4δ0
, (14)

and ξ > 0 is the unique positive solution of the following quadratic equation:

7γ0ξ2 log
1
θ
= 3(ξ + 1). (15)

Observe that this result matches (11) (with modified constants), and therefore exhibits the above
benefit of depending on the full setsM andN without the condition pl ≥

ε+p∗
2−α (see (7)–(8)), as well as

avoiding the dependence on p, and permitting the broadest range of ε and δ among the above results.
The result (11) in turn matches (9) whenever the right-hand inequality in (10) is tight (i.e.,

whenever KL(p, q) = Θ
( (p−q)2

q(1−q)

)
). This is clearly true when p and q (representing the arm means) are

bounded away from zero and one, and also in certain limiting cases approaching these endpoints (e.g.,
when p and q both tend to one, but 1−p

1−q = Θ(1)). However, there are also limiting cases where the
upper bound in (10) is not tight (e.g., p = 1−√η and q = 1− η as η → 0), and in such cases, the
bound (9) remains tighter than that of Theorem 1.

3. Proof of Theorem 1

We follow the general steps of (Theorem 5 [14]), but with several refinements to improve the final
bound. The main differences are outlined in Appendix C.

Step 1: Defining a Hypothesis Test

Let us denote the true (unknown) expected reward of each arm by Ql for all l ∈ [M]. Similarly
to [14,15], we consider M hypotheses as follows:

H1 : Ql = pl , ∀l ∈ [M], (16)

and for each l 6= 1,

Hl : Ql = p∗ + ε, Ql′ = pl′ ∀l′ ∈ [M] \ {l}. (17)

If hypothesis Hl is true, the (ε, δ)-PAC algorithm must return arm l with probability at least 1− δ. We
will bound sample complexity when the hypothesis Hl is true. We denote by El and Pl the expectation
and probability, respectively, under hypothesis Hl .

Let Bl be the event that the algorithm returns arm l. Since ∑l∈M(p,ε) P1(Bl) ≤ 1 and |M(p, ε)| ≥ 1,
there is at most one arm l0 ∈ M(p, ε) that satisfies P1(Bl0) >

1
2 . Defining

M0(p, ε) :=
{

l ∈ M(p, ε) : P1[Bl ] ≤
1
2

}
=
{

l ∈ M(p, ε) : l 6= l0
}

, (18)

it follows that

|M0(p, ε)| ≥ (|M(p, ε)| − 1)+. (19)

Define

T (p, ε) :=M0(p, ε) ∪N (p, ε), (20)
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as well as

BM(p,ε) :=
⋃

l∈M(p,ε)

Bl , (21)

which is the event that the policy eventually select an arm in the ε-neighborhood of the best arm in
[M]. Since the policy is (ε, δ)-correct with δ < δ0, we must have

P1[BM(p,ε)] ≥ 1− δ > 1− δ0, (22)

and it follows from (18) and (22) that

P1[Bl ] ≤ max
{

δ0, 1/2
}

(23)

=
1
2

(24)

for all l ∈ T (p, ε).

Step 2: Bounding the Number of Pulls of Each Arm

Before proceeding, we make some additional definitions:

αl :=
ε + ∆l

(1− pl)pl
, (25)

βl := αl

√
1− pl

1− (p∗ + ε)
, (26)

α̃l := αl −
4
3
(
αl(1− pl)

)2, (27)

β̃l := βl −
4
3
(
αl(1− pl)

)2, (28)

The definitions (27) and (28) will only be used for arms with ε+∆l
pl
≤ 1

2 , and for such arms, we will

establish in the analysis that α̃l ≥ 0 and β̃l ≥ 0.
We prove the following lemma, characterizing the probability of a certain event in which (i) the

number of pulls of some arm l ∈ T (p, ε) falls below a suitable threshold (event Al below), (ii) a
deviation bound holds regarding the number of observed 1’s from pulling arm l (event Cl below), and
(iii) arm l is not returned (event Bc

l ).

Lemma 1. For each l ∈ [M], let Tl be the total number of times that arm l is pulled under the (ε, δ)-correct
policy. Let Kl = X(1)

l + X(2)
l + · · ·+ X(Tl)

l be the total number of unit rewards obtained from pulling the arm l
up to the Tl-th time. Let

G1,l :=
7p2

l α2
l (1− pl)

2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl , (29)

G2,l :=
[

β̃l(plTl − Kl)1{plTl > Kl}+ α̃l(plTl − Kl)1{plTl ≤ Kl}
]

1
{

ε + ∆l
pl

≤ 1
2

}
, (30)

where αl , α̃l , and β̃l are defined in (25), (27), and (28), respectively. Let

νl := (ξ + 1)
(√

1− pl
1− p∗ − ε

)
, (31)
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where ξ is defined in (15). Define the following events:

Al :=
{

G1,l ≤
1
νl

log
1
θ

}
, (32)

Cl =

{
G2,l ≤

ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

}
, (33)

Sl := Al ∩ Bc
l ∩ Cl . (34)

If l ∈ T (p, ε) (see (20)), then under the condition that

E1
[
G1,l

]
<

γ0

νl
log

1
θ

, (35)

we have

P1
[
Sl
]
>

1− 4γ0

2
. (36)

Proof. See Appendix A.

Intuitively, Al is the event that the total number of times that arm l is pulled is small, and Cl is the
event that |plTl − Kl | is not too large (since pulling an arm Tl times should produce roughly plTl ones).
The lemma indicates that if E[Tl ] is not too large, then P[Al ∩ Bc

l ∩ Cl ] is lower bounded, and this will
ultimately lead to a lower bound on P[Bc

l ], the event of primary interest.
In Lemma 2 below, we will use Lemma 1 to deduce a lower bound on E1[G1,l ], which amounts

to a lower bound on the average number of arm pulls by the definition of G1,l . Before doing so, we
introduce a likelihood ratio that will be used in a change-of-measure argument [14].

For any given time t ≥ 1 and l ∈ [M], let Tl(t) be the total number of times that arm l is pulled by
time t. Define

XTl(t)
l := {X(1)

l , X(2)
l , · · · , X(Tl(t))

l }, (37)

and let

Ft := σ(XT1(t)
1 , XT2(t)

2 , · · · , XTM(t)
M ) (38)

be the σ-algebra generated by XT1(t)
1 , XT2(t)

2 , . . . , XTM(t)
M for all t = 1, 2, . . ..

Recall that T is the stopping time of the algorithm, and that Tl := Tl(T) for all l ∈ [M]. Moreover,
let W = FT be the entire history up to the stopping time T. We define the following likelihood ratio:

Ll(w) =
Pl(W = w)

P1(W = w)
(39)

for every possible history w. Moreover, we let Ll(W) denote the corresponding random variable.
Given the history up to time T − 1 (i.e., FT−1), the arm reward at time T has the same probability
distribution under H1 and Hl unless the chosen arm is arm l. Therefore, we have

Ll(W) =
(p∗ + ε)Kl (1− p∗ − ε)Tl−Kl

pKl
l (1− pl)Tl−Kl

, (40)

where Kl := X(1)
l + X(2)

l + · · ·+ X(Tl)
l (or the total number of 1’s in the Tl pulls of the arm l).

The following proposition presents one of our key technical results towards establishing the lower
bound. We use the definitions in (1)–(5), along with (25)–(28).
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Proposition 1. Fix the bandit instance p, the parameter 0 < ε < 1− p∗, and the history W with corresponding
values Kl and Tl . Recalling the definitions of αl , α̃l , and β̃l in (25), (27), and (28), respectively, we have

Ll(W) ≥ exp
(
− G1,l − G2,l

)
, (41)

where G1,l and G2,l are defined in (29)–(30).

Proof. See Appendix B.

Based on Lemma 1 and Proposition 1, we obtain the following extension of [14] (Lemma 6) lower
bounding the average of each G1,l ; this lower bound will later be translated to a lower bound on the
number of arm pulls Tl .

Lemma 2. For any arm l ∈ T (p, ε), the following holds:

E1[G1,l ] ≥
γ0

νl
log

1
θ

, (42)

where θ and νl are defined in (14) and (31), respectively.

Proof. We use a proof by contradiction. Assume that

E1[G1,l ] <
γ0

νl
log

1
θ

, (43)

then by Lemma 1, Equation (36) holds. Moreover, by Proposition 1, we have

Ll(W) ≥ exp
(
− G1,l − G2,l

)
, (44)

and recalling the definition of Sl in (34), it follows from (44) that

Ll(W)1Sl ≥ exp
(
− G1,l − G2,l

)
1Sl (45)

≥ exp
(
− 1

νl

[
ξ

(√
1− pl

1− p∗ − ε

)
+ 1
]

log
1
θ

)
1Sl (46)

≥ exp
(
− 1

νl

[
(ξ + 1)

(√
1− pl

1− p∗ − ε

)]
log

1
θ

)
1Sl (47)

where (46) follows from the definitions in (32)–(33), and (47) follows from the fact that 1 − pl ≥
1− p∗ ≥ 1− p∗ − ε for all l ∈ [M].

By the choice of νl > 0 given in (31), it holds that

(ξ + 1)
(√

1− pl
1− p∗ − ε

)
1
νl

= 1. (48)

Hence, from (47) and (48), we have

Ll(W)1Sl ≥ θ1Sl =
2δ

1− 4γ0
1Sl , (49)
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for all l ∈ T (p, ε), by the definition of θ in (14).
We are now ready to complete the proof:

Pl [Bc
l ] ≥ Pl [Sl ] (50)

= El [1Sl ] (51)

= E1
[
Ll(W)1Sl

]
(52)

≥ E1

[
2δ

1− 4γ0
1Sl

]
(53)

=
2δ

1− 4γ0
P1[Sl ] (54)

>
2δ

1− 4γ0

(
1− 4γ0

2

)
(55)

= δ, (56)

where (50) follows from the definition of set Sl in (34), (52) follows by a standard change of
measure [20], (53) follows from (49), and (55) follows from (36) of Lemma 1 (recall that we
assumed (43)).

The inequality (56) shows a contradiction to the fact that under Hl , the (ε, δ)-correct bandit policy
must return the arm l with probability at least 1− δ, i.e., Pl(Bc

l ) ≤ δ. This concludes the proof.

From Lemma 2 and the definition of G1,l in (29), it holds that

E1

[
7α2

l p2
l (1− pl)

2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
≥ γ0

νl
log

1
θ

(57)

for all l ∈ T (p, ε). Hence, and using the definition of νl in (31), we have

E1
[
α2

l p2
l (1− pl)

2Tl
]
≥ 2γ0(p∗ + ε)

√
(1− pl)(1− p∗ − ε)

7(1 + ξ)

(√
1− p∗ − ε

1− pl

)
log

1
θ

(58)

=
2γ0(p∗ + ε)(1− p∗ − ε)

7(1 + ξ)
log

1
θ

. (59)

Step 3: Deducing a Lower Bound on the Sample Complexity

For any arm l ∈ T (p, ε), by the definition of αl in (25), we have

α2
l p2

l (1− pl)
2 = (ε + ∆l)

2. (60)

Note that 0 ≤ ∆l < ε for all l ∈ M0(p, ε), sinceM0 ⊆M, the set of ε-optimal arms. Therefore, we can
further simplify (60) to

α2
l p2

l (1− pl)
2 ≤ 4ε2 (61)

for l ∈ M0(p, ε).
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Substituting (60)–(61) into (59), we obtain

Ep[T] = Ep

[ M

∑
l=1

Tl

]
(62)

≥ Ep

[
∑

l∈M0(p,ε)
Tl

]
+Ep

[
∑

l∈N (p,ε)
Tl

]
(63)

≥ 2γ0(p∗ + ε)(1− p∗ − ε)

7(ξ + 1)

[
|M0(p, ε)|

4ε2 + ∑
l∈N (p,ε)

1
(ε + ∆l)2

]
log

1
θ

(64)

=
2γ0(p∗ + ε)(1− p∗ − ε)

7(ξ + 1)

[
|M0(p, ε)|

4ε2 + ∑
l∈N (p,ε)

1
(ε + ∆l)2

]
log

1 + 4δ0

4δ
, (65)

where (65) uses the definition of θ in (14). Finally, we obtain (12) from (65) and (19).

4. Conclusion

We have presented a refined analysis of best-arm identification following the gap-based approach
of [14], but incorporating refinements that circumvent some weaknesses, leading to a bound matching
the divergence-based approach [15] in many cases. It would be of interest to determine whether further
refinements could allow this approach to match [15] in all cases, or the extent to which the gap-based
approach extends beyond Bernoulli rewards and/or beyond the standard best-arm identification
problem (e.g., to ranking problems [21]).

Appendix A. Proof of Lemma 1 (Constant-Probability Event for Small Enough E1[G1,l])

As in [14], the proof of this lemma is based on Kolmogorov’s maximum inequality [22].

Lemma A1. (Kolmogorov’s Theorem [22]) Let Y1, Y2, · · · , Yn : Ω → R be independent random variables
defined on a common probability space (Ω,F ,P) with expectation E[Yk] = 0 and variance Var[Yk] < ∞ for
k = 1, 2, · · · , n. Then, for each λ > 0,

P
[

max
1≤k≤n

|Sk| ≥ λ

]
≤ 1

λ2 Var[Sn] =
1

λ2

n

∑
k=1

E[Y2
k ], (A1)

where Sk = Y1 + Y2 + · · ·+ Yk.

We start by simplifying the main assumption of the lemma:

γ0

νl
log

1
θ
> E1

[
G1,l

]
(A2)

≥
(

1
νl

log
1
θ

)
P1

[
G1,l >

1
νl

log
1
θ

]
(A3)

=

(
1
νl

log
1
θ

)
P1[Ac

l ], (A4)

where (A3) follows from Markov’s inequality, and (A4) follows from the definition of Al in (32).
It follows from (A4) that

P1
[
Al
]
≥ 1− γ0. (A5)
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We define

V =

{
l ∈ [M] :

ε + ∆l
pl

≤ 1
2

}
(A6)

and we will find it convenient to treat the cases l ∈ V and ł /∈ V separately. For l /∈ V , from (30)
and (33), we have Al ∩ Cl = Al since θ ∈ (0, 1), ξ > 0, and G2,l = 0, and it immediately follows
from (A5) that

P1
[
Al ∩ Cl

]
≥ 1− γ0. (A7)

On the other hand, for l ∈ V , we can simplify the definition of α̃l in (27) as follows:

α̃l = αl −
4
3
(
αl(1− pl)

)2 (A8)

= αl −
4
3
(
αl(1− pl)

)(
αl(1− pl)

)
(A9)

= αl −
4
3
(
αl(1− pl)

)( ε + ∆l
pl

)
(A10)

≥ αl −
2
3
(
αl(1− pl)

)
(A11)

≥ αl −
2
3

αl (A12)

=
1
3

αl (A13)

> 0, (A14)

where (A10) follows from (25), and (A11) follows from the definition of the set V in (A6). It follows that

0 < α̃l ≤ αl ≤ βl (A15)

for all l ∈ V , where the second inequality in (A15) follows from pl ≤ p∗ ≤ p∗ + ε and the definitions
of αl and βl in (25) and (26), respectively.

Similarly, for l ∈ V , we can simplify β̃l from (28) as follows:

β̃l = βl −
4
3
(
αl(1− pl)

)2 (A16)

≥ αl −
4
3
(
αl(1− pl)

)2 (A17)

= α̃l (A18)

> 0, (A19)

where (A17) follows from (A15), (A18) follows from (27), and (A19) again uses (A15). It follows that

0 < β̃l ≤ βl (A20)

for all l ∈ V .
Now, let

Z(j)
l := βl(X(j)

l − pl), j = 1, 2, · · · (A21)

Then, we have

E1[Z
(j)
l ] = E1

[
βl(X(j)

l − pl)
]
= βlE1

[
X(j)

l − pl
]
= 0. (A22)
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In addition, we note that Z(1)
l , Z(2)

l , · · · , are a i.i.d. sequence by the i.i.d. property of X(1)
l , X(2)

l , · · · .
For each positive integer tl , let Kl,tl

:= ∑tl
j=1 X(j)

l , and define

Ul := βl(Kl − plTl), (A23)

Vl(tl) := βl(Kl,tl
− pltl) (A24)

=
tl

∑
j=1

βl(X(j)
l − pl) (A25)

=
tl

∑
j=1

Z(j)
l . (A26)

Observe that

tl

∑
j=1

E1
[(

Z(j)
l
)2]

=
tl

∑
j=1

β2
l E1
[(

X(j)
l − pl)

2] (A27)

=
tl

∑
j=1

β2
l pl(1− pl) (A28)

= tl β
2
l pl(1− pl), (A29)

where (A28) follows since a Bernoulli(ρ) variable has variance ρ(1− ρ).
We are now ready to upper bound P1[Cc

l ∩ Al ] for l ∈ V :

P1[Cc
l ∩ Al ]

= P1

[{
β̃l(pl Tl − Kl)1{pl Tl > Kl}+ α̃l(pl Tl − Kl)1{pl Tl ≤ Kl} >

ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

}
∩ Al

]
(A30)

≤ P1

[{
β̃l
∣∣pl Tl − Kl

∣∣1{pl Tl > Kl}+ α̃l
∣∣pl Tl − Kl

∣∣1{pl Tl ≤ Kl} >
ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

}
∩ Al

]
(A31)

≤ P1

[{
βl
∣∣pl Tl − Kl

∣∣ > ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

}
∩ Al

]
(A32)

= P1

[{
|Ul | >

ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

}
∩
{

Tl <
2(p∗ + ε)

√
(1− pl)(1− (p∗ + ε))

7νlα
2
l p2

l (1− pl)2
log

1
θ

}]
(A33)

≤ P1

[
max

tl≤
2(p∗+ε)

√
(1−pl )(1−(p∗+ε)) log 1

θ
7νl α2

l p2
l (1−pl )

2

|Vl(tl)| >
ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

]
(A34)

= P1

[
max

tl≤
2(p∗+ε)

√
(1−pl )(1−(p∗+ε)) log 1

θ
7νl α2

l p2
l (1−pl )

2

∣∣∣∣ tl

∑
j=1

Zj

∣∣∣∣ > ξ

νl

(√
1− pl

1− p∗ − ε

)
log

1
θ

]
, (A35)

where:

• (A30) uses the definitions of Cl and G2,l ;
• (A32) follows from (A15) and (A20), along with 1{plTl > Kl}+ 1{plTl ≤ Kl} = 1;
• (A33) uses the definitions of Ul and Al ;
• (A34) follows from the definitions of Ul and Vl(tl) in (A23) and (A24) (which imply Ul = Vl(Tl));
• (A35) follows from (A26);
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Defining nl =
2(p∗+ε)

√
(1−pl)(1−(p∗+ε)) log 1

θ

7νl α
2
l p2

l (1−pl)2 for brevity, we continue from (A35) as follows:

P1[Cc
l ∩ Al ] ≤ max

tl≤nl

∑tl
j=1 E1

[
Z2

j
]

( ξ
νl

(√ 1−pl
1−p∗−ε

)
log 1

θ

)2
(A36)

= max
tl≤nl

pl(1− pl)tl( ξ
νl

(√ 1−pl
1−p∗−ε

)
log 1

θ

)2
β2

l (A37)

≤ 2νl(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

7ξ2
( 1−pl

1−p∗−ε

)
pl(1− pl) log 1

θ

(
βl
αl

)2

(A38)

=
2νl(p∗ + ε)

√
1−(p∗+ε)

1−pl

7ξ2
( 1−pl

1−p∗−ε

)
pl log 1

θ

(
βl
αl

)2

(A39)

≤
3νl

√
1−(p∗+ε)

1−pl

7ξ2
( 1−pl

1−p∗−ε

)
log 1

θ

(
βl
αl

)2

(A40)

=
3νl

√
1−(p∗+ε)

1−pl

7ξ2
( 1−pl

1−p∗−ε

)
log 1

θ

(
1− pl

1− p∗ − ε

)
(A41)

=
3(ξ + 1)
7ξ2 log 1

θ

(A42)

= γ0, (A43)

where:

• (A36) follows from Lemma A1 with n = nl and k = tl ;
• (A37) follows from (A29);
• (A38) follows from the definition of nl ;
• (A40) follows since the condition ε+∆l

pl
≤ 1

2 in V yields ε+p∗−pl
pl

≤ 1
2 , which implies

pl ≥
2
3
(p∗ + ε). (A44)

for all l ∈ V ;
• (A41) follows from the definitions of αl and βl in (25)–(26);
• (A42) follows from the definition of νl in (31);
• (A43) follows from the definition of ξ in (15).

Combining (A5) and (A43), it follows that

P1[Cl ∩ Al ] = P1[Al ]− P1[Cc
l ∩ Al ] (A45)

≥ 1− 2γ0 (A46)

for all l ∈ V , and from (A7) and (A46), we obtain

P1[Cl ∩ Al ] ≥ 1− 2γ0 (A47)

for all l ∈ T (p, ε).
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Finally, recall the definition of Sl in (34). From (24) and (A47), and using the union bound, we have

P1[Sl ] > 1−
(

2γ0 +
1
2

)
(A48)

=
1− 4γ0

2
(A49)

for all l ∈ T (p, ε), as desired.

Appendix B. Proof of Proposition 1 (Bounding a Likelihood Ratio)

We first state the following lemma, which can easily be verified graphically, or proved using
basic calculus.

Lemma A2. For any x ∈ [0, 1), the following holds:

1− x ≥ exp
(
− x√

1− x

)
. (A50)

To prove Proposition 1, we consider two cases:

• Case 1: ε+∆l
pl

> 1
2 . In this case, recalling that ∆l = p∗ − pl , we have

ε + p∗
pl

=
ε + ∆l

pl
+ 1 >

3
2
> 1. (A51)

On the other hand, since ε + pl ≤ ε + p∗ < 1, we have

0 <
ε + ∆l
1− pl

=
ε + p∗ − pl

1− pl
(A52)

= 1− 1− (p∗ + ε)

1− pl
, (A53)

and applying Lemma A2 gives

1− ε− p∗
1− pl

= 1− ε + ∆l
1− pl

(A54)

≥ exp
[
−
(√

1− pl
1− (p∗ + ε)

)(
ε + ∆l
1− pl

)]
(A55)

= exp
(
− ε + ∆l√

(1− pl)(1− (p∗ + ε))

)
. (A56)

Moreover, by the definition of αl in (25), we have

αl =
ε + ∆l

(1− pl)pl
>

1
2(1− pl)

, (A57)

since ε+∆l
pl

> 1
2 . It follows from (A57) that

αl < 2α2
l (1− pl). (A58)

In addition, again using ε+∆l
pl

> 1
2 , we have

pl < 2(ε + ∆l), (A59)
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and hence

p∗ + ε = (ε + ∆l) + pl (A60)

< 3(ε + ∆l). (A61)

We can now lower bound the likelihood ratio Ll(W) as follows:

Ll(W) =

(
ε + p∗

pl

)Kl
(

1− ε− p∗
1− pl

)Tl−Kl

(A62)

≥ exp
(
− ε + ∆l√

(1− pl)(1− (p∗ + ε))
(Tl − Kl)

)
(A63)

≥ exp
(
− ε + ∆l√

(1− pl)(1− (p∗ + ε))
Tl

)
(A64)

= exp
(
− (p∗ + ε)(ε + ∆l)

(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

)
(A65)

≥ exp
(
− 3(ε + ∆l)

2

(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

)
(A66)

= exp
(
−

3α2
l p2

l (1− pl)
2

(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

)
, (A67)

where (A63) follows from (A51) and (A56), (A66) follows from (A61), and (A67) follows by the
definition of αl in (25). Hence, (41) holds for this case in which G2,l = 0 (and also using 3 ≤ 7

2 ).

• Case 2: 0 ≤ ε+∆l
pl
≤ 1

2 . For this case, we have

Ll(W) =

(
ε + p∗

pl

)Kl
(

1− ε− p∗
1− pl

)Tl−Kl

(A68)

=

(
1 +

ε + ∆l
pl

)Kl
(

1− ε + ∆l
1− pl

)Tl−Kl

(A69)

=

(
1−

(
ε + ∆l

pl

)2)Kl
(

1− ε + ∆l
pl

)−Kl
(

1− ε + ∆l
1− pl

)Tl−Kl

(A70)

=

(
1−

(
ε + ∆l

pl

)2)Kl
(

1− ε + ∆l
pl

)−Kl
(

1− ε + ∆l
1− pl

)Kl(1−pl)/pl
(

1− ε + ∆l
1− pl

)(pl Tl−Kl)/pl

,

(A71)

where (A69) follows from ∆l = p∗ − pl along with (A53), and (A70) follows since 1− a2 =

(1− a)(1 + a).
From (A53), we have

0 <

(
ε + ∆l
1− pl

)2

=

(
1− 1− (p∗ + ε)

1− pl

)2

≤ 1− 1− (p∗ + ε)

1− pl
< 1. (A72)
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Hence, by Lemma A2, we have

1−
(

ε + ∆l
1− pl

)2

≥ exp
[
− 1√

1−
( ε+∆l

1−pl

)2

(
ε + ∆l
1− pl

)2]
(A73)

≥ exp
[
−
√

1− pl
1− p∗ − ε

(
ε + ∆l
1− pl

)2]
(A74)

= exp
[
−
(

1− pl√
(1− pl)(1− p∗ − ε)

)(
ε + ∆l
1− pl

)2]
, (A75)

where (A74) follows from (A72).
For the third term in (A71), we proceed as follows:

(
1− ε + ∆l

1− pl

)Kl(1−pl)/pl

=

(
1−

(
ε + ∆l
1− pl

)2)Kl(1−pl)/pl
(

1 +
ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A76)

≥ exp
[
−
(

1− pl√
(1− pl)(1− (p∗ + ε))

)(
ε + ∆l
1− pl

)2(Kl(1− pl)

pl

)](
1 +

ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A77)

= exp
[
− (1− pl)

2

pl
√
(1− pl)(1− (p∗ + ε))

(
ε + ∆l
1− pl

)2

Kl

](
1 +

ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A78)

≥ exp
[
− 3(1− pl)

2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

(
ε + ∆l
1− pl

)2

Kl

](
1 +

ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A79)

= exp
[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Kl

](
1 +

ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A80)

≥ exp
[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

](
1 +

ε + ∆l
1− pl

)−Kl(1−pl)/pl

(A81)

≥ exp
[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
exp

[
−
(

ε + ∆l
1− pl

)(
Kl(1− pl)

pl

)]
(A82)

= exp
[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
exp

[
−
(

ε + ∆l
pl

)
Kl

]
, (A83)

where (A76) uses 1 − a2 = (1 − a)(1 + a), (A77) follows from (A75), (A79) follows
from (A44), (A80) follows by definition of αl in (25), (A81) follows from the fact that Kl ≤ Tl ,
and (A82) follows from the fact that (1 + x)−y ≥ exp(−xy) for all 0 ≤ x and y ≥ 0.
On the other hand, observe that(

1− ε + ∆l
pl

)−Kl

≥ exp
[(

ε + ∆l
pl

)
Kl

]
(A84)

since (1− x)−y ≥ exp(xy) for all 0 ≤ x ≤ 1 and y ≥ 0. It follows from (A83) and (A84) that

(
1− ε + ∆l

pl

)−Kl
(

1− ε + ∆l
1− pl

)Kl(1−pl)/pl

≥ exp
[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
,

(A85)
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and it follows from (A71) and (A85) that

Ll(W) ≥
(

1−
(

ε + ∆l
pl

)2)Kl
(

1− ε + ∆l
1− pl

)(pl Tl−Kl)/pl

× exp
[
− 3

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

α2
l p2

l (1− pl)
2Tl

]
. (A86)

Now, since 0 <
( ε+∆l

pl

)2 ≤ 1
4 = 1− 3

4 (since we are in the case 0 ≤ ε+∆l
pl
≤ 1

2 ), by Lemma A2, we
have(

1−
(

ε + ∆l
pl

)2)Kl

≥ exp
[
−
√

4
3

(
ε + ∆l

pl

)2

Kl

]
(A87)

≥ exp
[
− 4

3

(
ε + ∆l

pl

)2

Kl

]
(A88)

= exp
[
− 4

3
(
αl(1− pl)

)2Kl

]
(A89)

= exp
[

4
3
(
αl(1− pl)

)2
(plTl − Kl)

]
exp

[
− 4

3
(
αl(1− pl)

)2 plTl

]
, (A90)

where (A89) follows from the definition of αl in (25).

We now consider two further sub-cases:

(i) If plTl > Kl , then we have

(
1− ε + ∆l

1− pl

)(pl Tl−Kl)/pl

≥ exp
(
−
(√

1− pl
1− (p∗ + ε)

)(
ε + ∆l
1− pl

)(
plTl − Kl

pl

))
(A91)

= exp
(
−
(√

1− pl
1− (p∗ + ε)

)
αl
(

plTl − Kl
))

(A92)

= exp
(
− βl

(
plTl − Kl

))
, (A93)

where (A91) follows from Lemma A2 along with (A53), and (A93) follows from the
definition of βl in (26).

(ii) If plTl ≤ Kl , then we have

(
1− ε + ∆l

1− pl

)(pl Tl−Kl)/pl

≥ exp
[
−
(

ε + ∆l
1− pl

)(
plTl − Kl

pl

)]
(A94)

= exp
[
− αl(plTl − Kl)

]
, (A95)

where (A94) follows from the fact that (1− x)y ≥ exp(−xy) if 1 ≥ x ≥ 0 and y ≤ 0.

From (A93) and (A95), we obtain

(
1− ε + ∆l

1− pl

)(pl Tl−Kl )/pl

≥ exp
[
−
(

βl(pl Tl − Kl)1{pl Tl > Kl}+ αl(pl Tl − Kl)1{pl Tl ≤ Kl}
)]

. (A96)

Now, from (A86), (A90), and (A96), we have



Entropy 2020, 22, 788 17 of 18

Ll(W) ≥ exp
[

4
3
(
αl(1− pl)

)2
(plTl − Kl)

]
exp

[
− 4

3
α2

l pl(1− pl)
2Tl

]
× exp

[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
× exp

[
−
(

βl(plTl − Kl)1{plTl > Kl}+ αl(plTl − Kl)1{plTl ≤ Kl}
)]

(A97)

= exp
[
− 4

3
α2

l pl(1− pl)
2Tl

]
exp

[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
× exp

[
−
(

β̃l(plTl − Kl)1{plTl > Kl}+ α̃l(plTl − Kl)1{plTl ≤ Kl}
)]

(A98)

≥ exp
[
− 2

(p∗ + ε)
α2

l p2
l (1− pl)

2Tl

]
exp

[
−

3α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
× exp

[
−
(

β̃l(plTl − Kl)1{plTl > Kl}+ α̃l(plTl − Kl)1{plTl ≤ Kl}
)]

(A99)

≥ exp
[
−

7α2
l p2

l (1− pl)
2

2(p∗ + ε)
√
(1− pl)(1− (p∗ + ε))

Tl

]
× exp

[
−
(

β̃l(plTl − Kl)1{plTl > Kl}+ α̃l(plTl − Kl)1{plTl ≤ Kl}
)]

, (A100)

where (A98) follows from the definitions of α̃l and β̃l in (27)–(28), (A99) follows by writing
4
3 α2

l pl(1− p2
l ) =

4
3pl

α2
l p2

l (1− p2
l ) and applying (A44), and (A100) uses

√
(1− pl)(1− p∗ + ε) ≤

1. Hence, (41) also holds in this case, and the proof is complete.

Appendix C. Differences in Analysis Techniques

Here we briefly overview some of the main differences in our analysis techniques compared
to [14], leading to the improvements highlighted in Section 2:

• We remove the restriction pl ≥
ε+p∗

1+
√

1
2

(or ε+∆l
pl
≤ 1√

2
) used in the subsetsM(p, ε) and N (p, ε)

in (Equations (4) and (5) [14]), so that our lower bound depends on all of the arms. To achieve
this, our analysis frequently needs to handle the cases ε+∆l

pl
> 1

2 and ε+∆l
pl
≤ 1

2 separately (e.g.,
see the proof of Proposition 1).

• The preceding separation into two cases also introduces further difficulties. For example, our
definition of G2,l in (30) is modified to contain different constants for the cases plTl > Kl and
plTl ≤ Kl , which is not the case in (Lemma 2 [14]). Accordingly, the quantities α̃l in (27) and β̃l
in (28) appear in our proof but not in [14].

• We replace the inequality (1− x)y ≥ e−1.78xy (for x ∈
(
0, 1√

2

)
and y ≥ 0) (Lemma 3 [14]) by

Lemma A2. By using this stronger inequality, we can improve the constant term c1 from O(p2)

to (p∗ + ε)2. In addition, Lemma A2 does not require the assumption x ≤ 1√
2

as in (Lemma 3

[14]), so we can use it for the case p∗ > 1
2 , which required a separate analysis in [14].

• To further reduce the constant term from (p∗ + ε)2 to (p∗ + ε) (see Theorem 1), we also need to
use other mathematical tricks to sharpen certain inequalities, such as (A83).
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