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Abstract: This investigation deals with a discrete dynamic system of susceptible-infected-susceptible
epidemic (SISE) using the Tsallis entropy. We investigate the positive and maximal solutions of
the system. Stability and equilibrium are studied. Moreover, based on the Tsallis entropy, we shall
formulate a new design for the basic reproductive ratio. Finally, we apply the results on live data
regarding COVID-19.
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1. Introduction

Discrete dynamic systems of SISE were extensively discussed for a long historical period,
that successfully described the procedure in disease diffusion (see [1]). A decay ago, in the year 1927,
the traditional SISE was offered [2]. After that, there established an enormous number of periodicals
on SISE [3–5]. In overall, SISEs are considered to be homogeneously combined, which indicates that
susceptible persons are infected with the same information. Nevertheless, there are various systems of
populations in human culture [6], and the joining between persons is not identical. The stability and
convergence of the systems are studied by using the basic reproductive ratio. This ratio is given in
different formula based on the system and the situation of the solution. In our discussion, we suggest
new formal of this ratio based on the entropy concept. For COVID-19, the researchers established
a suitable ratio called the case fatality rate (CFR).

In [7], the researchers studied SISE at level-liberated networks; it designates that under the
suitable parameters, there is probably a threshold at which the disease will persevere. In view of [7],
some inoculation approaches are investigated, which additional develop the mechanisms of SISE
on networks [8–10]. Obviously, the classes of difference equations have numerous practices in SISE
system [11–13]. In reality, a positive interval, and discrete simulations often give information about
disease [14]. On the other hand, a difference equation is the discretion of the continuous model [15,16],
which indicates it practical to respond to the approximation method. Particularly, discrete simulations
show a more complex dynamical conduct than the conforming continuous representations [17–20].

Under these compensations in attention, the state of the discrete SISE system of networks is about
excessive investigation care. From the above-mentioned details, we shall deal with a discrete-time
SISE system involving Tsallis entropy, which will be important work. We apply the results to live data
regarding COVID-19.
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2. The SISE Dynamical System Involves Tsallis Entropy

In traditional statistical methods, the entropy function formerly presented by Rudolf Clausius is
construed as statistical entropy utilizing probability theory. The statistical entropy view was introduced
in 19th century with the work of physicist Ludwig Boltzmann. This entropy was generalized by Tsallis
as follows [21]: Consider a discrete set of probabilities {ρ} satisfying the condition ∑ ρ = 1, and α

any real number, the Tsallis entropy is formulated by the terms

Υα(ρ) =
1

α− 1

(
1−

n

∑


ρα


)
, α 6= 1,

where α is a real parameter which is known as the entropy-index. One of the most important property
of Tsallis entropy is that it has a maximum value determining when each micro-state is equiprobable
(ρ = 1/Φ for all ) and then we get

Υmax
α =

1−Φ1−α

α− 1
, α 6= 1.

If α > 1 then Υmax
α → 1/(α− 1) and if α→ ∞ then Υmax

α → 0 (see [22]).
Machado [23,24] presented novel formulas for entropy inspired by using the behavior of fractional

calculus. The results of the generalized fractional entropy are examined both in usual probability
distributions and data series. Moreover, by using the quantum deformed calculus, Hasan et al. [25]
introduced a generalized q-entropy.

Numerous issues rule the transmissibility of the infection from the affected to the unaffected.
In addition, disease dynamical systems can be investigated at altered rules: the single distinct, small
collections of people, and among whole people. Different representations are selected given by the
complexity of available data. In their contemporary avatar, computers that generate the numbers and
distribution designs of infections simulate systems (see [26–29]).

The SISE system is formulated with N patrons and all the patrons are separated into n groups by
their joints (junctions) ( = 1, 2, ..., n). Consequently, it has N = ∑n

=1 N, where N represents the total
number of the patron with position . It is considered that every patron has two positions, the first
position is infected (I) and the second position is the susceptible (S). The susceptible patron may be
infected with transmission ratio τ, and the infected patron may improve to a susceptible patron with
repossession ratio $. Hence, we obtain the equation

N(t) = S(t) + I(t)

and the discrete system

S(t + 1) = S(t)
(

1− τT Υα(I(t))
)
+ $T I(t)

I(t + 1) = I(t)
(

1− $T
)
+ τT S(t)Υα(I(t)),

(1)

(
0 ≤ S(0) ≤ N, 0 ≤ I(0) ≤ N

)
where Υα(I(t)) is the Tsallis entropy introduced by the probability that any given connect points to
an infected node and T indicates the time-step measure. It is a value indicating out that scheme (1) is
recognized by employing the forward Euler pattern to the continuous SISE system and the equilibrium
points (in discrete system they are equal to the fixed points) of structure (1) are similar as for the
continuous equivalent. By letting

S(t) =
n

∑
=1

S(t), and I(t) =
n

∑
=1

I(t),
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system (1) becomes

S(t + 1) = S(t)
(

1− τT Υα(I(t))
)
+ $T I(t)

I(t + 1) = I(t)
(

1− $T
)
+ τT S(t)Υα(I(t)),

(2)

(
0 ≤ S(0) ≤ N, 0 ≤ I(0) ≤ N, t = 0, 1, 2, ..

)
.

Approximate (2) to entropy system, we have

S(t + 1) = S(t)− τT Λ
(
Υα(I(t), Υα(S(t)

)
+ $T I(t)

I(t + 1) = I(t)
(

1− $T
)
+ τT Λ

(
Υα(I(t), Υα(S(t)

)
,

(3)

where Λ
(
Υα(I(t), Υα(S(t)

)
= Υα(I(t))× Υα(S(t)).

The definition of the function Λ is more general description of the interaction of susceptible
and infected individual using entropy. Entropy is a powerful implement for analysis telling the
probability distributions of the potential formal of a system, and hence the information encoded in it.
Nevertheless, significant information may also be organized in the time-based dynamics, a feature that
is not typically taken into account. The notion of scheming entropy based on non-linear designs is
utilized to discover spatial structures and processes. Usually, spatial processes have been supposed
to be linear, characteristically in relations of a linear auto regressive or heartrending average process.
Nevertheless, additional spatial dynamics are possible to display nonlinear types in a technique that is
similar to time-based systems. The capacities of nonlinear systems are progressively documented in
science, as the restrictions of equilibrium representations in clarifying real-world phenomena convert
more seeming. As a consequence, interest is growing in the growth studies in science.

We proceed to conclude the existence of solution of (3).

Theorem 1. Consider the entropy discrete system of SISE (3). Then it has bounded non-negative solutions if
the following hypotheses are achieved

0 < $T < 1, α > 1. (4)

Proof. By the maximum value of the Tsallis entropy, System (3) implies that

I(1) = I(0)
(

1− $T
)
+ τT Λ

(
Υα(I(0), Υα(S(0)

)
≤ N(1) + τT Υmax

α (I)× Υmax
α (S)

≤ N(1) +
τT

(α− 1)2 .

By letting α → ∞, we have limα→∞
τT

(α−1)2 = 0 for all fixed parameters τ and T . Thus, I(1) is
bounded by N. Moreover, since I(0) = N with $T 1 then this yields that for α → ∞, the initial
solution becomes I(0) = N and consequently the step one of solution becomes I(1) = N(1− $T ) ≥ 0,
which leads to the non-negative solution I. Hence, by induction, one can prove that 0 ≤ I(t) ≤ N for
t = 0, 1, 2, ... .By the above construction together with the initial condition S(0) = 0, we confirm that
S(t) ≤ N for all t = 0, 1, 2, .. . Furthermore, since $T > 0 then S(t) → $T I(t) ≥ 0. We indicate that
System (3) has a bounded non-negative solution.
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3. Stability of SISE System

In this section, we aim to study the stability of SISE (1). By substituting I(t) = N(t)− S(t) in
the first equation of System (1), we have

S(t + 1) = S(t)
(

1− τT Υα(I(t))
)
+ $T (N − S(t))

I(t + 1) = I(t)
(

1− $T
)
+ τT S(t)Υα(I(t)),

(5)

which is equivalent to the following system

S(t + 1) = S(t)
(

1− $T − τT Υα(I(t))
)
+ $T N(t)

I(t + 1) = I(t)
(

1− $T
)
+ τT S(t)Υα(I(t)).

(6)

The disease free equilibrium of SISE (6) can be computed by the following construction

Ξ0 (S1(0), ..., Sn(0), I1(0), ..., In(0)) = (N1, ..., Nn, 0, ..., 0).

By employing the linearization matrix method [19] on the system (6) at the point Ξ0, we obtain

Ψ =

(
ψ + σ 0
−ψ σ

)
2n×2n

, (7)

where ψ (the vector of new infections) and σ ( the vector of all other transitions including
disease-connected deaths) are non-negative such that ψ + σ is irreducible and Ψ indicates the Jacobi
matrix at Ξ0 (we assume that this point is unique). Note that

ψ =

 τT N1Υmax
α ... τT nN1Υmax

α

...
τT NnnΥmax

α ... τT Nnn2Υmax
α


n×n

,

and

σ =

1− $T 0 ... 0
...

0 ... 0 1− $T


n×n

.

Hence, System (6) approximates to the form

Z(t + 1) ≈ ΨZ(t), Z(t) = (S(t), I(t)), t = 0, 1, 2, .. .

Remark 1.

• We used the maximum value of entropy in our system because our suggested system is formulated only
for the infected and susceptible persons. We did not include the removed cases R(t) (death and recovery).
This variable may be defined by using the maximum entropy R(t) = Υmax

α (I(t)) (see [30]).
• Note that entropy index is strongly connected to the number of individuals N and the number of groups

n, (1 ≤ n ≤ N), so that when n = N, one would expect the SIS model consequence with non-linear
incidence. Very recently, Tsallis and Tirnakli [31] proposed a q-statistical functional arrangement that
acts to describe acceptably the existing information for all countries. Reliably, calculations of the dates
and altitudes of those peaks in rigorously affected countries become likely unless well-organized actions or
vaccines, or functional modifications of the accepted epidemiological approaches, arise.



Entropy 2020, 22, 769 5 of 10

The Basic Reproductive Ratio

The basic reproductive ratio (λ0) can be explained as the predictable ratio of cases openly produced
by one case in a resident where all persons are subject to infection. Mathematically, it is known as the
spectral radius of the matrix ψ(Id − σ)−1 (the largest absolute number of the eigenvalues).

There are other different definitions and formulas can describe the situation properly. This ratio
plays an important role to achieve the stability. It has been shown in many studies if λ0 > 1 then we
indicate an unstable situation and if λ0 < 1 then the situation is asymptotically stable, while the
case λ0 = 1 indicates the stability, but not being asymptotic [19]. Recently, for COVID-19, researchers
suggested the case fatality rate (CFR, the aim is to reduce this ratio) [32]

CFR(t) =
D(t)
I(t)

, t = 0, 1, 2, .. ,

where D indicates the number of dying people. For example, if the number D = 10 and I = 500,
then the ratio is 2%. Simultaneously, if it is recorded that there are 500 susceptible persons then

CFRN(t) =
D(t)

I(t) + S(t)
=

10
1000

= 1%.

The aim is to reduce the rate λ0 or CFR by isolated position and keep cleaning the environment of
the person. In our discussion, we suggest to involve the entropy evaluation for this rate. In [33] the
authors formulated λ0 by using the probability of the survival function P as follows (for discrete data):

λ0 =
I(t)× P(t)

N(t)
, t = 0, 1, 2, .. N(t) = I(t) + S(t).

From the above example I = 500, D = 10 and N = 1000, we have

λ0 =
500× 0.98

1000
= 49%.

The idea of the probability of the survival function is not suitable for COVID-19.
Therefore, based on our SISE system, we suggest to use the maximum entropy Υmax

α (I) as follows:

(λ0)α =
I(t)× Υmax

α (I(t))
N(t)

, t = 0, 1, 2, ... α 6= 1.

Based on the above data, we indicate the following results (λ0)2 = 0.5 ≈ λ0, that is limα→2(λ0)α =

λ0. Note that , (λ0)3 = 0.25, (λ0)4 = 0.16, .... We conclude that the ratio decreases whenever α increases.
Hence, the SISE system is stable, while for α < 1, the system is unstable. For example, when α = 0.5
and the probability P(I) = 0.1 this implies that Φ = 1

P(I) = 10, we get Υmax
α (I(t) = 1−100.5

−0.5 = 4.324;
which leads (λ0)0.5 = 4.324× 0.5 = 2.162 > 1.

From above, we conclude that Theorem 1 can be extended to include the stability as follows:

Theorem 2. Consider the entropy discreet system of SISE (3). If the conditions

0 < $T < 1, α > 1 (8)

hold. Then every solution of (3) is bounded non-negative and stable satisfying the basic reproductive ratio

(λ0)α =
I(t)× Υmax

α (I(t))
N(t)

, t = 0, 1, 2, ... . (9)

The survival function (or it called reliability function) is a function that offers the probability
that a patient, scheme, or other thing of concern will survive further than any indicated time and it
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is one of the techniques to define and show survival data. It states as the probability that a subject
survives longer than time t. The distribution of survival times may be approximated well by a function
such as the exponential distribution. Numerous distributions are usually utilized in survival analysis,
containing the exponential, Tsallis entropy, gamma, normal and log-logistic. These distributions
are formulated by parameters. The entropy optimization principle (includes the maximum entropy)
converts it from a measure of information into an implement of statistics conclusively [34]. Since the
higher maximum entropy goes to Tsallis entropy (see [35]), then it is a confidence to employ this fact to
define CFR.

4. Applications

In this section, we use live data to examine our theoretical results, especially the stability of the
SISE system by using (λ)α. Table 1 shows the data from the first infected countries until the end of
May. The rate of death is given by using CFRN(t). The basic reproduction ratio is evaluated by using
(λ0)α for some α > 1. We use the conditions of Theorem 2 to get non-negative bounded and stable
solution. One can consider the following system

Table 1. Data of COVID-19 until end of May (α = 2, 3, 4).

Country Name Total (N) Infected Number (I) Death CFRN (λ)2 (λ)3 (λ)4

USA 1,837,170 599,867 106,195 15% 0.326 0.163 0.097
Brazil 514,992 279,096 29,341 12% 0.541 0.275 0.162
Russia 405,843 171,883 4693 1% 0.423 0.211 0.127
Spain 286,509 196,958 27,127 12% 0.687 0.343 0.206

Example 1. Consider the following system

S(t + 1) = aS(t)(1− S(t)× Υmax
α (I)

I(t + 1) = bI(t)(1− I(t))× Υmax
α (I),

(10)

where a := τT , b := $T . Let a = b = 0.4, initial condition (S0, I0) = (0.1, 0.1) and α = 2, we have a stable
limit cycle for the system of period one (see Figure 1). The red line shows the values of each considered case.

Figure 1. Bifurcation diagrams of System (10) with 100 iterations, when a = b = 0.4 and α = 2 (left
column, with initial condition S0 = I0 = 0.1). The middle column is for a = b = 0.7 and initial
condition S0 = I0 = 0.2 The right column indicates the case a = b = 0.9 under the initial condition
S0 = I0 = 0.1. All cases indicate a stable limit cycle of period one. The red line indicates the values of
each case.
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Example 2. Consider the following system

S(t + 1) = −aS(t)2 × Υmax
α (I) + I(t) + 1

I(t + 1) = bS(t)× Υmax
α (I),

(11)

where a := τT , b = $T and α = 2 with (0.2, 0.6) as initial point. In all figures, the red line indicates the
values of each considered case as follows:

• For a = 0.9, b = 0.3, the system has a limit cycle with period 4, while for a = 0.5, b = 0.3 the system has
a limit cycle with period 2.

• For a = 0.1, b = 0.3, it has no limit cycle (see Figure 2). The positive fixed point of the third case is
ϕ = 0.3 = (λ)2 in the USA’s situation. While there are two positive fixed points (equilibrium point in the
difference equation) for the first case, ϕ1 = 0.7 = (λ)2 for Spain and ϕ2 = (λ)3 for Russia.

• Also, for the initial condition =(0,0) and the case a = 0.9, b = 0.5, we get two positive fixed points ϕ1 = 0.8
and ϕ2 = 0.4 = (λ)2 for Russia.

• Figure 3 represents to the bifurcation behavior of the system (9) with the initial condition (0, 0), a =

0.1, b = 0.5 (left), a = 0.4, b = 0.3 (middle) and a = 0.1, b = 0.5 (right). In the second case, we have
a limit cycle of period 2 and two positive fixed points ϕ1 = 0.9 and ϕ2 = 0.27 = (λ)3 for Brazil.

• The last case a = 0.7, b = 0.2, we have two positive fixed points ϕ1 = 0.7 = (λ)2 (Spain) and
ϕ2 = 0.16 = (λ)4 (Brazil).

Figure 2. Bifurcation diagrams of System (11), when a = 0.9, b = 0.3 (left), a = 0.5, b = 0.3 (middle)
and a = 0.1, b = 0.3 (right). The value of the α = 2. Note that x = S(t).

Note that the simplest situation is the case where there is no recuperation rate. This leads to
an SI-like model, so that the pathogen infects all individuals on the long run. The simple continuous
SI model has the logistic function as a solution and its discretized version is the logistic map,
which presents the traditional bifurcation diagram as stable solutions.
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Figure 3. Bifurcation diagrams of System (11), when a = 0.1, b = 0.5 (left), a = 0.4, b = 0.3 (middle,
with a limit cycle of period 2) and a = 0.7, b = 0.2 (right, with a limit cycle of period 2). The red line
represents the values of each considered case.

5. Conclusions

The correct balance between short- and long-term data loading in the world of big data has the
following strategies:

• An applied perception based on the main usages for the data;
• The data constructions wanted for analysis;
• The relevancy of the data over time;
• Development with little organization is essential.

We prepared a new formula of the basic reproductive ratio (λ0)α, which is defined by the Tsallis
entropy. The formula is useful for the stability of SISE system involving the Tsallis entropy. It is
related to long time data ( by taking in account the above stratifies, it may modify for short time data ).
We applied the suggested system by using live data regarding COVID-19.
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