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Abstract: Intuitionistic fuzzy distance measurement is an effective method to study multi-attribute
emergency decision-making (MAEDM) problems. Unfortunately, the traditional intuitionistic
fuzzy distance measurement method cannot accurately reflect the difference between membership
and non-membership data, where it is easy to cause information confusion. Therefore, from
the intuitionistic fuzzy number (IFN), this paper constructs a decision-making model based on
intuitionistic fuzzy cross-entropy and a comprehensive grey correlation analysis algorithm. For the
MAEDM problems of completely unknown and partially known attribute weights, this method
establishes a grey correlation analysis algorithm based on the objective evaluation value and subjective
preference value of decision makers (DMs), which makes up for the shortcomings of traditional
model information loss and greatly improves the accuracy of MAEDM. Finally, taking the Wenchuan
Earthquake on May 12th 2008 as a case study, this paper constructs and solves the ranking problem of
shelters. Through the sensitivity comparison analysis, when the grey resolution coefficient increases
from 0.4 to 1.0, the ranking result of building shelters remains stable. Compared to the traditional
intuitionistic fuzzy distance, this method is shown to be more reliable.

Keywords: multi-attribute emergency decision-making; intuitionistic fuzzy cross-entropy; grey
correlation analysis; earthquake shelters; attribute weights

1. Introduction

At present, earthquakes, fires, novel coronavirus infections, and other frequent disasters have
caused great loss to human beings. Owing to the uncertainty and fuzziness of such emergency
problems, it is difficult for decision makers (DMs) to determine alternatives with real numbers to
make quick decisions. The accurate processing of information has become an unavoidable problem
in the development of the emergency decision [1–3] field. Under this urgent demand, fuzzy set
theory, which can deal well with the uncertainty of decision-making problems, came into being [4].
Fuzzy sets [5,6] use membership as a single scale to reflect the support and opposition of DMs to
objective things. However, with the development of decision theory, it is difficult to accurately describe
the uncertainty of objective things by fuzzy sets alone. Based on this, Atanassov, a Bulgarian professor,
put forward the concept of the intuitionistic fuzzy set (IFS) in the 1980s [7,8]. He used membership
degree and non-membership degree to express the support, opposition, and hesitation of decision
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information. Compared to the fuzzy set, the IFS can describe the natural attributes of objective things
more accurately [9–11].

The IFS is a new mathematical tool for dealing with uncertain and complex information efficiently,
which is widely used in the field of multi-attribute decision-making (MADM) [12–14]. In recent years,
scholars have made great progress in the research of intuitionistic fuzzy multi-attribute decision-making
(IFMADM). The similarity measure is one of the most important decision-making methods in IFMADM.
Xu et al. [15] systematically analyzed the similarity measurement formula based on geometric distance,
set theory, and intuitionistic fuzzy matching degree. In order to improve the measurement accuracy of
the similarity of the IFS, Park et al. [16] and Hu et al. [17] used the similarity measurement formula based
on intuitionistic fuzzy entropy for the intuitionistic fuzzy number (IFN) and interval IFN, respectively,
and optimized the alternatives. The IFS can represent the uncertainty of decision information well, but
there are some difficulties in data comparison. Score function and precise function are effective means
for data comparison and ranking in IFMADM. Chen et al. [18] were the first experts to study the score
function of the IFN. They used the difference between membership and non-membership in the IFN to
construct a function to compare the size relationship of the IFN, which is the basis of IFMADM. On the
basis of score function, Hong et al. [19] proposed an intuitionistic fuzzy precise function, which greatly
improved the efficiency of decision-making. The classical multi-attribute method has a wide range
of development and application in the field of intuitionistic fuzzy. Table 1 summarizes some main
methods of IFMADM.

Table 1. A brief overview of preprocessing methods in intuitionistic fuzzy multi-attribute
decision-making (IFMADM).

Literatures Methods

Xu [15], Park et al. [16] Similarity measure
Hu et al. [17] Similarity measure, Fuzzy entropy

Chen et al. [18] Score function
Hong et al. [19] Intuitionistic fuzzy precise function
Wu et al. [20] AHP, Score judgment matrix

Keshavarzfarda et al. [21] AHP, DEMATEL
Chatterjee et al. [22], Liao et al. [23] TOPSIS, VIKOR

Wu et al. [24], Vahdani et al. [25], Yu et al. [26] ELECTRE, PROMETHEE
Meng et al. [27] Prospect theory
Luo et al. [28] Regret theory

Unfortunately, natural disasters, such as fires and floods, often lead to unexpected and disastrous
consequences. A large number of emergency decision-making problems have evolved into MADM.
Up to now, domestic and foreign scholars have conducted in-depth research in this field. Xu et al. [29]
proposed a two-stage method to support the consensus-building process of large-scale MADMand
applied it to earthquake shelter selection. Taking a fire and explosion accident as the study, Xu et al. [30]
defined a generalized asymmetric language D number and proposed the corresponding MADM fusion
algorithm, which verified the effectiveness of the method. Li et al. [31] proposed a risk decision analysis
method based on the TODIM (an acronym in Portuguese of interactive and MADM) method to solve the
emergency evacuation problem of tourist attractions, in which the attribute value and the probability
of state occurrence are in the interval number format. This method solves this kind of emergency
decision-making problem well, which shows that it is more effective than the traditional method.
Based on an example of ship collision, Xiong et al. [32] used two intelligent algorithms, multi-attribute
differential evolution algorithm and non-dominant sorting genetic algorithm, to verify the feasibility
and effectiveness of the model. From the prediction model of the triple exponential smoothing
method, Wang et al. [33] proposed an MADM additive weighting method, weighted product method,
and elimination selection transformation reality method to sort the recycled electric vehicles, which
provided an effective solution for managers and researchers in the electric vehicle industry and
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improved the efficiency of the electric vehicle industry. For the multi-attribute group decision-making
problem of community sustainable development emergency response, Wu et al. [34] proposed a method
based on subjective imprecise estimation of the reliability of binary language vocabulary, which greatly
improved the efficiency of MADM. Karimi et al. [35] introduced the best and worst algorithm to solve
the MADM problem in the fuzzy environment and applied this method to the evaluation of hospital
maintenance, which proves the satisfactory performance of this method. Based on the above analysis,
the MADM method is widely used in the field of emergency decision-making, which can solve the
uncertainty well in the case of emergency. Table 2 summarizes some applications of the MADM
method in emergency situations.

Table 2. A brief literature list on the applications of multi-attribute decision-making (MADM) methods
in emergency situations.

Literatures Methods Applications

Xu et al. [29] Two-stage theory Earthquake shelter selection
Xu et al. [30] Generalized asymmetric language Fire and explosion accident
Li et al. [31] Risk decision analysis Electric vehicle industry

Xiong et al. [32] Evolution and non-dominant sorting genetic algorithm Ship collision
Wang et al. [33] Additive weighting Electric vehicle industry
Wu et al. [34] Subjective imprecise estimation of binary language Community development

Karimi et al. [35] The best and worst algorithm Hospital maintenance

The above method is effective in solving the multi-attribute emergency decision-making (MAEDM)
problem in a fuzzy environment. However, it has some limitations in the following aspects.

(1) In the case of emergency, DMs often have a certain subjective preference for alternatives, which is
rarely studied.

(2) The traditional intuitionistic fuzzy distance measurement accuracy is not high. It is easy to have
a situation where the IFN cannot be compared, which makes the decision result produce errors.

(3) For MAEDM problems with unknown or partially unknown attribute weights, the research is not
deep enough and needs further analysis.

(4) There is no corresponding sensitivity analysis for the ranking results of alternatives, which fails
to fully explain the reliability and stability of the evaluation mechanism.

According to the above limitations, the motivation of this paper is summarized as follows:

(1) With the increasing complexity of the global environment, many scholars focus on the field of
emergency decision-making. Intuitionistic fuzzy multi-attribute emergency decision-making
(IFMAEDM) is the focus of the current research.

(2) It is necessary to propose a distance measurement method based on the IFN, which can get
rid of the shortcomings of traditional distance measurement and improve the reliability of
decision results.

(3) The research on the uncertainty of attribute weight is the key problem in MAEDM. How to
determine the weight is always the core of decision-making.

(4) The evaluation mechanism of the ranking results of alternatives can make the decision results
more reliable.

Therefore, based on intuitionistic fuzzy and grey correlation analysis, this paper proposes a
method to solve MAEDM by using intuitionistic fuzzy cross-entropy distance. First, the average
information entropy of intuitionistic fuzzy is defined, and the measurement method of cross-entropy
distance of intuitionistic fuzzy is given. On this basis, considering the unknown and known attribute
weights, an optimization model with the subjective preference of the DMs is established and solved.
Secondly, the intuitionistic fuzzy decision matrix is obtained according to the objective attribute
evaluation of DMs. The intuitionistic fuzzy cross-entropy distance matrix is constructed by combining
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the objective evaluation value and subjective preference value of alternatives. Then, the attribute
weight is determined according to the adjusted intuitionistic fuzzy average information entropy.
By using the method of grey correlation analysis, the comprehensive grey relation coefficient of each
alternative is obtained, and the order of alternatives is generated. Therefore, a new method is proposed
to solve the MAEDM problem by using intuitionistic fuzzy cross-entropy and grey correlation analysis.
The important contributions of this paper are mainly reflected in six aspects. (1) The intuitionistic
fuzzy cross-entropy distance is defined. (2) A multi-attribute emergency decision with subjective
preference is considered. (3) The uncertainty of attribute weight is discussed and solved by intuitionistic
fuzzy information entropy. (4) The grey correlation analysis method is applied to MAEDM, which
makes full use of decision-making information such as membership, non-membership, and hesitation.
(5) According to the grey resolution coefficient, the sensitivity analysis is carried out to verify the
reliability and stability of the decision results. (6) Compared to the traditional intuitionistic fuzzy
distance, this method is shown to be more stable.

The remainder of this paper is organized as follows. Section 2 defines some basic knowledge of
intuitionistic fuzzy theory and introduces the concept of intuitionistic fuzzy cross-entropy distance.
In Section 3, a MAEDM model based on intuitionistic fuzzy cross-entropy and comprehensive grey
correlation analysis is constructed. In Section 4, taking the ranking of earthquake shelters as an example,
the practical application of this method is illustrated by comparing to the traditional intuitionistic
fuzzy method. Lastly, Section 5 is the conclusion of the method proposed in this paper and the prospect
of future research.

2. Preliminaries

This section first reviews some basic concepts and definitions of intuitionistic fuzzy theory.
As the preference relationship in fuzzy theory is often assigned by the complementary

0.1–0.9 five-scale, we believe that the distribution of the levels between opposition and support
is uniform and symmetric. However, in an actual situation, some problems require the use of a
non-consistent and asymmetric distribution to evaluate variables, such as the marginal utility decline
rate in economics. Therefore, it is very popular to solve this kind of asymmetric problem by fuzzy
set theory.

Definition 1 [4]. If the domain X is a non-empty set, a fuzzy set is defined as:

A =
{
< x,µA(x)|x ∈ X

}
(1)

which is characterized by a membership function µA : X→ [0, 1], where µA(x)denotes the degree of membership
of the element x to the set A.

Ordinary fuzzy sets can only represent membership function, which refers to the support degree
of an alternative without non-membership degree information. Therefore, Atanassov [7,8] extended
the fuzzy set to the IFS. It is shown as follows:

Definition 2 [7]. If the domain X is a non-empty set, then the intuitionistic fuzzy set A onX can be expressed as:

A =
{
< x,µA(x), νA(x) > |x ∈ X

}
(2)

where µA(x) and νA(x) are the membership degree and non-membership degree of the element x belonging to A
in the domain X, respectively,

µA : X→ [0, 1], x ∈ X→ µA(x) ∈ [0, 1]
νA : X→ [0, 1], x ∈ X→ νA(x) ∈ [0, 1],



Entropy 2020, 22, 768 5 of 21

It satisfies 0 ≤ µA(x) + vA(x) ≤ 1; let

πA= 1− µA(x) − νA(x) (3)

denote the degree of hesitation or uncertainty that element x in X belongs to IFS A, obviously for any x ∈ X,
with the condition 0 ≤ πA ≤ 1.

Example 1. Take an example to illustrate the specific meaning of the IFS. Suppose there is an IFS
A = {< x, 0.7, 0.2 > |x ∈ X }, which indicates that the membership degree of IFS X is 0.7, the non-membership
degree is 0.2, and the hesitation degree is 0.1. If we use this set to represent the voting process, assuming that the
number of participants is 10, then 7 people support it, 2 oppose it, and 1 hesitates to remain neutral.

Definition 3 [36]. Let αA = (µA, vA) and αB = (µB, vB) be the two intuitionistic fuzzy numbers. Then, the
normalized Hamming distance between αA and αB is defined as follows:

d(αA,αB) =
1
2

(∣∣∣µA − µB
∣∣∣+ |νA − νB|

)
(4)

where µA ∈ [0, 1], vA ∈ [0, 1] and 0 ≤ µA + vA ≤ 1; meanwhile, all intuitionistic fuzzy numbers are expressed
as θ. Obviously, the fuzzy number a+ = (1, 0) is the maximum value in the fuzzy set, and a− = (0, 1) is the
minimum value in the set.

Geometric distance is not suitable for processing fuzzy decision information. According to
the traditional distance model, Xu [15] proposed the distance measure formula of the intuitionistic
fuzzy set:

Definition 4. Suppose d is a mapping: d: (φ(x))2
→ [0, 1] . If there are intuitionistic fuzzy sets,

A =
{
< x,µA(x), νA(x) > |x ∈ X

}
B =

{
< x,µB(x), νB(x) > |x ∈ X

}
C =

{
< x,µC(x), νC(x) > |x ∈ X

} ,

then the distance measure between the IFSs is

dXu =

 1
2n

n
Σ

j=1


∣∣∣∣µA

(
x j

)
− µB

(
x j

)∣∣∣∣λ + ∣∣∣∣νA
(
x j

)
− νB

(
x j

)∣∣∣∣λ
+

∣∣∣∣πA
(
x j

)
−πB

(
x j

)∣∣∣∣λ



1
λ

(5)

where λ ≥ 1. When λ = 1, dXu degenerates into Hamming distance with IFS:

dH =
1

2n

n
Σ

j=1


∣∣∣∣µA

(
x j

)
− µB

(
x j

)∣∣∣∣+ ∣∣∣∣νA
(
x j

)
− νB

(
x j

)∣∣∣∣
+

∣∣∣∣πA
(
x j

)
−πB

(
x j

)∣∣∣∣
 (6)

When λ = 2, dXu degenerates into Euclidean distance with IFS:

dE =

 1
2n

n
Σ

j=1


∣∣∣∣µA

(
x j

)
− µB

(
x j

)∣∣∣∣2 + ∣∣∣∣νA
(
x j

)
− νB

(
x j

)∣∣∣∣2
+

∣∣∣∣πA
(
x j

)
−πB

(
x j

)∣∣∣∣2



1
2

(7)

Hamming and Euclidean distance formulas are an extension of intuitionistic fuzzy distance.
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Considering the attribute weight vector of x j( j = 1, 2, . . . n), ω = (ω1,ω2, . . . ,ωn)
T, satisfies

0 ≤ ω j ≤ 1 and
n
Σ

j=1
ω j = 1, and the above two distance formulas dH and dE can be expressed as:

dHω =
1

2n

n
Σ

j=1
ω j


∣∣∣∣µA

(
x j

)
− µB

(
x j

)∣∣∣∣+ ∣∣∣∣νA
(
x j

)
− νB

(
x j

)∣∣∣∣
+

∣∣∣∣πA
(
x j

)
−πB

(
x j

)∣∣∣∣
 (8)

dEω =

 1
2n

n
Σ

j=1
ω j


∣∣∣∣µA

(
x j

)
− µB

(
x j

)∣∣∣∣2 + ∣∣∣∣νA
(
x j

)
− νB

(
x j

)∣∣∣∣2
+

∣∣∣∣πA
(
x j

)
−πB

(
x j

)∣∣∣∣2



1
2

(9)

It is not difficult to see from the formula that all intuitionistic fuzzy distances satisfy the
following properties:

(1) 0 ≤ d(A, B) ≤ 1;
(2) When A = B, d(A, B) = 0
(3) d(A, B) = d(B, A);
(4) If A ⊆ B ⊆ C, d(A, B) ≤ d(A, C) and d(B, C) ≤ d(A, C).
In order to define the concept of intuitionistic fuzzy cross-entropy, the definition of information

entropy is introduced. The average level of residual information after information redundancy
eliminated is called information entropy, which is used to measure the uncertainty of information
source in the communication process.

Definition 5. There is a discrete random variable X = {x1, x2, . . . , xn} that can be represented as:

I =

{
x1, x2, · · ·, xn

p1, p2, · · ·, pn

}
, where P = (p1, p2, . . . , pn) is the probability of discrete random variable X satisfying

0 ≤ p j ≤ 1 and
n
Σ

i=1
p j = 1; then, the information entropy of I can be expressed as

I = −η
n
Σ

j=1
p j logc p j (10)

The constant η means the unit of measurement of information entropy, which is a constant greater
than 0, and the base number c of the logarithmic function in the formula can take a non-negative constant.
In particular, when c = 2, the unit of information entropy is bit. When c = e, the unit of information
entropy is nat. When c = 10, its unit is dit. In general calculation, η = 1, c = 2.

Burillo et al. [37] extended the basic idea of information entropy to the field of intuitionistic fuzzy,
and creatively used it to describe the uncertainty of the IFS.

Definition 6. Let X = {x1, x2, . . . xn} be a domain and A =
{
< x,µA(x), vA(x) > |x ∈ X

}
be an IFS on X.

The intuitionistic fuzzy entropy of A can be expressed as:

ELH(A) =
1
n

n
Σ

i=1

1−
∣∣∣µA(xi) − νA(xi)

∣∣∣+ πA(xi)

1 +
∣∣∣µA(xi) − νA(xi)

∣∣∣+ πA(xi)
(11)

Definition 7. Another equivalent transformation of intuitionistic fuzzy entropy ELH is:

E(A) =
1
n

n
Σ

i=1

1−max(µA(xi) − νA(xi))

1−min(µA(xi) − νA(xi))
. (12)
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Proof. Model (11) and model (12) are equivalent.

ELH(A) = 1
n

n
Σ

i=1

1−|µA(xi)−νA(xi)|+πA(xi)

1+|µA(xi)−νA(xi)|+πA(xi)

= 1
n

n
Σ

i=1

1−|µA(xi)−νA(xi)|+1−µA(xi)−νA(xi)

1+|µA(xi)−νA(xi)|+1−µA(xi)−νA(xi)

= 1
n

n
Σ

i=1

2−|µA(xi)−νA(xi)|−(µA(xi)+νA(xi))

2+|µA(xi)−νA(xi)|−(µA(xi)+νA(xi))

= 1
n

n
Σ

i=1

1− 1
2 (|µA(xi)−νA(xi)|+|µA(xi)+νA(xi)|)

1− 1
2 (|µA(xi)+νA(xi)|−|µA(xi)−νA(xi)|)

= 1
n

n
Σ

i=1

1−max(µA(xi)−νA(xi))

1−min(µA(xi)−νA(xi))
= E(A)

.

�

Definition 7 is more concise in form and simpler in calculation. It eliminates the influence of
hesitation and is a better expression of intuitionistic fuzzy entropy.

For the MAEDM problem discussed in this paper, when the attributes are completely unknown,
it is necessary to calculate the average information entropy of each attribute. Combining with the
intuitionistic fuzzy entropy, the intuitionistic fuzzy cross-entropy distance is defined as:

Definition 8. Suppose there is a domain X = {x1, x2, . . . , xn}, where A and B are two IFSs on X,

A =
{
< x j,µA(x j), νA(x j) >

∣∣∣x j ∈ X
}

B =
{
< x j,µB(x j), νB(x j) >

∣∣∣x j ∈ X
} ,

then, the intuitionistic fuzzy cross-entropy distance formula of A and B is [38]:

CE(A, B) =
n
Σ

j=1

{
1+µA(x j)−νA(x j)

2 ×

log2
1+µA(x j)−νA(x j)

1/2[1+µA(x j)−νA(x j)+1+µB(x j)−νB(x j)]

}
+

n
Σ

j=1

{
1−µA(x j)+νA(x j)

2 ×

log2
1−µA(x j)+νA(x j)

1/2[1−µA(x j)+νA(x j)+1−µB(x j)+νB(x j)]

}
. (13)

As the intuitionistic fuzzy cross-entropy CE(A, B) does not satisfy the symmetry, considering the problems of
emergency decision-making, let

CE∗(A, B) = CE(A, B) + CE(B, A) (14)

define the intuitionistic fuzzy cross-entropy distance combined with the characteristics of multi-attribute.

Theorem 1. Referring to the properties of the intuitionistic fuzzy geometric distance formula, the intuitionistic
fuzzy cross-entropy satisfies the following properties:

(1) 0 ≤ CE∗(A, B);
(2) If A = B, CE∗(A, B) = 0;
(3) If A ⊆ B ⊆ C, then CE∗(A, B) ≤ CE∗(A, C) and CE∗(B, C) ≤ CE∗(A, C).
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Proof. As
CE(A, B) =

n
Σ

j=1

{
1+µA(x j)−νA(x j)

2 ×

log2
1+µA(x j)−νA(x j)

1/2[1+µA(x j)−νA(x j)+1+µB(x j)−νB(x j)]

}
+

n
Σ

j=1

{
1−µA(x j)+νA(x j)

2 ×

log2
1−µA(x j)+νA(x j)

1/2[1−µA(x j)+νA(x j)+1−µB(x j)+νB(x j)]

}
,

and model (13) has been given, the following exists

−CE(A, B) = −
n
Σ

j=1

{
1+µA(x j)−νA(x j)

2 × log2
1+µA(x j)−νA(x j)

1/2[1+µA(x j)−νA(x j)+1+µB(x j)−νB(x j)]

}
+

n
Σ

j=1

{
1−µA(x j)+νA(x j)

2 × log2
1−µA(x j)+νA(x j)

1/2[1−µA(x j)+νA(x j)+1−µB(x j)+νB(x j)]

}
=

n
Σ

j=1

{
1+µA(x j)−νA(x j)

2 × log2
1/2[1+µA(x j)−νA(x j)+1+µB(x j)−νB(x j)]

1+µA(x j)−νA(x j)

}
+

n
Σ

j=1

{
1−µA(x j)+νA(x j)

2 × log2
1/2[1−µA(x j)+νA(x j)+1−µB(x j)+νB(x j)]

1−µA(x j)+νA(x j)

}
As the above logarithmic function is strictly convex, according to the relevant properties,

f (a1x1 + a2x2 + . . .+ anxn) ≤

a1 f (x1) + a2 f (x2) + . . .+ an f (xn)
, (15)

therefore, we can obtain the following expression,

−CE(A, B) ≤
n
Σ

j=1
log2

{
1+µA(x j)−νA(x j)

2 ×

1/2[1+µA(x j)−νA(x j)+1+µB(x j)−νB(x j)]
1+µA(x j)−νA(x j)

}
+

n
Σ

j=1
log2

{
1−µA(x j)+νA(x j)

2 ×

1/2[1−µA(x j)+νA(x j)+1−µB(x j)+νB(x j)]
1−µA(x j)+νA(x j)

}
≤ log2

{[(
1 + µA(x j) − νA(x j)

)
+

(
1− µB(x j) + νB(x j)

)
+(

1 + µB(x j) − νB(x j)
)
+

(
1− µA(x j) + νA(x j)

)]
/4

}
= 0

Through the above proof, obviously, CE(A, B) ≥ 0 and CE(B, A) ≥ 0, and the same can be obtained.
According to model (13) and (14), we can prove that CE∗(A, B) ≥ 0. �

Proof. When A = B, there are the following relationships: µA
(
x j

)
= µB

(
x j

)
,vA

(
x j

)
= vB

(
x j

)
.

By substituting it into the model (13), we can obtain the conclusion CE(A, B) = 0, CE(B, A) = 0.
Then, combining model (14), we can prove that CE∗(A, B) = 0. �

Proof. According to the understanding of the geometric intuitionistic fuzzy distance formula, it is not
difficult to prove that the size of the fuzzy cross-entropy set is positively correlated with the size of
distance. Let us assume that with A ⊆ B ⊆ C, we have µA(xi) ≤ µB(xi) ≤ µC(xi) and vA(xi) ≤ vB(xi) ≤

vC(xi). The following conclusions can be drawn: µA(xi) − νA(xi) ≤ µB(xi) − νB(xi) ≤ µC(xi) − νC(xi).
For the sake of proving convenience, µA(xi) − vA(xi), µB(xi) − vB(xi), and µC(xi) − vC(xi) are recorded
as a, b, c, respectively, and satisfy −1 ≤ a ≤ b ≤ c ≤ 1. Comparing the size relationship between two
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intuitionistic fuzzy cross-entropies can be done by subtraction. ∆CE∗ = CE∗(A, C) −CE∗(A, B) can be
transformed into:

∆CE∗ = 1+a
2 log2

1+a
1/2[1+a+1+c] +

1−a
2 log2

1−a
1/2[1−a+1−c]

+ 1+c
2 log2

1+c
1/2[1+c+1+a] +

1−c
2 log2

1−c
1/2[1−c+1−a]

−
1+a

2 log2
1+a

1/2[1+a+1+b] −
1−a

2 log2
1−a

1/2[1−a+1−b]
−

1+b
2 log2

1+b
1/2[1+b+1+a] −

1−b
2 log2

1−b
1/2[1−b+1−a]

,

thus,
−∆CE∗ = 1+a

2 log2
1/2[1+a+1+c]

1+a + 1−a
2 log2

1/2[1−a+1−c]
1−a

+ 1+c
2 log2

1/2[1+c+1+a]
1+c + 1−c

2 log2
1/2[1−c+1−a]

1−c

−
1+a

2 log2
1/2[1+a+1+b]

1+a −
1−a

2 log2
1/2[1−a+1−b]

1−a

−
1+b

2 log2
1/2[1+b+1+a]

1+b −
1−b

2 log2
1/2[1−b+1−a]

1−b

.

As the −∆CE∗ is a strictly convex function, it has the property (15). It satisfies

−∆CE∗ ≤ log2

 1+a
2 ×

1/2(1+a+1+c)
1+a + 1−a

2 ×
1/2(1−a+1−c)

1−a

+ 1+c
2 ×

1/2(1+c+1+a)
1+c + 1−c

2 ×
1/2(1−c+1−a)

1−c


− log2

 1+a
2 ×

1/2(1+a+1+b)
1+a −

1−a
2 ×

1/2(1−a+1−b)
1−a

+ 1+b
2 ×

1/2(1+b+1+a)
1+b + 1−b

2 ×
1/2(1−b+1−a)

1−b

 = 0

.

Obviously, with −∆CE∗ ≤ 0, which is ∆CE∗ ≥ 0, we can easily obtain CE∗(A, C) ≥ CE∗(A, B). The same
reasoning can be proved, CE∗(A, C) −CE∗(B, C) ≥ 0; thus, CE∗(A, C) ≥ CE∗(B, C). �

It can be seen from property (1) that the fuzzy entropy distance is non-negative. Property (2)
means that when two IFSs are completely equal, the minimum intuitionistic fuzzy cross-entropy
distance is equal to 0; thus, cross-entropy can be used to measure the difference degree or distance
between two IFSs. Property (3) provides a sufficient basis for the comparison of intuitionistic fuzzy
cross-entropy distance. Intuitionistic fuzzy cross-entropy extends the meaning of information entropy,
which can be used to measure the fuzzy degree and unknown degree between IFSs on the basis of
preserving the complete information of the original IFS. The greater the distance between two IFSs, the
greater the cross-entropy of the fuzzy numbers. However, the traditional intuitionistic fuzzy distance
measurement method cannot accurately reflect the differences between the data.

Based on this, a group of simple data can be used to compare the traditional intuitionistic fuzzy
distance and fuzzy cross-entropy distance to show the reliability and stability of cross-entropy used to
measure the degree of fuzzy.

Example 2. Suppose that there are three voting activities with a population of 10. The voting can be represented
by three groups of fuzzy numbers: α1 = (0.6, 0.3), α2 = (0.5, 0.4), α3 = (0.4, 0.2). First, we use the traditional
Hamming and Euclidean distance model (6) and model (7), respectively, to solve dH(α1,α3) = dH(α2,α3) = 0.3
and dE(α1,α3) = dE(α2,α3) = 0.2646. Obviously, it can be seen from the calculation results that two
traditional distance formulas cannot measure the distance between fuzzy numbers α1 and α3, or α2 and α3,
which is the disadvantage of the classical intuitionistic fuzzy distance measurement method. It is solved by the
intuitionistic fuzzy cross-entropy distance method, CE∗(α1,α3) = 0.0037 and CE∗(α2,α3) = 0.0101.

The results show that the distance between α1 and α3 is closer than that of the traditional
intuitionistic fuzzy distance. Therefore, it is more effective to introduce intuitionistic fuzzy cross-entropy
to deal with uncertainty decision information.
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3. A Multi-Attribute Emergency Decision Model Based on Intuitionistic Fuzzy Cross-Entropy and
Grey Correlation Analysis

This section analyzes the IFMAEDM problem in which DMs have a certain subjective preference
for alternatives.

3.1. Problem Description

Taking the Wenchuan earthquake on May 12th 2008 as a study case, the government needs to
build a batch of temporary shelters to rescue the victims in the disaster area. Considering the impact
of earthquakes, the government has a certain priority (subjective preference) for the construction of
regional shelters. After determining the geographical location, disaster risk, rescue facilities, and
feasibility, a number of rescues in disaster-affected areas began in an orderly manner. The whole
decision-making process aims to find the optimal solution through intuitionistic fuzzy cross-entropy and
grey correlation analysis, which determines the area where the shelter is built first. It can be abstractly
understood as: The decision-maker (government) gives the IFN representing the attribute value
(agree, disagree, neutral)

(
µi j, νi j

)
from a series of alternatives (disaster-affected areas) Ai(i = 1, 2, . . .m)

according to the objective evaluation attribute (specific factors of disaster situation) C j( j = 1, 2, . . . n),
which denotes that the decision maker’s approval degree is µi j, objection degree is νi j, and neutrality
degree is πi j = 1− µi j − νi j for alternative Ai under the condition of attribute C j. The attribute weight

is expressed in ω j and satisfies 0 ≤ ω j( j = 1, 2, . . . n) ≤ 1 and
n
Σ

j=1
ω j = 1. The IFN meets the following

conditions: 0 ≤ µi j, νi j,πi j ≤ 1. Using a fuzzy number to construct multi-attribute intuitionistic fuzzy
decision matrix Rmn, the expression form is shown in Table 3:

Table 3. Intuitionistic fuzzy decision matrix.

Alternative C1 C2 . . . Cn

A1 (µ11, ν11) (µ12, ν12) . . . (µ1n, ν1n)
A2 (µ21, ν21) (µ22, ν22) . . . (µ2n, ν2n)
. . . . . . . . . . . . . . .
Am (µm1, νm1) (µm2, νm2) . . . (µmn, νmn)

Analyzing the Wenchuan earthquake, DMs have a certain subjective preference for alternatives,
which need to consider the severity of the disaster area. The preference value is also IFN
ci = (σi, δi)(i = 1, 2, . . .m). The following content uses the method of intuitionistic fuzzy cross-entropy
and grey correlation analysis to build the optimal decision model and solve it.

3.2. Steps of Intuitionistic Fuzzy Cross-Entropy and Grey Correlation Analysis Algorithm

For the uncertain MAEDM problem with certain subjective preference, taking the Wenchuan
earthquake shelter ranking problem for analysis, the comprehensive algorithm of intuitionistic fuzzy
cross-entropy and grey correlation analysis is used to solve it. The specific steps are as follows (see
Figure 1 for the flow framework):
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Step 1. According to the data given in the background of the Wenchuan earthquake case,
alternative Ai, objective evaluation attribute value C j, decision maker’s subjective preference value ci,
and intuitionistic fuzzy evaluation decision matrix Rmn are determined.

Step 2. Using intuitionistic fuzzy cross-entropy distance to solve the grey correlation coefficient
between the objective evaluation value of alternatives and the subjective preference value of DMs,
the formula is expressed as:

θi j =

min
i

min
j

CE∗i j + ξ max
i

max
j

CE∗i j

CE∗i j + ξ max
i

max
j

CE∗i j
, (16)

ξ is called the grey resolution coefficient, and the value range is 0 ≤ ξ ≤ 1, which is often set as
ξ = 0.5. It satisfies 0 ≤ θi j(i = 1, 2, . . .m; j = 1, 2, . . . n) ≤ 1. The larger the grey correlation coefficient
θi j, the closer the objective evaluation value and subjective preference value. In model (16), CE∗i j is the
intuitionistic fuzzy cross-entropy distance, and the specific formula is as follows:

CE∗i j =
1+µi j−νi j

2 × log2
1+µi j−νi j

1/2[1+µi j−νi j+1+σi−δi]

+
1−µi j+νi j

2 × log2
1−µi j+νi j

1/2[1−µi j+νi j+1−σi+δi]

+ 1+σi−δi
2 × log2

1+σi−δi
1/2[1+σi−δi+1+µi j−νi j]

+ 1−σi+δi
2 × log2

1−σi+δi
1/2[1−σi+δi+1−µi ji+νi j]

, (17)

Step 3. On the basis of the solution method of the grey correlation coefficient given in model (16),
the weight of each attribute is calculated to determine the comprehensive correlation coefficient θi of
each alternative. The following three cases are discussed: The attribute weight is completely unknown,
completely known, and the value range is known.
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Case 1. Attribute weight is completely unknown. In order to determine the attribute weight, the
average information entropy of each attribute must be obtained. On the basis of intuitionistic fuzzy
entropy, the calculation method of information entropy is as follows:

E
(
C j

)
= −

1
ln m

m
Σ

i=1


CE∗i j

m
Σ

i=1
CE∗i j

ln
CE∗i j

m
Σ

i=1
CE∗i j

, (18)

The natural logarithm is taken to make the entropy value return to 1 and ensure the boundedness of
information entropy. By transforming the formula of average information entropy, we can obtain the
method of solving attribute weight:

ω j =
1− E

(
C j

)
n
Σ

k=1
[1− E(Ck)]

( j = 1, 2, . . . n), (19)

The weight parameters of each attribute can be determined and substituted,

θi =
n
Σ

j=1
θi jω j(i = 1, 2, . . .m; j = 1, 2, . . . n), (20)

In model (20), the comprehensive correlation coefficient of alternatives θi can be aggregated.
Case 2. Attribute weights are fully known. Under the condition that the attribute is completely

known, the grey correlation coefficient θi j of each alternative attribute is obtained by using model (16),
and the comprehensive correlation degree θi of the alternative is obtained by combining model (20).

Case 3. The value range of attribute weight is known. Based on the maximum approach
between weights with a known range of values and the subjective decision maker’s preference, a linear
programming model with attribute weight as a variable is constructed,

max Y
(
ω j

)
=

m
Σ

i=1

n
Σ

j=1
θi jω j( j = 1, 2, · · ·n)

s. t.


n
Σ

j=1
ω j = 1,ω j ∈W

0 ≤ ω j, ( j = 1, 2, · · ·n), (i = 1, 2, · · ·m)

, (21)

In this way, the weight parameters of each attribute can be determined.
The weight ω j of each attribute can be calculated by establishing the optimization model of the

maximum comprehensive grey correlation coefficient θi:

θi =
n
Σ

j=1
θi jω j(i = 1, 2, . . .m; j = 1, 2, . . . n), (22)

The corresponding linear programming model is constructed by programming software Matlab
(R2017b) to solve the code, and the attribute weight of each alternative is obtained. Then, the model is
substituted into (20) to determine the comprehensive correlation degree θi.

Step 4. Based on the comprehensive correlation coefficient obtained under three different attribute
weights in Step 3, the alternatives of the earthquake shelter are ranked according to the size relationship.
The larger the θi, the better the alternative, which is in the front row.

Step 5. The sensitivity analysis is made by setting different values of the grey resolution constant
in the correlation coefficient, and the difference of ranking alternatives under different resolution
coefficients is compared and analyzed.
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4. A Numerical Case Study on the Ranking of Wenchuan Earthquake Shelters

In this section, the traditional intuitionistic fuzzy distance and the intuitionistic fuzzy cross-entropy
distance are used to analyze and compare the ranking of earthquake shelters.

4.1. Intuitionistic Fuzzy Cross-Entropy Distance and Grey Correlation Analysis

The stability and reliability of the method of intuitionistic fuzzy cross-entropy and the grey
correlation coefficient are analyzed through comparative experiments. Assume that the government
carries out shelter assessment and optimization for the five areas with a large disaster impact, and use
A, B, C, D, and E to represent them. The government analyzes and evaluates the geographical location
C1, disaster risk C2, rescue facilities C3, and feasibility C4 of the five disaster areas. The decision-maker
adopts an IFN to express the objective evaluation value of alternatives under different attributes, and
the intuitionistic fuzzy decision matrix R5×4 is shown in Table 4.

Table 4. Objective evaluation value of each alternative.

Alternative C1 C2 C3 C4

A (0.4, 0.3) (0.6, 0.3) (0.5, 0.4) (0.2, 0.7)
B (0.5, 0.4) (0.5, 0.3) (0.2, 0.7) (0.7, 0.1)
C (0.4, 0.3) (0.3, 0.5) (0.6, 0.2) (0.5, 0.2)
D (0.5, 0.5) (0.4, 0.5) (0.4, 0.4) (0.5, 0.4)
E (0.6, 0.3) (0.6, 0.4) (0.3, 0.6) (0.6, 0.3)

The decision maker’s subjective preference values for alternatives A, B, C, D, and E are also
expressed by IFNs: c1 = (0.5, 0.4 ), c2 = (0.6, 0.3), c3 = (0.4, 0.3 ), c4 = (0.4, 0.5), and c5 = (0.6, 0.2).
In order to choose the best alternative to build a shelter in the earthquake disaster area, the government
adopts the intuitionistic fuzzy cross-entropy and grey correlation analysis method to make a decision.

Step 1. Determine the values of alternative A, B, C, D, and E; the objective evaluation attribute
values C1,C2,C3,C4; the decision makers’ objective evaluation matrix R5×4; and subjective preference
values c1,c2,c3,c4,c5.

Step 2. According to model (17), the intuitionistic fuzzy cross-entropy distance between the
objective evaluation value and the subjective preference value of each alternative is calculated to form
the distance matrix:

CE∗5×4 =


0.0000 0.0151 0.0000 0.1378
0.0151 0.0038 0.2402 0.0411
0.0000 0.0327 0.0348 0.0151
0.0036 0.0000 0.0036 0.0145
0.0041 0.0159 0.1810 0.0041


Step 3. Assuming that the grey resolution coefficient is ξ= 0.5, the grey correlation coefficient

between the decision-maker’s subjective preference value and the objective evaluation value is
calculated according to model (16). The coefficient matrix is as follows:

θ5×4 =


1.0000 0.8883 1.0000 0.4657
0.8883 0.9693 0.3333 0.7450
1.0000 0.7860 0.7753 0.8883
0.9709 1.0000 0.9709 0.8923
0.9670 0.8831 0.3989 0.9670


Step 4. Calculate the attribute weight ω j according to the known information provided by the

above case. When the attribute weight is known, the model is relatively easy to solve. The following
focuses on the analysis of two situations: The attribute weight is completely unknown and the attribute
weight range is known.
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Case 1. The weight of attributes is completely unknown. According to the idea of intuitionistic
fuzzy entropy, the average intuitionistic fuzzy entropy of the attribute is obtained by combining model
(18): E(C1)= 0.5424, E(C2)= 0.7385, E(C3)= 0.5837, E(C4)= 0.6498. Then, according to model (19),
we obtain the attribute weight ω1 = 0.3080, ω2 = 0.1761, ω3 = 0.2802 and ω4 = 0.2357. The attribute
weight obtained is substituted into model (22), and the comprehensive grey correlation coefficient
θi of the alternatives under the attribute condition is calculated: θ1= 0.8544, θ2= 0.7133, θ3= 0.8730,
θ4= 0.9575, and θ5= 0.7930. From the comprehensive grey correlation coefficient θi of the alternatives,
the result is θ4 > θ3 > θ1 > θ5 > θ2 and D � C � A � E � B. Therefore, the alternative D is the best
and the government should give priority to building earthquake shelters in the region.

For proving the superiority and stability of the intuitionistic fuzzy cross-entropy and the
comprehensive grey correlation analysis algorithm proposed in this paper, different resolution
coefficients ξ are set for sensitivity analysis to compare and analyze whether the above alternatives
will produce fluctuations. Set ξ =0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00. The results of the comprehensive
correlation coefficient are shown in Table 5. The ranking results of alternatives did not fluctuate with
the change in resolution coefficient.

Table 5. Comprehensive grey correlation coefficient of alternatives under different grey resolution
coefficients based on completely unknown attribute weights.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

A 0.8372 0.8544 0.8681 0.8793 0.8887 0.8967 0.9037
B 0.6807 0.7133 0.7388 0.7596 0.7769 0.7917 0.8045
C 0.8488 0.8730 0.8906 0.9039 0.9143 0.9226 0.9295
D 0.9479 0.9575 0.9641 0.9689 0.9726 0.9755 0.9779
E 0.7697 0.7930 0.8114 0.8266 0.8393 0.8501 0.8595

In order to verify the reliability and stability of the method proposed in this paper more
intuitively, we use Python graphics to carry out simulation experiments on the sequencing and gray
resolution coefficient of each alternative, and the specific results are shown in Figure 2 (G is the grey
resolution coefficient).
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Figure 2. Ranking results of alternatives with different grey resolution coefficients based on completely
unknown attribute weights.

It can be seen from Figure 2 that in the seven experiments of sensitivity analysis of grey resolution
coefficient, the ranking results of alternatives have not changed, and D � C � A � E � B is always
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maintained. The simulation experiment shows that D is the best alternative to build a shelter in the
earthquake disaster area, and the decision result does not fluctuate, which shows the strong stability.

Case 2. The value range of attribute weight is known: 0.30 ≤ ω1 ≤ 0.32, 0.17 ≤ ω2 ≤ 0.20,
0.25 ≤ ω3 ≤ 0.28, and 0.20 ≤ ω4 ≤ 0.24. Through the linear programming model (21), the objective
function Y to maximize the grey correlation coefficient of alternatives is constructed and solved:

max Y
(
ω j

)
= 4.8262ω1+4.5267ω2

+3.4784ω3+3.9583ω4
, s. t.



0.30 ≤ ω1 ≤ 0.32
0.17 ≤ ω2 ≤ 0.20
0.25 ≤ ω3 ≤ 0.28
0.20 ≤ ω4 ≤ 0.24
ω1 +ω2 +ω3 +ω4= 1
0 ≤ ω j ≤ 1, ( j = 1, 2, 3, 4)

(23)

The attribute weight is ω1= 0.30, ω2= 0.18, ω3= 0.28, and ω4= 0.24 by MATLAB. Combined with
model (22), the comprehensive grey correlation coefficient of each alternative is obtained: θ1= 0.8517,
θ2= 0.7131, θ3= 0.8718, θ4= 0.9573, θ5= 0.7928. According to the comprehensive grey correlation
coefficient θi of the alternatives, we can obtain θ4 > θ3 > θ1 > θ5 > θ2. Therefore, the order of
alternatives is D � C � A � E � B, and, thus, alternative D is the best. The government should give
priority to building earthquake shelters in area D, which is the same as the decision-making result
when the attribute weight is unknown.

In order to further verify the stability and superiority of the algorithm of intuitionistic fuzzy
cross-entropy and comprehensive grey correlation analysis when the attribute weight range is known,
different resolution coefficients are also set for sensitivity analysis, and the optimal alternative and
decision results are compared. Taking ξ =0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1.00, and attribute weight
and comprehensive grey correlation analysis when the attribute weight range is known, different
resolution coefficients are also set for sensitivity analysis, and the optimal alternative and decision
results are compared. The attribute weight and comprehensive grey correlation coefficient of each
alternative are shown in Tables 6 and 7. From the table data, the change in the grey resolution
coefficient does not affect the attribute weight and the decision-making result of the alternative, which
is still D � C � A � E � B. It is always the best alternative to build the seismic shelter in the D area.
In addition, when the weight is completely unknown, the comprehensive grey correlation coefficient
of the alternatives is higher than that of the alternatives with known range of attribute weight.

Table 6. Attribute weight values under different grey resolution coefficients.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

ω1 0.30 0.30 0.30 0.30 0.30 0.30 0.30
ω2 0.18 0.18 0.18 0.18 0.18 0.18 0.18
ω3 0.28 0.28 0.28 0.28 0.28 0.28 0.28
ω4 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Table 7. Comprehensive grey correlation coefficient of alternatives under different grey resolution
coefficients based on known range of attribute weight.

Alternative ξ=0.40 ξ=0.50 ξ=0.60 ξ=0.70 ξ=0.80 ξ=0.90 ξ=1.00

A 0.8341 0.8517 0.8656 0.8771 0.8867 0.8948 0.9019
B 0.6805 0.7131 0.7387 0.7595 0.7768 0.7916 0.8044
C 0.8473 0.8718 0.8895 0.9029 0.9134 0.9218 0.9288
D 0.9476 0.9573 0.9639 0.9688 0.9725 0.9754 0.9778
E 0.7695 0.7928 0.8113 0.8264 0.8392 0.8500 0.8594

More importantly, when the grey resolution coefficient fluctuates from 0.4 to 1.0, whether the
weight is known or unknown, the change range of the comprehensive grey correlation coefficient of
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alternative D is the smallest, which is 0.0300 and 0.0302, respectively (see Table 8). Alternative B is
always the worst, and its fluctuation is also the largest, which is 0.1438 and 0.1239, respectively. Based
on this, the stability of the proposed method is proved.

Table 8. Change degree of comprehensive grey correlation coefficient of alternatives under fluctuation
of grey resolution coefficient.

Alternative ∆θ (Unknown Weight) ∆θ (Weight Range Known)

A 0.0665 0.0678
B 0.1238 0.1239
C 0.0807 0.0815
D 0.0300 0.0302
E 0.0898 0.0899

From Table 7, Python simulation results are shown in Figure 3. Compared to Figure 2,
the comprehensive grey correlation coefficient decreases but does not change the overall trend
of each alternative, and the decision results remain unchanged. Whether the attribute weights are
known or not, the optimal alternative and ranking results are the same, which shows the superiority
and stability of the method.

Entropy 2020, 22, x FOR PEER REVIEW 17 of 23 

 

More importantly, when the grey resolution coefficient fluctuates from 0.4 to 1.0, whether the 

weight is known or unknown, the change range of the comprehensive grey correlation coefficient of 

alternative D  is the smallest, which is 0.0300 and 0.0302, respectively (see Table 8). Alternative B  

is always the worst, and its fluctuation is also the largest, which is 0.1438 and 0.1239, respectively. 

Based on this, the stability of the proposed method is proved. 

Table 8. Change degree of comprehensive grey correlation coefficient of alternatives under 

fluctuation of grey resolution coefficient. 

Alternative  (unknown weight)  (weight range known) 

A  0.0665 0.0678 

B  0.1238 0.1239 

C  0.0807 0.0815 

D  0.0300 0.0302 

E  0.0898 0.0899 

 

From Table 7, Python simulation results are shown in Figure 3. Compared to Figure 2, the 

comprehensive grey correlation coefficient decreases but does not change the overall trend of each 

alternative, and the decision results remain unchanged. Whether the attribute weights are known or 

not, the optimal alternative and ranking results are the same, which shows the superiority and 

stability of the method. 

 

Figure 3. Ranking results of alternatives with different grey resolution coefficients based on known 

attribute weight range. 

Through the above comparative analysis, the intuitionistic fuzzy entropy and grey correlation 

analysis method has achieved good results in solving the MAEDM problems. In this way, the ranking 

results have strong stability and environmental adaptability. 

4.2. Traditional Intuitionistic Fuzzy Distance and Grey Correlation Analysis 

Based on the data given by the above problem of ranking earthquake shelters, the traditional 

intuitionistic fuzzy distance and grey correlation degree are used to analyze and give the ranking 

results. 

The traditional intuitionistic fuzzy distance model (4) has been given; thus, the corresponding 

grey correlation coefficient 
ij  is 

0.8341
0.8517

0.8656
0.8771

0.8867 0.8948 0.9019

0.6805

0.7131
0.7387

0.7595
0.7768

0.7916 0.8044

0.8473
0.8718

0.8895
0.9029

0.9134 0.9218
0.9288

0.9476 0.9573 0.9639 0.9688 0.9725 0.9754 0.9778

0.7695
0.7928

0.8113
0.8264

0.8392 0.8500 0.8594

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G=0.4 G=0.5 G=0.6 G=0.7 G=0.8 G=0.9 G=1.0

A B C D E

Figure 3. Ranking results of alternatives with different grey resolution coefficients based on known
attribute weight range.

Through the above comparative analysis, the intuitionistic fuzzy entropy and grey correlation
analysis method has achieved good results in solving the MAEDM problems. In this way, the ranking
results have strong stability and environmental adaptability.

4.2. Traditional Intuitionistic Fuzzy Distance and Grey Correlation Analysis

Based on the data given by the above problem of ranking earthquake shelters, the traditional
intuitionistic fuzzy distance and grey correlation degree are used to analyze and give the ranking results.

The traditional intuitionistic fuzzy distance model (4) has been given; thus, the corresponding
grey correlation coefficient εi j is

εi j =

min
i

min
j

d
(
ri j, ci

)
+ ξ max

i
max

j
d
(
ri j, ci

)
d
(
ri j, ci

)
+ ξ max

i
max

j
d
(
ri j, ci

) (24)
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where ri j denotes the objective evaluation value, ci denotes the subjective preference information, and
grey resolution coefficient ξ = 0.50.

Step 1. Calculating the grey correlation coefficient of each alternative between the objective
evaluation value and subjective preference information.

ε5×4 =


0.6667 0.6667 1.0000 0.4000
0.6667 0.8000 0.3333 0.5714
1.0000 0.5714 0.5714 0.6667
0.8000 1.0000 0.8000 0.6667
0.8000 0.6667 0.8000 0.8000


Step 2. Determining the attribute weight. Due to the fact that the range of attribute weight values

is known, utilize model (21) to establish the following single-objective programming model:

max Z
(
ω j

)
= 3.9334ω1+3.7048ω2

+3.5047ω3+3.1048ω4
s. t.



0.30 ≤ ω1 ≤ 0.32
0.17 ≤ ω2 ≤ 0.20
0.25 ≤ ω3 ≤ 0.28
0.20 ≤ ω4 ≤ 0.24
ω1 +ω2 +ω3 +ω4= 1
0 ≤ ω j ≤ 1, ( j = 1, 2, 3, 4)

(25)

Solving this model, attribute weight can be obtained:ω1= 0.30, ω2= 0.18, ω3= 0.28, and ω4= 0.24.
Step 3. On the basis of model (20), the comprehensive grey correlation coefficient is calculated:

ε1= 0.6960, ε2= 0.5745, ε3= 0.7229, ε4= 0.8040, ε5= 0.7760.
Step 4. Determining the alternatives ranking. Rank the alternatives according to the size of the

comprehensive grey correlation coefficient εi. Thus, D � E � C � A � B is the ranking result.

4.3. Comparative Analysis

Based on the ranking problem of earthquake shelters, this paper makes a comparative analysis
from two aspects:

(1). The attribute weight is completely unknown and the attribute weight range is known
For a more intuitive comparison, it is further explored based on Figures 2 and 3. Regardless of

whether the attribute weight is known or unknown, the ranking results of alternatives maintain
high stability. The best alternative is always D, and the worst is always B. The comprehensive grey
correlation coefficient of the alternative is positively correlated with the grey resolution coefficient,
which indicates that the larger the resolution coefficient, the greater the correlation coefficient of the
corresponding alternative.

Moreover, in the case of unknown weight, the comprehensive grey correlation coefficient of each
alternative is always better than that of the known weight range, which also indirectly proves the
fact that attribute weights are uncertain in most fields of decision problems (see Figures 4 and 5).
In addition, the results obtained by using a reasonable method to determine the attribute weights are
more practical.
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Figure 4. The alternatives with different grey resolution coefficients based on completely unknown
attribute weights.
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Figure 5. The alternatives with different grey resolution coefficients based on known attribute
weight range.

Meanwhile, based on the data in Table 8, we can further analyze the volatility of the comprehensive
grey correlation coefficient in two cases. From Figure 6 (deviation 1 represents unknown weights
and deviation 2 represents known weights range), the deviation curves of the comprehensive grey
correlation coefficient in the two kinds of weights situation almost coincide. However, when the weight
is unknown, the fluctuation amplitude of the comprehensive grey correlation coefficient is still less
than that of the known attribute weight range.Entropy 2020, 22, x FOR PEER REVIEW 20 of 23 
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Through the comparative analysis, we can see that the ranking result with unknown weight is more
reasonable and more consistent with the uncertainty of the decision environment in MAEDM problems.

(2). The traditional intuitionistic fuzzy distance with the intuitionistic fuzzy cross-entropy distance
Through the above solution, the ranking results of the intuitionistic fuzzy cross-entropy method

is D � C � A � E � B. Under the sufficient sensitivity analysis, the results maintain a high stability.
However, by using the traditional intuitionistic fuzzy distance method, the result of ranking becomes
D � E � C � A � B. Although the ranking result has little change, the best alternative is still D and
the worst one is B (see Table 9). This also fully proves that the method based on intuitionistic fuzzy
cross-entropy and grey correlation analysis proposed in this paper has strong stability.

Table 9. Ranking results under different methods.

Methods Ranking Results

The traditional intuitionistic fuzzy distance D � E � C � A � B
The intuitionistic fuzzy cross-entropy distance (unknown weight) D � C � A � E � B

The intuitionistic fuzzy cross-entropy distance (weight range known) D � C � A � E � B

According to the above two groups of comparative analysis, it can be concluded from many
aspects that D is the best alternative. For the decision maker to make rescue measures, it is the most
reasonable decision to give priority to the establishment of earthquake shelters in the D area.

5. Conclusions

This paper presents a new MAEDM method based on intuitionistic fuzzy cross-entropy and
comprehensive grey correlation analysis. The main contributions are as follows: (1) Overcome the
limitations of the traditional intuitionistic fuzzy geometric distance algorithm, and introduce the
intuitionistic fuzzy cross-entropy distance measurement method, which can not only retain the integrity
of decision information, but also directly reflect the differences between intuitionistic fuzzy data.
(2) This paper focuses on the weight problem in MAEDM, and analyzes and compares the known and
unknown attribute weights, which greatly improves the reliability and stability of decision-making
results. (3) By using the method of grey correlation analysis, the fitting degree between the objective
evaluation value and the subjective preference value of the decision maker can be fully considered.
On this basis, a sensitivity analysis is made for the grey resolution coefficient to make the ranking result
more reasonable. (4) The intuitionistic fuzzy cross-entropy and grey correlation analysis algorithm
are introduced into the emergency decision-making problems such as the location ranking of shelters
in earthquake disaster areas, which greatly reduces the risk of decision-making. (5) By comparing
the traditional intuitionistic fuzzy distance to the intuitionistic fuzzy cross-entropy, the validity of the
proposed method is verified.

Unfortunately, the method proposed in this paper is applicable to the emergency decision-making
problems with certain subjective preference. For the emergency problems with which the decision
maker has no obvious preference, the method needs to be further studied. In addition, considering
more attribute indicators to rank alternatives may obtain more convincing results.

These aspects will become the research hotspot in the future: (1) In the MAEDM, the attribute
weight problem will become a research focus. Considering the time factor, it may be an interesting
topic to develop the weight into a dynamic field in the future. (2) The decision maker’s preference
relation and attribute weight often have great uncertainty. It is an effective method to discuss the
multi-attribute emergency decision by using a more reliable robust optimization [39–41].
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