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Abstract: Probabilistic amplitude shaping (PAS) is a coded modulation strategy in which constellation
shaping and channel coding are combined. PAS has attracted considerable attention in both wireless
and optical communications. Achievable information rates (AIRs) of PAS have been investigated
in the literature using Gallager’s error exponent approach. In particular, it has been shown that
PAS achieves the capacity of the additive white Gaussian noise channel (Böcherer, 2018). In this
work, we revisit the capacity-achieving property of PAS and derive AIRs using weak typicality.
Our objective is to provide alternative proofs based on random sign-coding arguments that are
as constructive as possible. Accordingly, in our proofs, only some signs of the channel inputs are
drawn from a random code, while the remaining signs and amplitudes are produced constructively.
We consider both symbol-metric and bit-metric decoding.

Keywords: probabilistic amplitude shaping; achievable information rate; random coding;
symbol-metric decoding; bit-metric decoding

1. Introduction

Coded modulation (CM) refers to the design of forward error correction (FEC) codes and
high-order modulation formats, which are combined to reliably transmit more than one bit per channel
use. Examples of CM strategies include multilevel coding (MLC) [1,2] in which each address bit of the
signal point is protected by an individual binary FEC code, and trellis CM [3], which combines the
functions of a trellis-based channel code and a modulator. Among many CM strategies, bit-interleaved
CM (BICM) [4,5], which combines a high-order modulation format with a binary FEC code using a
binary labeling strategy and uses bit-metric decoding (BMD) at the receiver, is the de-facto standard for
CM. BICM is included in multiple wireless communication standards such as the IEEE 802.11 [6] and
the DVB-S2 [7]. BICM is also currently the de-facto CM alternative for fiber optical communications.

Proposed in [8], probabilistic amplitude shaping (PAS) integrates constellation shaping into
existing BICM systems. The shaping gap that exists for the additive white Gaussian noise (AWGN)
channel [9] (Ch. 9) can be closed with PAS. To this end, an amplitude shaping block converts binary
information strings into shaped amplitude sequences in an invertible manner. Then, a systematic FEC
code produces parity bits encoding the binary labels of these amplitudes. These parity bits are used
to select the signs, and the combination of the amplitudes and the signs, i.e., probabilistically shaped
channel inputs, are transmitted over the channel. PAS has attracted considerable attention in fiber
optical communications due to its availability of providing rate adaptivity [10,11].

Achievable information rates (AIRs) of PAS have been investigated in the literature [12–14].
It has been shown that the capacity of the AWGN channel can be achieved with PAS, e.g., in [13]
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(Example 10.4). The achievability proofs in the literature are based on Gallager’s error exponent
approach [15] (Ch. 5) or on strong typicality [16] (Ch. 1).

In this work, we provide a random sign-coding framework based on weak-typicality that contains
the achievability proofs relevant for the PAS architecture. We also revisit the capacity-achieving
property of PAS for the AWGN channel. As explained in Section 2.5, the first main contribution of this
paper is to provide a framework that combines the constructive approach to amplitude shaping with
randomly-chosen error-correcting codes, where the randomness is concentrated only in the choice
of the signs. The second contribution is to provide a unifying framework of achievability proofs to
bring together PAS results that are somewhat scattered in the literature, using a single proof technique,
which we call the random sign-coding arguments.

This work is organized as follows. In Section 2, we briefly summarize the related literature on
CM, AIRs, and PAS and state our contribution. In Section 3, we provide some background information
on typical sequences and define a modified (weakly) typical set. In Section 4, we explain the random
sign-coding setup. Finally in Section 5, we provide random sign-coding arguments to derive AIRs for
PAS and, consequently, show that it achieves the capacity of a discrete-input memoryless channel with
a symmetric capacity-achieving distribution. Conclusions are drawn in Section 6.

2. Related Work and Our Contribution

2.1. Notation

Capital letters X are used to denote random variables, while lower case letters x are used to
denote their realizations. Underlined capital and lower case letters X and x are used to denote random
vectors and their realizations, respectively. Boldface capital and lower case letters X and x are used to
denote collections of random variables and their realizations, respectively. Underlined boldface capital
and lower case letters X and x are used to denote collections of random vectors and their realizations,
respectively. Element-wise multiplication of x and y is denoted by x ⊗ y. Calligraphic letters X
represent sets, while XY = {xy : x ∈ X , y ∈ Y}. We denote by X n the n-fold Cartesian product of X
with itself, while X ×Y is the Cartesian product of X and Y . Probability density and mass functions
over X are denoted by p(x). We use 1[·] to indicate the indicator function, which is one when its
argument is true and zero otherwise. The entropy of X is denoted by H(X) (in bits), the expected
value of X by E[X].

2.2. Achievable Information Rates

For a memoryless channel that is characterized by an input alphabet X , input distribution p(x),
and channel law p(y|x), the maximum AIR is the mutual information (MI) I(X; Y) of the channel input
X and output Y. Consequently, the capacity of this channel is defined as I(X; Y) maximized over all
possible input distributions p(x), typically under an average power constraint, e.g., in [9] (Section 9.1).
The MI can be achieved, e.g., with MLC and multi-stage decoding [1,2].

In BICM systems, channel inputs are uniquely labeled with log2 |X | = (m + 1)-bit binary
strings. Here, we assume that |X | is an integer power of two. At the transmitter, the output of
a binary FEC code is mapped to channel inputs using this labeling strategy. At the receiver, BMD is
employed, i.e., binary labels C = (C1, C2, · · · , Cm+1) are assumed to be independent, and consequently,
the symbol-wise decoding metric is written as the product of bit-metrics:

q(x, y) =
m+1

∏
i=1

qi(ci, y). (1)

Since the metric in (1) is in general not proportional to p(y|x), i.e., there is a mismatch between
the actual channel law and the one assumed at the receiver, this setup is called mismatched decoding.
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Different AIRs have been derived for this so-called mismatched decoding setup. One of these is
the generalized MI (GMI) [17,18]:

GMI (p(x)) = max
s≥0

E
[

log
[q(X, Y)]s

∑x∈X p(x) [q(x, Y)]s

]
, (2)

which reduces to [19] (Thm. 4.11, Coroll. 4.12) and [20]:

GMI (p(c1)p(c2) · · · p(cm+1)) =
m+1

∑
i=1

I(Ci; Y) (3)

when the bit levels are independent at the transmitter, i.e., p(x) = p(c) = p(c1)p(c2) · · · p(cm+1) where
c = (c1, c2, · · · , cm+1), and:

qi(ci, y) = p(y|ci). (4)

The rate (3) is achievable for both uniform and shaped bit levels [5,21]. The problem of computing
the bit level distributions that maximize the GMI in (3) was shown to be nonconvex in [22]. The
parameter that maximizes (2) to obtain (3) is s = 1.

Another AIR for mismatched decoding is the LM (lower bound on the mismatch capacity)
rate [18,23]:

LM (p(x)) = max
s≥0,r(·)

E
[

log
[q(X, Y)]s r (X)

∑x∈X p(x) [q(x, Y)]s r (x)

]
, (5)

where r(·) is a real-valued cost function defined on X . The expectations in (2) and (5) are taken with
respect to p(x, y).

When there is dependence among bit levels, i.e., p(x) = p(c) 6= p(c1)p(c2) · · · p(cm+1),
the rate [24,25]:

RBMD (p(x)) = H (C)−
m+1

∑
i=1

H(Ci|Y) (6)

has been shown to be achievable by BMD for any joint input distribution p(c) = p(c1, c2, · · · , cm+1).
In [24,25], the achievability of (6) was derived using random coding arguments based on strong
typicality [16] (Ch. 1). Later in [26] (Lemma 1), it was shown that (6) is an instance of the so-called LM
rate (5) for s = 1, the symbol decoding metric (1), bit decoding metrics (4), and the cost function:

r(c1, c2, · · · , cm+1) =
∏m+1

i=1 p(ci)

p(c1, c2, · · · , cm+1)
. (7)

We note here that RBMD in (6) can be negative as discussed in [26] (Section II-B). In such cases,
RBMD cannot be considered as an achievable rate. To avoid this, RBMD is defined as the maximum
of (6) and zero in [26] (Equation (1)).

2.3. Probabilistic Amplitude Shaping: Model

PAS [8] is a capacity-achieving CM strategy in which constellation shaping and FEC coding
are combined as shown in Figure 1. In PAS, first an amplitude shaping block maps k-bit
information strings to n-amplitude shaped sequences a = (a1, a2, · · · , an) in an invertible manner.
These amplitudes are drawn from a 2m-ary alphabet A. The amplitude shaping block can be realized
using constant composition distribution matching [27], multiset-partition distribution matching [28],
shell mapping [29], enumerative sphere shaping [30], etc.
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Amplitude
Shaping

a ∈ A

k bits

Binary
Labeling

Systematic
FEC Coding
Rc =

m+γ
m+1

c1c2 · · · cm

γn bits si = (s1, s2, · · · , sγn)

a = (a1, a2, · · · , an)

si = (s1, s2, · · · , sγn)

sp = (sγn+1sγn+2 · · · sn)
s = (si, sp)

Figure 1. Probabilistic amplitude shaping with transmission rate R = k/n + γ bit/1D.

After n amplitudes are generated, binary labels c1c2 · · · cm of the amplitudes a and an additional
γn-bit information string si = (s1, s2, · · · , sγn) are fed to a rate (m + γ)/(m + 1) systematic FEC
encoder. The encoder produces (1− γ)n parity bits sp = (sγn+1, sγn+2, · · · , sn). The additional data
bits si and the parity bits sp are used as the signs s = (s1, s2, · · · , sn) for the amplitudes a. Finally,
probabilistically shaped channel inputs x = s⊗ a are transmitted through the channel. Here, γ is the
rate of the additional information in bits per symbol (bit/1D) or, equivalently, the fraction of signs that
are selected directly by data bits. The transmission rate of PAS is R = k/n + γ in bit/1D.

2.4. Probabilistic Amplitude Shaping: Achievable Rates

Based on Gallager’s error exponent approach [15] (Ch. 5), AIRs of PAS were investigated in [12–14].
In [12], a random code ensemble was considered from which the channel inputs x were drawn. Then,
the AIR in [12] (Equations (32)–(34)) was derived for a general memoryless decoding metric q(x, y).
It was shown that by properly selecting q(x, y), I(X; Y) and the rate (6) can be recovered from the
derived AIR, and consequently, they can be achieved with PAS.

Computing error exponents for PAS was also the main concern of the work presented
in [13] (Ch. 10). The difference from [12] was in the random coding setup. In [13] (Ch. 10), a random
code ensemble was considered from which only the signs s of the channel inputs were drawn at
random. We call this the random sign-coding setup. The error exponent [13] (Equation (10.42)) was
then derived again for a general memoryless decoding metric. Error exponents of PAS have also been
examined based on the joint source-channel coding (JSCC) setup in [14,31]. Random sign-coding was
considered in [14,31], but only with symbol-metric decoding (SMD) and only for the specific case
where γ = 0.

2.5. Our Contribution

In this work, we derive AIRs of PAS in a random sign-coding framework based on weak
typicality [9] (Sections 3.1, 7.6 and 15.2). We first consider basic sign-coding in which amplitudes of the
channel inputs are generated constructively while the signs are drawn from a randomly generated
code. Basic sign-coding corresponds to PAS with γ = 0. Then, we consider modified sign-coding in
which only some of the signs are drawn from the random code while the remaining are chosen directly
by information bits. Modified sign-coding corresponds to PAS with 0 < γ < 1. We compute AIRs for
both SMD and BMD.

Our first objective is to provide alternative proofs of achievability in which the codes are generated
as constructively as possible. In our random sign-coding experiment, both the amplitude sequences (a)
and the sign sequence parts (si) that are information bits are constructively produced, and only the
remaining signs (sp) are randomly generated as illustrated in Figure 2. In most proofs of Shannon’s
channel coding theorem, channel input sequences (x) are drawn at random, and the existence of a
good code is demonstrated. Therefore, these proofs are not constructive and cannot be used to identify
good codes as discussed, e.g., in [32] (Section I) and the references therein. On the other hand, in our
proofs using random sign-coding arguments, it is self-evident how—at least a part of—the code should
be constructed. Our second objective is to provide a unified framework in which all possible PAS
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scenarios are considered, i.e., SMD or BMD at the receiver with 0 ≤ γ < 1, and corresponding AIRs
are determined using a single technique, i.e., the random sign-coding argument.

a1a2 · · · an

a

s1s2 · · · sγn

si

sγn+1sγn+2 · · · sn

sp

Random code [This work]

Random code [13,14]

Random code [12]

Figure 2. The scope of the random coding experiments considered in this work and in [12–14].

Note that our approach differs from the random sign-coding setup considered in [13,14] where
all signs (si and sp) were generated randomly, which was called partially systematic encoding
in [13] (Ch. 10). We will show later that only sp needs to be chosen randomly. Furthermore, we
define a special type of typicality (B-typicality; see Definition 1 below) that allows us to avoid the
mismatched JSCC approach of [14].

3. Preliminaries

3.1. Memoryless Channels

We consider communication over a memoryless channel with discrete input X ∈ X and discrete
output Y ∈ Y . The channel law is given by:

p(y|x) =
n

∏
i=1

p(yi|xi). (8)

Later in Example 1, we will also discuss the AWGN channel Y = X + Z where Z is zero-mean
Gaussian with variance σ2. In this case, we assume that the channel output Y is a quantized version
of the continuous channel output X + Z. Furthermore, we assume that this quantization has a
resolution high enough that the discrete-output channel is an accurate model for the underlying
continuous-output channel. Therefore, the achievability results we will obtain for discrete memoryless
channels carry over to the discrete-input AWGN channel.

3.2. Typical Sequences

We will provide achievability proofs based on weak typicality. In this section, which is based
on [9] (Sections 3.1, 7.6, and 15.2), we formally define weak typicality and list its properties that will be
used in this paper.

Let ε > 0 and n be a positive integer. Consider the random variable X with probability distribution
p(x). Then, the (weak) typical set An

ε (X) of length-n sequences with respect to p(x) is defined as:

An
ε (X) ,

{
x ∈ X n :

∣∣∣∣− 1
n

log p(x)− H(X)

∣∣∣∣ ≤ ε

}
, (9)

where:

p(x) ,
n

∏
i=1

p(xi). (10)

The cardinality of the typical set An
ε (X) satisfies [9] (Thm. 3.1.2):

(1− ε)2n(H(X)−ε)
(a)
≤ |An

ε (X)|
(b)
≤ 2n(H(X)+ε), (11)
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where (a) holds for n sufficiently large and (b) holds for all n. For x ∈ An
ε (X), the probability of

occurrence can be bounded as [9] (Equation (3.6)):

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε). (12)

The idea of typical sets can be generalized for pairs of n-sequences. Now, consider the pair of
random variables (X, Y) with probability distribution p(x, y). Then, the typical set An

ε (XY) of pairs of
length-n sequences with respect to p(x, y) is defined as:

An
ε (XY) ,

{
(x, y) ∈ X n ×Yn :

∣∣∣∣− 1
n

log p(x)− H(X)

∣∣∣∣ ≤ ε,∣∣∣∣− 1
n

log p(y)− H(Y)
∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log p(x, y)− H(X, Y)

∣∣∣∣ ≤ ε

}
(13)

where:

p(x, y) ,
n

∏
i=1

p(xi, yi), (14)

and where p(x) and p(y) are the marginal distributions that correspond to p(x, y). The cardinality of
the typical set An

ε (XY) satisfies [9] (Thm. 7.6.1):

|An
ε (XY)| ≤ 2n(H(X,Y)+ε) (15)

for all n. For (x, y) ∈ An
ε (XY), the probability of occurrence can be bounded in a similar manner

to (12) as:
2−n(H(X,Y)+ε) ≤ p(x, y) ≤ 2−n(H(X,Y)−ε). (16)

Along the same lines, joint typicality can be extended for collections of n-sequences
(X1, X2, · · · , Xm) and the corresponding typical set An

ε (X1X2 · · ·Xm) can be defined similar to how (9)
was extended to (13). Then, for (x1, x2, · · · , xm) ∈ An

ε (X1X2 · · ·Xm), the probability of occurrence can
be bounded in a similar manner to (16) as:

2−n(H(X)+ε) ≤ p(x1, x2, · · · , xm) ≤ 2−n(H(X)−ε), (17)

where X = (X1, X2, . . . , Xm).
Finally, we fix x. The conditional (weak) typical set An

ε (Y|x) of length-n sequences is defined as:

An
ε (Y|x) =

{
y : (x, y) ∈ An

ε (XY)
}

. (18)

In other words, An
ε (Y|x) is the set of all y sequences that are jointly typical with x. For x ∈

An
ε (X) and for sufficiently large n, the cardinality of the conditional typical set An

ε (Y|x) satisfies [9]
(Thm. 15.2.2):

|An
ε (Y|x)| ≤ 2n(H(Y|X)+2ε). (19)

Definition 1 (B-typicality). Let the input probability distribution p(u) together with the transition probability
distribution p(v|u) determine the joint probability distribution p(u, v) = p(u)p(v|u). Now, we define:

Bn
V,ε(U)

∆
=
{

u : u ∈ An
ε (U) and Pr

{
(u, V) ∈ An

ε (UV) | U = u)
}
≥ 1− ε

}
, (20)

where V is the output sequence of a “channel” p(v|u) when sequence u is input.
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The set Bn
V,ε(U) in (20) guarantees that a sequence u in this B-typical set will with high probability

lead to a sequence v that is jointly typical with u. We note that U and/or V can be composite. The set
Bn

V,ε(U) has three properties, as stated in Lemma 1, the proof of which is given in Appendix A.

Lemma 1 (B-typicality properties). The set Bn
V,ε(U) in Definition 1 has the following properties:

P1 : For u ∈ Bn
V,ε(U),

2−n(H(U)+ε) ≤ p(u) ≤ 2−n(H(U)−ε). (21)

P2 : For n large enough,

∑
u/∈Bn

V,ε(U)

p(u) ≤ ε.

P3 : |Bn
V,ε(U)| ≤ 2n(H(U)+ε) holds for all n, while |Bn

V,ε(U)| ≥ (1− ε)2n(H(U)−ε) holds for n large enough.

4. Random Sign-Coding Experiment

We consider 2m+1-ary amplitude shift keying (M-ASK) alphabets
X = {−M + 1,−M + 3, · · · , M− 1} where M = 2m+1. We note that X is symmetric around
the origin and can be factorized as X = SA. Here, S = {−1,+1} and A = {+1,+3, · · · , M− 1} are
the sign and amplitude alphabets, respectively. Accordingly, any channel input x ∈ X can be written
as the multiplication of a sign and an amplitude, i.e., x = s⊗ a.

4.1. Random Sign-Coding Setup

We cast the PAS structure shown in Figure 1 as a sign-coding structure as in Figure 3.
The sign-coding setup consists of two layers: a shaping layer and a coding layer.

Shaper
a ∈ A

ma

Coder
s ∈ S

ms

s′(ms)

⊗

s(ma, ms) = (s′(ms), s′′(ma, ms))

a(ma)
p(y|x)

x(ma, ms) SMD or
BMD

y m̂a, m̂s

Shaping layer

Coding layer

Figure 3. Sign-coding structure: sign-coding (coder) is combined with amplitude shaping (shaper).
SMD, symbol-metric decoding; BMD, bit-metric decoding.

Definition 2 (Sign-coding). For every message index pair (ma, ms), with uniform ma ∈ {1, 2, · · · , Ma} and
uniform ms ∈ {1, 2, · · · , Ms}, a sign-coding structure as shown in Figure 3 consists of the following.

• A shaping layer that produces for every message index ma, a length-n shaped amplitude sequence a(ma)

where the mapping is one-to-one. The set of amplitude sequences is assumed to be shaped, but uncoded.
• An additional n1-bit (uniform) information string in the form of a sign sequence part

s′(ms) = (s1(ms), s2(ms), · · · , sn1(ms)) for every message index ms.
• A coding layer that extends the sign sequence part s′(ms) by adding a second (uniform) sign sequence part

s′′(ma, ms) = (sn1+1(ma, ms), sn1+2(ma, ms), · · · , sn(ma, ms)) of length-n2 for all ma and ms. This is
obtained by using an encoder that produces redundant signs in the set S from a(ma) and s′(ms). Here,
n1 + n2 = n.
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Finally, the transmitted sequence is x(ma, ms) = a(ma) ⊗ s(ma, ms), where s(ma, ms) =

(s′(ms), s′′(ma, ms)). The sign-coding setup with n1 = 0 (γ = 0) is called basic sign-coding, while the
setup with n1 > 0 (γ > 0) is called modified sign-coding.

4.2. Shaping Layer

When SMD is employed at the receiver, the shaping layer is as shown in Figure 4. Here, let A be
distributed with p(a) over a ∈ A. Then, the shaper produces for every message index ma a length-n
amplitude sequence a(ma) ∈ Bn

SY,ε(A). We note that for this sign-coding setup, the rate is:

R =
1
n

log2 |Ma Ms| = γ +
1
n

log2 |B
n
SY,ε(A)| ≥ H(A) + γ− 2ε (22)

where the inequality in (22) follows for n large enough from P3.

Shaper
p(a), a ∈ A

ma a(ma) ∈ Bn
SY,ε(A)

Figure 4. Shaping layer of the random sign-coding setup with SMD.

On the other hand, when BMD is used at the receiver, the shaping layer is as shown in
Figure 5. Here, let B = (B1, B2, · · · , Bm) be distributed with p(b) = p(b1, b2, · · · , bm) over
(b1, b2, · · · , bm) ∈ {0, 1}m. The shaper produces for every message index ma an n-sequence of m-tuples
b(ma) = (b1(ma), b2(ma), · · · , bm(ma)) ∈ Bn

SY,ε(B1B2 · · · Bm). Then, each m-tuple is mapped to an
amplitude sequence a(ma) by a symbol-wise mapping function f (·). We note that for this sign-coding
setup, the rate is:

R =
1
n

log2 |Ma Ms| = γ +
1
n

log2 |B
n
SY,ε(B)| ≥ H(B) + γ− 2ε (23)

where the inequality in (23) follows for n large enough from P3.

Shaper
p(b),

b ∈ {0, 1}m

ma
Symbol-wise

Mapping
f (b)

b(ma) ∈ Bn
SY,ε(B1B2 · · · Bm) a(ma)

Figure 5. Shaping layer of the random sign-coding setup with BMD for M-ASK.

To realize f (·), we label the channel inputs with (m + 1)-bit strings. The amplitude is addressed
by m amplitude bits (B1, B2, · · · , Bm), while the sign is addressed by a sign bit S. The symbol-wise
mapping function f (·) in Figure 5 uses the addressing (B1, B2, · · · , Bm) ⇐⇒ A. We emphasize
that unlike the case in Section 2.2, we use (S, B1, B2, · · · , Bm) to denote a channel input instead of
(C1, C2, · · · , Cm+1). Amplitudes and signs of x ∈ X are tabulated for 8-ASK in Table 1 along with an
example of the mapping function f (b1, b2), namely the binary reflected Gray code [19] (Defn. 2.10).

Table 1. Input alphabet and mapping function for 8-ASK.

A 7 5 3 1 1 3 5 7
S −1 −1 −1 −1 1 1 1 1

X −7 −5 −3 −1 1 3 5 7

B1 0 0 1 1 1 1 0 0
B2 0 1 1 0 0 1 1 0
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4.3. Decoding Rules

At the receiver, SMD finds the unique message index pair (m̂a, m̂s) such that the
corresponding amplitude-sign sequence is jointly typical with the received output sequence y,
i.e., (a(m̂a), s(m̂a, m̂s), y) ∈ An

ε (ASY).
On the other hand, BMD finds the unique message index pair (m̂a, m̂s) such that the corresponding

bit and sign sequences are (individually) jointly typical with the received output sequence y,
i.e., (s(m̂a, m̂s), y) ∈ An

ε (SY) and (bj(m̂a), y) ∈ An
ε (BjY) for j = 1, 2, · · · , m. We note that the decoder

can use bit metrics p(bji = 1|yi) = 1− p(bji = 0|yi) for j = 1, 2, · · · , m and i = 1, 2, · · · , n to find
p(bj|y). Here, bji is the jth bit of the ith symbol. Together with p(y) and p(bj), the decoder can check
whether (bj, y) ∈ An

ε (BjY). We note that Bj is in general not uniform. A similar statement holds for
the uniform sign S.

5. Achievable Information Rates of Sign-Coding

Here, we investigate AIRs of the sign-coding architecture in Figure 3. We consider both SMD and
BMD at the receiver. In what follows, four AIRs are presented. The proofs are based on B-typicality,
a variation of weak typicality, and random sign-coding arguments and are given in Appendix B.
As indicated in Definition 2, signs S are assumed to be uniform in the proofs. We have not applied
weak typicality for continuous random variables, discussed in [9] (Section 8.2) and [33] (Section 10.4),
since our channels are discrete-input. However, it is also possible to develop a hybrid version of weak
typicality that matches with discrete-input continuous-output channels.

In the following, the concept of AIR is formally defined in the sign-coding context.

Definition 3 (Achievable information rate). A rate R is said to be achievable if for every δ > 0 and n large
enough, there exists a sign-coding encoder and a decoder such that (1/n) log2 (Ma Ms) ≥ R− δ and error
probability Pe ≤ δ.

5.1. Sign-Coding with Symbol-Metric Decoding

Theorem 1 (Basic sign-coding with SMD). For a memoryless channel {X , p(y|x),Y} with amplitude
shaping and basic sign-coding, the rate:

Rγ=0
SMD = max

p(a):H(A)≤I(SA;Y)
H(A) (24)

is achievable using SMD.

Theorem 1 implies that for a memoryless channel, the rate R = H(A) is achievable with basic
sign-coding, as long as H(A) ≤ I(SA; Y) = I(X; Y) is satisfied. For the AWGN channel, this means
that a range of rate-SNR pairs are achievable. Here, SNR denotes the signal-to-noise ratio. One of these
points, H(A) = I(SA; Y), is on the capacity-SNR curve. Note that here, “capacity” indicates the largest
achievable rate using X as the channel input alphabet under the average power constraint. It can be
observed from Figure 6 discussed in Example 1 that there indeed exists an amplitude distribution p(a)
for which H(A) = I(SA; Y).

Theorem 2 (Modified sign-coding with SMD). For a memoryless channel {X , p(y|x),Y} with amplitude
shaping and modified sign-coding, the rate:

Rγ>0
SMD = max

p(a),γ:H(A)+γ≤I(SA;Y)
H(A) + γ (25)

is achievable using SMD for γ < 1.
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Theorem 2 implies that for a memoryless channel, the rate H(A) + γ is achievable with modified
sign-coding, as long as R = H(A) + γ ≤ I(SA; Y) = I(X; Y) is satisfied. For the AWGN channel,
this means that all points on the capacity-SNR curve for which H(X|Y) ≤ 1 − γ are achievable.
This follows from:

H(A) + γ ≤ I(SA; Y) = H(SA)− H(SA|Y) = H(A) + 1− H(X|Y), (26)

i.e., the constraint in the maximization in (25).

Example 1. We consider the AWGN channel with average power constraint E[X2] ≤ P. Figure 6 shows the
capacity of 4-ASK:

C4-ASK = max
p(x):X={−3,−1,+1,+3},

E[X2]≤P

I(X; Y) (27)

together with the amplitude entropy H(A) of the distribution that achieves this capacity. Here, SNR =

E[X2]/σ2, and σ2 is the noise variance. Basic sign-coding achieves capacity only for SNR = 0.72 dB, i.e., at the
point where H(A) = I(X; Y), which is C4-ASK = 0.562 bit/1D. We see from Figure 6 that the shaping gap is
negligible around this point, i.e., the capacity C4-ASK of 4-ASK and the MI I(X; Y) for uniform p(x) are virtually
the same. On the other hand, this gap is significant for larger rates, e.g., it is around 0.42 dB at 1.6 bit/1D.
To achieve rates larger than 0.562 bit/1D on the capacity-SNR curve, modified sign-coding (γ > 0) is required.
At a given SNR, C4-ASK can be written as C4-ASK = H(A) + γ, i.e., when the H(A) curve is shifted above
by γ, the crossing point is again at C4-ASK for that SNR. We also plot the additional rate γ = C4-ASK − H(A)

in Figure 6. As an example, at SNR = 9.74 dB, CASK = H(A) + γ = 1.6 can be achieved with modified
sign-coding where H(A) = 0.9 and γ = 0.7. We observe that sign-coding achieves the capacity of 4-ASK for
SNR ≥ 0.72 dB.
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Extra Rate γ

0.72 dB

0.562 bit/1-D

SNR (in dB)

A
IR

,E
nt

ro
py

or
R

at
e

(b
it/

1-
D

)

AWGN Capacity
4-ASK Capacity
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Figure 6. Sign-coding with SMD for 4-ASK. All C4-ASK ≥ 0.562 bit/1D can be achieved with sign-coding.
AIR, achievable information rate.

5.2. Sign-Coding with Bit-Metric Decoding

The following theorems give AIRs for sign-coding with BMD.
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Theorem 3 (Basic sign-coding with BMD). For a memoryless channel {X , p(y|x),Y} with amplitude
shaping using M-ASK and basic sign-coding, the rate:

Rγ=0
BMD = max

p(b):H(B)≤RBMD(p(x))
H(B) (28)

is achievable using BMD. Here, B = (B1, B2, . . . , Bm), p(b) = p(b1, b2, . . . , bm),
and p(x) = p(s, b1, b2, . . . , bm), and RBMD(p(x)) is as defined in (6).

Theorem 4 (Modified sign-coding with BMD). For a memoryless channel {X , p(y|x),Y} with amplitude
shaping using M-ASK and modified sign-coding, the rate:

Rγ>0
BMD = max

p(b),γ:H(B)+γ≤RBMD(p(x))
H(B) + γ (29)

is achievable using BMD for γ < 1.

Theorems 3 and 4 imply that for a memoryless channel, the rate R = H(B) + γ = H(A) + γ is
achievable with sign-coding and BMD, as long as R ≤ RBMD is satisfied.

Remark 1 (Random sign-coding with binary linear codes). An amplitude can be represented by m bits.
We can uniformly generate a code matrix with mn rows of length n. This matrix can be used to produce the sign
sequences. This results in the pairwise independence of any two different sign sequences, as is explained in the
proof of [15] (Theorem 6.2.1). Inspection of the proof of our Theorem 1 shows that only the pairwise independence
of sign sequences is needed. Therefore, achievability can also be obtained with a binary linear code. Note that
our linear code can also be seen as a systematic code that generates parity. The code rate of the corresponding
systematic code is m/(m + 1). For BMD, a similar reasoning shows that linear codes lead to achievability,
and also for modified sign-coding, achievability follows for binary linear codes. The rate of the systematic code
that corresponds to the modified setting is (m + γ)/(m + 1).

6. Conclusions

In this paper, we studied achievable information rates (AIRs) of probabilistic amplitude shaping
(PAS) for discrete-input memoryless channels. In contrast to the existing literature in which Gallager’s
error exponent approach was followed, we used a weak typicality framework. Random sign-coding
arguments based on weak typicality were introduced to upper-bound the probability of error of a
so-called sign-coding structure. The achievability of the mutual information was demonstrated for
uniform signs, which were independent of the amplitudes. Sign-coding combined with amplitude
shaping corresponded to PAS, and consequently, PAS achieved the capacity of a discrete-input
memoryless channel with a symmetric capacity-achieving distribution.

Our approach was different than the random coding arguments considered in the literature, in the
sense that our motivation was to provide achievability proofs that were as constructive as possible.
To this end, in our random sign-coding setup, both the amplitudes and the signs of the channel inputs
that were directly selected by information bits were constructively produced. Only the remaining
signs were drawn at random. A study on the achievability of capacity for channels with asymmetric
capacity-achieving distributions with a type of sign-coding is left for possible future research.
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Appendix A. Proof of Lemma 1

Appendix A.1. Proof of P1

We see from [9] (Equation (3.6)) that for u ∈ An
ε (U),

2−n(H(U)+ε) ≤ p(u) ≤ 2−n(H(U)−ε). (A1)

Due to Definition 1, each u ∈ Bn
V,ε(U) is also in An

ε (U); more specifically, Bn
V,ε(U) ⊆ An

ε (U).
Consequently, (A1) also holds for u ∈ Bn

V,ε(U), which completes the proof of P1.

Appendix A.2. Proof of P2

Let (U, V) be independent and identically distributed with respect to p(u, v). Then:

Pr{(U, V) ∈ An
ε (UV)} = ∑

u
p(u) ∑

v:(u,v)∈An
ε (UV)

p(v|u) (A2)

= ∑
u∈Bn

V,ε(U)

p(u) ∑
v:(u,v)∈An

ε (UV)

p(v|u)

+ ∑
u/∈Bn

V,ε(U)

p(u) ∑
v:(u,v)∈An

ε (UV)

p(v|u) (A3)

≤ ∑
u∈Bn

V,ε(U)

p(u) + ∑
u/∈Bn

V,ε(U)

p(u)(1− ε) (A4)

= 1− ε + ε ∑
u∈Bn

V,ε(U)

p(u) (A5)

= 1− ε + ε Pr{U ∈ Bn
V,ε(U)}. (A6)

Here, (A4) follows from Definition 1, which states that Pr
{
(u, V) ∈ An

ε (UV)
∣∣U = u

}
< 1− ε for

u ∈ An
ε (U), if u /∈ Bn

V,ε(U). Then, from (A6), we obtain:

Pr{U ∈ Bn
V,ε(U)} ≥ Pr{(U, V) ∈ An

ε (UV)} − 1 + ε

ε
(A7)

= 1− Pr{(U, V) /∈ An
ε (UV)}

ε
(A8)

≥ 1− ε. (A9)

for large enough n. Here, (A9) follows from [9] (Thm. 7.6.1), which states that Pr{(U, V) ∈
An

ε (UV)} → 1 as n → ∞. This implies that Pr{(U, V) /∈ An
ε (UV)} ≤ ε2 for positive ε and large

enough n, which completes the proof.

Appendix A.3. Proof of P3

We see from [9] (Thm. 3.1.2) that:

|An
ε (U)| ≤ 2n(H(U)+ε). (A10)

Since Bn
V,ε(U) ⊆ An

ε (U), again by Definition 1, (A10) also holds for |Bn
V,ε(U)|. This proves the

upper bound in P3. To prove the lower bound, we obtain from (A9) for n sufficiently large that:

1− ε ≤ Pr{U ∈ Bn
V,ε(U)} (A11)

≤ ∑
u∈Bn

V,ε(U)

2−n(H(U)−ε) (A12)

= |Bn
V,ε(U)|2−n(H(U)−ε), (A13)
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where (A12) follows from (A1).

Appendix B. Proofs of Theorems 1, 2, 3, and 4

To derive AIRs, we will follow the classical approach, e.g., as in [9] (Section 7.7), and upper-bound
the average of the probability of error Pe over a random choice of sign-codebooks. This way, we will
demonstrate the existence of at least one good sign-code. Again as in [9] (Section 7.7) and as explained
in Section 4.3, we decode by joint typicality: the decoder looks for a unique message index pair
(m̂a, m̂s) for which the corresponding amplitude-sign sequence (a, s) is jointly typical with the received
sequence y.

By the properties of weak typicality and B-typicality, the transmitted amplitude-sign sequence
and the received sequence are jointly typical with high probability for n large enough. We call the
event for which the transmitted amplitude-sign sequence is not jointly typical with the received
sequence the first error event with average probability Pe(1). Furthermore, the probability that any
other (not transmitted) amplitude-sign sequence is jointly typical with the received sequence vanishes
for asymptotically large n. We call the event that there is another amplitude-sign sequence that is
jointly typical with the received sequence the second error event with average probability Pe(2).
Observing that these events are not disjoint, we can write [9] (Equation (7.75)):

Pe ≤ Pe(1) + Pe(2). (A14)

Appendix B.1. Proof of Theorem 1

For the error of the first kind, we can write:

Pe(1) =
Ma

∑
ma=1

1
Ma

∑
s∈Sn

p(s) ∑
y∈Yn

p(y|a(ma), s)1[(a(ma), s, y) /∈ An
ε (ASY)] (A15)

= ∑
ma

1
Ma

∑
s

∑
y

p(s, y|a(ma))1[(a(ma), s, y) /∈ An
ε ] (A16)

= ∑
ma

1
Ma

Pr
{
(a(ma), S, Y) /∈ An

ε

∣∣A = a(ma)
}

(A17)

≤∑
ma

ε

Ma
(A18)

= ε, (A19)

where we simplified the notation by replacing ma = 1, 2, · · · , Ma by ma, s ∈ Sn by s, and y ∈ Yn

by y in (A16). Furthermore, we dropped the index of the typical set An
ε (ASY) and used An

ε instead.
We will follow these notations for summations and for the typical sets for the rest of the paper,
assuming for the latter that the index of the typical set will be clear from the context. To obtain (A16),
we used p(s)p(y|a(ma), s) = p(s, y|a(ma)). Then, (A18) is a direct consequence of Definition 1 since
a(ma) ∈ Bn

SY,ε(A) for ma = 1, 2, · · · , Ma.
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For the error of the second kind, we can write:

Pe(2) ≤∑
ma

1
Ma

∑
s

p(s)∑
y

p(y|a(ma), s)
Ma

∑
ka=1,ka 6=ma

∑
s̃∈Sn

p(s̃)1[(a(ka), s̃, y) ∈ An
ε ] (A20)

= Ma ∑
ma

∑
s

p(s)
Ma

∑
y

p(y|a(ma), s) ∑
ka 6=ma

∑̃
s

p(s̃)
Ma

1[(a(ka), s̃, y) ∈ An
ε ] (A21)

≤ Ma26nε ∑
ma

∑
s

p(a(ma))p(s)∑
y

p(y|a(ma), s)

· ∑
ka 6=ma

∑̃
s

p(a(ka))p(s̃)1[(a(ka), s̃, y) ∈ An
ε ] (A22)

≤ Ma26nε ∑
a∈An

∑
s

p(a)p(s)∑
y

p(y|a, s) ∑
ã∈An

∑̃
s

p(ã)p(s̃)1[(ã, s̃, y) ∈ An
ε ] (A23)

= Ma26nε ∑
(y,x̃)∈An

ε

p(x̃)p(y) (A24)

≤ 2n(H(A)+ε)26nε|An
ε (XY)|2−n(H(X)−ε)2−n(H(Y)−ε) (A25)

≤ 2n(H(A)+7ε)2n(H(X,Y)+ε)2−n(H(X)−ε)2−n(H(Y)−ε) (A26)

= 2n(H(A)−I(SA;Y)+10ε), (A27)

where we simplified the notation by replacing ka = 1, 2, · · · , Ma : ka 6= ma by ka 6= ma, and s̃ ∈ Sn by
s̃ in (A21). We will follow these notations for the rest of the paper. Then:

(A22) follows for n sufficiently large and for a ∈ Bn
SY,ε(A) from:

1
Ma

=
1

|Bn
SY,ε(A)| ≤

2−n(H(A)−ε))

1− ε
(A28)

=
22nε

1− ε
2−n(H(A)+ε) (A29)

≤ 22nε

1− ε
p(a) (A30)

≤ 23nε p(a), (A31)

where (A28) follows from the B-typicality property P3, (A30) follows from the B-typicality
property P1, and (A31) holds for all large enough n.

(A23) follows from summing over a ∈ An instead of over a(ma) ∈ Bn
ε and over ã ∈ An instead of

a(ka) ∈ Bn
ε for ka 6= ma.

(A24) is obtained by working out the summations over a and s and by replacing ãs̃ with x̃.
(A25) follows from Ma = |Bn

ε (A)| ≤ 2n(H(A)+ε), i.e., the B-typicality property P3, and from (12).
(A26) follows from (15).

The conclusion from (A27) is that for H(A) < I(X; Y) − 10ε, the error probability of the
second kind:

Pe(2) ≤ ε (A32)

for n large enough. Using (A19) and (A32) in (A14), we find that the total error probability averaged
over all possible sign-codes Pe ≤ 2ε for n large enough. This implies the existence of a basic sign-code
with total error probability Pe = Pr{M̂a 6= Ma} ≤ 2ε. This holds for all ε > 0, and therefore, the rate:

R = H(A) ≤ I(X; Y), (A33)

is achievable with basic sign-coding, which concludes the proof of Theorem 1.
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Appendix B.2. Proof of Theorem 2

For the error of the first kind, we can write:

Pe(1) = ∑
ma

1
Ma

Ms

∑
ms=1

1
2n1 ∑

s′′∈Sn2

p(s′′)∑
y

p(y|a(ma), s′(ms)s′′)1[(a(ma), s′(ms)s′′, y) /∈ An
ε ] (A34)

= ∑
ma

1
Ma

∑
ms

∑
s′′

2−n ∑
y

p(y|a(ma), s′(ms)s′′)1[(a(ma), s′(ms)s′′, y) /∈ An
ε ] (A35)

= ∑
ma

1
Ma

∑
ms

∑
s′′

∑
y

p(s′(ms)s′′, y|a(ma))1[(a(ma), s′(ms)s′′, y) /∈ An
ε ] (A36)

= ∑
ma

1
Ma

Pr
{
(a(ma), S, Y) /∈ An

ε

∣∣A = a(ma)
}

(A37)

≤∑
ma

ε

Ma
(A38)

= ε, (A39)

where we simplified the notation by replacing s′′ ∈ Sn2 by s′′ and ms = 1, 2, · · · , Ms by ms in (A35).
We will follow these notations for the rest of the paper. To obtain (A35), we used the fact that S′′

is uniform; more precisely p(s′′) = 2−n2 . To obtain (A36), we used the fact that S′ is also uniform,
and then, 2−n p(y|a(ma), s′(ms)s′′) = p(s′(ms)s′′, y|a(ma)). Then, (A38) is a direct consequence of
Definition 1 since a(ma) ∈ Bn

SY,ε(A) for ma = 1, 2, · · · , Ma.
For the error of the second kind, we obtain:

Pe(2) ≤∑
ma

1
Ma

∑
ms

1
2n1 ∑

s′′
p(s′′)∑

y
p(y|a(ma), s′(ms)s′′)

· ∑
(ka ,ks) 6=(ma ,ms)

∑
s̃′′

p(s̃′′)1[(a(ka), s′(ks)s̃′′, y) ∈ An
ε ]

= Ma2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|a(ma), s′(ms)s′′)

· ∑
(ka ,ks) 6=(ma ,ms)

∑
s̃′′

2−n

Ma
1[(a(ka), s′(ks)s̃′′, y) ∈ An

ε ] (A40)

= Ma2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|a(ma), s′(ms)s′′) ∑
ka 6=ma ,ks ,s̃′′

2−n

Ma
1[(a(ka), s′(ks)s̃′′, y) ∈ An

ε ]

+ 2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|a(ma), s′(ms)s′′) ∑
ks 6=ms ,s̃′′

2−n1[(a(ma), s′(ks)s̃′′, y) ∈ An
ε ]. (A41)

Here, we replaced nested summations over ma, ms, and s′ by a single summation over (ma, ms, s′)
for the sake of better readability. We will use this notation for the rest of the paper. Then:

(A40) follows from n = n1 + n2 and from the fact that S′′ is uniform; more precisely, p(s′′) = 2−n2 .
(A41) is obtained by splitting (ka, ks) 6= (ma, ms) into ka 6= ma, ks and ka = ma, ks 6= ms.
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From (A41), we obtain:

Pe(2) ≤ Ma2n126nε ∑
ma ,ms ,s′′

p(a(ma))p(s′(ms)s′′)∑
y

p(y|a(ma), s′(ms)s′′)

· ∑
ka 6=ma ,ks ,s̃′′

p(a(ka))p(s′(ks)s̃′′)1[(a(ka), s′(ks)s̃′′, y) ∈ An
ε ]

+ 2n123nε ∑
ma ,ms ,s′′

p(a(ma))p(s′(ms)s′′)∑
y

p(y|a(ma), s′(ms)s′′)

· ∑
ks 6=ms ,s̃′′

p(s′(ks)s̃′′)1[(a(ma), s′(ks)s̃′′, y) ∈ An
ε ] (A42)

≤ Ma2n126nε ∑
a,s′s′′

p(a)p(s′s′′)∑
y

p(y|a, s′s′′) ∑
ã,s̃′ s̃′′

p(ã)p(s̃′ s̃′′)1[(ã, s̃′ s̃′′, y) ∈ An
ε ]

+ 2n123nε ∑
a,s′s′′

p(a)p(s′s′′)∑
y

p(y|a, s′s′′) ∑
s̃′ s̃′′

p(s̃′ s̃′′)1[(a, s̃′ s̃′′, y) ∈ An
ε ] (A43)

= Ma2n126nε ∑
a,s

p(a)p(s)∑
y

p(y|a, s) ∑̃
a,s̃

p(ã)p(s̃)1[(ã, s̃, y) ∈ An
ε ]

+ 2n123nε ∑
a,s

p(a)p(s)∑
y

p(y|a, s) ∑̃
s

p(s̃)1[(a, s̃, y) ∈ An
ε ], (A44)

where:

(A42) follows for n sufficiently large and for a ∈ Bn
SY,ε(A) from:

1
Ma

(A31)
≤ 23nε p(a) (A45)

and from p(s′s′′) = 2−n,
(A43) follows from summing over a ∈ An instead of over a(ma) ∈ Bn

ε and over ã ∈ An instead of
a(ka) ∈ Bn

ε for ka 6= ma. Moreover, it follows from summing over s′ ∈ Sn1 instead of s′(ks) for
ks = 1, 2, · · · , Ms and ks 6= ms.

(A44) follows from substituting s for s′s′′ and s̃ for s̃′ s̃′′.

Finally, from (A44), we obtain:

Pe(2) = Ma2n126nε ∑
y

p(y) ∑̃
x

p(x̃)1[(x̃, y) ∈ An
ε ]

+ 2n123nε ∑
a,y

p(a, y) ∑̃
s

p(s̃)1[(a, s̃, y) ∈ An
ε ] (A46)

≤ 2n(H(A)+ε)2nγ26nε|An
ε (XY)|2−n(H(X)−ε)2−n(H(Y)−ε)

+ 2nγ23nε|An
ε (SAY)|2−n(H(A,Y)−ε)2−n(H(S)−ε) (A47)

≤ 2n(H(A)+7ε)2nγ2n(H(X,Y)+ε)2−n(H(X)−ε)2−n(H(Y)−ε)

+ 2nγ23nε2n(H(S,A,Y)+ε)2−n(H(A,Y)−ε)2−n(H(S)−ε) (A48)

= 2n(H(A)+γ+10ε−I(X;Y)) + 2n(γ+6ε−I(S;A,Y)). (A49)

Here, we substituted n1 = nγ in (A47). Then:

(A46) is obtained by working out the summations over a, s in the first part and s in the second part.
Moreover, we replaced ãs̃ with x̃.

(A47) is obtained using for the first part that Ma = |Bn
ε (A)| ≤ 2n(H(A)+ε), i.e., the B-typicality

property P3, and (12). For the second part, we used (12) for p(s) and (16) for p(a, y).
(A48) follows from (15), and its extension to jointly typical triplets; more precisely,

|An
ε (SAY)| ≤ 2n(H(S,A,Y)+ε).
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The conclusion from (A49) is that for H(A) + γ < I(X; Y)− 10ε and γ < I(S; A, Y)− 6ε, the error
probability of the second kind:

Pe(2) ≤ ε, (A50)

for n large enough. The first constraint, i.e., H(A) + γ < I(X; Y)− 10ε, already implies the second
constraint, i.e., γ < I(S; A, Y)− 6ε, since:

γ < I(X; Y)− H(A)− 10ε

≤ I(S, A; Y)− I(A; Y)− 10ε (A51)

= I(S; Y|A)− 10ε (A52)

≤ I(S; Y|A) + I(S; A)− 10ε (A53)

= I(S; A, Y)− 10ε, (A54)

where we substituted (S, A) for X in (A51). Here, (A51) follows from [9] (Thm. 2.4.1), and both (A52)
and (A54) follow from the chain rule for MI [9] (Thm. 2.5.2).

Using (A39) and (A50) in (A14), we find that the total error probability averaged over all possible
modified sign-codes Pe ≤ 2ε for n large enough. This implies the existence of a modified sign-code
with total error probability Pe = Pr{(M̂a, M̂s) 6= (Ma, Ms)} ≤ 2ε. This holds for all ε > 0, and thus,
the rate:

R = H(A) + γ ≤ I(X; Y), (A55)

is achievable with modified sign-coding, which concludes the proof of Theorem 2.

Appendix B.3. Proof of Theorem 3

For the error of the first kind, we can write:

Pe(1) = ∑
ma

1
Ma

∑
s

p(s)∑
y

p(y|b(ma), s) (A56)

·1[((b1(ma), y) /∈ An
ε ) ∪ ((b2(ma), y) /∈ An

ε ) ∪ . . . ∪ ((bm(ma), y) /∈ An
ε ) ∪ ((s, y) /∈ An

ε )]

≤∑
ma

1
Ma

∑
s

∑
y

p(s, y|b(ma))1[(b(ma), s, y) /∈ An
ε ] (A57)

= ∑
ma

1
Ma

Pr
{
(b(ma), S, Y) /∈ An

ε

∣∣B = b(ma)
}

(A58)

≤∑
ma

ε

Ma
(A59)

= ε, (A60)

where we used b(ma) to denote (b1(ma), b2(ma), . . . , bm(ma)) in (A56) and B to denote (B1, B2, . . . , Bm)

in (A58). Then, we used p(s)p(y|b(ma), s) = p(s, y|b(ma)) in (A57). Here, (A57) follows from the fact
that if at least one of b1(ma), b2(ma), . . . , bm(ma) or s is not jointly typical with y, then (b(ma), s, y) is
not jointly typical. Then, (A59) is a direct consequence of Definition 1 since b(ma) ∈ Bn

SY,ε(B1B2 · · · Bm)

for ma = 1, 2, · · · , Ma.
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For the error of the second kind, we can write:

Pe(2) ≤∑
ma

1
Ma

∑
s

p(s)∑
y

p(y|b(ma), s)

· ∑
ka 6=ma

∑̃
s

p(s̃)1[(b1(ka), y) ∈ An
ε , (b2(ka), y) ∈ An

ε , . . . , (bm(ka), y) ∈ An
ε , (s̃, y) ∈ An

ε ]

= Ma ∑
ma

∑
s

p(s)
Ma

∑
y

p(y|b(ma), s)

· ∑
ka 6=ma

∑̃
s

p(s̃)
Ma

1[(b1(ka), y) ∈ An
ε , (b2(ka), y) ∈ An

ε , . . . , (bm(ka), y) ∈ An
ε , (s̃, y) ∈ An

ε ]

≤ Ma26nε ∑
ma

∑
s

p(b(ma))p(s)∑
y

p(y|b(ma), s) (A61)

· ∑
ka 6=ma

∑̃
s

p(s̃)p(b(ka))1[(b1(ka), y) ∈ An
ε , (b2(ka), y) ∈ An

ε , . . . , (bm(ka), y) ∈ An
ε , (s̃, y) ∈ An

ε ]

≤ Ma26nε ∑
b∈{0,1}mn

∑
s

p(b)p(s)∑
y

p(y|b, s) (A62)

· ∑
b̃∈{0,1}mn

∑̃
s

p(s̃)p(b̃)1[(b̃1, y) ∈ An
ε , (b̃2, y) ∈ An

ε , . . . , (b̃m, y) ∈ An
ε , (s̃, y) ∈ An

ε ]

= Ma26nε ∑
y

p(y) ∑̃
b,s̃

p(b̃, s̃)1[(b̃1, y) ∈ An
ε , (b̃2, y) ∈ An

ε , . . . , (b̃m, y) ∈ An
ε , (s̃, y) ∈ An

ε ] (A63)

≤ 2n(H(B)+7ε)|An
ε (Y)|2−n(H(Y)−ε)

·|An
ε (B1|y)||An

ε (B2|y)| · . . . · |An
ε (Bm|y)||An

ε (S|y)|2−n(H(B,S)−ε) (A64)

≤ 2n(H(B)+7ε)2n(H(Y)+ε)2−n(H(Y)−ε)

·2n(H(B1|Y)+H(B2|Y)+...+H(Bm |Y)+H(S|Y)+2(m+1)ε)2−n(H(B,S)−ε) (A65)

= 2n(H(B)−H(B,S)+H(B1|Y)+H(B2|Y)+...+H(Bm |Y)+H(S|Y)+(12+2m)ε), (A66)

where we used b to denote (b1, b2, . . . , bm) and b̃ to denote (b̃1, b̃2, . . . , b̃m) in (A62). We also used B to
denote (B1, B2, . . . , Bm) in (A64). Finally, we simplified the notation by replacing b̃ ∈ {0, 1}mn by b̃ in
(A63). Then:

(A61) follows for n sufficiently large and for b ∈ Bn
SY,ε(B) from 1/Ma ≤ 23nε p(b), which can be

shown in a similar way as (A31) was derived.
(A62) follows from summing over b ∈ {0, 1}mn instead of over b(ma) ∈ Bn

ε and over b̃ ∈ {0, 1}mn

instead of over b(ka) ∈ Bn
ε for ka 6= ma.

(A63) is obtained by working out the summations over b1, b2, . . . , bm, and s.
(A64) follows from Ma = |Bn

ε (B)| ≤ 2n(H(B)+ε), i.e., the B-typicality property P3, from (12),
and from (17).

(A65) follows from (11) and (19).

The conclusion from (A66) is that for:

H(B) < H(B, S)− H(S|Y)−
(

m

∑
i=1

H(Bi|Y)
)
− (12 + 2m)ε

= RBMD(p(b, s))− (12 + 2m)ε,

the error probability of the second kind:
Pe(2) ≤ ε (A67)
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for n large enough. Using (A60) and (A67) in (A14), we find that the total error probability averaged
over all possible sign-codes Pe ≤ 2ε for n large enough. This implies the existence of a sign-code with
total error probability Pe = Pr{M̂a 6= Ma} ≤ 2ε. This holds for all ε > 0, and thus, the rate:

R = H(B) ≤ RBMD (A68)

is achievable with sign-coding and BMD, which concludes the proof of Theorem 3.

Appendix B.4. Proof of Theorem 4

For the error of first kind, we can write:

Pe(1) = ∑
ma

1
Ma

∑
ms

1
2n1 ∑

s′′
p(s′′)∑

y
p(y|b(ma), s′(ms)s′′)

·1
[

m⋃
i=1

((bi(ma), y) /∈ An
ε )
⋃
((s′(ms)s′′, y) /∈ An

ε )

]

= ∑
ma

1
Ma

∑
ms

∑
s′′

2−n ∑
y

p(y|b(ma), s′(ms)s′′)

·1
[

m⋃
i=1

((bi(ma), y) /∈ An
ε )
⋃
((s′(ms)s′′, y) /∈ An

ε )

]
(A69)

≤∑
ma

1
Ma

∑
ms

∑
s′′

∑
y

p(s′(ms)s′′, y|b(ma))1[(b(ma), s′(ms)s′′, y) /∈ An
ε ] (A70)

= ∑
ma

1
Ma

Pr{(b(ma), S, Y) /∈ An
ε |B = b(ma)}

≤∑
ma

ε

Ma
(A71)

= ε. (A72)

Here, to obtain (A69), we used the fact that S′′ is uniform; more precisely, p(s′′) = 2−n2 . Then,
we used 2−n p(y|b(ma), s′(ms)s′′) = p(s′(ms)s′′, y|b(ma)) in (A70). Furthermore, (A70) also follows
from the fact that if at least one of b1(ma), b2(ma), . . . , bm(ma) or s′(ms)s′′ is not jointly typical with y,
then (b(ma), s′(ms)s′′, y) is not jointly typical. Then, (A71) is a direct consequence of Definition 1 since
b(ma) ∈ Bn

SY,ε(B1B2 · · · Bm) for ma = 1, 2, · · · , Ma.
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For the error of second kind, we can write:

Pe(2) ≤∑
ma

1
Ma

∑
ms

1
2n1 ∑

s′′
p(s′′)∑

y
p(y|b(ma), s′(ms)s′′)

· ∑
(ka ,ks) 6=(ma ,ms)

∑
s̃′′

p(s̃′′)1

[
m⋂

i=1

((bi(ka), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]

= Ma2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|b(ma), s′(ms)s′′)

· ∑
(ka ,ks) 6=(ma ,ms)

∑
s̃′′

2−n

Ma
1

[
m⋂

i=1

((bi(ka), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]
(A73)

= Ma2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|b(ma), s′(ms)s′′)

· ∑
ka 6=ma ,ks ,s̃′′

2−n

Ma
1

[
m⋂

i=1

((bi(ka), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]

+ 2n1 ∑
ma ,ms ,s′′

2−n

Ma
∑
y

p(y|b(ma), s′(ms)s′′)

· ∑
ks 6=ms ,s̃′′

2−n1

[
m⋂

i=1

((bi(ma), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]
, (A74)

where (A73) follows from n = n1 + n2 and from the fact that S′′ is uniform; more precisely,
p(s′′) = 2−n2 . Then, (A74) is obtained by splitting (ka, ks) 6= (ms, ms) into ka 6= ms, ks and
ka = ma, ks 6= ms.

From (A74), we obtain:

Pe(2) ≤ Ma2n126nε ∑
ma ,ms ,s′′

p(b(ma))p(s′(ms)s′′)∑
y

p(y|b(ma), s′(ms)s′′)

· ∑
ka 6=ma ,ks ,s̃′′

p(b(ka))p(s′(ks)s̃′′)1

[
m⋂

i=1

((bi(ka), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]
+ 2n1 23nε ∑

ma ,ms ,s′′
p(b(ma))p(s′(ms)s′′)∑

y
p(y|b(ma), s′(ms)s′′)

· ∑
ks 6=ms ,s̃′′

p(s′(ks)s̃′′)1

[
m⋂

i=1

((bi(ma), y) ∈ An
ε )
⋂
((s′(ks)s̃′′, y) ∈ An

ε )

]
(A75)

≤ Ma2n126nε ∑
b,s′s′′

p(b)p(s′s′′)∑
y

p(y|b, s′s′′) ∑
b̃,s̃′ s̃′′

p(b̃)p(s̃′ s̃′′)

·1
[

m⋂
i=1

((b̃i, y) ∈ An
ε )
⋂
((s̃′ s̃′′, y) ∈ An

ε )

]
+ 2n123nε ∑

b,s′s′′
p(b)p(s′s′′)∑

y
p(y|b, s′s′′) ∑

s̃′ s̃′′
p(s̃′ s̃′′)

·1
[

m⋂
i=1

((bi, y) ∈ An
ε )
⋂
((s̃′ s̃′′, y) ∈ An

ε )

]
(A76)

= Ma2n126nε ∑
b,s

p(b)p(s)∑
y

p(y|b, s) ∑̃
b,s̃

p(b̃)p(s̃)1

[
m⋂

i=1

((b̃i, y) ∈ An
ε )
⋂
((s̃, y) ∈ An

ε )

]

+ 2n1 23nε ∑
b,s

p(b)p(s)∑
y

p(y|b, s) ∑̃
s

p(s̃)1

[
m⋂

i=1

((bi, y) ∈ An
ε )
⋂
((s̃, y) ∈ An

ε )

]
, (A77)
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where:

(A75) follows for n sufficiently large and for b ∈ Bn
SY,ε(B) from 1/Ma ≤ 23nε p(b) and from

p(s′s′′) = 2−n,
(A76) follows from summing over b ∈ {0, 1}mn instead of over b(ma) ∈ Bn

ε and over b̃ ∈ {0, 1}mn

instead of b(ka) ∈ Bn
ε for ka 6= ma. Moreover, it follows from summing over s′ ∈ Sn1 instead

of s′(ks) for ks = 1, 2, · · · , Ms and ks 6= ms,
(A77) follows from substituting s for s′s′′ and s̃ for s̃′ s̃′′.

Finally, from (A77), we obtain:

Pe(2) = Ma2n126nε ∑
y

p(y) ∑̃
b,s̃

p(b̃, s̃)1

[
m⋂

i=1

((b̃i, y) ∈ An
ε )
⋂
((s̃, y) ∈ An

ε )

]

+ 2n123nε ∑
b,y

p(b, y) ∑̃
s

p(s̃)1

[
m⋂

i=1

((bi, y) ∈ An
ε )
⋂
((s̃, y) ∈ An

ε )

]
(A78)

≤ 2n(H(B)+ε)2nγ26nε|An
ε (Y)|2−n(H(Y)−ε)

(
m

∏
i=1
|An

ε (Bi|y)|
)
|An

ε (S|y)|2−n(H(B1B2···BmS)−ε)

+ 2nγ23nε|An
ε (Y)|2−n(H(BY)−ε)2−n(H(S)−ε)

(
m

∏
i=1
|An

ε (Bi|y)|
)
|An

ε (S|y)| (A79)

≤ 2n(H(B)+ε)2nγ26nε2n(H(Y)+ε)2−n(H(Y)−ε)

(
m

∏
i=1

2n(H(Bi |Y)+2ε)

)
2n(H(S|Y)+2ε)2−n(H(BS)−ε)

+ 2nγ23nε2n(H(Y)+ε)2−n(H(BY)−ε)2−n(H(S)−ε)

(
m

∏
i=1

2n(H(Bi |Y)+2ε)

)
2n(H(S|Y)+2ε) (A80)

= 2n(H(B)+γ+(∑m
i=1 H(Bi |Y))+H(S|Y)−H(BS)+(12+2m)ε)

+ 2n(γ+H(Y)−H(BY)−H(S)+(∑m
i=1 H(Bi |Y))+H(S|Y)+(8+2m)ε). (A81)

Here, we substituted n1 = nγ in (A79). Then:

(A78) is obtained by working out the summations over b1, b2, . . . , bm, s in the first part and s in the
second part.

(A79) is obtained using for the first part that Ma = |Bn
ε (B)| ≤ 2n(H(B)+ε), i.e., the B-typicality

property P3, (12) for p(y), and (17) for p(b̃, s̃). For the second part, we used (12) for p(s̃) and
(17) for p(b, y).

(A80) follows from (11) and (19).

The conclusion from (A81) is that for:

H(B) + γ ≤ RBMD − (12 + 2m)ε, (A82)

and for:

γ ≤ H(BY) + H(S)− H(Y)−
(

m

∑
i=1

H(Bi|Y)
)
− H(S|Y)− (8 + 2m)ε, (A83)

the error probability of the second kind:
Pe(2) ≤ ε (A84)
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for n large enough. The second constraint (A83) is already implied by the first constraint (A82) since:

γ ≤ H(BY) + H(S)− H(Y)−
(

m

∑
i=1

H(Bi|Y)
)
− H(S|Y)− (8 + 2m)ε (A85)

= H(BY) + H(S)− H(Y)−
(

m

∑
i=1

H(Bi|Y)
)
− H(S|Y) + H(BS)− H(BS)− (8 + 2m)ε (A86)

= H(BY) + H(S)− H(Y) + RBMD − H(B)− H(S)− (8 + 2m)ε (A87)

= H(B|Y) + RBMD − H(B)− (8 + 2m)ε. (A88)

Using (A72) and (A84) in (A14), we find that the total error probability averaged over all possible
modified sign-codes Pe ≤ 2ε for n large enough. This implies the existence of a modified sign-code
with total error probability Pe = Pr{(M̂a, M̂s) 6= (Ma, Ms)} ≤ 2ε. This holds for all ε > 0, and thus,
the rate:

R = H(B) + γ ≤ RBMD, (A89)

is achievable with modified sign-coding, which concludes the proof of Theorem 4.
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