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Abstract: The main challenge of classification systems is the processing of undesirable data.
Filter-based feature selection is an effective solution to improve the performance of classification
systems by selecting the significant features and discarding the undesirable ones. The success
of this solution depends on the extracted information from data characteristics. For this reason,
many research theories have been introduced to extract different feature relations. Unfortunately,
traditional feature selection methods estimate the feature significance based on either individually
or dependency discriminative ability. This paper introduces a new ensemble feature selection,
called fuzzy feature selection based on relevancy, redundancy, and dependency (FFS-RRD).
The proposed method considers both individually and dependency discriminative ability to extract all
possible feature relations. To evaluate the proposed method, experimental comparisons are conducted
with eight state-of-the-art and conventional feature selection methods. Based on 13 benchmark
datasets, the experimental results over four well-known classifiers show the outperformance of our
proposed method in terms of classification performance and stability.

Keywords: feature selection; fuzzy sets; mutual information; rough set

1. Introduction

Nowadays, classification systems have a lot of contributions in different domains such as
bioinformatics, medical analysis, text categorization, pattern recognition, and intrusion detection [1].
The main challenge of these systems is to deal with high dimensionality data, which may include
redundant or irrelevant features [2]. These features have a negative effect on classification systems
which can lead to (1) reducing the classification accuracy, (2) reducing the classification speed,
(3) increasing the classification complexity. To overcome these limitations, features selection introduces
an effective solution to reduce the dimensionality of data by selecting the significant features and
discarding the undesirable ones [3].

Feature selection methods are divided into three categories: filter [4], embedded [5],
and wrapper [6]. These methods can be also classified into two groups according to the role of classifiers
in the feature selection process: classification-independent (filter method), and classification dependent
group (embedded, and wrapper method) [3]. The former depends only on the data characteristics
without considering classifiers in the selection process, while the latter depends on classifiers to assess
the significance of features in the selection process. Although the classification-dependent group
can return the best feature selection subset, it requires more computational cost as a result of the
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classification process. Moreover, the selected features related only to the used classifier in the feature
selection process. For this reason, classification-independent is more practical for high dimensionality
data [7]. In this study, filter feature selection is our interest rather than embedded and wrapper due to
its benefits such as simplicity, practicality, scalability, efficiency, and generality [8].

The success of filter methods depends on the amount of extracted information from data
characteristics [9]. Motivated by this hypothesis, many theories have been introduced to find the
best filter feature selection method such as information theory [10], and rough set theory [11].
Information theory measures can rank the features not only according to their relevancy to class but also
with respect to the redundancy of features [12]. Moreover, These measures outperform other measures
as correlation due to its ability to deal with linear and non-linear relations [3]. Rough set theory can
select a subset of features according to their dependency to class [13]. The main advantages of rough
set measures are simplicity, and no user-defined parameter is required. However, the traditional
measures of these theories share common limitation, they can not deal directly with continuous
features. To overcome this limitation, many research studies have been extended by integrating the
previous theories with fuzzy set theory [14–16]. Feature selection based fuzzy sets is not only suitable
for any kind of data but also extracts more information from classes compared with the traditional
feature selection methods [14]. In addition to its ability to deal with noise data [17].

Traditional methods based on previous theories estimate the feature significance based on either
individually or dependency discriminative ability. Consequently, there is no general feature selection
method, which returns the best feature subset with all datasets [18]. The traditional solution is to
understand the data characteristics before the feature selection process. This solution is not efficient
because of the high computational cost of expert analysis. To overcome this limitation, a new research
direction, called an ensemble feature selection, is introduced, which combines more than one feature
selection to cover all situations [2].

In this study, we propose a new ensemble feature selection method (fuzzy feature selection
based on relevancy, redundancy, and dependency (FFS-RRD)) to utilize the previous theories. Firstly,
we proposed a new method, called fuzzy weighted relevancy-based FS (FWRFS) to estimate the
individually discriminative ability. Then, we combined it with fuzzy lower approximation-based FS
(L-FRFS) to estimate the dependency discriminative ability [16]. The former method extracts two
relations: relevancy and redundancy, while the latter extracts the dependency relation. The aim is to
investigate these relations and produce a unique and effective feature selection method to improve
classification methods.

The paper is organized as follows: Section 2 presents the main criteria of feature selection:
relevancy, redundancy, and dependency. Then, the related work is presented in Section 3.
Section 4 introduces the proposed method: fuzzy feature selection based on relevancy, redundancy,
and dependency (FFS-RRD). After that, the experiment setup is showed in Section 5. Section 6 analyzes
the experimental results. Finally, the conclusion is reported in Section 7.

2. Relevancy, Redundancy, and Dependency Measures

Filter-based FS methods try to find the best feature subset based on data characteristics without
depending on classification models [4]. For this reason, they depend on the characteristics of data
to find the most significant features. Consequently, filter-based feature selection methods study
different data relations such as the relation between features and class, and the relation among features.
There are three well-known feature relations: relevancy, redundancy, and dependency.

Firstly, relevancy relation measures the amount of shared information between features and
the class [15]. However, some features may have the same relevancy relation and do not add new
information to discriminate the classes. These features are considered redundant and no need to
be selected. Redundancy relation measures the amount of shared information among features [15].
Another important feature relation is dependency [16]. Dependency relation measures the membership
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degree of feature subset to class. In the following, we present the definitions of these relations based
on the fuzzy set theory [15,16].

Given a dataset D = (U, F ∪ C), where U = {u1, u2, . . . , um} is a finite set of m instances,
F = { f1, f2, . . . , fn} is a finite set of n features, and C = {c1, c2, . . . , cl} is a finite set of l classes.
Let f : U → Vf , where Vf is the feature value on U. Every feature f ∈ F can be represented by fuzzy
equivalence relation E f on U and defined by the following fuzzy relation matrix M(E f ).

M(E f ) =


e11 e12 . . . e1m
e21 . . . . . . e2m

. . . . . . . . . .
em1 em2 . . . emm

 (1)

where eij = E(xi, xj) is the fuzzy equivalence relation that defines the similarity degree between xi and
xj, where xi, xj ∈ U.

Fuzzy equivalence class [xi]E f of xi is defined by the following fuzzy set on U:

[xi]E f =
ei1
x1

+
ei2
x2

+ · · ·+ eim
xm

(2)

Fuzzy entropy of feature f based on E f is defined as

H( f ) =
1
m

m

∑
i=1

log
m

|[xi]E f |
(3)

where, the cardinal value of [xi]E f is defined as |[xi]E f |= ∑m
j=1 eij.

Indiscernibility relation IND(F̄) defines a set of objects that have the same equivalence class,
where F̄ ⊆ F. The fuzzy partition of U on IND(F̄) is defined by U/IND(F̄) = {X1, X2, . . . , XF̄},
where Xk = {xj ∈ U|[xi]E = [xj]E}, and xi ∈ Xx, k = {1, 2, . . . , F̄}.

The fuzzy lower approximation of a single fuzzy equivalence class X is defined as

µEF̄X(xi) = inf
xj∈U

I(µEF̄
(xi, xj), µX(xj)) (4)

where µEF̄
(xi, xj) =

⋂
f∈F̄µE f (xi, xj), and I = min(1, 1− xi + xj) is the fuzzy Łukasiewicz implicator.

The fuzzy positive region determines all the objects on U that discriminate the classes of
U/IND(C) based on a set of features F̄. The fuzzy positive region is defined as

µPOSEF̄
(C)(xi) = sup

X∈U/C
µEF̄X(xi) (5)

2.1. Relevancy

Let E f and EC are two fuzzy relations of feature f and class C on U, respectively. Then, the fuzzy
mutual information between f and C is defined as

I( f ; C) =
1
m

m

∑
i=1

log
m|[xi]E f ∩ [xi]EC |
|[xi]E f |.|[xi]EC |

(6)

2.2. Redundancy

Let E f1 and E f2 be two fuzzy relations of features f1 and f2 on U, respectively. Then, the fuzzy
mutual information between f1 and f2 is defined as

I( f1; f2) =
1
m

m

∑
i=1

log
m|[xi]E f1

∩ [xi]E f2
|

|[xi]E f1
|.|[xi]E f2

| (7)
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2.3. Dependency

Let F̄ is a set of features, the dependency degree of F̄ is defined as

gF̄(C) =
∑xi∈U µPOSEF̄

(C)(xi)

|[xi]E f |
(8)

2.4. Example

To illustrate the computations of previous relations, a small example is presented in Table 1.
Firstly, we estimate the relation matrix of each feature based on the following similarity equation [15]:

E f (xi, xj) = exp (−‖xi − xj‖) (9)

As C contains discrete values, we estimate the relation matrix according to the crisp way [19].

Table 1. An example of a small dataset, contains two features ( f1, f2), and class C.

f1 f2 C

0.2 0.1 1
0.8 0.5 0
0.4 0.3 1
0.6 0.4 0
0.2 0.1 1

The relation matrix of f1 is:

M(E f 1) =


1.00 0.55 0.82 0.67 1.00
0.55 1.00 0.67 0.82 0.55
0.82 0.67 1.00 0.82 0.82
0.67 0.82 0.82 1.00 0.67
1.00 0.55 0.82 0.67 1.00


The relation matrix of f2 is:

M(E f 2) =


1.00 0.67 0.82 0.74 1.00
0.67 1.00 0.82 0.90 0.67
0.82 0.82 1.00 0.90 0.82
0.74 0.90 0.90 1.00 0.74
1.00 0.67 0.82 0.74 1.00


The relation matrix of C is:

M(EC) =


1.0 0.0 1.0 0.0 1.0
0.0 1.0 0.0 1.0 0.0
1.0 0.0 1.0 0.0 1.0
0.0 1.0 0.0 1.0 0.0
1.0 0.0 1.0 0.0 1.0



The fuzzy entropy of f1 is:

H( f1) =
1
5
(log

5
4.04

+ log
5

3.59
+ log

5
4.13

+ log
5

3.98
+ log

5
4.04

) = 0.34
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The fuzzy entropy of C is:

H(C) =
1
5
(log

5
3
+ log

5
2
+ log

5
3
+ log

5
2
+ log

5
3
) = 0.97

The relevancy between f1 and C is:

I( f1, C) =
1
5
(log

5 ∗ 2.82
4.04 ∗ 3

+ log
5 ∗ 1.82
3.59 ∗ 2

+ log
5 ∗ 2.64
4.13 ∗ 3

+ log
5 ∗ 1.82
3.98 ∗ 2

+ log
5 ∗ 2.82
4.04 ∗ 3

) = 0.21

The redundancy between f1 and f1 is:

I( f1, f2) =
1
5
(log

5 ∗ 4.04
4.04 ∗ 4.23

+ log
5 ∗ 3.59

3.59 ∗ 4.06
+ log

5 ∗ 4.13
4.13 ∗ 4.36

+ log
5 ∗ 3.98

3.98 ∗ 4.29
+ log

5 ∗ 4.04
4.04 ∗ 4.23

) = 0.24

For the first object x1 of f1, the fuzzy lower approximation of a single fuzzy equivalence class X = 1 is:

µE f1
X=1(x1) = inf

xj∈U
I(µEF̄

(x1, xj), µX = 1(xj)) = inf{I(1.00, 1.0), I(0.55, 0.0), I(0.82, 1.0), I(0.67, 0.0), I(1.00, 1.0)} = 0

For the first object x1 of f1, The fuzzy lower approximation of a single fuzzy equivalence class X = 0 is:

µE f1
X=0(x1) = inf

xj∈U
I(µEF̄

(x1, xj), µX = 0(xj)) = inf{I(1.00, 0.0), I(0.55, 1.0), I(0.82, 0.0), I(0.67, 1.0), I(1.00, 0.0)} = 0.33

Similarly, for the remaining objects of f1:

µE f1 X=1(x2) = 0.33, µE f1 X=0(x2) = 0

µE f1 X=1(x3) = 0.0, µE f1 X=1(x3) = 0.18

µE f1 X=1(x4) = 0.18, µE f1 X=1(x4) = 0.0

µE f1 X=1(x5) = 0.0, µE f1 X=1(x5) = 0.33

The fuzzy positive region for the first object x = 1 is:

µPOSE f1
(C)(x1) = sup

X∈1,0
µE f1 X(x1) = sup

X∈1,0
(0, 1) = 0.33

For the remaining objects, the fuzzy positive region are:

µPOSE f1
(C)(x2) = 0.33

µPOSE f1
(C)(x3) = 0.18

µPOSE f1
(C)(x4) = 0.18

µPOSE f1
(C)(x5) = 0.33

The dependency degree of f1 is:

g f1
(C) =

∑xi∈U µPOSE f1
(C)(xi)

|U| =
0.33 + 0.33 + 0.18 + 0.18 + 0.33

5
= 0.27

3. Related Works

Filter approach evaluates the feature significant based on the characteristics of data only with full
independence of classification models [1]. Although the filter approach has many benefits over embedded
and wrapper approaches, it may fail to find the best feature subset [20]. For this reason, a great research effort
has been introduced to study the feature characteristics with the aim to find the significant features that improve
classification models.

Among a variety of evaluation measures, mutual information (MI) has a popularity solution in feature
selection based information theory due to its ability to define different relation of features such as relevancy,
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and redundancy. The main advantages of MI are [3]: (1) ability to deal with deal linear and non-linear relations
among features; (2) ability to deal with both categorical and numerical features. In the past decades, MI has been
used in many feature selection methods. Mutual information maximization (MIM) [21] defines the significance of
features based on the relevancy relation. It suffers from the redundant features. After that, mutual information
based feature selection (MIFS) [22] has been introduced and improved in MIFS-U [23] to define the significance
of features based on both relevancy and redundancy relation. However, both methods require a predefined
parameter to balance between the relevancy and redundancy relations. In [24], minimum redundancy maximum
relevance (mRMR) proposes automatic value to estimate the predefined parameter of MIFS, and MIFS-U. In the
literature, several feature selection methods have been proposed to find the best estimation of the relevancy and
redundancy relations such as joint mutual information (JMI) [25], conditional mutual information maximization
(CMIM) [26], joint mutual information maximization (JMIM) [27], and max-relevance and max-independence
(MRI) [28]. However, previous studies of feature selection based mutual information do not consider the balance
of selected/candidate feature relevancy relation. To avoid this limitation, Zhang et al. [29] has introduced a new
method to keep the balance between the feature relevancy relations, called feature selection based on weighted
relevancy (WRFS).

Another important solution in the filter approach is rough set which used to measure the dependency
relation of features. Feature selection based rough set tries to find the minimal feature subset that maximizes the
informative structure of all features (termed a reduct) [30]. The main advantages of the rough set are (1) analyzing
only the hidden facts in data, (2) extracting the hidden knowledge of data without additional user-defined
information, and (3) returning a minimal knowledge structure of data [19]. Many studies on feature selection
based on rough set have been done. Rough Set Attribute Reduction (RSAR) defines the significance of a subset of
features based on the dependency relation [31]. However, there is no guarantee to return the minimum feature
subset. Han et al. [32] proposes an alternative dependency relation to reduce the computational cost of the feature
selection process. Zhong et al. [33] defines the significance of the feature subset based on the discernibility matrix.
However, it is impractical for high dimensionality data. In Entropy Based Reduction (EBR) [34], the significance
of the feature subset is defined based on entropy which returns the maximum amount of information. In the
literature of rough sets, further feature selection methods have been introduced such as Variable precision rough
sets (VPRS) [35], and parameterized average support heuristic (PASH) [36].

However, both MI and rough set share common limitations when dealing with features of continuous
values [19,37]. There are two traditional solutions have been proposed to overcome this limitation: parzen
window [38], and discretization process [39]. The former has some limitations: firstly it requires a predefined
parameter to compute the window function [40]. Secondly, it does not work efficiently with high dimensional
data of spare samples [15]. The latter may lead to loss of feature information [41]. To overcome these limitations,
FS based information theory and FS based rough set have been extended by fuzzy set theory to deal with
continuous features directly [14,19]. However, most of FS methods based information theory focus on relevancy
and redundancy relation, while FS methods based on rough set focus on dependency relation. The former depends
on individually discriminative ability, while the latter depends on dependency discriminative ability. As a result,
the traditional methods do not take the benefits of all types of discriminative ability.

4. Fuzzy Feature Selection Based on Relevancy, Redundancy, and Dependency (FFS-RRD)

In this section, we present our proposed method, called FFS-RRD, as a filter feature selection method.
The effectiveness of filter methods depends on the amount of extracted information from the data characteristics.
To promote our proposed method, we used both individually and dependency discriminative ability based
on three criteria: relevancy, redundancy, and dependency. FFS-RRD aims to maximize both relevancy and
dependency relations and minimize the redundancy ones. To design our proposed method, firstly, we modified
WRFS to overcome their limitations: (1) it can not deal with continuous features without the discretization process
which may lead to loss of feature information. (2) WRFS does not consider dependency relation in the feature
selection process. To overcome these limitations, we estimated WRFS based on the fuzzy concept instead of
the probability concept. The extended method, called FWRFS, can deal with any numerical data without the
discretization process. Then, we combined FWRFS with fuzzy-rough lower approximations (L-FRFS) [16] to extract
the dependency relation. Consequently, we proposed a unique FS method, called FFSRRD, which maximizes
both relevancy and dependency, and minimizes the redundancy relation. The three relations can extract more
information from the dataset to promote the discriminate ability of feature selection. Figure 1 shows the process
of the proposed method FFS-RRD. Both FWRFS and L-FRFS are applied on the same dataset. FWRFS selects the
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most relevant features and removes the redundancy ones, while L-FRFS selects the most dependency feature
subset. The results of each method are combined to return the final feature selection subset. In our study, we used
one of the popular combination methods called MIN [2]. MIN method assigns the minimum position of each
feature among different results of feature selection methods to be ranked position in the final result.

The algorithm of the proposed method is presented in Algorithm 1. FFS-RRD depends on a combination of
two methods: For the first method, FWRFS is used to return the ranked feature set that maximizes the relevancy
and minimizes the redundancy. In the first step (Lines 1–3), The main parameters are initialized: ranked feature set
(R1), candidate feature (candidate), and the current selected feature set (selected). Then, the feature of maximum
relevancy with class is selected to be the first ranked feature in R1, and removed from the feature set F (Lines 4–8).
After that, the feature of maximum relevancy with class and minimum redundancy with selected features is added
to R1, and removed from F. This process is repeated until all features of F are ranked in R1 (Lines 9–14). For the
second method, L-FRFS is used to return the subset of features that maximizes the dependency relation. In the
first step (Lines 15–17), the main parameters are initialized: selected feature subset (R2), temporary feature (T),
maximum dependency degree (gselect), and the last maximum dependency degree (glast). Then, the feature of
maximum dependency is added to R2. This process is repeated until the maximum possible dependency degree
of features be produced (Lines 18–25). Finally, the result of both methods is combined by MIN(R1, R2) to select
the final feature subset (Line 26–27).

Algorithm 1: FFS-RRD: fuzzy feature selection based relevancy, redundancy, and dependency.
Input: A dataset D = (F ∪ C), where F = { f1, f2, . . . , fn} is a set of n features, and C is a class label
Output: R Ranked set of features
// Method 1: fuzzy weighted relevancy-based FS (FWRFS)

1 R1 ← ∅
2 selected← ∅
3 candidate← ∅
4 for i← 1 to n do
5 candidate( fi)← I( fi; C)

6 selected( fi)← max fi∈Fcandidate( fi);
7 R1 ← R1 ∪ selected( fi);
8 F ← F− selected( fi);
9 while length(R1) 6= 0 do

10 for j← 1 to length(F) do

11 candidate( f j)← ∑ f j∈R1

I( fi , f j ;C)
H(C) ∗ I( fi; C| f j) +

I( f j ;C)
H(C) ∗ I( f j; C| fi)− I( fi; f j)

12 selected( f j)← max f j∈Fcandidate( f j)

13 R1 ← R1 ∪ selected( f j)

14 F ← F− selected( fi)

// Method 2: fuzzy lower approximation-based FS (L-FRFS)
15 R2 ← ∅
16 gselect ← 0
17 glast ← 0
18 while gselect 6= glast do
19 T ← R2

20 glast ← gselect
21 foreach fi ∈ (F− R2) do
22 if gT(C) ≤ gR2∪ fi

(C) then
23 T ← R2 ∪ fi
24 gselect ← gT(C)

25 R2 ← T

// combination: FWRFS and L-FRFS
26 R← MIN(R1, R2)

27 return R
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Figure 1. The process of our proposed method fuzzy feature selection based relevancy, redundancy,
and dependency (FFS-RRD): firstly, the fuzzy relation matrix is generated for each feature in the dataset.
Then, fuzzy mutual information maximizes the relevancy and minimizes the redundancy, while fuzzy
rough set maximizes the dependency. Finally, the results are combined to find the selected features.

5. Experiment Setup

The main goal of the feature selection process is to improve the classification performance with the minimum
feature selection subset. To validate our proposed method, we used four classifiers to compare the proposed
method with eight feature selection methods based on benchmark datasets. Figure 2 shows the framework of our
experiment. In the following, we present more details about the experiment setup.

Figure 2. An experimental framework of the proposed method fuzzy feature selection based
relevancy, redundancy, and dependency (FFS-RRD): firstly, a discretization process is applied before
probability-based methods. Then, the compared methods are evaluated in terms of classification
performance, and stability.

5.1. Dataset

Our experiment was conducted based on 13 benchmark datasets from machine learning repository (UCI) [42].
The datasets support different classification problems of binary and multi-class data. Table 2 presents a brief
description of the experimental datasets.

5.2. Compared Feature Selection Methods

Table 3 shows the compared FS methods and their discriminative ability. The compared methods can be
divided into two groups: probability-based, and fuzzy-based. Firstly, probability-based group uses the probability
concept to estimate information measures. The probability-based group consists of CIFE [43], JMI [25], JMIM [27],
WRFS [29], CMIM3 [44], JMI3 [44], and MIGM [45]. This group depends on the discretization process before
implementation of feature selection methods. In our experiment, the discretization process transforms the
continuous features into discrete features with ten equal intervals [46].

Unlike a probability-based group which requires discretization preprocess, fuzzy-based group uses the fuzzy
concept to estimate information measures. The fuzzy-based group includes L-FRFS [16], and the proposed method
FFS-RRD. This group depends on similarity relation which transforms each feature into a fuzzy equivalence
relation. In our experiment, we used the following similarity relation [15].
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E f (xi, xj) = exp (−‖xi − xj‖) (10)

Table 2. Description of datasets used in the experiments.

Dataset Brief # Instances # Features #Classes

Breast Cancer Wisconsin (Prognostic) BCW Prognostic 198 33 2
Breast Cancer Wisconsin (Diagnostic) BCW Diagnostic 569 31 2

Climate Model Simulation Crashes CMSC 540 18 2
Credit Approval Credit Approval 690 15 2

Dermatology Dermatology 336 34 6
Diabetic Retinopathy Debrecen DRD 1151 19 2

Fertility Fertility 100 9 2
Statlog (Heart) Heart 270 13 2

Ionosphere Ionosphere 351 34 2
Iris Iris 150 4 3

Libras Movement Libras Movement 360 90 15
QSAR biodegradation QSAR 1055 41 2

Zoo Zoo 101 16 7

Table 3. The extracted feature relations of compared feature selection methods.

Ref. FS Group FS Method Discriminative Ability

Individually Dependency
[43] Probability-based CIFE X
[25] JMI X
[27] JMIM X
[29] WRFS X
[44] CMIM3 X
[44] JMI3 X
[45] MIGM X
[16] Fuzzy-based L-FRFS X

Proposed FFS-RRD X X

5.3. Evaluation Metrics

The main factors characterize the quality of feature selection methods are its classification performance
and stability [47]. The evaluation of our experiment is divided into two parts: classification performance and
stability evaluation. Classification performance requires classification models to evaluate the effect of feature
selection methods on improving the classification performance, while stability measures the robustness of feature
selection methods.

5.3.1. Classification Performance

To evaluate the classification performance, we used three metrics: classification accuracy, F-measure
(β = 1), AUC. The experiment depends on four classifiers: Naive bayes (NB), support vector machine (SVM),
K-nearest neighbors (KNN, K = 3), and decision tree (DT). To find reliable results, we used 10-fold cross-validation
where the dataset is divided into ten equal parts, nine for the training phase and one for the test phase [48].
This process is repeated ten times. Then, we calculate the average results to compute the score of accuracy,
F-measure, and AUC.

In this experiment, we used a threshold to cut the ranked features and return a subset of selected features.
The threshold is the median position of the ranked features (or the nearest integer position if the number of ranked
features is even). For L-FRFS, we used the same threshold if the size of the returned subset is more than the
median of all features.

5.3.2. Stability Evaluation

The confidence of feature selection method is not only about the improvement of classification performance
but also related to the robustness of the method [49]. The robustness of feature selection method against any small
change of data, as a noise, is called feature selection stability [50]. In the stability experiment, we injected the data
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by 10% of noise which is generated based on standard deviation and the gaussian distribution of each feature [51].
Then, we run the feature selection method to return the sequence of features. This process is repeated for ten times
with a new returned sequence each time. After that, we measure the stability for each feature selection method
based on Kuncheva stability measure which is defined as [52]:

Kunstab =
2

p(p− 1)

p−1

∑
i=1

p

∑
j=i+1

Kunindex(Ri, Rj) (11)

where p is the number of feature selection sequences, and Kunindex(Ri, Rj) is the Kuncheva stability index between
two feature selection sequences Ri, and Rj which is defined as:

Kunindex(Ri, Rj) =
wn− r2

r(n− r)
, (12)

where w = |Ri ∩ Rj|, r = |Ri| = |Rj|, and n is the total number of features.

6. Results Analysis

6.1. Classification Performance

6.1.1. Accuracy

Based on NB classifier, it is obvious that FFS-RRD achieved the maximum average accuracy with score 83.4%,
as shown in Table 4. The proposed method was more accurate than compared methods by the range from 0.4% to
1.8%. The order of methods ranked after FFS-RRD was JMIM, followed by JMI, both CMIM3 and JMI3, MIGM,
WRFS, L-FRFS, and CIFE.

According to SVM classifier, FFS-RRD achieved the maximum average accuracy of all datasets by 86.4%,
while L-FRFS achieved the minimum average accuracy by 84.1%, as shown in Table 5. The proposed method
outperformed other methods in the range from 0.5% to 2.3%. The second-best feature selection method was JMI,
followed by CMIM3, both JMIM and JMI3, WRFS, MIGM, and CIFE.

In the case of KNN classifier, FFS-RRD also was the best feature selection method in the term of average
accuracy by 85.4%, while L-FRFS was the worst method by 82.5%, as shown in Table 6. After that, MIGM achieved
the second-best method, followed by both JMI and JMIM, JMI3, WRFS, CMIM3, CIFE. The proposed method
achieved better accuracy in the range from 0.5% to 2.9%.

Similarly, FFS-RRD kept the best average accuracy of DT classifier by 84.5%, as shown in Table 7.
The proposed method outperformed other methods in the range from 0.4% to 1.4%. In contrast, both CIFE
and L-FRFS achieved the worst results by 83.1%. The second-best feature selection method was JMI, followed by
JMIM, both WRFS and JMI3, MIGM, and CMIM3.

Table 4. Average classification accuracy on Naive bayes (NB) classifier: our proposed method achieved
the best result.

Dataset CIFE JMI JMIM WRFS CMIM3 JMI3 MIGM L-FRFS FFS-RRD

BCW Prognostic 73.9 69.5 73.8 65.4 68.6 68.8 67.7 71.3 69.8
BCW Diagnostic 92.0 93.4 93.4 93.6 93.2 92.4 92.9 85.9 93.6

CMSC 91.9 93.8 91.9 94.1 93.6 92.8 93.8 93.7 93.8
Credit Approval 85.6 83.5 83.7 86.9 82.4 83.7 84.8 76.8 85.4

Dermatology 96.1 93.9 95.3 93.1 98.0 94.6 95.3 96.2 96.1
DRD 57.6 60.3 57.6 57.5 57.7 60.6 60.3 57.6 57.5

Fertility 87.9 87.9 88.0 88.0 88.0 88.0 87.9 88.0 88.0
Heart 80.1 83.0 81.0 84.1 83.0 83.9 80.1 75.1 81.5

Ionosphere 77.0 82.6 86.2 80.8 84.8 84.8 77.4 89.8 89.0
Iris 94.6 94.6 94.6 94.6 93.5 93.5 93.5 95.0 95.0

Libras Movement 51.4 61.7 60.8 50.5 59.0 59.0 59.4 61.0 60.0
QSAR 78.2 78.7 77.1 78.5 78.7 78.1 77.6 77.7 80.0
Zoo 94.2 95.1 96.0 96.0 96.1 96.0 96.9 93.5 94.9

Average 81.6 82.9 83.0 81.8 82.8 82.8 82.1 81.7 83.4
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Table 5. Average classification accuracy on support vector machine (SVM) classifier: our proposed
method achieved the best result.

Dataset CIFE JMI JMIM WRFS CMIM3 JMI3 MIGM L-FRFS FFS-RRD

BCW Prognostic 76.3 76.8 77.9 76.3 76.4 77.7 76.6 76.3 77.5
BCW Diagnostic 96.3 97.3 97.3 97.5 96.9 95.0 95.6 88.4 96.3

CMSC 91.5 92.0 91.5 93.2 91.9 91.6 91.9 92.1 91.9
Credit Approval 85.5 85.5 85.5 85.5 85.5 85.5 85.5 73.7 85.5

Dermatology 95.8 95.5 95.8 94.2 98.2 96.8 95.7 96.8 96.5
DRD 68.0 67.2 68.0 67.7 67.5 67.0 67.2 68.0 67.7

Fertility 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0
Heart 79.7 84.3 84.3 84.2 81.3 83.7 79.7 76.3 82.5

Ionosphere 76.6 79.0 78.5 81.2 81.7 82.9 78.0 86.7 87.6
Iris 95.7 95.7 95.7 95.9 93.9 93.9 93.9 94.5 95.0

Libras Movement 72.2 76.1 74.7 67.6 75.5 74.9 74.5 76.5 75.3
QSAR 84.2 84.3 84.5 82.3 84.2 83.7 84.4 83.8 84.1
Zoo 92.8 95.3 88.7 93.3 93.9 89.5 94.1 92.0 95.3

Average 84.8 85.9 85.4 85.1 85.8 85.4 85.0 84.1 86.4

Table 6. Average classification accuracy on K-nearest neighbors (KNN) classifier: our proposed method
achieved the best result.

Dataset CIFE JMI JMIM WRFS CMIM3 JMI3 MIGM L-FRFS FFS-RRD

BCW Prognostic 75.2 75.0 77.1 76.6 73.5 74.1 76.9 74.0 77.0
BCW Diagnostic 93.3 93.5 97.1 95.4 95.1 94.6 95.2 87.5 94.8

CMSC 90.1 92.3 90.1 92.0 90.9 92.4 92.6 93.4 93.0
Credit Approval 84.7 83.9 85.1 85.5 84.4 85.3 85.1 76.4 84.6

Dermatology 95.0 95.9 95.6 93.7 97.7 96.9 96.1 96.1 96.3
DRD 64.3 63.7 64.3 64.1 62.3 63.7 63.6 64.7 64.1

Fertility 88.7 88.7 87.2 86.7 84.0 90.5 88.7 85.0 89.4
Heart 77.7 79.1 79.1 81.7 79.3 77.7 77.6 71.7 78.2

Ionosphere 81.8 80.9 80.3 83.0 82.3 83.3 83.5 82.7 84.2
Iris 93.9 93.9 93.9 93.9 91.8 91.8 91.8 92.7 92.7

Libras Movement 70.7 76.8 77.9 70.4 77.1 74.7 78.3 75.8 78.3
QSAR 84.0 84.7 83.3 81.5 83.8 84.4 83.6 82.5 83.0
Zoo 90.1 94.1 91.6 93.1 92.1 92.1 91.2 89.7 94.3

Average 83.8 84.8 84.8 84.4 84.2 84.7 84.9 82.5 85.4

Table 7. Average classification accuracy on decision tree (DT) classifier: our proposed method achieved
the best result.

Dataset CIFE JMI JMIM WRFS CMIM3 JMI3 MIGM L-FRFS FFS-RRD

BCW Prognostic 73.8 73.7 73.1 72.5 72.8 73.0 73.0 76.6 73.2
BCW Diagnostic 93.7 94.5 94.1 94.2 94.0 93.5 93.5 88.6 94.6

CMSC 89.6 91.2 89.6 90.3 91.4 91.2 91.3 91.3 91.6
Credit Approval 85.5 85.5 85.7 86.3 84.8 85.7 85.3 75.3 86.3

Dermatology 93.6 92.3 92.2 91.3 93.5 94.1 92.5 94.3 94.9
DRD 68.0 65.8 68.0 67.7 65.0 66.8 65.9 67.7 67.6

Fertility 87.1 87.1 87.1 87.6 86.6 86.6 87.1 87.5 87.5
Heart 73.9 80.3 81.3 80.6 76.3 77.6 74.0 74.3 75.5

Ionosphere 88.4 88.4 88.4 89.7 88.8 88.4 88.0 88.6 89.0
Iris 90.8 90.8 90.8 90.8 91.9 91.9 91.9 91.7 91.7

Libras Movement 60.4 66.0 65.6 61.3 64.7 64.3 67.5 66.0 66.4
QSAR 83.2 83.7 82.5 83.5 82.9 83.5 82.3 82.3 82.9
Zoo 91.9 94.0 92.3 92.9 93.4 92.1 94.1 96.0 97.1

Average 83.1 84.1 83.9 83.7 83.5 83.7 83.6 83.1 84.5
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6.1.2. F-Measure

Figure 3 shows the F-measure of the compared methods based on the four used classifiers. In NB classifier,
FSS-RRD achieved the maximum average F-measure by 88.5%, while MIGM achieved the minimum score by
82.4%. The proposed method outperformed other methods in the range from 1.5% to 6.1%. Similarly, FSS-RRD
achieved the maximum average F-measure using SVM by 88.9%, while MIGM achieved the minimum score by
83.5%. The proposed method outperformed other methods in the range from 0.5% to 5.4%. According to KNN
classifier, WRFS achieved the maximum average F-measure by 87.7%, while CMIM3 achieved the minimum score
by 81.6%. The proposed method achieved the fourth-best position in this case. In DT classifier, FSS-RRD achieved
the maximum average F-measure by 87.5%, while MIGM achieved the minimum score by 82.3%. The proposed
method outperformed other methods in the range from 0.7% to 5.2%.

90

85

80

75

90

85

80

75

FF
S-

RRD
L-F

RFS

MIG
M

JM
I3

CMIM
3

W
RFS

JM
IMJM

I
CIFE

87

84

81

78

75

FF
S-

RRD
L-F

RFS

MIG
M

JM
I3

CMIM
3

W
RFS

JM
IMJM

I
CIFE

87

84

81

78

75

NB

FS method

F-
m

ea
su

re

SVM

KNN DT

Figure 3. Average F-measure on the four used classifiers. Our proposed method (FFS-RRD) achieved
the best result in all cases except KNN.

6.1.3. AUC

It is obvious that the proposed method achieved the highest AUC compared with other methods using all
classifiers (Figure 4). According to NB, FSS-RDD achieved the maximum AUC by 87.8%, while CIFE achieved the
minimum AUC by 86.2%. The proposed method outperformed other methods in the range from 0.2% to 1.6%.
In SVM classifier, FSS-RDD also achieved the maximum AUC by 81.1%, while L-FRFS achieved the minimum score
by 78.2%. The proposed method outperformed other methods in the range from 0.9% to 2.9%. Similarly, FSS-RDD
also achieved the maximum AUC using KNN by 85.1%, while L-FRFS achieved the minimum score by 83.3%.
The proposed method outperformed other methods in the range from 0.4% to 1.8%. Using DT classifier, FSS-RDD
kept the best method by 82.2%, L-FRFS kept the worst method by 79.9%. The proposed method outperformed
other methods in the range from 0.4% to 2.3%.

Figure 5 shows the average score of the four classifiers in terms of accuracy, F-measure, and AUC.
For accuracy term, FFS-RRD achieved the highest accuracy for all classifiers by 84.9%, followed by JMI, JMIM,
JMI3, CMIM3, MIGM, WRFS, CIFE, and L-FRFS by 84.4%, 84.3%, 84.2%, 84.1%, 83.9%, 83.8%, 83.3%, and 82.8%,
respectively. The proposed method outperformed other methods in the range from 0.5% to 2.1%. Similarly,
FFS-RRD achieved the highest average of F-measure by 87.6%. Then, JMIM achieved the second-best method,
followed by JMI, WRFS, L-FRFS, CIFE, JMI3, MIGM, CMIM3 with score 87.4%, 87.3%, 86.8%, 85.7%, 85.7%, 85.3%,
83.4%, 83.9%, 82.8%, respectively. The proposed method outperformed other methods in the range from 0.2% to
4.7%. According to AUC, FFS-RRD achieved the highest AUC with a score 84.0%. JMI3 achieved the second-best
method, followed by JMI, CMIM3, WRFS, MIGM, JMIM, CIFE, and L-FRFS by 83.6%, 83.5%, 83.4%, 83.3%, 83.2%,
83.0%, 82.4%, and 81.9%, respectively. The proposed method outperformed other methods in the range from 0.4%
to 2.1%.
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Figure 4. Average AUC on the four used classifiers. Our proposed method (FFS-RRD) achieved the
best result in all cases.
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Figure 5. Average score of all classifiers in terms of accuracy, F-measure, and AUC. Our proposed
method (FFS-RRD) achieved the best result.

6.2. Stability

Figure 6 shows the average stability across the first half thresholds on all datasets. FFS-RRS achieved
the maximum average of stability by 84.3%, while MIGM achieved the minimum score by 67.9%. After that,
L-FRFS achieved the second-best method by 78.6%, followed by JMI3, CIFE, JMI, WRFS, CMIM3, and JMIM with
an average score 76.0%. 75.8%, 73.5%, 73.0%, 72.3%, and 71.9%, respectively. The proposed method outperformed
other methods in the range from 5.7% to 16.4%. Figure 7 shows a box-plot of average stability for all compared
methods on the median threshold. In box-plot, the black circle represents the stability median, while the box
represents both lower and upper quartiles. As shown in the box-plot, the stability result of the proposed method
is better and more consistent than compared methods.

By considering the previous results, it is obvious that FFS-RRD achieved the best experimental results in the
term of classification performance and feature stability. This is expected where the proposed method considers the
individually and dependency discriminative ability of features. On the other hand, it is obvious that fuzzy-based
methods are more stable than probability-based methods. The reason returns to using fuzzy sets to estimate
the feature significance without information loss. Consequently, it helps fuzzy-based methods to be more stable
against the noise.
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Figure 6. Average stability across the first half thresholds on all datasets. Our proposed method
(FFS-RRD) achieved the best result.
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Figure 7. Average stability for all compared methods on the median threshold. Our proposed method
(FFS-RRD) achieved the best result.

7. Conclusions

In this paper, we have proposed an ensemble feature selection method, fuzzy feature selection based on
relevancy, redundancy, and dependency criteria (FFS-RRD). Unlike the traditional methods, FFS-RRD depends
on both individually and dependency discriminative ability. FFS-RRD aims to extract the significant relations
from data characteristics to find the best feature subset that improves the performance of classification models.
The proposed method consist of combination of two methods: FWRFS, and L-FRFS. FWRFS maximizes the
relevancy and minimizes the redundancy relation, while L-FRFS maximizes the dependency relation.

Compared with eight state-of-the-art and conventional FS methods, experiments on 13 benchmark datasets
indicate the outperformance of the proposed method in classification performance and stability. Classification
performance includes three measures accuracy, F-measure, and AUC. The proposed method FFS-RRD achieved
the highest average score of accuracy, and AUC on all datasets, while it achieved the highest average of F-measure
on most of the classifiers except KNN classifier. On the other hand, the proposed method achieved the highest
average of stability compared with other feature selection methods. In future work, we will extend the proposed
method to explore their effect on multi-label classification models.
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