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Abstract: Atrial fibrillation (AF) is nowadays the most common cardiac arrhythmia, being
associated with an increase in cardiovascular mortality and morbidity. When AF lasts for more
than seven days, it is classified as persistent AF and external interventions are required for its
termination. A well-established alternative for that purpose is electrical cardioversion (ECV). While
ECV is able to initially restore sinus rhythm (SR) in more than 90% of patients, rates of AF recurrence
as high as 20–30% have been found after only a few weeks of follow-up. Hence, new methods for
evaluating the proarrhythmic condition of a patient before the intervention can serve as efficient
predictors about the high risk of early failure of ECV, thus facilitating optimal management of AF
patients. Among the wide variety of predictors that have been proposed to date, those based on
estimating organization of the fibrillatory ( f -) waves from the surface electrocardiogram (ECG)
have reported very promising results. However, the existing methods are based on traditional
entropy measures, which only assess a single time scale and often are unable to fully characterize the
dynamics generated by highly complex systems, such as the heart during AF. The present work then
explores whether a multi-scale entropy (MSE) analysis of the f -waves may provide early prediction
of AF recurrence after ECV. In addition to the common MSE, two improved versions have also been
analyzed, composite MSE (CMSE) and refined MSE (RMSE). When analyzing 70 patients under ECV,
of which 31 maintained SR and 39 relapsed to AF after a four week follow-up, the three methods
provided similar performance. However, RMSE reported a slightly better discriminant ability of
86%, thus improving the other multi-scale-based outcomes by 3–9% and other previously proposed
predictors of ECV by 15–30%. This outcome suggests that investigation of dynamics at large time
scales yields novel insights about the underlying complex processes generating f -waves, which could
provide individual proarrhythmic condition estimation, thus improving preoperative predictions of
ECV early failure.

Keywords: atrial fibrillation; electrocardiogram; electrical cardioversion; sample entropy; multiscale
entropy; composite multiscale entropy; refined multiscale entropy

1. Introduction

Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia in clinical practice,
nowadays affecting more than 33 million people worldwide [1]. Nonetheless, its prevalence is closely
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related to aging, and it is hence expected to triple in the next four decades [2]. During the arrhythmia,
the electrical excitation process of the atria and their subsequent mechanical activity are extremely
rapid and uncoordinated, thus leading to an ineffective atrial pumping function. While this condition
is not life-threatening in itself, it provokes hemodynamic alterations predisposing to the formation of
blood clots and then increasing the likelihood of triggering a critical stroke [3]. In fact, AF patients
present a five-fold risk of stroke and a two-fold risk of death compared to healthy people of the
same age [4]. Moreover, 20% of total strokes approximately occur in patients suffering from this
arrhythmia [5]. Furthermore, regardless of stroke, AF has been associated with cognitive decline and
vascular dementia [6], as well as both reduced exercise capacity and quality of life [7].

In many patients the arrhythmia exhibits a progressive nature, being commonly classified into
four major groups according to its course, i.e., paroxysmal, persistent, long-standing persistent,
and permanent AF [8]. Paroxysmal AF is the first manifestation of the disease and shows
self-terminating episodes lasting for less than seven days. Persistent AF is characterized by episodes
lasting for more than a week and requiring an external intervention for its termination. About 25% of
patients suffering from intermittent paroxysmal AF episodes evolve to a persistent stage in less than
five years [9]. When the arrhythmia lasts for more than a year, it is called long-standing persistent AF.
Finally, when it is impossible to restore sinus rhythm (SR), both the patient and the clinician make a
joint decision to avoid more interventions for that purpose and AF is labelled as permanent [8].

While epidemiological studies have found cardiovascular complications even in patients
presenting only brief paroxysmal AF episodes, significantly higher risk of stroke and mortality
have been reported for those suffering from persistent or permanent arrhythmias [10]. This finding
has led to strongly recommend the use of early and effective interventions for mitigating AF
progression [11]. For that purpose, current clinical guidelines for the management of AF underline
electrical cardioversion (ECV) as the method of choice in hemodynamically compromised patients
with new-onset AF [12]. Furthermore, in hemodynamically stable patients ECV has also shown
some advantages regarding the other common treatment to restore SR in initial stages of AF,
i.e., pharmacological cardioversion. Indeed, ECV is able to restore SR quicker and more effectively,
then reducing hospitalization time [13]. It is therefore not surprising the recent trend towards ECV in
emergency departments to return AF patients back to SR [14].

The procedure of ECV consists of delivering one or more synchronized transthoracic electrical
shocks to the patient until SR is restored or the maximum allowed shock voltage is achieved [15].
Before ECV, patients are often treated with antiarrhythmic drugs, since they increase the probability of
restoring SR and reduce immediate AF recurrence [12,16]. However, although SR is initially restored
in more than 90% of the patients, AF recurrence is common during the follow-up, even using potent
antiarrhythmic drugs. Thus, about 20–30% of patients relapse to AF within one month, 40–60%
within three months, and 60–80% in less than a year [15,17,18]. Within this context, identification of
patients with an increased risk of early AF recurrence is important for a rational clinical therapeutic
strategy [19]. Thus, the procedure could be avoided on those patients with high chance of early failure
due to their proarrhythmic condition, saving healthcare costs and preventing them from associated
risks and side effects. While ECV rarely provokes major complications, some collateral effects include
sedation-related hassles, hypotension, post-shock bradycardia, malignant ventricular arrhythmias,
or arterial thromboembolism [15].

So far, a variety of studies have evaluated common clinical variables and risk factors in the
patient to anticipate ECV outcome, such as age, arrhythmia duration, and presence of vascular
or coronary diseases [18,20]. Similarly, other works have analyzed echocardiographic variables,
including left atrium volume, right atrium area, ejection fraction, left appendage size, and conduction
velocity in left appendage [21–23]. However, these indices have not been strongly predictive or are
alternatively difficult to measure in clinical practice without very specialized devices [24]. To palliate
these problems, some parameters estimated from the easily accessible, cheap, and non-invasive surface
electrocardiogram (ECG) recording have also been proposed. These metrics are mainly based on



Entropy 2020, 22, 748 3 of 17

quantifying the signs provoked by AF on the ECG, such as the replacement of regular P-waves by
other waveforms of different sizes, amplitude and timings, which are named fibrillatory ( f -) waves,
as well as the development of a rapid and irregular ventricular response [8]. Indeed, indices assessing
RR irregularity [25–29], QRS fragmentation [30], and morphology of the f -waves [24,31–36] can today
be found in the literature.

Among these parameters, those estimating organization and regularity of f -waves through
common entropy-based metrics have reported very promising results [36,37]. However, these
traditional entropy measures only evaluate a single temporal scale, and sometimes are not able
to fully characterize all the dynamics generated by highly complex physiological systems [38]. Hence,
the main goal of the present study is to explore whether a multi-scale entropy (MSE) analysis applied
to the f -waves can provide an improved proarrhythmic condition estimation, thus yielding better
preoperative predictions about ECV outcome in persistent AF patients. MSE was initially proposed by
Costa et al. [38] as an extension of the well-known Sample Entropy (SE) to estimate the complexity
of a time series in a wide-range of temporal scales. While this approach has been broadly used to
characterize different physiological signals, some modifications have also been proposed to overcome
its limitations [39]. Hence, in addition to the common MSE, its composite (CMSE) [40] and refined
(RMSE) [41] versions will also be analyzed in the present work.

The remainder of this paper is organized as follows. Section 2 describes the study population,
as well as the procedures of acquisition and preprocessing of ECG recordings to remove noise and
extract the f -waves. Moreover, some previously proposed predictors of ECV outcome, along with other
novel parameters extracted from the MSE analysis of the f -waves are also introduced in this section.
Classification results between patients who relapsed to AF and maintained SR after the follow-up
are next presented in Section 3 and discussed in Section 4. Finally, Section 5 presents the concluding
remarks of this study.

2. Materials and Methods

2.1. Study Population

Seventy patients diagnosed of persistent AF (32 men and 38 women), under treatments with
antiarrhythmic and anticoagulation drugs, and indicated for ECV were enrolled in the study.
All patients gave their consent and underwent the cardioversion procedure at University Hospital
of Albacete (Spain). The study was approved by the Ethical Review Board of this institution.
All cardioversions were performed with anesthesiology assistance under general sedation. For the
application of synchronized electrical shocks, one paddle was firmly placed in the second intercostal
space on the right side parasternally and the other one was located in a left-sided lateral position
along the midaxillary line [37]. The electrical energy used for cardioversion followed the increasing
sequence of 200, 300, 360 and 360 J, with a maximum number of four electrical shocks. The procedure
was initially successful in all patients, who recovered and maintained SR until hospital discharge (two
hours later). After a follow-up of four weeks, 31 patients maintained SR and the remaining 39 relapsed
to AF. During this time, all patients received anticoagulants and antiarrhythmic drugs by clinical
judgment. Table 1 provides more clinical information about the study population.

Table 1. Clinical characteristics for the population under study

Features
Group of Patients

Maintaining SR Relapsing to AF

Patients 31 39
Men/Women 15/16 17/22
Underlying heart disease 10 (32.26%) 11 (28.21%)
Left atrial diameter (mm) 44.24 ± 7.53 47.02 ± 5.37
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2.2. Acquisition and Preprocessing of the ECG Signal

A standard 12-lead ECG signal was continuously recorded from each patient some minutes before
ECV and during the entire procedure. The recording was acquired with a sampling rate of 1024 Hz
and 16-bit of resolution over a dynamic range of ±5 mV. A 90 s-length interval extracted just before the
first electrical shock from lead V1 was analyzed. This lead was selected because it typically exhibits
f -waves with the largest amplitude [42]. The segment was preprocessed for removal of baseline
wander, powerline interference, and high frequency noise. More precisely, baseline wander was
estimated using a 3rd order Butterworth low-pass filtering with cut-off frequency of 0.8 Hz and then
subtracted from the original signal [43]. A backward-forward IIR filtering was chosen for preservation
of phase and amplitude characteristics, as the Butterworth filter shows a maximally flat response in
the bandpass. Next, the powerline interference was removed by means of a notch filter with central
frequency of 50 Hz and bandwidth of 4 Hz [43]. Finally, a low-pass filtering with cut-off frequency of
70 Hz was used to remove high-frequency noise [43].

To reliably analyze the f -waves, they were firstly extracted from the preprocessed ECG by making
use of a well-established QRST cancellation method [44]. In brief, R-peaks were detected using
a previously published algorithm [45], and ectopic beats were identified according to a template
matching approach [46,47]. Next, the QRST complex length was experimentally set to the minimum
between its common duration (i.e., 470 ms) and 90% of the median RR interval. Then, all complexes
were delineated by positioning that window centered on R-peaks. If ectopic beats were found,
they were averaged to obtain a template for their cancellation [48]. Similarly, another template was
computed by averaging the beats labelled as normal. After cancelling all normal and ectopic complexes,
the resulting signal was high-pass filtered with a cut-off frequency of 3 Hz to obtain f -waves as clean
as possible from baseline wander and QSRT residua [36]. As an example, Figure 1 shows the f -waves
obtained from a typical ECG interval.

(a)

(b)

Figure 1. Example of a common electrocardiogram (ECG) segment (a), along with the extracted
f -waves (b) by average QRST complex subtraction.

2.3. Methods for Predicting Electrical Cardioversion Outcome

As a reference, some metrics well-established in the literature to anticipate AF recurrence
after ECV were firstly computed from the f -waves. Thus, amplitude and normalized amplitude
of these waveforms (FWA and nFWA), along with their dominant frequency (DF), were obtained [49].
Moreover, regularity of the f -waves was estimated via SE. Next, a multi-scale entropy analysis
was applied to the f -waves by considering three algorithms, such as MSE, CMSE, and RMSE.
While a 90 s-length ECG interval was analyzed for each patient, it was divided into three
non-overlapped segments, and the metrics were computed for each one and averaged. More details
are provided in the following subsections.
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2.3.1. Existing Predictors Analyzing the f -Waves

FWA and nFWA were automatically computed as in previous works [37]. More precisely,
naming the preprocessed ECG recording as x(n) and f -waves as f (n), both signals having a length of
N samples, these parameters were estimated as [37]

FWA( f , N) =

√√√√ 1
N

N

∑
n=1
| f (n)|2, and, (1)

nFWA( f , x, N, Nb) =

√
1
N ∑N

n=1 | f (n)|2√
1

Nb
∑Nb

k=1 |x(k)|2
, (2)

where k indexes R-peaks, and Nb is the number of beats in the signal.
To obtain the DF, power spectral density (PSD) of the f -waves was computed using the Welch

periodogram. A Hamming window of 6.144 points in length, a 66% overlapping between adjacent
windowed sections, and a 6.144-point fast Fourier transform were used as computational parameters.
Nonetheless, it should be noted that those windows whose PSD exhibited a cross-correlation with the
remaining ones lower than 0.7 were discarded. In this way, confounding effect of intervals corrupted
by excessive noise or QRST residua on DF computation was avoided. Finally, the DF was estimated
from the averaged PSD as the frequency corresponding to the largest amplitude within the 3–12 Hz
band [50].

On the other hand, organization of the f -waves was assessed by computing SE from their main
component, such as in [37]. This fundamental waveform, referred to as f f (n), was obtained by filtering
f -waves with a 9th order IIR Chebyshev type 2 structure, centered on the DF with a bandwidth of 5 Hz
and an attenuation of 20 dB in the stop band [51]. It is well-known that SE evaluates self-similarity
within a non-stationary time series, larger values suggesting more irregularity and disorganization [52].
From a mathematical point of view, computation of this entropy relies on finding similar patterns
between different epochs of length m separated by a distance r along the signal, and its probability of
maintenance when the length of the epochs m is increased by one unit [52]. More precisely, given the
signal f f (n), the algorithm is as follows [52]:

1. Form N −m vectors vm(j) of length m samples, such that

vm(j) = { f f (j + i) : 1 ≤ j ≤ N −m, 0 ≤ i ≤ m− 1} . (3)

2. Compute the Chebyshev distance between every pair of vectors, i.e.,

djk(m) = d {vm(j), vm(k)}
= max {|vm(j)− vm(k)|}
= max

i
{| f f (j + i)− f f (k + i)| : 0 ≤ i ≤ m− 1} .

(4)

3. Estimate the number of matches of length m for every vector vm(j). A match is obtained when
the dissimilarity distance, djk(m), is below a threshold r.

Bm
j (r) =

1
N −m− 1

N−m

∑
k=1
k 6=j

(djk(m) < r). (5)

4. Define the probability that two sequences of m points will match as

Bm(r) =
1

N −m

N−m

∑
j=1

Bm
j (r). (6)
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5. Increase the sequence length to m + 1 and repeat steps 1 to 4 to obtain

Am
j (r) =

1
N −m− 1

N−m

∑
k=1
k 6=j

(djk(m + 1) < r), and (7)

Am(r) =
1

N −m

N−m

∑
j=1

Am
j (r). (8)

6. Finally, estimate SE as [52]

SE( f f , N, m, r) = − ln
Am(r)
Bm(r)

. (9)

While SE is completely dependent on the parameters m and r, no clear rules exist for selecting
their optimal values. After some experiments, the widely recommended values of m = 2 and r = 0.2
times the standard deviation of f f (n) were chosen in the present study [53].

2.3.2. Novel Predictors from Multi-Scale Entropy Analysis of the f -waves

Generally, time series derived from complex systems are likely to present structures on multiple
spatiotemporal scales, and hence SE may be unable to completely capture their dynamics. To palliate
this issue, Costa et al. proposed MSE as an extension of SE where this entropy is computed over several
coarse-grained versions of the original time series [38,54]. Thus, in the present work the fundamental
component of the f -waves was firstly decomposed into different coarse-grained time series [38], i.e.,

f f τ(n) =
1
τ

τ

∑
l=0

f f (nτ − l), for 1 ≤ n ≤ N
τ

, (10)

and τ being the scale factor. Next, SE was computed for each scale according to the previously described
approach and remaining m = 2 and r = 0.2 times the standard deviation of f f (n). Thus, MSE was
obtained as [38]

MSE( f f , N, m, r, τ) = SE
(

f f τ ,
N
τ

, m, r
)

. (11)

It should be noted that f f τ(n) was obtained by averaging non-overlapped windows of τ samples,
thus decreasing the length of each coarse-grained time series by a factor τ. In this way, the variance
in entropy estimates increases when τ also grows, and imprecise measurements could be obtained
for large time scales. To overcome this limitation, CMSE has been proposed by Wu et al. [40]. In this
approach, entropy is computed for each scale by averaging τ values obtained from τ coarse-grained
times series, which are obtained as [40]

f f τ
k (n) =

1
τ

τ

∑
l=0

f f (nτ − l + k), for 1 ≤ n ≤ N
τ

, (12)

and k ranging from 0 to τ − 1. Then, CMSE is estimated as [40]

CMSE( f f , N, m, r, τ) =
1
τ

τ−1

∑
k=0

SE
(

f f τ
k ,

N
τ

, m, r
)

. (13)

However, MSE and CMSE still present two major shortcomings. On the one hand, although coarse-
grained time series are obtained by decimation, aliasing errors are not avoided and spurious oscillations
could occur in these rescaled signals. On the other hand, the threshold r remains constant for all time
scales, thus provoking an artificial reduction in values of entropy for large scales. To mitigate these
constraints, Valencia et al. [41] proposed a refined version of MSE, i.e., RMSE. This new method is
mainly based on eliminating the fast temporal oscillations before downsampling the original time
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series. For this purpose, a 6th order low-pass Butterworth filter with a normalized cut-off frequency of
0.5/τ was used in the present work [41]. Backward-forward IIR approach was considered to perform
a zero-phase filtering [41,43]. Moreover, the threshold r was taken as 0.2 times the standard deviation
of the filtered times series for each scale. More precisely, RMSE was computed as [41]

RMSE( f f , N, m, r, τ) = SE
(

f̂ f
τ
,

N
τ

, m, r̂
)

, (14)

where f̂ f
τ

was the filtered and coarse-grained time series for each scale and r̂ was the dissimilarity
distance specifically obtained from f̂ f

τ
.

To obtain reliable SE estimates, previous works have recommended that N should be at least
10m, and preferably at least 30m [55]. Accordingly, in the present work the maximum scale factor was
established to 40, thus entailing a minimum length of 768 samples for every coarse-grained time series.
Moreover, for a wide characterization of complexity of the f -waves, profiles of MSE, CMSE and RMSE
as a function of τ were globally parametrized as proposed in other studies [56,57]. Thus, these curves
exhibited three clear regions, defined by low (τ = 1− 10), middle (τ = 11− 20) and high (τ = 21− 40)
scales, and the area enclosed under each one was computed. The area for low scales was referred to
as ALS, for middle scales as AMS, and for high scales as AHS. Additionally, the curve for each region
was also approximated as a first-degree polynomial using a minimum square adjustment method.
The slope of the resulting line was referred to as SLS for low scales, SMS for middle scales, and SHS for
high scales.

2.4. Performance Assessment

All described indices characterizing the f -waves were evaluated for normality by means of the
Kolmogorov-Smirnov hypothesis test [58]. This assumes as null hypothesis that data come from a
standard normal distribution, which was here rejected at a 5% of significance level. When data for
patients maintaining SR and relapsing to AF came from normal distributions, a Student’s t-test was
used to assess statistical separability between them [59]. Otherwise, a Wilcoxon rank sum test was
used for that purpose [60]. In both cases, the null hypothesis was rejected with a significance level
of 5%.

On the other hand, the discriminant ability of the analyzed parameters was studied by means of a
receiver operating characteristic (ROC) curve. This plot provides information on how each variable
can be used as a classifier by computing true positive (sensitivity) and false positive (1 − specificity)
classification probabilities. The area under the ROC curve (AROC) is then an aggregate measure of
performance of a variable across all possible classification thresholds. The ideal value of AROC is 1 and
the worst-case value is 0.5 [61]. In the present study, sensitivity (Se) was considered as the proportion
of patients who relapsed to AF, whereas specificity (Sp) was defined as the percentage of patients
who maintained SR at the end of the follow-up. Moreover, the optimal threshold to discern between
patients maintaining SR and relapsing to AF was computed according to the Youden’s criterion,
i.e., by maximizing the addition of true positive and true negative ratios [62].

3. Results

3.1. Performance of Existing Predictors Analyzing the f -Waves

Median and interquartile ranges, along with classification results based on ROC curves, for the
parameters previously proposed in the literature to anticipate early failure of ECV are presented in
Table 2. Moreover, the boxplot distributions of these metrics for patients who maintained SR and
relapsed to AF are also displayed in Figure 2. As it can be seen, FWA reported completely overlapped
values for both groups, with median values of 0.051 and 0.050 mV for patients relapsing to AF and
maintaining SR after the follow-up, respectively. Indeed, no statistically significant differences between
groups were noticed (p = 0.369) and poor values of AROC and Sp between 40 and 57% were also
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obtained. Contrarily, nFWA presented higher median values for patients maintaining SR than for those
relapsing to AF (i.e., 0.098 vs. 0.064), with statistically significant separation between them (p < 0.05)
and a discriminant ability above 72%. Only a slightly lower value of AROC about 70% was provided
by DF, but in this case statistically significant larger median values of frequency were observed for
patients who presented AF recurrence (5.615 Hz) than for those who maintained SR (4.883 Hz). A very
similar result was also obtained by SE, where patients who maintained SR during the follow-up
exhibited statistically significant shorter median values of entropy than those who relapsed to AF,
i.e., 0.094 vs. 0.114. Nonetheless, in this case a slightly larger imbalance between Se and Sp than for DF
was noticed, since they presented values about 72 and 58%, respectively.

Table 2. Median and interquartile ranges for the metrics previously proposed to predict ECV outcome.
Statistical significance (p-value) between groups of patients relapsing to AF and maintaining SR, as well
as classification results, are also provided for each index.

Parameter
Group of Patients

p-Value AROC Se Sp
Relapsing to AF Maintaining SR

FWA (mV) 0.051 (0.036) 0.050 (0.036) 0.369 0.565 0.846 0.419
nFWA 0.064 (0.043) 0.098 (0.067) 0.001 0.724 0.718 0.613
DF (Hz) 5.615 (1.160) 4.883 (1.404) 0.003 0.707 0.692 0.613
SE 0.114 (0.039) 0.094 (0.050) 0.004 0.704 0.718 0.581
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Figure 2. Boxplot distributions of the parameters previously proposed in the literature to predict ECV
outcome, i.e., (a) f -waves amplitude (FWA), (b) normalized f -waves amplitude (nFWA) (c) dominant
frequency (DF), and (d) Sample Entropy (SE). The central mark indicates the median, the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively, and the whiskers extend to the
most extreme data points not considered outliers. The outliers are plotted using the symbol +.

3.2. Performance of Multi-Scale Entropy-Based Predictors Analyzing the f -Waves

Figure 3 displays how values of MSE, CMSE and RMSE evolve as a function of the scale factor τ.
As can be seen, very similar curves were obtained for the three cases. Patients who relapsed to AF
always presented values of entropy higher than those who maintained SR at the end of the follow-up.
Nonetheless, as previously mentioned in Section 2.3.2, three clear regions can be observed in these
curves. In the part defined by low scales (τ = 1− 10) entropy reported a monotonic increase for both
groups of patients, existing statistically significant differences between them (p < 0.05) for every time
scale. Regarding the region covering middle scales (τ = 11− 20), a nearly stable behavior with little
variance and separation in values of entropy for both groups of patients was observed. However,
p-values lower than 0.05 were also noticed for these time scales. Finally, in the region comprising



Entropy 2020, 22, 748 9 of 17

high scales (τ ≥ 21), both groups of patients showed increasing and divergent trends in values of
entropy. Thus, while a notably higher variance in estimates of entropy was observed for larger time
scales, median values also tended to be more separated and statistically significant differences between
groups were always observed. Moreover, values of AROC higher than 75% were observed for all time
scales larger than 21, regardless of the multi-scale entropy approach.

0.5

1

0.5

1

0 5 10 15 20 25 30 35 40

0.5

1

M
SE

C
M

SE
RM

SE
(a)

(c)

(b)

Time scale ( )

Patients maintaining SR
Patients relapsing to AF

Figure 3. Median values (symbol �) and interquartile ranges (whiskers) of (a) multi-scale entropy
(MSE), (b) composite MSE (CMSE) and (c) refined MSE (RMSE) as a function of the time scale (τ) for
patients maintaining SR and relapsing to AF at the end of the follow-up.

Regarding the aggregated complexity measure A, statistically significant differences between
groups of patients (p < 0.05) were noticed for the three regions delimited in the MSE curves, i.e., for LS,
MS and HS, but AHS presented a value of AROC 2% higher than ALS and 8% higher than AMS.
Contrarily, the index S did not report statistical significance (p > 0.05) for low and middle scales,
only providing values of AROC below 63% for the three MSE approaches. However, although in
HS entropy values exhibited the largest interquartile ranges, median values presented the highest
separation between groups of patients, consequently SHS provided statistical significance p < 0.05 and
the highest ability to predict ECV outcome. More precisely, median values and interquartile ranges for
the parameters AHS and SHS, are presented in Table 3 and displayed in Figure 4, respectively. As it
can be observed, for the three multi-scale approaches, larger values of AHS and SHS were provided for
patients who relapsed to AF than for those who maintained SR. Moreover, their classification results
were very similar to those reported by the best scale for MSE (scale τ = 29), CMSE (scale τ = 29) and
RMSE (scale τ = 39), such as Table 3 also presents. Nonetheless, it should be remarked that metrics
computed from the RMSE curve performed about 3–9% better than those obtained from the MSE and
CMSE profiles. In fact, the largest AROC of 86% was achieved by the index SHS calculated from the
RMSE curve. While a significant imbalance between Se and Sp was reported by this metric, Figure 5
shows that changing the threshold to achieve Sp between 70 and 95% still provided Se above 70%,
thus overcoming all remaining metrics.
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Table 3. Median and interquartile ranges for the metrics computed from the three analyzed multi-scale
approaches. Statistical significance (p-value) between groups of patients relapsing to AF and
maintaining SR, as well as classification results, are also provided for each index.

Approach Parameter
Group of Patients

p-Value AROC Se Sp
Relapsing to AF Maintaining SR

SE(τ = 29) 0.814 (0.242) 0.646 (0.228) <0.001 0.777 0.744 0.710
MSE AHS 17.189 (4.716) 13.747 (4.841) <0.001 0.767 0.744 0.677

SHS 0.025 (0.010) 0.016 (0.017) <0.001 0.768 0.744 0.710

SE(τ = 29) 0.818 (0.228) 0.649 (0.243) <0.001 0.773 0.718 0.710
CMSE AHS 17.158 (4.721) 13.728 (4.817) <0.001 0.768 0.744 0.678

SHS 0.025 (0.009) 0.016 (0.017) <0.001 0.771 0.744 0.710

SE(τ=39) 1.059 (0.307) 0.825 (0.374) <0.001 0.825 0.744 0.774
RMSE AHS 17.727 (3.538) 14.104 (4.243) <0.001 0.794 0.692 0.774

SHS 0.024 (0.007) 0.014 (0.010) <0.001 0.860 0.692 0.968

10

12

14

16

18

20

22

SR AF
10

12

14

16

18

20

22

Rhythm after the follow-up

0.005

0.01

0.015

0.02

0.025

0.03

0.035

SR AF

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0

0.005

0.01

0.015

0.02

0.025

0.03

(a) (b) (c)

10

12

14

16

18

20

22

SR AF
Rhythm after the follow-up

SR AF SR AF
Rhythm after the follow-up

SR AF

Figure 4. Boxplot distributions of AHS and SHS for (a) MSE, (b) CMSE, and (c) RMSE. The central
mark indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively, and the whiskers extend to the most extreme data points not considered outliers.
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Figure 5. ROC curves for SE obtained from the best time scale, AHS and SHS derived from (a) MSE,
(b) CMSE, (c) RMSE. The point marks optimal threshold according to the Youden’s criterion.

4. Discussion

Previous studies have suggested that the heart’s behavior is far from being linear during AF,
since a non-uniform and anisotropic atrial conduction occurs when the arrhythmia is present [63,64].
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More precisely, it has also been pointed out that typical steep conduction velocity dispersion during
AF represents one way of forming a spatially heterogeneous pattern in a completely homogeneous
tissue [65]. Such a pattern formation has been described by theories dealing with nonlinear and
highly complex systems [63,64]. To this respect, the application of nonlinear methods to f -waves has
received great attention in the last years [66]. However, no time-scale analyses have been conducted
yet, thus ignoring information from a wider characterization of complex fibrillatory dynamics [38].
To the best of our knowledge, the present study has introduced for the first time a multi-scale entropy
analysis of f -waves to provide improved proarrhythmic condition estimation, thus anticipating early
failure of ECV in patients suffering from persistent AF.

The obtained results precisely highlight that MSE, CMSE and RMSE have been able to gain
additional insights compared to the single-scale analysis conducted with SE. In fact, entropy values
estimated from most time scales, as well as parameters globally summarizing MSE, CMSE and
RMSE curves, provided a discriminant ability between 3 and 15% better than SE (see Tables 2 and 3).
However, these improvements in classification depended on the analyzed time scales. More precisely,
entropy estimated from low and middle time scales only presented values of AROC about 3–5% better
than SE. This result could be explained by the fact that the original ECG recordings were initially
acquired with a too large sampling rate with respect to the relevant frequency content of f -waves, thus
leading to a high similarity between consecutive samples. Once this oversampling was reduced for
middle scales, values of entropy remained approximately constant because spectral content of f -waves
was mainly unaltered in the resulting coarse-grained time series. Finally, when fast oscillations in
f -waves were removed, entropy began to increase for large time scales. To this respect, it should
be noted that the coarse-grained time series for the scale τ = 20 was sampled with a rate of about
50 Hz, for the scale τ = 30 of about 35 Hz, and for the scale τ = 40 of about 25 Hz. This filtering of
high-frequency oscillations in successive time scales allowed to enhance fundamental information in
f -waves, thus separating mean values of entropy for patients maintaining SR and relapsing to AF and
then reaching a discriminant ability between 7 and 15% better than SE.

A similar three-way behavior in the profile of MSE has also been observed when alpha brain waves
in electroencephalographic recordings were analyzed from patients with disorders of attention-deficit
and hyperactivity [67]. Far beyond any other similarity between both kinds of signals, alpha brain
waves and f -waves exhibit a similar frequency range [67]. Moreover, given that a similar oversampling
to the present work was also considered in [67], the results obtained in both cases suggest that the most
different dynamics could be seen among those time scales covering the spectral content associated
with the most relevant information in the signal. According to this observation, areas and slope
computed from low and middle scales in MSE, CMSE and RMSE profiles were much less predictive
of ECV outcome than those obtained from large scales. Moreover, times scales providing the highest
classification results were also located in the remarked third region, i.e., τ = 29 both for MSE and
CMSE, and τ = 39 for RMSE (see Table 3).

Nonetheless, it is worth noting that patients who relapsed to AF presented higher values of
entropy than those who maintained SR for all time scales (see Figure 3). This finding agrees with values
of SE obtained in the present study as well as those presented by previous works [34,37], and suggests
that the presence of more disorganized f -waves increases the probability of AF recurrence after
ECV [34,37]. While the mechanisms supporting AF are still not fully understood [68], more irregular
f -waves could be indicative of more heterogeneity in atrial conduction, which could be associated
with more advanced modification of structural and electrophysiological parameters of the atria, thus
increasing the patient proarrhythmic condition [69,70]. In fact, the morphology of the f -waves on the
surface ECG has been suggested to result from an interplay between viable atrial muscle mass and
variability in atrial conduction [24,71]. Moreover, previous works have also found more disorganized
f -waves in chronic than in initial stages of the arrhythmia [72].

On the other hand, no remarkable differences among MSE, CMSE and RMSE curves were observed
(see Figure 3). Indeed, MSE and CMSE profiles were almost identical, and parameters derived from
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them also provided very similar classification outcomes (see Table 3). While CMSE was proposed
to reduce variance in entropy estimates from large scales [40], its effect was only marginally seen in
patients who relapsed to AF during the follow-up. The fact that all analyzed coarse-grained time series
presented a large number of at least 768 samples could explain this outcome, thus suggesting that this
modification of MSE could only play a more relevant role in the analysis of shorter signals. Contrarily,
a notably higher reduction of variance in RMSE measures was noticed in large scales, especially for
patients who relapsed to AF (see Figure 3). As a consequence, removal of aliasing artifacts, as well
as reduction of artificial regularity by normalizing the threshold r to the standard deviation of the
coarse-grained times series [41], seems to be essential for a better estimation of the organization of the
f -waves. According to this finding, parameters based on the RMSE curve provided values of AROC
between 3 and 9% higher than those obtained from the MSE and CMSE profiles.

Moreover, the best classification result obtained in the present work was reported by the parameter
SHS also computed from the RMSE curve. In fact, this parameter presented an AROC of 86% (see
Table 3). While highly unbalanced values of Se and Sp were noticed, when a different threshold from
the Youden’s criterion was used to get Sp between 70 and 95%, better values of Se (above 70%) than all
remaining predictors of ECV outcome were still observed (see Figure 5). This good result could be due
to the fact that SHS is able to reflect the degree of change in entropy estimates over several time scales,
thus providing a more global and accurate measure of structural complexity of f -waves. In fact, it is
well-known that there exist differences between mathematical concepts of regularity and complexity,
such that an increase in single-scale entropy mandatorily involves a loss of regularity but may not
always be related to an increase in dynamical complexity [38]. Hence, having in mind that complexity
has been associated with “meaningful structural richness” [73], SHS could be considered as a more
robust complexity measure of f -waves than single-scale entropies. The same idea also applies for
the metric AHS, which globally summarizes entropy for several time scales. Thus, a higher area can
only be achieved when entropy values are greater for most scales, then suggesting more complex time
series. Consequently, this parameter for the three multi-scale approaches has provided discriminant
abilities higher than single values of entropy obtained from most factors τ, and comparable to those
reported by the best time scales (see Table 3).

All parameters derived from the MSE, CMSE and RMSE profiles also proved to be more predictive
of ECV outcome than the indices previously proposed in the literature. Comparing Tables 2 and 3,
improvements about 7–16% in values of AROC were seen for multi-scale measures. Nonetheless,
it should be noted that the results provided by FWA, nFWA, and DF were totally consistent with
those reported in previous works. Thus, whereas FWA showed values mostly overlapped for both
groups of patients and a poor discriminant ability [24], its normalized version nFWA obtained much
more information. Indeed, this index obtained a discriminant ability about 70%, also exhibiting
larger values for patients who maintained SR [37]. The differences observed for both indices agree
with previous studies on the idea that expressing f -wave amplitude as a percentage of the R-peak
magnitude is essential to reduce confounding effects of physiological variations among patients (e.g.,
chest wall attenuation, skin impedance, etc.) [35,37,74]. Moreover, in line with previous results [35–37],
statistically significant larger values of DF were reported for patients who relapsed to AF than for
those who maintained SR after the follow-up. Moreover, this index also provided a discriminant ability
about 70% with well-balanced values of Se and Sp [35,37].

Finally, some limitations of the present study should be mentioned. First, seventy patients from a
single centre were only studied. While the obtained results provided consistent trends in the MSE,
CMSE and RMSE curves for both groups of patients, as well as statistically significant differences
between them for most parameters, further prospective studies with larger databases should be
warranted to confirm the relevant role of multi-scale entropy analysis of f -waves in estimating
individual proarrhythmic conditions and anticipating early failure of ECV. Second, continuous heart
rhythm monitoring of the patients within the whole follow-up was not possible, and therefore some
self-limiting, asymptomatic episodes of AF recurrence could have been missed. Finally, lead V1 was
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only analyzed, thus ignoring the possible information contained in the remaining signals. However,
this lead has been suggested as the most suitable for the analysis of f -waves, because significant
correlation between frequency [75], amplitude [76] and SE [76] obtained from this lead and from
intra-atrial electrograms had been reported, and therefore it could reflect the global activation of
the atria [75–77]. In fact, many previous works have only analyzed lead V1 to anticipate ECV
outcome [24,31–35,37,49,78]. Nonetheless, because DF analysis has provided a dissimilar predictive
ability when applied to different channels of the standard ECG [36], the multi-scale entropy analysis
conducted in the present work will be extended to multiple leads in future investigations.

5. Conclusions

The present work has introduced for the first time a multi-scale entropy analysis of the f -waves
to evaluate the individual proarrhythmic condition, thus anticipating early failure of ECV in persistent
AF patients. The obtained results have shown a different behavior in the values of entropy for
low, middle, and high time scales, revealing most predictive information from those covering
frequency bands close to the spectral content of interest in the f -waves (i.e., time scales larger
than 20). Indeed, single entropy values obtained for large time scales achieved a discriminant
ability between 4 and 10% greater than for short scales, while providing better trade-off between
sensitivity and specificity. Moreover, global characterization of the dynamics exhibited by these
large scales has also reported more robust estimates of complexity of the f -waves than the values
of entropy computed from single time scales, thus improving classification between patients who
relapsed to AF and maintained SR after the follow-up between 3 and 14%. Moreover, the best
classification result was obtained by the slope estimated from the RMSE curve for high scales.
This index has reported an AROC of 86%, thus improving between 3 and 9% the discriminant ability
of the remaining multi-scale-based parameters, and between 15 and 30% that of other previously
proposed predictors of ECV outcome. In view of these results, the multi-scale entropy analysis of
the f -waves, and especially the quantification of the entropy change over large time scales, could be
extremely helpful in clinical decisions regarding optimal management of patients with persistent AF.
Nonetheless, further prospective studies with larger databases are required to validate the robustness
of the obtained results.
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