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Abstract: Multivariate tail coefficients are an important tool when investigating dependencies
between extreme events for different components of a random vector. Although bivariate tail
coefficients are well-studied, this is, to a lesser extent, the case for multivariate tail coefficients.
This paper contributes to this research area by (i) providing a thorough study of properties of
existing multivariate tail coefficients in the light of a set of desirable properties; (ii) proposing some
new multivariate tail measurements; (iii) dealing with estimation of the discussed coefficients and
establishing asymptotic consistency; and, (iv) studying the behavior of tail measurements with
increasing dimension of the random vector. A set of illustrative examples is given, and practical use
of the tail measurements is demonstrated in a data analysis with a focus on dependencies between
stocks that are part of the EURO STOXX 50 market index.

Keywords: archimedean copula; consistency; estimation; extreme-value copula; tail dependency;
multivariate analysis
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1. Introduction

Assume that we have a d-variate random vector and we are interested in the tendency of the
components to achieve extreme values simultaneously, which is taking extremely small or extremely
large values. In the bivariate setting, when d = 2, this so-called tail dependence has been studied
thoroughly in the literature. Bivariate lower and upper tail coefficients appeared for example in [1]
but the idea of studying bivariate extremes dates back to [2]. These coefficients, being conditional
probabilities of an extreme event given that another event is also extreme, have become the standard
tool to quantify tail dependence of a bivariate random vector. Later, a generalization into arbitrary
dimension d became of interest. The presence of more than two components however brings difficulties
of defining tail dependency and several proposals appeared in the literature. These proposals include
those made by [3,4] or [5] who adopted different strategies for conditioning in general dimensions.
Further proposals were made for specific copula families, for example, by [6] for Archimedean copulas
or by [7] for extreme-value copulas.

In this paper, we aim to contribute to the discussion on the appropriateness of multivariate
tail coefficients, from the view point of properties that one would desire such coefficients to have.
This study also entails the proposal of some new multivariate tail measures, for which we establish the
properties. We investigate an estimation of the discussed multivariate tail coefficients and establish

Entropy 2020, 22, 728; doi:10.3390/e22070728 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-4443-9803
https://orcid.org/0000-0002-0094-8286
https://orcid.org/0000-0002-0396-9373
http://dx.doi.org/10.3390/e22070728
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/7/728?type=check_update&version=2


Entropy 2020, 22, 728 2 of 43

consistency of all estimators. It is also of particular interest to find out how tail dependence measures
behave when the dimension d increases.

The organization of the paper is as follows. In Section 2, we briefly review some basic concepts
about copulas and classes of copulas that will be needed in subsequent sections. Section 3 is devoted
to the study of various multivariate tail dependence measures, whereas Section 7 discusses statistical
estimation of these measures, including consistency properties. Section 4 investigates some further
probabilistic properties of the multivariate tail dependence measures. Section 5 studies the behavior
of the tail coefficient measures for Archimedean copulas when the dimension increases to infinity.
A variety of illustrative examples is provided in Section 6, and it accompanies the studies that are
presented in Sections 3 and 5. Finally, in Section 8, it is demonstrated how multivariate tail coefficients
contribute in getting insights into dependencies between stocks that are part of the EURO STOXX 50
market index.

2. Multivariate Copulas

In this section, we briefly introduce concepts and notation from copula theory that will be
necessary in the rest of this text. For more details on copulas, see e.g., [8].

2.1. Basic Properties. Survival and Marginal Copulas

Suppose that we have a d-variate random vector X = (X1, . . . , Xd)
> having a joint distribution

function F. Let further Fj denote the continuous marginal distribution function of Xj for j = 1, . . . , d.
Sklar’s theorem [9] describes the relationship between the joint distribution function and the marginals
that are given by a unique copula function Cd : [0, 1]d → [0, 1] such that

F(x1, . . . , xd) = Cd(F1(x1), . . . , Fd(xd)), (x1, . . . , xd)
> ∈ Rd.

We denote the set of all d-variate copulas by Cop(d). From the above relationship, it is easily seen
that the random vector U = (U1, . . . Ud)

> = (F1(X1), . . . , Fd(Xd))
> has a joint distribution function

Cd, that is, with u = (u1, . . . , ud)
> ∈ [0, 1]d, Cd(u) = P(U ≤ u). The inequalities of vectors in this text

are understood component-wise.
The survival function Cd that is associated to a copula Cd is defined as Cd(u) = P(U > u).

The survival copula CS
d that is associated to a copula Cd is defined as the copula of the random vector

1−U, that is

CS
d (u) = P(1−U ≤ u) = Cd(1− u). (1)

Let π be a permutation of the set of indices {1, . . . , d}, i.e., π : {1, . . . , d} → {1, . . . , d}. The copula Cπ
d

is defined using a copula Cd as [10]

Cπ
d (u1, . . . , ud) = Cd(uπ(1), . . . , uπ(d)), ∀u ∈ [0, 1]d.

In every point of the unit hypercube [0, 1]d, the value of a copula Cd is restricted by the
lower Fréchet’s bound Wd(u) = max(∑d

j=1 uj − d + 1, 0) and the upper Fréchet’s bound Md(u) =

min(u1, . . . , ud). In other words,

Wd(u) ≤ Cd(u) ≤ Md(u), ∀u ∈ [0, 1]d.

The function Md is a copula for any d ≥ 2 and it is often called the comonotonicity copula, since it
corresponds to the copula of a random vector X whose arbitrary component can be expressed as a
strictly increasing function of any other component. If the components of a random vector X are
mutually independent, the copula of X is the independence copula Πd(u) = ∏d

j=1 uj.
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The copula that is associated to any subset of components of a d-dimensional random vector X is
called a marginal copula of Cd. A marginal copula might be calculated from the original copula by
setting arguments corresponding to the unconsidered components to 1. For example, the marginal
copula C(1,...,d−1)

d−1 of (X1, . . . , Xd−1)
> can be obtained as

C(1,...,d−1)
d−1 (u1, . . . , . . . ud−1) = Cd(u1, . . . , ud−1, 1),

where Cd is the copula of X. Marginal copulas can be used to calculate the survival function Cd of a
copula Cd, since

Cd(u) = 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

C
(k1,...,kj)

j (uk1 , . . . , ukj
). (2)

2.2. Classes of Archimedean and Extreme-Value Copulas

In the study here, we pay particular attention to two classes of copulas: multivariate extreme-value
copulas and multivariate Archimedean copulas.

Definition 1. A d-variate copula Cd is called an extreme-value copula if it satisfies

Cd(u1, . . . , ud) =

[
Cd

(
u1/m

1 , . . . , u1/m
d

)]m

for every integer m ≥ 1 and u ∈ [0, 1]d.

This definition is only one of many ways how to define extreme-value copulas. For other
definitions and properties, see, for example, ref. [11]. Every extreme-value copula Cd can be expressed
in terms of a so-called stable tail dependence function `d : [0, 1)d → [0, ∞) as

Cd(u1, . . . , ud) = exp(−`d(− log u1, . . . ,− log ud)). (3)

Denote by ∆d−1 the d-dimensional unit simplex

∆d−1 =
{
(w1, . . . , wd) ∈ [0, ∞)d : w1 + · · ·+ wd = 1

}
.

Every extreme-value copula can be equivalently expressed in terms of Pickands dependence function
Ad : ∆d−1 → [1/d, 1] as

Cd(u1, . . . , ud) = exp


 d

∑
j=1

log uj

 Ad

 log u1
d
∑

j=1
log uj

, . . . ,
log ud

d
∑

j=1
log uj




=

 d

∏
j=1

uj

Ad

 log u1
d
∑

j=1
log uj

,...,
log ud
d
∑

j=1
log uj


(4)

The function Ad is the restriction of the function `d on the unit simplex and given as

Ad

 x1

∑d
j=1 xj

, . . . ,
xd

∑d
j=1 xj

 =
1

x1 + · · ·+ xd
`d(x1, . . . , xd). (5)
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Further, Ad is convex and it satisfies max(w1, . . . , wd) ≤ Ad(w1, . . . , wd) ≤ 1, for w = (w1, . . . , wd)
> ∈

∆d−1. The comonotonicity copula Md and the independence copula Πd are both extreme-value copulas
with respective Pickands dependence functions Ad(w) = max(w1, . . . , wd) and Ad(w) = 1, i.e., the
lower and upper bounds above.

Note that if Ad(1/d, . . . , 1/d) = 1/d, then the corresponding copula must be the comonotonicity
copula Md. Indeed, if Ad(1/d, . . . , 1/d) = 1/d it follows from (4) that Cd(u, . . . , u) = u for every
u ∈ (0, 1). Because, for any copula Cd, it holds that Cd(u) ≤ Md(u) for all u ∈ [0, 1]d, the upper
Fréchet bound, and Cd(u) ≥ Cd(min(u1, . . . , ud), . . . , min(u1, . . . , ud)), where the latter quantity equals
min(u1, . . . , ud) in this case and, consequently, Cd(u) ≥ Md(u) for all u ∈ [0, 1]d. Hence, in this case
Cd = Md.

Similarly, if Ad(1/d, . . . , 1/d) = 1, then the corresponding copula Cd must be the independence
copula Πd. To see this, first suppose that there exists a point w = (w1, . . . , wd−1, 1−∑d−1

j=1 wj)
> ∈ ∆d−1,

such that Ad(w) = c < 1. Now, define a point z ∈ ∆d−1 by setting zj = (1 − wj)/(d − 1) for
j = 1, . . . , d− 1 and zd = 1−∑d−1

j=1 zj = ∑d−1
j=1 wj/(d− 1). Because Ad is a convex function, then

1 = Ad

(
1
d

, . . . ,
1
d

)
= Ad

(
1
d

w +

(
1− 1

d

)
z

)
≤ 1

d
Ad(w) +

d− 1
d

Ad(z) ≤
c + d− 1

d
< 1

which is a contradiction. This means that Ad(w) = 1 for every w ∈ ∆d−1. Immediately from (4), we
get that Cd(u) = ∏d

j=1 uj for every u ∈ [0, 1]d and, hence, Cd = Πd.
Finally, from Definition 1, it follows that the marginal copula of an extreme-value copula is also

an extreme-value copula.
We next provide an illustrative example.

Example 1. Let Cd be the d-variate extreme-value copula of (X1, . . . , Xd)
> and Cd+1 be the (d + 1)-variate

copula of (X1, . . . , Xd, Xd+1)
> where Xd+1 is independent of (X1, . . . , Xd)

>, that is

Cd+1(u1, . . . , ud, ud+1) = Cd(u1, . . . , ud)ud+1.

Subsequently, from Definition 1, Cd+1 is also an extreme-value copula. The stable dependence function `d+1 can
be expressed, using (3), as

`d+1(x1, . . . , xd+1) = − log(Cd+1(e−x1 , . . . , e−xd+1)) = `d(x1, . . . , xd) + xd+1.

Then from (5)

Ad+1

 x1

∑d+1
j=1 xj

, . . . ,
xd+1

∑d+1
j=1 xj

 =

(
∑d

j=1 xj

)
Ad

(
x1

∑d
j=1 xj

, . . . , xd
∑d

j=1 xj

)
+ xd+1

∑d+1
j=1 xj

and in particular

Ad+1

(
1

d + 1
, . . . ,

1
d + 1

)
=

1
d + 1

(
dAd

(
1
d

, . . . ,
1
d

)
+ 1

)
.

Another class of copulas that we consider is the class of multivariate Archimedean copulas,
thoroughly discussed, for example, in [12].

Definition 2 (Archimedean copula). A non-increasing and continuous function ψ : [0, ∞)→ [0, 1], which
satisfies the conditions ψ(0) = 1, limx→∞ ψ(x) = 0 and is strictly decreasing on [0, inf{x : ψ(x) = 0}) is
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called an Archimedean generator. A d-dimensional copula Cd is called Archimedean if it, for any u ∈ [0, 1]d,
permits the representation

Cd(u) = ψ
[
ψ−1(u1) + · · ·+ ψ−1(ud)

]
for some Archimedean generator ψ and its inverse ψ−1 : (0, 1]→ [0, ∞), where, by convention, ψ(∞) = 0 and
ψ−1(0) = inf

{
u : ψ(u) = 0

}
.

In [12], the authors also provide a characterization of an Archimedean generator leading to some
Archimedean copula by means of the following definition and proposition.

Definition 3 (d-monotone function). A real function f is called d-monotone on the interval [0, ∞), where
d ≥ 2, if it is continuous on [0, ∞) and differentiable on (0, ∞) up to the order d− 2 and the derivatives satisfy

(−1)k f (k)(x) ≥ 0, for k = 0, 1, . . . d− 2

for any x ∈ (0, ∞) and further if (−1)d−2 f (d−2) is non-increasing and convex in (0, ∞). If f has derivatives
of all orders in (0, ∞) and if (−1)k f (k)(x) ≥ 0 for any x ∈ (0, ∞) and any k = 0, 1, . . . , then f is called
completely monotone.

It can be shown that exactly this definition is the key to specify which Archimedean generators
can generate copulas.

Proposition 1 (Characterization of Archimedean copulas). Let ψ be an Archimedean generator and d ≥ 2.
Subsequently, Cd : [0, 1]d → [0, 1] given by

Cd(u) = ψ
[
ψ−1(u1) + · · ·+ ψ−1(ud)

]
is a d-dimensional copula if and only if ψ is d-monotone on [0, ∞).

Corollary 1. An Archimedean generator ψ can generate a copula in any dimension if and only if it is
completely monotone.

Most of the well-known Archimedean generators are completely monotone, also called strict
generators. For strict generators, ψ−1(0) = ∞. However, the range of parameter values possibly
depends on the dimension. We illustrate this with the Clayton copula family.

Example 2. Let Cd be the d-variate Clayton copula with parameter θ. In the bivariate case, its generator is
defined as ψθ(t) = (1+ θt)−1/θ

+ with θ ≥ −1. However, ψθ is d-monotone only for θ ≥ −1/(d− 1) (see [12]).
That is, if we want to consider Clayton copula in any dimension, we have to restrict ourselves to θ ≥ 0, where
case θ = 0 is defined as a limit θ ↘ 0 and, in fact, corresponds to the independence copula.

Figure 1 shows how the generator of the Clayton family depends on the parameter θ. When θ < 0 and,
thus, ψθ is not completely monotone, then there exists t ∈ (0, ∞), such that ψθ(t) = 0. Otherwise, for θ ≥ 0,
limt→∞ ψθ(t) = 0, but for every t ∈ (0, ∞) we have ψθ(t) > 0.

In Figure 1, we see the most common shape of the generator function. The following lemma
focuses on the behavior of generators close to t = 0 and is useful later in this text.
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Figure 1. Generator of Clayton copula with parameters−0.3 (dash-dotted line), 1 (solid line), 5 (dashed
line) and 10 (dotted line).

Lemma 1. Let ψ be an Archimedean generator that generates a copula, differentiable on (0, ε) for some ε > 0.
Afterwards, ψ′(0+) = limt↘0 ψ′(t) can take values in [−∞, 0).

Proof. It can be easily shown that ψ is a convex function on [0, ∞) [13] (Theorem 6.3.3). That means that
ψ′ is a non-decreasing function on [0, ∞). Additionally, from Definition 2, ψ is strictly decreasing on
[0, inf{x : ψ(x) = 0}). That is, ψ′ is negative on (0, inf{x : ψ(x) = 0}), which implies that ψ′(0+) ≤ 0.
Suppose now that ψ′(0+) = 0. Afterwards, from negativity of ψ′ on (0, inf{x : ψ(x) = 0}), ψ′ must
decrease, which is in contradiction with the fact that ψ′ is a non-decreasing function on [0, ∞).

The following example shows that ψ′(0+) can be equal to −∞.

Example 3. Let ψθ(t) = exp(−t1/θ) for θ ≥ 1 which is the generator of the Gumbel-Hougaard family. Then

ψ′θ(0
+) = lim

t↘0

−1
θ

exp(−t1/θ)t1/θ−1 =

−1, if θ = 1,

−∞, if θ > 1.

Recall that θ = 1 corresponds to the independence copula. Figure 2 shows how the generator of Gumbel-Hougaard
family depends on the parameter θ.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

ψ
θ(

t)

θ = 1
θ = 2
θ = 5
θ = 10

Figure 2. Generator of the Gumbel-Hougaard copula with parameters 1 (dash-dotted line), 2 (solid line),
5 (dashed line) and 10 (dotted line).
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3. Tail Coefficients

In the bivariate case (i.e., d = 2), lower and upper tail coefficients are defined, respectively, as

λL(C2) = lim
u↘0

P(U2 ≤ u|U1 ≤ u) = lim
u↘0

P(U1 ≤ u|U2 ≤ u) = lim
u↘0

C2(u, u)
u

,

λU(C2) = lim
u↗1

P(U2 > u|U1 > u) = lim
u↗1

P(U1 > u|U2 > u) = lim
u↗1

1− 2u + C2(u, u)
1− u

,

if the limits above exist. Throughout the text, when defining these and other tail coefficients, we will
assume the existence of the limits involved. The general idea behind the tail coefficients is to measure
how likely a random variable is extreme, given that another variable is extreme. These coefficients can
take values between 0 and 1, since they are probabilities.

For extreme-value copulas, tail coefficients can be expressed as functions of Pickands dependence
function A2 corresponding to the copula C2 as

λL(C2) =

1 if A2 (1/2, 1/2) = 1/2,

0 otherwise,

λU(C2) = 2(1− A2(1/2, 1/2)),

(6)

see [11]. That is, unless the studied copula is the comonotonicity copula, extreme-value copulas
do not possess any lower tail dependence. Recall that, when A2(1/2, 1/2) = 1, the corresponding
copula must be the independence copula Π2. Therefore, an extreme-value copula possesses upper tail
dependence, unless the copula is the independence copula.

In case of Archimedean copulas, the tail coefficients can be expressed via the corresponding
generator ψ as

λL(C2) = 2 lim
u↘0

ψ′(2ψ−1(u))
ψ′(ψ−1(u))

,

λU(C2) = 2− 2 lim
u↗1

ψ′(2ψ−1(u))
ψ′(ψ−1(u))

= 2− 2 lim
t↘0

ψ′(2t)
ψ′(t)

,

see [14]. Note that both tail coefficients only depend on the behavior of the generator ψ in proximity of
the points 0 and ψ−1(0). Recall that, in the case of strict Archimedean generators, the latter is equal
to ∞.

Given their meaning and mathematical expression, tail coefficients cannot be generalized in
general dimension d ≥ 2 in a straightforward and unique way. We first propose a set of desirable
properties that are expected to hold for any multivariate tail coefficient td : Cop(d)→ R and for any
d-variate copulas Cd and Cd,m, m = 1, 2, . . . . The following properties are stated under the working
condition that all tail coefficients (td(Cd), td+1(Cd+1), td(Cd,m), and so on) exist.

(T1) (Normalization) td(Md) = 1, td(Πd) = 0,
(T2) (Continuity) If limm→∞ Cd,m(u) = Cd(u), ∀u ∈ [0, 1]d, then td(Cd,m)→ td(Cd) as m→ ∞,
(T3) (Permutation invariance) td(Cπ

d ) = td(Cd) for every permutation π,
(T4) (Addition of an independent component) For Xd+1 independent of (X1, . . . , Xd)

td(Cd) ≥ td+1(Cd+1).

Property (T4) could be formulated in a slightly stricter way, as
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(T′4) For Xd+1, independent of (X1, . . . , Xd), there exists a constant kd(td) ∈ [0, 1] not depending on Cd
such that

td+1(Cd+1) = kd(td) · td(Cd).

Because both lower and upper tail dependence are of interest, usually we consider that td has
actually two versions tU,d and tL,d focusing on either upper tail (variables simultaneously large)
or lower tail (variables simultaneously small) dependence respectively. Thus we can also consider the
following property

(T5) (Duality) tL,d(CS
d ) = tU,d(Cd).

In general, some of the desirable properties above are easy to be enforced. If one starts with a
candidate coefficient t∗d , property (T1) can be achieved by defining

td(Cd) =
t∗d (Cd)− t∗d (Πd)

t∗d (Md)− t∗d (Πd)
.

Property (T3) can be achieved by taking an average of the candidate coefficient t∗d over all of
the permutations

td(Cd) =
1
d! ∑

π∈Sd

t∗d (C
π
d ),

where Sd denotes all of the permutations of the set {1, . . . , d}. Note, however, that, especially for high
dimensions, this significantly increases computational complexity. In the case of property (T5), we can
simply use it to define an upper tail coefficient from the lower tail one (or the other way around).

In the following, we briefly review multivariate tail coefficients proposed in the literature
and elaborate on their behavior with respect to the desirable properties (T1)–(T5). For brevity of
presentation, we refer to (T4) or its variant (T′4) as the “addition property”. To simplify the notation,
the subscript d of td, denoting the dimension, will sometimes be omitted in the text, the dimension
being clear from an argument of a functional t.

3.1. Frahm’s Extremal Dependence Coefficient

Frahm (see [3]) considered lower and upper extremal dependence coefficients εL, εU , respectively,
defined as

εL(Cd) = lim
u↘0

P(Umax ≤ u|Umin ≤ u) = lim
u↘0

P(Umax ≤ u)
P(Umin ≤ u)

= lim
u↘0

Cd(u1)
1− Cd(u1)

,

εU(Cd) = lim
u↗1

P(Umin > u|Umax > u) = lim
u↗1

P(Umin > u)
P(Umax > u)

= lim
u↗1

Cd(u1)
1− Cd(u1)

,
(7)

given the limits exist, where Umax = max(U1, . . . , Ud) and Umin = min(U1, . . . , Ud). These coefficients
are not equal to λL, λU , respectively, in the bivariate case. More specifically, for any copula C2 (see [3])

εL(C2) =
λL(C2)

2− λL(C2)
, εU(C2) =

λU(C2)

2− λU(C2)
.

Thus, we can consider it more as a different type of tail dependence coefficient than a generalization of
bivariate tail coefficients.
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For extreme-value copulas, extremal dependence coefficients can be stated in terms of Pickands
dependence function. Let Cd be an extreme-value copula with Pickands dependence function Ad and

denote the Pickands dependence function of the marginal copula C
(k1,...,kj)

j as A
(k1,...,kj)

j . Subsequently,

Cd(t, . . . , t) = exp
{

d log(t)Ad (1/d, . . . , 1/d)
}
= tdAd(1/d,...,1/d)

Cd(t, . . . , t) = 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

tjA
(k1,...,kj)

j (1/j,...,1/j) (8)

= 1 +
d

∑
j=1

(−1)j ∑
1≤k1<···<kj≤d

tjAd(w1,...,wd), (9)

where w` = 1/j if ` ∈ {k1, . . . , k j} and w` = 0 otherwise. As opposed to (8), expression (9) only
involves the overall d-dimensional Pickands dependence function. This might be helpful, for example,
during estimation, since not all of the lower-dimensional Pickands dependence functions in (8) need
to be estimated.

Thus, for the lower extremal dependence coefficient, one obtains

εL(Cd) = lim
t↘0

tdAd(1/d,...,1/d)

−
d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d tjA

(k1,...,kj)

j (1/j,...,1/j)
=

1 if Ad (1/d, . . . , 1/d) = 1/d,

0 otherwise
(10)

because the polynomial (in t) in the denominator contains lower-degree terms than the polynomial in
the numerator. We can see that this behavior resembles λL for bivariate extreme-value copulas, since
the only extreme-value copula possessing lower tail dependence is the comonotonicity copula.

For the upper extremal dependence coefficient, we can calculate

εU(Cd) = lim
t↗1

1 +
d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d tjA

(k1,...,kj)

j (1/j,...,1/j)

1− tdAd(1/d,...,1/d)

= lim
t↗1

d
∑

j=1
(−1)j ∑1≤k1<···<kj≤d jA

(k1,...,kj)

j
(
1/j, . . . , 1/j

)
tjA

(k1,...,kj)

j (1/j,...,1/j)−1

−dAd (1/d, . . . , 1/d) tdAd(1/d,...,1/d)−1

=

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d jA

(k1,...,kj)

j
(
1/j, . . . , 1/j

)
dAd (1/d, . . . , 1/d)

=

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d jAd(w1, . . . , wd)

dAd (1/d, . . . , 1/d)
, (11)

where, as above, w` = 1/j if ` ∈ {k1, . . . , k j} and w` = 0 otherwise.
We next look into the tail coefficients (7) for Archimedean copulas. Let {Cd}d≥2 be a sequence of

d-dimensional Archimedean copulas with (the same) generator ψ. Subsequently,

Cd(u, . . . , u) = ψ(dψ−1(u)),

Cd(u, . . . , u) = 1 +
d

∑
j=1

(−1)j
(

d
j

)
ψ(jψ−1(u)).
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The corresponding derivatives, if they exist, are

C′d(u, . . . , u) = ψ′(dψ−1(u))d(ψ−1)′(u),

C′d(u, . . . , u) =
d

∑
j=1

(−1)j
(

d
j

)
ψ′(jψ−1(u))j(ψ−1)′(u).

Afterwards, the extremal dependence coefficients can be expressed as

εL(Cd) = lim
u↘0

Cd(u1)
1− Cd(u1)

= lim
u↘0

ψ(dψ−1(u))

∑d
j=1(−1)j+1(d

j)ψ(jψ−1(u))

= lim
u↘0

ψ′(dψ−1(u))d

∑d
j=1(−1)j+1(d

j)ψ
′(jψ−1(u))j

, (12)

εU(Cd) = lim
u↗1

Cd(u1)
1− Cd(u1)

= lim
u↗1

1 + ∑d
j=1(−1)j(d

j)ψ(jψ−1(u))

1− ψ(dψ−1(u))

= lim
u↗1

∑d
j=1(−1)j(d

j)ψ
′(jψ−1(u))j

−ψ′(dψ−1(u))d

= lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
, (13)

where we used L’Hospital’s rule to get to the equation in (12), and the second equation in the derivation
towards (13). Recall that ψ−1(1) = 0 and ψ−1(0) = inf{u : ψ(u) = 0}. One can see that using
L’Hospital’s rule does not solve the 0/0 limit problem for general ψ and knowledge of the precise
behavior of ψ is thus crucial for calculating the coefficients εL(Cd) and εU(Cd).

As will be illustrated in Section 6, Archimedean copulas can have both extremal dependence
coefficients non-zero, depending on the generator. For εU , one additional assumption regarding a
generator ψ may become useful. Because (from the definition of the generator) limu↗1 ψ−1(u) = 0, if
the additional condition ψ′(0+) > −∞ is fulfilled, we get

εU(Cd) =
∑d

j=1(−1)j(d
j)ψ
′(0+)j

−ψ′(0+)d
=

d

∑
j=1

(−1)j
(

d− 1
j− 1

)
= 0,

using that from Lemma 1 ψ′(0+) cannot be equal to zero. In other words, if ψ′(0+) > −∞, then the
corresponding Archimedean copula is upper tail independent, for every dimension.

Next, we investigate which of the desirable properties (T1)–(T5) are satisfied for Frahm’s extremal
dependence coefficients εL and εU .

Proposition 2. Frahm’s extremal dependence coefficients εL and εU satisfy normalization property (T1),
permutation invariance property (T3), and addition property (T′4), with kd(εL) = kd(εU) = 0 for every d ≥ 2,
and (T5).

Proof. Normalization property (T1) follows from straightforward calculations

εL(Md) = lim
u↘0

u
1− (1− u)

= 1,

εL(Πd) = lim
u↘0

ud

1− (1− u)d = 0,

εU(Md) = lim
u↗1

1− u
1− u

= 1,

εU(Πd) = lim
u↗1

(1− u)d

1− ud = 0.

Permutation invariance property (T3) follows immediately from the fact that the coefficients only
depend on Umax and Umin, which do not depend on the order of components of the random vector.
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Look now into the addition of an independent component, i.e., property (T′4). To be able to
distinguish between the dimensions, we use the notation Umax,d = max(U1, . . . , Ud) and Umin,d =

min(U1, . . . , Ud). For Xd+1 independent of (X1, . . . , Xd), we have P(Umin,d+1 ≤ u) ≥ P(Umin,d ≤ u)
and P(Umax,d+1 > u) ≥ P(Umax,d > u) for every u ∈ [0, 1]. Further, P(Umax,d+1 ≤ u) = P(Umax,d ≤
u, Ud+1 ≤ u) = u P(Umax,d ≤ u) and similarly P(Umin,d+1 > u) = P(Umin,d > u, Ud+1 > u) =

(1− u)P(Umin,d > u). Thus,

εL(Cd+1) = lim
u↘0

P(Umax,d+1 ≤ u)
P(Umin,d+1 ≤ u)

≤ lim
u↘0

u P(Umax,d ≤ u)
P(Umin,d ≤ u)

= 0 · εL(Cd) = 0,

εU(Cd+1) = lim
u↗1

P(Umin,d+1 > u)
P(Umax,d+1 > u)

≤ lim
u↗1

(1− u)P(Umin,d > u)
P(Umax,d > u)

= 0 · εU(Cd) = 0,

which means that the property about adding an independent component (T′4) holds with constants
kd(εL) = kd(εU) = 0 for every d ≥ 2.

We next look into duality (T5). Using relation (1) between the survival function and the survival
copula, coefficients εL and εU can be rewritten as

εL(Cd) = lim
u↘0

C(u1)
1− C(u1)

= lim
u↘0

C(u1)
1− CS(1− u1)

,

εU(Cd) = lim
u↗1

C(u1)
1− C(u1)

= lim
u↗1

CS(1− u1)
1− C(u1)

and thus

εL(CS
d ) = lim

u↘0

CS(u1)
1− C(1− u1)

= lim
v↗1

CS(1− v1)
1− C(v1)

= εU(Cd),

where substitution v = 1− u was used. This proves the validity of duality property (T5).

We suspect that the continuity property (T2) does not hold in its full generality for most
multivariate tail coefficients. To obtain insight into this, consider the following example with a
sequence of copulas {Cd,m} given by

Cd,m(u) = Md(u)1
{

min{u1, . . . , ud} ≤ 1
m

}
+

(
1
m

+
Πd(u− 1

m 1)

(1− 1
m )d−1

)
1

{
min{u1, . . . , ud} > 1

m

}
.

Note that the distribution that is given by Cd,m is uniform on the set [ 1
m , 1]d and it corresponds to the

upper Fréchet’s bound Md otherwise. Note that Cd,m is a copula with an ordinal sum representation,
see [8] (Section 3.2.2).

It is easily seen that Cd,m → Πd as m→ ∞ uniformly on [0, 1]d. Note that εL(Cd,m) = 1 for each
m ∈ N. On the other hand, εL(Πd) = 0. Hence, for this sequence of copulas, the continuity property
(T2) does not hold.

However, a continuity property may hold, in general, under more specific conditions on the
copula sequences. One such condition is that of a sequence of contaminated copulas, defined as follows.

Let Cd and Bd,m, for m = 1, . . . be d-variate copulas, and let εm be a sequence of numbers in [0, 1].
One considers the sequence of contaminated copulas

Cd,m = (1− εm)Cd + εmBd,m. (14)

Note that Cd,m is a convex combination of the copulas Cd and Bd,m and, hence, is also a copula, see
e.g., [8]. The interest is to investigate the behavior of a tail coefficient for the sequence Cd,m when
εm → 0, as m→ ∞.
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Proposition 3 establishes a continuity property for Frahm’s extremal dependence coefficient.

Proposition 3. Suppose that, for any d-variate copulas Cd and Cd,m, m = 1, 2, . . . , there exist ε > 0, such that

Cd,m(u1)
1− Cd,m(u1)

→ Cd(u1)
1− Cd(u1)

uniformly on (0, ε), as m→ ∞. (15)

Further assume that εL(Cd,m) exists for every m = 1, 2, . . . . Subsequently, εL(Cd,m)→ εL(Cd) as m→ ∞.
In particular, condition (15) is satisfied for a sequence of contaminated copulas, as in (14), for which εm → 0, as
m→ ∞, and provided εL(Cd) exists.

Proof. Assumption (15) allows for us to use the Moore–Osgood theorem to interchange the limits
and, thus

lim
m→∞

εL(Cd,m) = lim
m→∞

lim
u↘0

Cd,m(u1)
1− Cd,m(u1)

= lim
u↘0

lim
m→∞

Cd,m(u1)
1− Cd,m(u1)

= εL(Cd).

Suppose now that we have a sequence of contaminated copulas, for which εm → 0, as m → ∞.
Subsequently, one calculates

Cd,m(u1)
1− Cd,m(u1)

− Cd(u1)
1− Cd(u1)

=
Cd,m(u1)− Cd(u1)

1− Cd,m(u1)
+

Cd(u1)
1− Cd,m(u1)

− Cd(u1)
1− Cd(u1)

=
εm(Bd,m(u1)− Cd(u1))

1− Cd,m(u1)
+

Cd(u1)εm(Bd,m(u1)− Cd(u1))
(1− Cd,m(u1))(1− Cd(u1))

. (16)

One next realizes that max{Bd,m(u1), Cd(u1)} ≤ u and min{1 − Cd,m(u1), 1 − Cd(u1)} ≥ u.
Furthermore, with the help of Formula (2) for the survival function of a copula one gets Bd,m(u1)−
Cd(u1) = O(u). Thus, one can bound∣∣∣∣∣ Cd,m(u1)

1− Cd,m(u1)
− Cd(u1)

1− Cd(u1)

∣∣∣∣∣ ≤ εm u
u

+
u εm O(u)

u2 = εm O(1),

which implies (15).

Analogously, a similar result could be stated for εU .

3.2. Li’s Tail Dependence Parameter

Suppose that ∅ 6= Ih ⊂ {1, . . . , d} is a subset of indices, such that |Ih| = h and Jd−h = {1, . . . , d}\Ih.
Subsequently, Li [4] (Def. 1.2) defines so-called lower and upper tail dependence parameters, as follows

λ
Ih |Jd−h
L (Cd) = lim

u↘0
P(Ui ≤ u, ∀i ∈ Ih|Uj ≤ u, ∀j ∈ Jd−h),

λ
Ih |Jd−h
U (Cd) = lim

u↗1
P(Ui > u, ∀i ∈ Ih|Uj > u, ∀j ∈ Jd−h),

given the expressions exist. It is evident that these coefficients heavily depend on the choice of the
set Ih. Additionally, this generalization includes the usual bivariate tail dependence coefficients λL
and λU , by letting h = 1, I1 = {1} and J1 = {2} or the other way around. Li [4] further states that

λ
Ih |Jd−h
L (Cd) = λ

Ih |Jd−h
U (CS

d ) and, therefore, duality property (T5) is fulfilled.
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One can also notice that, for exchangeable copulas (i.e., symmetric in their arguments), the
dependence parameters are in fact functions of cardinality h rather than particular contents of Ih.
Especially in this case, it is worth introducing another notation being

λ
1,...,h|h+1,...,d
L (Cd) = lim

u↘0
P(U1 ≤ u, . . . , Uh ≤ u|Uh+1 ≤ u, . . . Ud ≤ u),

λ
1,...,h|h+1,...,d
U (Cd) = lim

u↗1
P(U1 > u, . . . , Uh > u|Uh+1 > u, . . . Ud > u).

In paper [15], it is shown that these coefficients can be rewritten while using one-sided derivatives
of the diagonal section δCd(u) = Cd(u, . . . , u) of the corresponding copula in the following way:

λ
1,...,h|h+1,...,d
L (Cd) =

δ′Cd
(0+)

δ′
(h+1)...d(0

+)

λ
1,...,h|h+1,...,d
U (Cd) =

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d δ′k1 ...kj

(1−)

∑d−h
j=1 (−1)j+1 ∑h+1≤k1<···<kj≤d δ′k1 ...kj

(1−)

where δk1 ...kj
denotes the diagonal section of copula C

(k1,...,kj)

j .
Additionally, the authors in [15] comment on the connection with Frahm’s extremal dependence

coefficients εL and εU , which can be expressed as

εL(Cd) =
δ′Cd

(0+)

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d δ′k1 ...kj

(0+)

=
λ

1,...,(d−1)|d
L (Cd)

∑d
j=1(−1)j+1 ∑1≤k1<···<kj≤d λ

1,...,j−1|j
L (C

(k1,...,kj)

j )
,

εU(Cd) =
λ

1,...,(d−1)|d
U (Cd)

δ′Cd
(1−)

if all of the above quantities exist.
De Luca and Rivieccio [6] (Def. 2) also use this way to measure tail dependence, although they

consider it as a measure for Archimedean copulas only since we can express the measures while using
the generator, as

λ
1,...,h|h+1,...,d
L = lim

u↘0

Cd(u, . . . , u)

C(h+1,...,d)
d−h (u, . . . , u)

= lim
u↘0

ψ(dψ−1(u))
ψ((d− h)ψ−1(u))

= lim
u↘0

dψ′(dψ−1(u))
(d− h)ψ′((d− h)ψ−1(u))

, (17)

λ
1,...,h|h+1,...,d
U = lim

u↗1

Cd(u, . . . , u)

C(h+1,...,d)
d−h (u, . . . , u)

= lim
u↗1

1 + ∑d
j=1(−1)j(d

j)ψ(jψ−1(u))

1 + ∑d−h
j=1 (−1)j(d−h

j )ψ(jψ−1(u))

= lim
u↗1

∑d
j=1(−1)j(d

j)ψ
′(jψ−1(u))j

∑d−h
j=1 (−1)j(d−h

j )ψ′(jψ−1(u))j
, (18)
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where we applied l’Hospital’s rule for obtaining the equation in (17) and (18). In contrast to the
Frahm’s coefficient, here the additional condition that ψ′(0+) > −∞ is not helpful, since it leads to

λ
1,...,h|h+1,...,d
U =

∑d
j=1(−1)j(d

j)ψ
′(0+)j

∑d−h
j=1 (−1)j(d−h

j )ψ′(0+)j
=

∑d
j=1(−1)j(d

j)j

∑d−h
j=1 (−1)j(d−h

j )j

and numerator and denominator are both equal to zero here.

Proposition 4. Li’s tail dependence parameters λ
Ih |Jd−h
L and λ

Ih |Jd−h
U satisfy normalization property (T1),

addition property (T4), and duality property (T5).

Proof. Duality property (T5) was shown in [4]. Normalization property (T1) follows from
straightforward calculations while using (17) and (18)

λ
Ih |Jd−h
L (Md) = lim

u↘0

u
u
= 1, λ

Ih |Jd−h
L (Πd) = lim

u↘0

ud

ud−h = 0.

For λ
Ih |Jd−h
U , it follows from duality property (T5).
We now check property (T4), the addition of an independent random component. Suppose that

the added independent component belongs to the set Ih+1. Subsequently,

λ
Ih+1|Jd−h
L (Cd+1) = lim

u↘0

Cd(u1)u

C Jd−h
d−h (u1)

= 0 · λIh |Jd−h
L (Cd) = 0.

If the added independent component belongs to the set Jd−h+1, then from the definition of
the coefficient

λ
Ih |Jd−h+1
L (Cd+1) = lim

u↘0

Cd(u1)u

C Jd−h
d−h (u1)u

= λ
Ih |Jd−h
L (Cd).

Showing the duality property for λ
Ih |Jd−h
U is analogous.

The proof of Proposition 4 shows that, in fact, property (T′4) is fulfilled if one distinguishes two
cases. If the added independent component belongs to the set Ih+1, then (T′4) holds with kd(λL) =

kd(λU) = 0 for every d ≥ 2. However, if the added independent component belongs to the set Jd−h+1,
then kd(λL) = kd(λU) = 1 for every d ≥ 2.

Permutation invariance (T3) does not hold in general. However, if one would restrict to only
permutations that permute indices within Ih and within Jd−h and not across these two sets, λL and λU
would be invariant with respect to such permutations. Further, we might consider the special case
when h = d− 1, which is if we condition only on one variable. Subsequently, for any permutation π

λ
Id−1|J1
L (Cπ

d ) = lim
u↘0

Cπ
d (u1)

u
= lim

u↘0

Cd(u1)
u

= λ
Id−1|J1
L (Cd) (19)

and analogously for λU , we have λ
Id−1|J1
U (Cπ

d ) = λ
Id−1|J1
U (Cd).

A continuity property can be shown under a specific condition on the copula sequence as is
established in Proposition 5.

Proposition 5. Suppose that, for any d-variate copulas Cd and Cd,m, m = 1, 2, . . . , there exist ε > 0, such that

Cd,m(u1)

C Jd−h
d−h,m(u1)

→ Cd(u1)

C Jd−h
d−h (u1)

uniformly on (0, ε), as m→ ∞. (20)
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Further assume that λ
Ih |Jd−h
L (Cd,m) exists for every m = 1, 2, . . . , as well as λ

Ih |Jd−h
L (Cd). Subsequently,

λ
Ih |Jd−h
L (Cd,m)→ λ

Ih |Jd−h
L (Cd) as m→ ∞.

In particular, condition (20) holds for a sequence of contaminated copulas, see (14), for which εm → 0,
as m→ ∞, and

lim sup
m→∞

sup
u∈(0,ε)

BJd−h
d−h,m(u1)

C Jd−h
d−h (u1)

< ∞, (21)

and λ
Ih |Jd−h
L (Cd) exists.

Proof. The first part of Proposition 5 is proven along the same lines as the proof of Proposition 3 and
hence omitted here.

Consider now a sequence of contaminated copulas satisfying in addition (21). We need to show
that (20) holds. To see this, note that, similarly as in (16), one gets

Cd,m(u1)

C Jd−h
d−h,m(u1)

− Cd(u1)

C Jd−h
d−h (u1)

=
εm(Bd,m(u1)− Cd(u1))

C Jd−h
d−h,m(u1)

+
Cd(u1)εm(BJd−h

d−h,m(u1)− C Jd−h
d−h (u1))

C Jd−h
d−h,m(u1)C Jd−h

d−h (u1)
. (22)

Further note that, for all sufficiently large m for all u ∈ (0, ε)

C Jd−h
d−h (u1)

C Jd−h
d,m (u1)

≤
C Jd−h

d−h (u1)

(1− εm)C
Jd−h
d−h (u1)

≤ 2. (23)

Combining (21), (22) and (23) now yields that (for all sufficiently large m)∣∣∣∣∣ Cd,m(u1)

C Jd−h
d−h,m(u1)

− Cd(u1)

C Jd−h
d−h (u1)

∣∣∣∣∣ ≤ εmBd,m(u1)

C Jd−h
d−h,m(u1)

+
εm Cd(u1)

C Jd−h
d−h,m(u1)

+
εm Cd(u1)BJd−h

d−h,m(u1)

C Jd−h
d−h,m(u1)C Jd−h

d−h (u1)
+

εm Cd(u1)

C Jd−h
d−h,m(u1)

≤
2 εmBd,m(u1)

C Jd−h
d−h (u1)

+
2 εm Cd(u1)

C Jd−h
d−h (u1)

+
2 εm Cd(u1)BJd−h

d−h,m(u1)

C Jd−h
d−h (u1)C Jd−h

d−h (u1)
+

2 εm Cd(u1)

C Jd−h
d−h (u1)

= εm O(1),

where the O(1)-term does not depend on u. Thus, one can conclude that condition (20) of Proposition 5
is satisfied.

An analogous result as the one stated in Proposition 5 can be stated for λU .

3.3. Schmid’s and Schmidt’s Tail Dependence Measure

Schmid and Schmidt (see [5] (Sec. 3.3)) considered a generalization of tail coefficients based on a
multivariate conditional version of Spearman’s rho, which is defined as

ρ(Cd, g) =

∫
[0,1]d Cd(u)g(u)du−

∫
[0,1]d Πd(u)g(u)du∫

[0,1]d Md(u)g(u)du−
∫
[0,1]d Πd(u)g(u)du

for some non-negative measurable function g provided that the integrals exist. The choice g(u) =
1(u ∈ [0, p]d) leads to

ρ1(Cd, p) =

∫
[0,p]d Cd(u)du−

∫
[0,p]d Πd(u)du∫

[0,p]d Md(u)du−
∫
[0,p]d Πd(u)du
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and the multivariate tail dependence measure is defined as

λL,S(Cd) = lim
p↘0

ρ1(Cd, p) = lim
p↘0

d + 1
pd+1

∫
[0,p]d

Cd(u)du, (24)

provided the existence of the limit. Similarly, they define

λU,S(Cd) = lim
p↘0

∫
[1−p,1]d Cd(u)du−

∫
[1−p,1]d Πd(u)du∫

[1−p,1]d Md(u)du−
∫
[1−p,1]d Πd(u)du

. (25)

Additionally, these coefficients are not equal to λL, λU , respectively, in the bivariate case, so we can
consider it more as a different type of tail dependence coefficient rather than a generalization.

Proposition 6. Schmid’s and Schmidt’s tail dependence measure λL,S satisfies normalization property (T1),
permutation invariance property (T3), and addition property (T′4), with kd(λL,S) = 0 for every d ≥ 2.

Proof. Normalization property (T1) and permutation invariance (T3) follow from the normalization
property and permutation invariance of Spearman’s rho, see, for example [16]. When adding an
independent component, one gets

λL,S(Cd+1) = lim
p↘0

d + 2
pd+2

∫
[0,p]d+1

Cd(u)u du = lim
p↘0

p(d + 2)
2(d + 1)

d + 1
pd+1

∫
[0,p]d

Cd(u)du = 0.

This finishes the proof.

In order for duality property (T5) to hold, the upper version should rather be defined as

λ∗U,S(Cd) = lim
p↘0

d + 1
pd+1

∫
[0,p]d

CS
d (u)du. (26)

This seems to be more logical, since λU,S(Cd) can only be expressed, after substituting

∫
[1−p,1]d

Πd(u)du =

[
p(2− p)

2

]d

and
∫
[1−p,1]d

Md(u)du = pd − d
d + 1

pd+1 (27)

into (25), as

λU,S(Cd) = lim
p↘0

∫
[1−p,1]d Cd(u)du−

[
p(2−p)

2

]d

pd − d
d+1 pd+1 −

[
p(2−p)

2

]d

which cannot be further simplified. It is easy to show that in the bivariate case (i.e., d = 2) the
coefficients λU,S(Cd) and λ∗U,S(Cd) coincide. For a general dimension d > 2 however they can differ.

The continuity property (T2) cannot be shown in full generality, but a continuity property is
fulfilled in the special case of a sequence of contaminated copulas, as in (14).

Proposition 7. Consider a sequence of contaminated copulas, Cd,m = (1 − εm)Cd + εmBd,m, such that
εm → 0, as m→ ∞, and λL,S(Cd) exists. Afterwards, as m→ ∞,

λL,S(Cd,m)→ λL,S(Cd).
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Proof. Direct calculation gives

lim
m→∞

λL,S(Cd,m) = lim
m→∞

[
(1− εm)λL,S(Cd) + εmλL,S(Bd,m)

]
= λL,S(Cd)

since λL,S(Bd,m) is bounded.

3.4. Tail Dependence of Extreme-Value Copulas

As stated in (6), bivariate tail coefficients for extreme-value copulas can be simply expressed using
the corresponding Pickands dependence function. Thus tail dependence is fully determined by the
Pickands dependence function A2 in the point (1/2, 1/2). The range of values for A2 is limited by
max(w1, w2) ≤ A2(w1, w2) ≤ 1, which also gives us 1/2 ≤ A2(1/2, 1/2) ≤ 1 where the bivariate tail
coefficient λU gets larger when A2(1/2, 1/2) is closer to 1/2. On the other hand, A2(1/2, 1/2) = 1
means tail independence. Following this idea and given that also for the d-dimensional Pickands
dependence function Ad associated to a copula Cd we have 1/d ≤ Ad(1/d, . . . , 1/d) ≤ 1, a measure
of tail dependence for d-dimensional extreme-value copulas could be based on the difference 1−
Ad(1/d, . . . , 1/d). After proper standardization, this leads to

λU,E(Cd) =
d

d− 1
(1− Ad(1/d, . . . , 1/d)). (28)

Note that such a coefficient is equal to a translation of the extremal coefficient given in [17] or [7]
and defined as θE = d · Ad(1/d, . . . , 1/d). This coefficient θE was termed extremal coefficient in [17].
Schlather and Town (see [18]) give a simple interpretation of θE, related to the amount of independent
variables that are involved in the corresponding d-variate random vector.

Proposition 8. The multivariate tail dependence coefficient λU,E in (28) satisfies normalization property
(T1), continuity property (T2), permutation invariance property (T3), and addition property (T′4), with
kd(λU,E) =

d−1
d for every d ≥ 2.

Proof. Normalization (T1) and permutation invariance (T3) follow immediately from the definition of
λU,E. If limm→∞ Cd,m(u) = Cd(u), ∀u ∈ [0, 1]d, and then also limm→∞ Ad,m(w) = Ad(w), ∀w ∈ ∆d−1,
which proves the validity of (T2). For Xd+1 independent of (X1, . . . , Xd), we can use Example 1
and obtain

λU,E(Cd+1) =
d + 1

d

(
1− Ad+1

(
1

d + 1
, . . . ,

1
d + 1

))
=

d + 1
d

1− 1
d + 1

(
dAd

(
1
d

, . . . ,
1
d

)
+ 1

)
= 1− Ad

(
1
d

, . . . ,
1
d

)
=

d− 1
d

λU,E(Cd).

Remark 1. The duality property (T5) is not applicable, since the survival copula of an extreme-value copula
does not have to be an extreme-value copula.

3.5. Tail Dependence Using Subvectors

A common element of the multivariate tail dependence measures discussed in Sections 3.1–3.3
is that they focus on extremal behavior of all d components of a random vector X. However, one
could also be interested in knowing whether there is any kind of tail dependence present in the vector,
which is even for subvectors of X. An interesting observation to be made is for tail dependence
measures that satisfy property (T′4) with kd = 0 for every d ≥ 2. Assume that X and Y are independent
random variables. Then any tail measure t2(C2) would be zero for the random couple (X, Y) and no
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matter which random component we add the tail measure for the extended random vector would
stay 0. In other words, for any such tail dependence measure, this leads to tail independence of the
d-dimensional random vector (X, . . . , X, Y)>, no matter what d is. Considering tail dependence of
subvectors would be of particular interest in this case.

Suppose that we have a multivariate tail coefficient µL,d that can be calculated for general
dimension d ≥ 2. Suppose further that this coefficient only depends on the strength of tail dependence
when all of the components of a random vector are simultaneously large or small. This is the case for
all multivariate tail coefficients mentioned in Sections 3.1–3.3. Subsequently, we can introduce a tail
coefficient given by

µL(Cd) =
d

∑
j=2

wd,j ∑
1≤`1<···<`j≤d

µL,j(C
(`1,...,`j))

=
d

∑
j=2

w̃d,j
1

(d
j)

∑
1≤`1<···<`j≤d

µL,j(C
(`1,...,`j)) (29)

where 1
(d

j)
∑

1≤`1<···<`j≤d
µL,j(C

(`1,...,`j)) can be interpreted as an average tail dependence measure per

dimension, and where w̃d,j = wd,j(
d
j). This measure deals with a disadvantage of current multivariate

tail coefficients that assign a value of 0 to the copulas, where d− 1 components are highly dependent in
their tail, and the d-th component is independent. When dealing with possible stock losses, for example,
this situation should be also captured by a tail coefficient.

Recall that the weight w̃d,j corresponds to an importance given to the average tail dependence
within all the j-dimensional subvectors of X. Because tail dependence in a higher dimension is more
severe, as more extremes occur simultaneously, it is natural to assume w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d.
However, such an assumption excludes other approaches to measure tail dependence. For example,
setting w̃d,2 = 1 and w̃d,j = 0 for j = 3, . . . , d would lead to the construction of a tail dependence
measure as the average of all pairwise measures. If the underlying bivariate measure satisfies (T1), (T2),
(T3), and (T5) with d = 2 only, these properties are carried over to the pairwise measure. Additionally,
(T′4) can be shown similarly as in Proposition 1 in [16]. Despite possibly fulfilling the desirable
properties, all of the higher dimensional dependencies are ignored, being a clear drawback of such a
pairwise approach. In the sequel, we focus on the setting that w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d.

Proposition 9. Suppose that the tail dependence measures µL,j satisfy normalization property (T1), continuity
property (T2), permutation invariance property (T3), and duality property (T5), for j = 2, . . . , d. Further

assume that
d
∑

j=2
w̃d,j = 1. Subsequently, the coefficient µL in (29) also satisfies properties (T1), (T2), (T3),

and (T5).

Proof. Clearly µL(Πd) = 0 and µL(Md) =
d
∑

j=2
w̃d,j = 1. The continuity, permutation invariance,

and duality properties follow from the continuity, permutation invariance, and duality properties
of µL,j.

What happens in case of the addition of an independent component (property (T4)) is not so
straightforward, since the weights differ depending on the overall dimension d. The addition of an
independent component increases dimension and, thus, possibly changes all of the weights. However,
one could try to come up with a weighting scheme that guarantees fulfilment of property (T4).
Consider Xd+1 independent of (X1, . . . , Xd)

>. Suppose that the input tail dependence measures µL,j
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satisfy property (T′4), with k j = k j(µL,j) for j = 2, . . . , d. First, we express µL for the random vector
(X1, . . . , Xd+1)

>, as

µL(Cd+1) =
d+1

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤`1<···<`j≤d+1

µL,j(C
(`1,...,`j)

j )

=
d

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤`1<···<`j≤d

µL,j(C
(`1,...,`j)

j )

+
d+1

∑
j=2

w̃d+1,j
1

(d+1
j )

∑
1≤`1<···<`j−1≤d

µL,j(C
(`1,...,`j−1,d+1)
j ). (30)

Now using property (T′4) in (30) together with the fact that for index j = 2, the corresponding summand
is µL,2(Π2) = 0 and, thus, this index can be omitted, one obtains

µL(Cd+1) =
d

∑
j=2

w̃d+1,j
d + 1− j

d + 1
1

(d
j)

∑
1≤`1<···<`j≤d

µL,j(C
(`1,...,`j)

j )

+
d+1

∑
j=3

w̃d+1,j
k j−1

(d+1
j )

∑
1≤`1<···<`j−1≤d

µL,j−1(C
(`1,...,`j−1)

j−1 )

=
d

∑
j=2

(
w̃d+1,j

d + 1− j
d + 1

+ w̃d+1,j+1k j
j + 1
d + 1

)
1

(d
j)

∑
1≤`1<···<`j≤d

µL,j(C
(`1,...,`j)

j )

which is equal to µL(Cd) with weights given as

w̃d,j = w̃d+1,j
d + 1− j

d + 1
+ w̃d+1,j+1k j

j + 1
d + 1

for every j = 2, . . . , d. A sufficient criterion for fulfillment of property (T4) would thus be to have

w̃d,j ≥ w̃d+1,j
d + 1− j

d + 1
+ w̃d+1,j+1k j

j + 1
d + 1

(31)

for every j = 2, . . . , d. Knowing the values k j, w̃d,j, w̃d+1,j, for j = 2, . . . , d, and w̃d+1,d+1, one can
check (31).

One rather general method of weight selection can then be as follows. Suppose that one wants to
achieve that proportions of weights wd,d1 and wd,d2 corresponding to two subdimensions d1 and d2 do
not depend on the overall dimension d. This can be achieved by setting recursively wd+1,j = rd+1wd,j

for j = 2, . . . , d and wd+1,d+1 = 1−∑d
j=2 wd+1,j = 1− rd+1. The initial condition is obviously given as

w2,2 = 1. To obtain w̃d,2 ≤ w̃d,3 ≤ · · · ≤ w̃d,d, one needs that rd ∈ [0, 1/2] for every d = 3, . . . . Values
of rd closer to 0 give more weight to the d-th dimension, values close to 1/2 limit its influence. If we
further assume that rd = r, which is rd does not depend on d, this further simplifies to

wd,j = rd−j(1− r)1{j>2}

for d = 2, . . . and j = 2, . . . , d. We next check the condition in (31) for this particular weight selection.
Condition (31) can be rewritten as

1 ≥ r
d + 1− j

d + 1
+ k j

j + 1
d + 1

, for every j = 2, . . . , d. (32)
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If k j = 1 for every j as in one case of Li’s tail dependence parameter, condition (32) allows for only one
selection of r, which is r = 0. On the other hand, if k j = 0 for every j, r can take any values in [0, 1/2].
Looking from the other perspective, if r = 1/2, then condition (32) is satisfied if

k j ≤
d + 1/2

d + 1
, for every j = 2, . . . , d.

Let us recall that these conditions can only be seen as sufficient, not necessary. A precise study of what
happens when an independent component is added requires knowledge of the weighting scheme and
knowledge of the underlying input tail dependence measure.

In summary, the above discussion reveals that a measure that is able to detect tail dependence
not only in a random vector as a whole, but also in lower-dimensional subvectors, can be constructed.
A simple and interpretable weighting scheme proposed above can be used, such that several desirable
properties of the tail dependence measure are guaranteed.

3.6. Overview of Multivariate Tail Coefficients and Properties

For convenience of the reader, we list in Table 1 all of the discussed tail dependence measures,
with reference to their section number, and indicate which properties they satisfy.

Table 1. Overview of multivariate tail coefficients and their properties.

Tail Coefficient Section Properties

Frahm’s extremal dependence coefficient Section 3.1 (T1), (T3), (T′4), (T5)
εL(Cd) , εU(Cd) + continuity property

Li’s tail dependence parameter Section 3.2 (T1), (T4), (T5)

λ
Ih |Jd−h
L (Cd), λ

Ih |Jd−h
U (Cd) + continuity property

(T3) (restricted sense)

Schmid’s and Schmidt’s tail dependence measure Section 3.3 (T1), (T3), (T′4)
λL,S(Cd), λU,S(Cd) + continuity property

our proposal: λ∗U,S(Cd) Section 3.3 (T1), (T3), (T′4), (T5)

+ continuity property

Tail dependence of extreme-value copulas Section 3.4 (T1), (T2), (T3), (T′4)
λU,E(Cd)

Tail dependence using subvectors Section 3.5 (T1), (T2), (T3), (T5)
µL(Cd), µU(Cd) (T4) (under extra conditions on the weights)

4. Multivariate Tail Coefficients: Further Properties

In Section 3, the focus was on properties (T1)–(T5). In this section, we aim at exploring some
further properties that might be of special interest. We, in particular, investigate the following type
of properties. Here, td(Cd) denotes a multivariate tail coefficient for Cd ∈ Cop(d). When needed,
we specify whether it concerns a lower or upper tail coefficient, referring to them as tL,d(Cd) and
tU,d(Cd), respectively.

• Expansion property (P1).
Given is a random vector X = (X1, . . . , Xd)

> with copula Cd. One adds one random component
Xd+1 to X. Denote the copula of the expanded random vector (X>, Xd+1)

> by Cd+1. How does
td+1(Cd+1) compare to td(Cd)? Does it hold that td+1(Cd+1) ≤ td(Cd)?

• Monotonicity property (P2).
Consider two copulas Cd,1, Cd,2 ∈ Cop(d). Does the following hold?

(i) If Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of 0, then tL,d(Cd,1) ≤ tL,d(Cd,2).

(ii) If Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of 1, then tU,d(Cd,1) ≤ tU,d(Cd,2).
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• Convex combination property (P3).
Suppose that the copula Cd can be written as Cd = αCd,1 +(1− α)Cd,2 for α ∈ [0, 1], and Cd,1, Cd,2 ∈
Cop(d). What can we say about the comparison between td(Cd) and αtd(Cd,1) + (1− α)td(Cd,2)?
For extreme-value copulas, we look into geometric combinations instead.

The logic behind property (P1) comes from the perception of a tail coefficient as a probability of
extreme events of components of the random vector to happen simultaneously. Thus, when another
component is added, the probability of having extreme events cannot increase. However, there is
no such a limitation from below and adding a component can immediately lead to a decrease of the
coefficient to zero.

In the next subsections, we briefly discuss these properties for the multivariate tail coefficients
discussed in Section 3.

4.1. Expansion Property (P1)

For Frahm’s coefficient, it holds that εL(Cd+1) ≤ εL(Cd) and analogously for the upper coefficient.
This result can be found in Proposition 2 of [3].

For Li’s tail dependence parameters, we need to distinguish two cases. If we add the new
component to the set Ih, then we have

λ
Ih+1|Jd−h
L (Cd+1) = lim

u↘0

Cd+1(u1)

C Jd−h
d−h (u1)

≤ lim
u↘0

Cd(u1)

C Jd−h
d−h (u1)

= λ
Ih |Jd−h
L (Cd).

However, if the component is added to the set Jd−h, no relationship can be shown, in general. A special
situation occurs when the component Xd+1 added to the set Jd−h is just a duplicate of a component,

which is already included in Jd−h. Subsequently, obviously λ
Ih |Jd−h+1
L (Cd+1) = λ

Ih |Jd−h
L (Cd).

For Schmid’s and Schmidt’s tail dependence measures, one cannot say, in general, how the
coefficient λL,S(Cd+1) behaves when compared to λL,S(Cd). As can be seen from (24), the integral
expression decreases with increasing dimension d, but, at the same time, the normalizing constant
increases with d.

For the tail coefficient for extreme-value copulas, λU,E(Cd) it follows from Example 7 in Section 6
that the addition of another component can lead to an increase in this coefficient. See, in particular,
also Figure 5.

4.2. Monotonicity Property (P2)

Concerning the monotonicity property (P2) it is easily seen that (P2)(i) holds for Frahm’s lower
dependence coefficient εL(Cd) if we additionally assume that Cd,1(u) ≤ Cd,2(u) for u in some
neighborhood of 0. Similarly, we need to assume that Cd,1(u) ≤ Cd,2(u) for u in some neighborhood of
1 in order to show that (P2) (ii) holds.

For Li’s tail dependence parameters, property (P2) does not hold in general. This is illustrated
via the following example in case d = 4. Consider a random vector (U1, U2, U3, U4)

> with uniform
marginals and with distribution function a Clayton copula with parameter θ > 0 (see Example 6),
given by C4,1(u) = (u1 + u2 + u3 + u4 − 3)1/θ (see (39)). We denote this first copula by C4,1. Note that
the random vector (U1, U2, U3)

> has as joint distribution a three-dimensional Clayton copula with
parameter θ, which we denote by C3. The vector (U1, U2, U4)

> has the same joint distribution C3. Next,
we consider the copula of the random vector (U1, U2, U3, U3)

> that we denote by C4,2. One has that,
for all u ∈ [0, 1]4,
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C4,1(u) = P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3, U4 ≤ u4)

≤ min
(
P (U1 ≤ u1, U2 ≤ u2, U3 ≤ u3) , P (U1 ≤ u1, U2 ≤ u2, U4 ≤ u4)

)
= min

(
C3(u1, u2, u3), C3(u1, u2, u4)

)
= C3(u1, u2, min(u3, u4))

= C4,2(u).

In Example 6 we calculate Li’s lower tail dependence parameter for a d-variate Clayton copula, which

equals λ
Ih |Jd−h
L (Cd) =

(
(d− h)/d

)1/θ (see (41)). Applying this in the setting of the current example
leads to

λ
1,2|3,4
L (C4,2) = λ

1,2|3
L (C3) =

(
1
3

)1/θ
<
(

2
4

)1/θ
= λ

1,2|3,4
L (C4,1),

which thus contradicts monotonicity property (P2)(i).
From the definition of Schmid’s and Schmidt’s tail dependence measure, it is immediate that the

monotonicity property (P2) holds.
For the tail coefficient for extreme-value copulas, λU,E defined in (28) the monotonicity property

(P2) holds. To see this, recall from (3), that, for an extreme-value copula Cd,1, we can express its stable
tail dependence function as

`Cd,1(x1, . . . , xd) = − log(Cd,1(e−x1 , . . . , e−xd)), (33)

and, hence, using that Cd,1 ≤ Cd,2, it follows that `Cd,1 ≥ `Cd,2 . The same inequality holds for Pickands
dependence function Ad,1, which is a restriction of the stable tail dependence function `Cd,1 on the unit
simplex. Hence, Cd,1 ≤ Cd,2 also implies that ACd,1 ≥ ACd,2 . From the definition of the tail coefficient in
(28) it thus follows λU,E(Cd,1) ≤ λU,E(Cd,2).

4.3. Investigation of a Tail Coefficient for a Convex/Geometric Combination (Property (P3))

Consider a copula Cd that is a convex combination of two copulas Cd,1 and Cd,2, i.e., Cd =

αCd,1 + (1− α)Cd,2 for α ∈ [0, 1]. For the survival function, we then also have Cd = αCd,1 + (1− α)Cd,1.
Before stating the results for the various multivariate tail coefficients, we first make the following

observation. For α, a, b, c, d ∈ [0, 1], it is straightforward to show that

a
c
≤ αa + (1− α)b

αc + (1− α)d
≤ b

d
⇐⇒ a

c
≤ b

d
. (34)

Frahm’s lower extremal dependence coefficient for the copula Cd is given by

εL(Cd) = lim
u↘0

αCd,1(u1) + (1− α)Cd,2(u1)
α(1− Cd,1(u1)) + (1− α)(1− Cd,2(u1))

.

Using (34), it then follows that, if εL(Cd,1) ≤ εL(Cd,2), then

εL(Cd,1) ≤ εL(Cd) ≤ εL(Cd,2).

The same conclusion can be found for Frahm’s upper extremal dependence coefficient εU .
Li’s lower tail dependence parameter for Cd, a convex mixture of copulas, equals

λ
Ih |Jd−h
L (Cd) = lim

u↘0

αCd,1(u1) + (1− α)Cd,2(u1)

αC Jd−h
d−h,1(u1) + (1− α)C Jd−h

d−h,2

,
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and an application of (34) gives that, if λ
Ih |Jd−h
L (Cd,1) ≤ λ

Ih |Jd−h
L (Cd,2), then λ

Ih |Jd−h
L (Cd,1) ≤

λ
Ih |Jd−h
L (Cd) ≤ λ

Ih |Jd−h
L (Cd,2). The same conclusion can be found for Li’s upper tail dependence

parameter λ
Ih |Jd−h
U .

Schmid’s and Schmidt’s lower tail dependence measure for a convex mixture of copulas is

λL,S(Cd) = lim
p↘0

d + 1
pd+1

∫
[0,p]d

[
αCd,1(u) + (1− α)Cd,2(u)

]
du = αλL,S(Cd,1) + (1− α)λL,S(Cd,2).

For an extreme-value copula, it does not make sense to look at convex combinations of two
extreme-value copulas, since it cannot be shown, in general, that such a convex combination would
again be an extreme-value copula. A more natural way to combine two extreme-value copulas Cd,1
and Cd,2 is by means of a geometric combination, i.e., by considering Cd = Cα

d,1C1−α
d,2 , with α ∈ [0, 1].

In, for example, Falk et al. [19] (p. 123) it was shown that a convex combination of two Pickands
dependence functions is also a Pickands dependence function. Denoting by Ad,1 and Ad,2, the
Pickands dependence functions of Cd,1 and Cd,2, respectively, it then follows from (33) that the Pickands
dependence function Ad for Cd = Cα

d,1C1−α
d,2 , is given by Ad = αAd,1 + (1− α)Ad,2. From this it is seen

that Cd is again an extreme-value copula. For the tail dependence coefficient for extreme-value copulas,
it thus holds that

λU,E(Cd) =
d

d− 1
(1− αAd,1(1/d, . . . , 1/d)− (1− α)Ad,2(1/d, . . . , 1/d))

= αλU,E(Cd,1) + (1− α)λU,E(Cd,2),

i.e., the coefficient λU,E of a geometric mean of two extreme-value copulas is equal to the corresponding
convex combination of the coefficients of the concerned two copulas.

5. Tail Coefficients for Archimedean Copulas in Increasing Dimension

A natural question to examine is an influence of increasing dimension on possible multivariate
tail dependence. If one restricts to the class of Archimedean copulas, several results can be achieved,
despite that similar problems with interchanging limits occur while studying the continuity property
(T2). First, let us formulate a useful lemma that describes the behavior of the main diagonal of
Archimedean copulas when the dimension increases.

Lemma 2. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ. Then for
u ∈ [0, 1) and v ∈ (0, 1]

lim
d→∞

Cd(u, . . . , u) = 0,

lim
d→∞

Cd(v, . . . , v) = 0.

Proof. The proof is along the same lines as the proof of Proposition 9 in [16].

This lemma can be used in the following statements that focus on individual multivariate tail
coefficients. The first one to be examined is the Frahm’s extremal dependence coefficient εL.

Proposition 10. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ.
Further assume that

lim
d→∞

lim
u↘0

Cd(u1)
1− Cd(u1)

= lim
u↘0

lim
d→∞

Cd(u1)
1− Cd(u1)

.
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Then

lim
d→∞

εL(Cd) = 0.

Proof. The statement follows by the direct application of Lemma 2, since then

lim
d→∞

εL(Cd) = lim
u↘0

lim
d→∞

Cd(u1)
1− Cd(u1)

= 0.

An analogous result could be stated for εU .

Remark 2. The condition on interchanging limits is, in general, difficult to check. However, we discuss
some examples in which the condition can be checked. A first example is that of the independence copula
Cd(u) = Π(u) for which Cd(u1) = ud and Cd(u1) = (1− u)d. Henceforth, limu↘0

Cd(u1)
1−Cd(u1)

= 0 for all

u ∈ [0, 1]. Furthermore, limd→∞
Cd(u1)

1−Cd(u1)
= 0, for all u ∈ [0, 1). Consequently, in this example, the condition

of interchanging limits holds. A second example is the Gumbel–Hougaard copula also considered in Example 7
in Section 6. For this copula it can be seen that, as in the previous example, the two concerned limits (when
u→ 0 and when d→ ∞) are zero and, hence, interchanging the limits is also valid in this example.

Proposition 10 further shows that if we construct estimators (based on values of u close to 0 or close to 1) of
the limits above for Archimedean copulas in high dimensions, these will be very close to 0.

For Li’s tail dependence parameters λ
Ih |Jd−h
L and λ

Ih |Jd−h
U , the situation is further complicated by

the necessary selection of Ih and Jd−h and, in particular, of the cardinality h. However, if the cardinality
of the set Jd−h is kept constant when the dimension d increases, the following result can be achieved.

Proposition 11. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ

and let h in definition of λ
Ih |Jd−h
L be given as h(d) = d− h∗ for a constant h∗. Further assume that

lim
d→∞

lim
u↘0

Cd(u1)
Ch∗(u1)

= lim
u↘0

lim
d→∞

Cd(u1)
Ch∗(u1)

.

Subsequently

lim
d→∞

λ
Id−h∗ |Jh∗
L (Cd) = 0.

Proof. Using Lemma 2, we obtain

lim
d→∞

λ
Id−h∗ |Jh∗
L (Cd) = lim

u↘0
lim

d→∞

Cd(u1)
Ch∗(u1)

= 0,

from which the statement of this proposition follows.

An analogous statement could be formulated for λU .
What can one learn from the results in this section? Archimedean copulas may be not very

appropriate in high dimensions, because of their symmetry, but they are a convenient class of copulas
to use. It is good to be aware though that, when the dimension increases, the tail dependence

of Archimedean copulas vanishes, at least from the perspective of εL, λ
Ih |Jd−h
L and their upper

tail counterparts.
Obtaining similar results for different classes of copulas would also be of interest, for example,

for extreme-value copulas with restrictions on Pickands dependence function. However, this is
complicated by the fact that, unlike Archimedean copulas, extreme-value copulas do not share a
structure that could be carried through different dimensions. Some insights into this behavior are
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studied using the examples given in Section 6. This section includes examples on both Archimedean
and extreme-value copulas, as well as examples outside these classes.

6. Illustrative Examples

Example 4. Farlie–Gumbel–Morgenstern copula.

Let Cd be a d-dimensional Farlie–Gumbel–Morgenstern copula defined as

Cd(u) = u1u2 . . . ud

1 +
d

∑
j=2

∑
1≤k1<···<kj≤d

αk1,...,kj

(
1− uk1

)
. . .
(

1− ukj

)
,

 (35)

where the parameters have to satisfy the following 2d conditions

1 +
d

∑
j=2

∑
1≤k1<···<kj≤d

αk1,...,kj
εk1 · · · εkj

≥ 0, ∀ε1, . . . , εd ∈ {−1, 1}.

This copula is neither an Archimedean nor extreme-value copula.
We first consider Frahm’s extremal dependence coefficients εL and εU . From (35), up to a constant

Cd(u1) ≈ ud when u ≈ 0. Further, plugging (35) into (2) gives that 1 − Cd(u1) behaves like a
polynomial u− u2 + . . . when u ≈ 0. Thus,

εL(Cd) = lim
u↘0

Cd(u1)
1− Cd(u1)

= 0,

because the polynomial in the numerator converges to zero faster than the polynomial in the
denominator. Similarly, one obtains

εU(Cd) = lim
u↗1

Cd(u1)
1− Cd(u1)

= 0.

While examining λ
Ih |Jd−h
L and λ

Ih |Jd−h
U , the very same arguments are of use. No matter how one

chooses index sets Ih and Jd−h,

λ
Ih |Jd−h
L (Cd) = λ

Ih |Jd−h
U (Cd) = 0

since, again, the corresponding limits contain ratios of polynomials, such that the polynomials in the
numerators converge to zero faster than the polynomials in the denominators.

To obtain λL,S, the integral
∫
[0,p]d Cd(u)du needs to be calculated. Consider now a special case

when the only non-zero parameter is α = α1,...,d. Then

∫
[0,p]d

Cd(u)du =
∫
[0,1]p

u1u2 . . . ud
[
1 + α(1− u1) . . . (1− ud)

]
du =

(
p2

2

)d

+ α

(
3p2 − 2p3

6

)d

.

Going back to general Cd, we can notice that the resulting integral would always be a polynomial in p,
with the lowest power being 2d and thus

λL,S(Cd) = lim
p↘0

d + 1
pd+1 p2d = 0.

A similar calculation leads to λU,S(Cd) = 0. Some further calculations (not presented here) also show
that λ∗U,S(Cd) = 0.
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From the perspective of all the above tail dependence coefficients, the Farlie–Gumbel–Morgenstern
copula does not possess any tail dependence.

Example 5. Cuadras-Augé copula.

Let Cd be a d-variate Cuadras-Augé copula, that is of the form

Cd(u1, . . . , ud) = [min(u1, . . . , ud)]
θ(u1u2 . . . ud)

1−θ

for θ ∈ [0, 1]. The Cuadras-Augé copula combines the comonotonicity copula Md with the
independence copula Πd. If θ = 0, then Cd becomes Πd. If θ = 1, then Cd becomes Md.

We again start with calculating εL and εU . From (2), we find

Cd(u1) = 1 +
d

∑
j=1

[
(−1)j

(
d
j

)
uj−(j−1)θ

]

and Frahm’s lower extremal dependence coefficient εL is thus given as

εL(Cd) = lim
u↘0

Cd(u1)
1− Cd(u1)

= lim
u↘0

ud−(d−1)θ

d
∑

j=1

[
(−1)j+1(d

j)u
j−(j−1)θ

]

= lim
u↘0

ud−(d−1)θ−1

d
∑

j=1

[
(−1)j+1(d

j)u
j−(j−1)θ−1

] =

1 if θ = 1,

0 if θ ∈ [0, 1)

since if θ ∈ [0, 1), the polynomial in u in the numerator converges to zero faster than the polynomial in
the denominator. For εU , using L’Hospital’s rule leads to

εU(Cd) = lim
u↗1

Cd(u1)
1− Cd(u1)

= lim
u↗1

1 +
d
∑

j=1

{
(−1)j(d

j)u
j−(j−1)θ

}
1− ud−(d−1)θ

= lim
u↗1

d
∑

j=1

{
(−1)j(d

j)
[
j− (j− 1)θ

]
uj−(j−1)θ−1

}
−(d− (d− 1)θ)ud−(d−1)θ−1

=

d
∑

j=1

{
(−1)j(d

j)
[
j− (j− 1)θ

]}
−(d− (d− 1)θ)

=

(1− θ)
d
∑

j=1

[
(−1)j(d

j)j
]
+ θ

d
∑

j=1

[
(−1)j(d

j)
]

−(d− (d− 1)θ)

=
0− θ

−(d− (d− 1)θ)
=

θ

d− (d− 1)θ
.

These values coincide with those calculated in [20] for a more general group of copulas. One can also
notice that

lim
d→∞

εU(Cd) =

1 if θ = 1,

0 if θ ∈ [0, 1).
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In other words, if the parameter θ is smaller than 1, any sign of tail dependence disappears when the
dimension increases. If θ = 1, then εU(Cd) = 1 for every d ≥ 2 which is no surprise, since, in that case,
Cd is the comonotonicity copula Md. This behavior is illustrated in Figure 3 that details the influence
of the parameter θ on the speed of decrease of εU(Cd) when d increases.

A Cuadras–Augé copula is an exchangeable copula, which is invariant with respect to the order
of its arguments. Therefore, when calculating Li’s tail dependence parameters, only the cardinality of
the index sets Ih and Jd−h plays a role. Subsequently,

λ
Ih |Jd−h
L (Cd) = lim

u↘0

ud−(d−1)θ

ud−h−(d−h−1)θ
=

1 if θ = 1,

0 if θ ∈ [0, 1)

and by using L’Hospital’s rule

λ
Ih |Jd−h
U (Cd) = lim

u↗1

1 + ∑d
j=1(−1)j(d

j)u
j−(j−1)θ

1 + ∑d−h
j=1 (−1)j(d−h

j )uj−(j−1)θ
=

∑d
j=1(−1)j(d

j)(j− (j− 1)θ)

∑d−h
j=1 (−1)j(d−h

j )(j− (j− 1)θ)
. (36)

If θ = 1, then λ
Ih |Jd−h
U (Cd) = 1, as expected, and it does not depend on the conditioning sets Ih and Jd−h.

For Schmid’s and Schmidt’s lower tail dependence measure λL,S(Cd), defined in (24), we first
need to calculate the integral

∫
[0,p]d Cd(u)du. A straightforward calculation gives that

∫
[0,p]d

Cd(u)du =
d

(2− θ)d p(2−θ)(d−1)+2B
(

2
2− θ

, d
)

where B(s, t) =
∫ 1

0 xs−1(1− x)t−1dx is the Beta function. We then get

λL,S(Cd) = lim
p↘0

d + 1
pd+1

d
(2− θ)d p(2−θ)(d−1)+2B

(
2

2− θ
, d
)

,

which equals 1 when θ = 1 and 0 when θ ∈ [0, 1). Schmid’s and Schmidt’s lower tail dependence
measure thus equals Frahm’s lower extremal dependence coefficient εL as well as Li’s lower tail

dependence parameter λ
Ih |Jd−h
L (Cd).

Determining Schmid’s and Schmidt’s upper tail dependence measure λU,S(Cd) in (25) is less
straightforward. This dependence measure involves three integrals. Because its expression concerns
the limit when p→ 0, it suffices to investigate the behavior of the numerator and the denominator of
(25) for p close to 0. From (27) it is easy to see that, for p close to 0,∫

[1−p,1]d
Πd(u)du = pd − d

2
pd+1 + o

(
pd+1

)
,

and, hence, the denominator of (25) behaves, for p close to 0, as

∫
[1−p,1]d

Md(u)du−
∫
[1−p,1]d

Πd(u)du =
d(d− 1)
2(d + 1)

pd+1 + o
(

pd+1
)

. (37)
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For the integral
∫
[1−p,1]d Cd(u)du, note that, since Cd is an exchangeable copula, we can divide the

integration domain [1− p, 1]d into d parts depending on which argument from u1, . . . , ud is minimal.
The integrals over each of the d parts are equal. We get

∫
[1−p,1]d

Cd(u)du = d
∫ 1

1−p
u1

 d

∏
j=2

∫ 1

u1

u1−θ
j duj

du1

= d
∫ 1

1−p
u1

(
1− u2−θ

1
2− θ

)d−1

du1

=
d

(2− θ)d−1

∫ 1

1−p
u1

(
1− u2−θ

1

)d−1
du1

= pd +

[
θ

d(d− 1)
2(d + 1)

− d
2

]
pd+1 + o

(
pd+1

)
,

where the approximation, valid for p close to 0, is based on a careful evaluation of the integral.
For brevity, we do not include the details here. Consequently the numerator of (25) behaves, for p
close to 0, as ∫

[1−p,1]d
Cd(u)du−

∫
[1−p,1]d

Πd(u)du = θ
d(d− 1)
2(d + 1)

pd+1 + o
(

pd+1
)

. (38)

Combining (37) and (38) reveals that λU,S(Cd) = θ, for all d ≥ 2. Other calculations (omitted here for
brevity) lead to λ∗U,S(Cd) = θ.

A Cuadras–Augé copula is also an extreme-value copula. This can be seen through the following
calculation, where the notation u(1) = min(u1, . . . , ud) is used. One gets

Cd(u1, . . . , ud) = [u(1)]
θ(u1u2 . . . ud)

1−θ = exp

θ log
(

u(1)

)
+ (1− θ)

d

∑
j=1

log(uj)


= exp




θ log

(
u(1)

)
log(u1u2 . . . ud)

+

(1− θ)
d
∑

j=1
log(uj)

log(u1u2 . . . ud)

 log(u1u2 . . . ud)


and, thus, Cd is an extreme-value copula with Pickands dependence function

Ad(w1, . . . , wd) = θw(1) + (1− θ)
d

∑
j=1

wj.

This allows for calculating the tail coefficient for extreme-value copulas, λU,E, as

λU,E(Cd) =
d

d− 1

(
1− θ

d
− (1− θ)

)
= θ.

In case of the Cuadras–Augé copula, tail dependence measured by λU,E does not depend on the
dimension d. For illustration, the values of λU,E(Cd) are included in Figure 3. One can see that εU and
λU,E behave very differently, both in terms of shapes and values.
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Figure 3. Frahm’s upper extremal dependence coefficient (black line) and tail dependence coefficient
for extreme-value copulas λU,E (grey line) for a Cuadras–Augé copula with parameters 0.9 (solid line),
0.99 (dashed line) and 0.999 (dotted line) as a function of the dimension of the copula.

Example 6. Clayton copula.

Let Cd be a d-variate Clayton family copula defined as

Cd(u) =

 d

∑
j=1

u−θ
j − d + 1

−1/θ

(39)

for θ > 0. The Clayton copula is an Archimedean copula and the behavior of its generator is studied in
Example 2.

For Frahm’s lower extremal dependence coefficient, either using (12) or by factoring out as below,
one obtains

εL(Cd) = lim
u↘0

Cd(u1)
1− Cd(u1)

= lim
u↘0

u(d− duθ + uθ)−1/θ

d
∑

j=1
(−1)j+1(d

j)u(j− juθ + uθ)−1/θ

=
d−1/θ

d
∑

j=1
(−1)j+1(d

j)j−1/θ

, (40)

whereas, for Frahm’s upper extremal dependence coefficient, using (13) with the derivative of the
Clayton generator ψ′(t) = −(1 + θt)−(1+θ)/θ , one finds

εU(Cd) = lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
=

−
d
∑

j=1
(−1)j(d

j)j

d
=

d

∑
j=1

(−1)j+1
(

d− 1
j− 1

)
= 0.

Analytical calculation of limd→∞ εL(Cd) is not possible; however, insight can be gained by plotting
εL(Cd) as a function of the dimension d. This is done in Figure 4. From the plot it is evident that εL(Cd)

decreases when the dimension increases. However, for larger parameter values, the decrease seems to
be slow.
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Figure 4. Frahm’s lower extremal dependence coefficient for Clayton copula with parameters 1 (solid
line), 5 (dashed line) and 10 (dotted line) as a function of the dimension of the copula.

A Clayton copula is also an exchangeable copula and, thus, when calculating Li’s tail dependence
parameters, only the cardinality of the index sets Ih and Jd−h comes into play. Then

λ
Ih |Jd−h
L (Cd) = lim

u↘0

(
du−θ − d + 1

)−1/θ

(
(d− h)u−θ − (d− h) + 1

)−1/θ
= lim

u↘0

(
d− duθ + uθ

)−1/θ

(
d− h− (d− h)uθ + uθ

)−1/θ

=

(
d− h

d

)1/θ

. (41)

If, as in Proposition 11, the cardinality of Jd−h is kept constant (equal to h∗) when the dimension
increases, then

lim
d→∞

λ
Ih |Jd−h
L (Cd) = 0. (42)

In fact, in this example, even a milder condition is sufficient for achieving (42). If h = h(d) is linked to
the dimension such that limd→∞(d− h(d))/d = 0, then (42) holds. However, for large values of the
parameter θ, the convergence in (42) might be very slow. By applying L’Hospital’s rule (d− h) times,
one can also calculate

λ
Ih |Jd−h
U (Cd) = 0.

Spearman’s rho for the Clayton copula cannot be explicitly calculated and, thus, the values of
λL,S and λU,S are unknown.

Example 7. Gumbel-Hougaard copula.

Let Cd be a d-variate Gumbel–Hougaard copula, defined as

Cd(u) = exp

−
 d

∑
j=1

(− log uj)
θ

1/θ


where θ ≥ 1. The Gumbel-Hougaard copula is the only copula (family) that is both an extreme-value
and an Archimedean copula as proved in [21] (Sec. 2). The behavior of its Archimedean generator is
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studied in Example 3. Note that θ = 1 corresponds to the independence copula Πd and the limiting
case θ → ∞ corresponds to the comonotonicity copula Md.

As expected (see (10)), for an extreme-value copula which is not the comonotonicity copula,
the Frahm’s lower extremal dependence coefficient is

εL(Cd) = lim
u↘0

Cd(u1)
1− Cd(u1)

= lim
u↘0

ud1/θ

d
∑

j=1
(−1)j+1(d

j)u
j1/θ

= 0

since the polynomial in u in the numerator converges to zero faster than the polynomial in the
denominator. For the Frahm’s upper extremal dependence coefficient, by using (13) with the derivative
of the Gumbel–Hougaard generator ψ′(t) = −1

θ exp(−t1/θ)t1/θ−1, one obtains

εU(Cd) = lim
t↘0

∑d
j=1(−1)j(d

j)ψ
′(jt)j

−ψ′(dt)d
= lim

t↘0

−1
θ t1/θ−1 ∑d

j=1(−1)j(d
j) exp(−(jt)1/θ)j1/θ

1
θ t1/θ−1 exp(−(dt)1/θ)d1/θ

=

d
∑

j=1
(−1)j+1(d

j)j1/θ

d1/θ
. (43)

Analytical calculation of limd→∞ εU(Cd) is not possible; however, insights can be gained by plotting
εU(Cd) as a function of dimension d. This is done in Figure 5. It is evident that εU(Cd) decreases
when the dimension increases; but, the decrease seems to be slow for larger parameter values.
When comparing Figures 4 and 5, one might come to a conclusion that εL for the Clayton copula with
parameter θ is equal to εU for the Gumbel–Hougaard copula with the same parameter θ. Despite
their similarity, that is not true, as can be easily checked by calculating both of the quantities for any
pair (d, θ).

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dimension

Ta
il 

co
ef

fic
ie

nt

εU for θ = 2
εU for θ = 5
εU for θ = 10

λU,E for θ = 2
λU,E for θ = 5
λU,E for θ = 10

Figure 5. Frahm’s upper extremal dependence coefficient (black line) and tail dependence coefficient
for extreme-value copulas λU,E (grey line) for Gumbel–Hougaard copula with parameters 2 (solid line),
5 (dashed line) and 10 (dotted line) as a function of the dimension of the copula.

When calculating Li’s tail dependence parameters, one uses that the Gumbel–Hougaard copula
is also an exchangeable copula and, thus, only the cardinality of the index sets Ih and Jd−h plays a
role. Then

λ
Ih |Jd−h
L (Cd) = lim

u↘0

ud1/θ

u(d−h)1/θ
= 0.
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If θ = 1, then λ
Ih |Jd−h
U (Cd) = 0, otherwise by using L’Hospital’s rule

λ
Ih |Jd−h
U (Cd) = lim

u↗1

d
∑

j=0
(−1)j(d

j)u
j1/θ

d−h
∑

j=0
(−1)j(d−h

j )uj1/θ

=

d
∑

j=1
(−1)j(d

j)j1/θ

d−h
∑

j=1
(−1)j(d−h

j )j1/θ

. (44)

This function of parameter θ, dimension d and cardinality h is rather involved and it is depicted
in Figure 6 for different parameter choices and also two different selections of h. In one of the cases,
h = d − 1 and thus corresponds to h∗ = 1 in Proposition 11. In the other case, the number of
components on which we condition h∗ = h∗(d) is chosen to increase with d, specifically h∗(d) = b

√
dc.

For h∗ = 1 (and thus the setting of Proposition 11), the tail coefficient slowly decreases with dimension,
as expected. An interesting behavior is seen for h∗(d) = b

√
dc, where the tail coefficient seems to be,

except for instability in low dimensions, constant, independently of the parameter θ choice.
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Figure 6. Li’s upper tail dependence parameter with h∗ = 1 (black line) and with h∗ = b
√

dc (grey line)
for Gumbel-Hougaard copula with parameters 2 (solid line), 5 (dashed line) and 10 (dotted line) as a
function of the dimension of the copula.

Spearman’s rho for a Gumbel–Hougaard copula cannot be calculated explicitly and thus the
values of λL,S and λU,S are unknown.

Pickands dependence function Ad of a Gumbel–Hougaard copula is

Ad(w) = (w1 + · · ·+ wd)
−1(wθ

1 + · · ·+ wθ
d)

1/θ

and thus

λU,E(Cd) =
d− d1/θ

d− 1
.

Note that limd→∞ λU,E(Cd) = 1. From our perspective, such a behavior is rather counter-intuitive and
should be taken into account when using this tail coefficient.

An overview of the results obtained in the illustrative examples is given in Table 2.
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Table 2. Illustrative examples: overview of tail coefficient values. NAp = Not Applicable, NAv = Not Available.

Tail Coefficient Example/Copula
Name Notation 4 5 6 7

FGM Cuadras-Augé Clayton Gumbel-Hougaard

Frahm’s extremal dependence coefficients

εL(Cd) 0

{
1 if θ = 1
0 if θ ∈ [0, 1)

(40) 0

εU(Cd) 0

{
1 if θ = 1
θ/(d− (d− 1)θ) if θ ∈ [0, 1)

0 (43)

lim
d→∞

θ/(d− (d− 1)θ) = 0

Li’s tail dependence parameters

λ
Ih |Jd−h
L (Cd) 0

{
1 if θ = 1
0 if θ ∈ [0, 1)

((d− h)/d)1/θ 0

lim
d→∞

((d− h)/d)1/θ = 0

λ
Ih |Jd−h
U (Cd) 0

{
1 if θ = 1
(36) if θ ∈ [0, 1)

0

{
1 if θ = 1
(44) if θ ∈ [0, 1)

Schmid’s and Schmidt’s tail dependence measures
λL,S(Cd) 0

{
1 if θ = 1
0 if θ ∈ [0, 1)

NAv NAv

λU,S(Cd) 0 θ NAv NAv

our proposal λ∗U,S(Cd) 0 θ NAv NAv

tail dependence extreme-value copulas
λU,E(Cd) NAp θ NAp (d− d1/θ)/(d− 1)

lim
d→∞

(d− d1/θ)/(d− 1)

= 1
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7. Estimation of Tail Coefficients

Before we move to the estimation of tail coefficients itself, we introduce the setting and notation
for the estimation.

7.1. Preliminaries

Let X1, . . . , Xn be a random sample of a d-dimensional random vector with copula Cd where
Xi = (X1,i, . . . Xd,i)

> for i ∈ {1, . . . n}. Throughout this section, the dimension d of a copula Cd is
arbitrary but fixed and, thus, for simplicity of notation, we omit the subscript d in Cd.

We consider the empirical copula

Ĉn(u) =
1
n

n

∑
i=1

1(Û1,i ≤ u1, . . . , Ûd,i ≤ ud), (45)

where

Ûj,i = F̂j,n(Xj,i), with F̂j,n(x) =
1

n + 1

n

∑
i=1

1(Xj,i ≤ x), x ∈ R.

Similarly, we define the empirical survival function as

Ĉn(u) =
1
n

n

∑
i=1

1(Û1,i > u1, . . . , Ûd,i > ud).

For extreme-value copulas, one can take advantage of estimation methods for the Pickands
dependence function or the stable tail dependence function. The estimation of these was discussed, for
example, in [22–24], or [7]. We briefly discuss the estimator for the Pickands dependence function, as
proposed in [7].

Madogram Estimator of Pickands Dependence Function

The multivariate w-madogram, as introduced in [7], is, for w ∈ ∆d−1, defined as

νd(w) = E

 d∨
j=1

F
1/wj
j (Xj)−

1
d

d

∑
j=1

F
1/wj
j (Xj)

 ,

where u1/wj = 0 by convention if wj = 0 and 0 < u < 1. The authors in [7] further show a relation
between Pickands dependence function and the madogram given by

Ad(w) =
νd(w) + c(w)

1− νd(w)− c(w)

where c(w) = d−1 ∑d
j=1 wj/(1 + wj). This leads to the following estimator of Pickands

dependence function

ÂMD
n (w) =

ν̂n(w) + c(w)

1− ν̂n(w)− c(w)

with

ν̂n(w) =
1
n

n

∑
i=1

 d∨
j=1

F̂
1/wj
j,n (Xj,i)−

1
d

d

∑
j=1

F̂
1/wj
j,n (Xj,i)

 .
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However, the estimator ÂMD
n is not a proper Pickands dependence function. To deal with this problem,

they propose an estimator based on Bernstein polynomials that overcomes this issue and results into
an estimator, which is a proper Pickands dependence function.

7.2. Estimation of the Various Tail Coefficients

7.2.1. Estimation of Frahm’s Extremal Dependence Coefficient

The estimation of the Frahm’s extremal dependence coefficients has not been discussed in the
literature so far. However, a straightforward approach is to consider empirical approximations of the
quantities in definition (7), i.e.,

ε̂L =
Ĉn(un, . . . , un)

1− Ĉn(un, . . . , un)
, ε̂U =

Ĉn(1− un, . . . , 1− un)

1− Ĉn(1− un, . . . , 1− un)
,

where {un} is a sequence of positive numbers converging to zero. The choice of un is crucial for the
performance of the estimator. Small values of un provide an estimator with low bias but large variance,
large values of un provide an estimator with large bias but small variance. Note that, in applications, it
is useful to think about un as un = kn

n+1 , where kn stands for the numbers of extreme values used in the
estimation procedure.

Alternatively, if the underlying copula is known to be an extreme-value copula, the estimator
can be based on the estimator of Pickands dependence function plugged into (11). This results in the
following estimator

ε̂MD
U =

d
∑

j=1
(−1)j+1 ∑1≤k1<···<kj≤d j ÂMD

n (w1, . . . , wd)

dÂMD
n (1/d, . . . , 1/d)

,

with w` = 1/j if ` ∈ {k1, . . . , k j} and w` = 0 otherwise.

7.2.2. Estimation of Li’s Tail Dependence Parameters

Similarly as for Frahm’s extremal dependence coefficients, one can introduce the
following estimators

λ̂
Ih |Jd−h
L =

Ĉn(un, . . . , un)

Ĉ Jd−h
n (un, . . . , un)

, λ̂
Ih |Jd−h
U =

Ĉn(1− un, . . . , 1− un)

Ĉ
Jd−h

n (1− un, . . . , 1− un)
.

7.2.3. Estimation of Schmid’s and Schmidt’s Tail Dependence Measure

Also in this case, one can make use of the empirical copula (45). Recall the definition of λL,S in (24),
and consider p small. More precisely, let pn be a small positive number. Subsequently, one can calculate

∫
[0,pn ]d

Ĉn(u)du =
1
n

n

∑
i=1

d

∏
j=1

(
pn − Ûj,i

)
+

. (46)

The estimator of λL,S that could then be considered is of the form

(d + 1)
n pd+1

n

n

∑
i=1

d

∏
j=1

(
pn − Ûj,i

)
+

.
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However, this quantity does not provide the value 1 for a sample from a comonotonicity copula. See
the related discussion in [25]. This problem increases, while pn gets smaller. Thus, we propose to use
an estimator defined as

λ̂L,S =
∑n

i=1 ∏d
j=1

(
pn − Ûj,i

)
+

∑n
i=1

[(
pn − i

n+1

)
+

]d

where the denominator is based on estimating
∫
[0,p]d Md(u)du using (46) and the fact that for a sample

from a comonotonicity copula Û1,i = · · · = Ûd,i for every i ∈ {1, . . . , n} almost surely. Analogous
arguments lead to an estimator of λ∗U,S, as defined in (26), given by

λ̂∗U,S =
∑n

i=1 ∏d
j=1

(
pn − (1− Ûj,i)

)
+

∑n
i=1

[(
pn − i

n+1

)
+

]d .

7.2.4. Estimation of λU,E the Proposed Tail Coefficient for Extreme-Value Copulas

Because coefficient λU,E, in (28), is a function of Pickands dependence function Ad, estimation can
again be based on estimation of Ad. For example, the madogram estimator ÂMD

n can be used, which
results in the following estimator

λ̂MD
U,E =

d
d− 1

(1− ÂMD
n (1/d, . . . , 1/d)).

The consistency results for the suggested estimators can be found in the following propositions.

Proposition 12. Suppose that Cd is a d-variate extreme-value copula. Subsequently, the estimators ε̂MD
U and

λ̂MD
U,E are strongly consistent.

Proof. The statement of the proposition follows by Theorem 2.4(b) in [7], which states that

sup
w∈∆d−1

∣∣∣ÂMD
n (w)− A(w)

∣∣∣ alm. surely−−−−−−→
n→∞

0.

Proposition 13. Suppose that un, pn ∈ (n−δ, n−γ) for some 0 < γ < δ < 1.

(i) Then ε̂L and ε̂U are weakly consistent.
(ii) Then λ̂L,S and λ̂∗U,S are weakly consistent.

(iii) Further suppose that (n C Jd−h(un1))→ ∞. Subsequently, the following implications hold.

If limγ→0 limu→0+
C Jd−h (u(1+γ)1)

C Jd−h (u1)
= 1, then λ̂

Ih |Jd−h
L is weakly consistent.

If limγ→0 limu→0+
C Jd−h (u(1+γ)1)

C Jd−h (u1)
= 1, then λ̂

Ih |Jd−h
U is weakly consistent.

Proof. We will only deal with the estimators of the lower dependence coefficients ε̂L, λ̂L,S and λ̂
Ih |Jd−h
L .

The estimators of the upper dependence coefficients can be handled completely analogously.

Showing (i).

With the help of (A.22) of [26], one gets that for each β < 1
2

Ûj,i = Uj,i + Uβ
j,i OP

(
1√
n

)
, uniformly in j ∈ {1, . . . , d}, i ∈ {1, . . . , n}.
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This, together with Lemma A3 in [27] (see also (A.12) in [26]), implies that, for each ε > 0 with
probability arbitrarily close to 1 for all sufficiently large n, it holds that[

Uj,i ≤ un(1− ε)
]
⊆
[
Ûj,i ≤ un

]
⊆
[
Uj,i ≤ un(1 + ε)

]
, for all j, i. (47)

Denote

Gn(u) =
1
n

n

∑
i=1

1{Ui ≤ u}.

Subsequently, conditionally on (47) and with the help of Chebyshev’s inequality, one gets that

Ĉn(un1) ≤ Gn(un(1 + ε)1) = C(un(1 + ε)1) +
√

C
(

un(1 + ε)1
)

OP

(
1√
n

)
(48)

= C(un1) + ε O(un) +
√

un OP

(
1√
n

)
. (49)

Analogously, also
Ĉn(un1) ≥ C(un1) + ε O(un) +

√
un OP

(
1√
n

)
. (50)

As ε > 0 is arbitrary, one can combine (49) and (50) to deduce that

Ĉn(un1) = C(un1) + oP(un). (51)

Completely analogously with the help of (2), one can show that

1− Ĉn(un1) = 1− C(un1) + oP(un). (52)

Further note that
1− C(un1) = P(Umin ≤ un) ≥ P(U1 ≤ un) = un. (53)

Now combining (51), (52) and (53) yields that

ε̂L =
Ĉn(un1)

1− Ĉn(un1)
=

C(un1) + oP(un)

1− C(un1) + oP(un)
=

C(un1)
1− C(un1)

+ oP(1)
P−−−→

n→∞
εL.

Showing (ii).

First of all, note that it is sufficient to show that

In =
d + 1
pd+1

n

∫
[0,pn ]d

[
Ĉn(u)− C(u)

]
du = oP(1). (54)

Further, it is straightforward to bound

d + 1
pd+1

n

∫
[0,pn ]d\[ pn

log n ,pn ]d

∣∣∣Ĉn(u)− C(u)
∣∣∣du ≤ d + 1

pd+1
n

∫
[0,pn ]d\[ pn

log n ,pn ]d

{
2 min{u1, . . . , ud}+ 1

n

}
du

≤ 2d(d + 1)
pd+1

n

∫ pn

0
· · ·

∫ pn

0

[ ∫ pn
log n

0
u1 du1

]
du2 . . . dud + O

(
1

n pn

)
= O

(
1

log2 n

)
= o(1). (55)

Now, (47) holds uniformly for un ∈ [ pn
log n , pn]. Thus analogously as one derived (51) one can also show

that uniformly in u ∈ [ pn
log n , pn]d

Ĉn(u) = C(u) + oP

( d

∑
j=1

uj

)
,
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which further implies
d + 1
pd+1

n

∫
[

pn
log n ,pn ]d

∣∣∣Ĉn(u)− C(u)
∣∣∣du = oP(1). (56)

Now, combining (55) and (56) yields (54).

Showing (iii).

To prove the weak consistency of λ̂
Ih |Jd−h
L , it is sufficient to show that

Ĉn(un1)− C(un1)
C Jd−h(un1)

P−−−→
n→∞

1 and
Ĉ Jd−h

n (un1)
C Jd−h(un1)

P−−−→
n→∞

1. (57)

We start with the second convergence. Similarly, as in (48) for each ε > 0 with probability arbitrarily
close to 1 for all sufficiently large n, one can bound

G Jd−h
n (un(1− ε)1)

C Jd−h(un(1− ε)1)
C Jd−h(un(1− ε)1)

C Jd−h(un1)
≤ Ĉ Jd−h

n (un1)
C Jd−h(un1)

≤ G Jd−h
n (un(1 + ε)1)

C Jd−h(un(1 + ε)1)
C Jd−h(un(1 + ε)1)

C Jd−h(un1)
.

Now, by the assumption in (iii), the ratios C Jd−h (un(1−ε)1)
C Jd−h (un1)

and C Jd−h (un(1+ε)1)
C Jd−h (un1)

can be made arbitrarily

close to 1 for ε close enough to zero and n large enough. Further, by Chebyshev’s inequality

G Jd−h
n (un(1 + ε)1)

C Jd−h(un(1 + ε)1)
= 1 + OP

(
1√

n C Jd−h (un(1+ε)1)

)
P−−−→

n→∞
1

and, similarly, one can show also G
Jd−h
n (un(1−ε)1)

C Jd−h (un(1−ε)1)
P−−−→

n→∞
1. This concludes the proof of the second

convergence in (57).
To show the first convergence in (57), one can proceed as in (48) (exploiting (47)) and arrive at

Ĉn(un1)− C(un1)
C Jd−h(un1)

≤ Gn(un(1 + ε)1)− C(un(1 + ε)1)
C Jd−h(un1)

+
C(un(1 + ε)1)− C(un1)

C Jd−h(un1)

= OP

(
1√

n C Jd−h (un1)

)
+

C(un(1 + ε)1)− C(un1)
C Jd−h(un1)

.

Now, the second term on the right-hand side of the last inequality can be rewritten as

C(un(1 + ε)1)− C(un1)
C Jd−h(un1)

=
C(un(1 + ε)1)

C Jd−h(un(1 + ε)1)
C Jd−h(un(1 + ε)1)

C Jd−h(un1)
− C(un1)

C Jd−h(un1)
,

which, thanks to the assumptions of the theorem and the existence of λ
Ih |Id−h
L , can be made arbitrarily

small by taking ε small enough and n sufficiently large.

As an analogous lower bound can be derived for Ĉn(un1)−C(un1)
C Jd−h (un1)

, one can conclude that the first

convergence in (57) also holds.

8. Real Data Application

In this section, we illustrate the practical use of the multivariate tail coefficients via a real data
example. The data concern stock prices of companies that are constituents of the EURO STOXX
50 market index. EURO STOXX 50 index is based on the largest and the most liquid stocks in the
eurozone. Daily adjusted prices of these stocks are publicly available on https://finance.yahoo.com/
(downloaded 19 March 2020). The selected time period is 15 years, starting on 18 March 2005 and
ending on 18 March 2020. Note that this period covers both the global financial crisis 2007–2008, as well
as the sharp decline of the markets that was caused by COVID-19 coronavirus pandemic in early 2020.

https://finance.yahoo.com/
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All the calculations are done in the statistical software R [28]. The R codes for the data application,
written by the authors, are available at https://www.karlin.mff.cuni.cz/~omelka/codes.php.

The preprocessing of the data was done, as follows. The stocks are traded on different stock
exchanges and thus might differ in trading days. The union of all trading days is used and missing
data introduced by this method are filled in by linear interpolation. No data were missing on the
first or the last day of the studied time range. Negative log-returns are calculated from the adjusted
stock prices and ARMA(1,1)–GARCH(1,1) is fitted to each of the variables (stocks), similarly as for
example in [29]. We also refer therein for detailed model specification. Fitting ARMA(1,1)–GARCH(1,1)
model to every stock does not necessarily provide the best achievable model, but residual checks show
that the models are adequate. The standardized residuals obtained from these univariate models are
used as the final dataset for calculating various tail coefficients. The total number of observations is
n = 3847. Table 3 summarizes the stocks used for the analysis.

Table 3. List of selected stocks for the analysis.

Company Name Industry Country Market Capitalization [bil. EUR]

Group 1 (G1)
(German stocks)

Bayer Pharmaceutics Germany 48.31
BMW Automotive Germany 27.81
Deutsche Post Courier Germany 28.02

Group 2 (G2)
(Financial stocks)

BBVA Financial Spain 19.39
BNP Paribas Financial France 33.23
Generali Financial Italy 18.41

Group 3 (G3)
(Energetics stocks)

Enel Energetics Italy 63.51
ENGIE Energetics France 24.22
Iberdrola Energetics Spain 53.75

It is of interest here to discuss tendency of extremely low returns happening simultaneously,
which translates into calculating upper tail coefficients while working with negative log-returns. This
allows us to use also the methods assuming that the data are coming from an extreme-value copula.

Six different settings are considered: stocks from Group 1 (G1), from Group 2 (G2), from Group 3
(G3), from G1 and G2, from G1 and G3, and finally stocks from G2 and G3. The dimension d is equal
to 3 for the first three settings and equal to 6 for the last three settings.

Six different estimators are considered: ε̂U , ε̂MD
U , λ̂∗U,S, λ̂U,E, and λ̂

Ih |Jd−h
U with two different

selections of the conditioning sets Ih and Jd−h. In one case, h∗ = d− h = 1 and we condition on only
one variable. The specific choice of that one variable does not impact the result, as follows from (19).
The analysis with the conditioning on only one variable shows how the rest of the group is affected
by the behavior of one stock. In the other case, we condition on all of the stocks, except for the one
with largest market capitalization within the group. This analysis indicates how the largest player is
affected by the behavior of the rest of the group.

The estimators that are functions of the amount of data points k (recall from Section 7.2 that a
common choice is un = kn/(n + 1), with kn = k here) do not provide one specific estimate but rather
a function of k. A selection of in some sense the best possible k requires further study. Intuitively,
one should look at lowest k for which the estimator is not too volatile. This idea was used in [30] for
estimating bivariate tail coefficients by finding a plateau in the considered estimator as a function of
k. The results of the analysis are summarized in Figures 7 and 8 and Table 4. Examining Figure 7, it
seems that k around 100 would be a possible reasonable choice for the tail coefficients of Frahm, and
Schmid and Schmidt, for these data. For Li’s tail dependence parameters, it appears from Figure 8 that,
when conditioning on more than one variable, a larger value for k is needed, for example k = 200.

For the tail dependence measurements for extreme-value copulas, we include the coefficients
λU,E and the original extremal coefficient θE (see [17]), where the latter can be estimated from
the former, since θE = d(1− d−1

d λU,E). Recall that the various tail coefficient estimators estimate

https://www.karlin.mff.cuni.cz/~omelka/codes.php


Entropy 2020, 22, 728 40 of 43

different quantities and, therefore, their values should not be compared to each other. However, a few
general conclusions can be made based on Figures 7 and 8. Clearly, all the studied groups possess
a certain amount of tail dependence. The combinations of groups also seem to be tail dependent,
although the strength of dependence is smaller. Groups G2 and G3 seem to be slightly more tail
dependent than G1, which suggests that sharing industry influences tail dependence more than
sharing geographical location.

Table 4. Estimated tail coefficients for extreme-value copulas.

G1 G2 G3 G1 + G2 G1 + G3 G2 + G3

λ̂U,E 0.50 0.63 0.58 0.61 0.57 0.64
θ̂E 2 1.74 1.84 2.95 3.15 2.8
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Figure 7. Various estimated tail coefficients. (a) Estimator ε̂U for 3-variate groups. Corresponding
symbols (�, •, N) represent values of ε̂MD

U (not a function of k); (b) Estimator ε̂U for 6-variate groups.
Corresponding symbols (�, •, N) represent values of ε̂MD

U (not a function of k); (c) Estimator λ̂∗U,S for
3-variate groups; (d) Estimator λ̂∗U,S for 6-variate groups.



Entropy 2020, 22, 728 41 of 43

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

k

Ta
il 

co
ef

fic
ie

nt
 e

st
im

at
e

G1
G2
G3

(a)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

k

Ta
il 

co
ef

fic
ie

nt
 e

st
im

at
e

G1 + G2
G1 + G3
G2 + G3

(b)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Ta
il 

co
ef

fic
ie

nt
 e

st
im

at
e

G1
G2
G3

(c)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Ta
il 

co
ef

fic
ie

nt
 e

st
im

at
e

G1 + G2
G1 + G3
G2 + G3

(d)

Figure 8. Various estimated tail coefficients. (a) Estimator λ̂
I2|J1
U for 3-variate groups with conditioning

on one stock; (b) Estimator λ̂
I5|J1
U for 6-variate groups with conditioning on one stock; (c) Estimator

λ̂
I1|J2
U for 3-variate groups with conditioning on all but the stock with highest market capitalization;

(d) Estimator λ̂
I1|J5
U for 6-variate groups with conditioning on all but the stock with highest market

capitalization.

The estimator of Frahm’s extremal dependence coefficient in Figure 7a,b is clearly the smallest
of all the estimators, which follows its “strict” definition in (7). The dots, representing the estimates
under the assumption of underlying copula being an extreme-value copula, are greater than the fully
non-parametric estimators. This indicates that assuming underlying extreme-value copula might not
be appropriate.

The estimator of Schmid’s and Schmidt’s tail dependence measure in Figure 7c,d is much smoother
as a function of k than the other estimators. However, it tends to move towards 0 or 1 for very low k.

The estimator λ̂
I2|J1
U in Figure 8a suggests that, for all three groups, the probability of two stocks

having an extremely low return given that the third stock has an extremely low return is approximately
0.2. The estimator λ̂

I1|J5
U in Figure 8d on the other hand suggests that, in all three group combinations,

the largest company is heavily affected if the remaining five stocks have extremely low returns.
For group combinations G1 + G3 and G2 + G3, the estimated tail coefficient is, in fact, equal to 1.

The values of λ̂U,E and θ̂E are presented in Table 4. One can notice that these measures also
suggest that groups G2 and G3 are slightly more tail dependent than G1, or, in other words, they likely
contain less independent components (see [18]).
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