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Abstract: The recent development of the mobile Internet and the rise of social media have significantly
enriched the way people access information. Accurate modeling of the probability of information
propagation between users is essential for studying information dissemination issues in social
networks. As the dissemination of information is inseparable from the interactions between users,
the probability of propagation can be characterized by such interactions. In general, there are
differences in the dissemination modes of information that carry different topics in a real social
network. Using these factors, we propose a method (TMIVM) to measure the mutual influence
between users at the topic level. The method associates two vectorization parameters for each
user—an influence vector and a susceptibility vector—where the dimensions of the vector represent
different topic categories. The magnitude of the mutual influence between users on different topics
can be obtained by the product of the corresponding elements of the vectors. Specifically, in this article,
we fit a social network historical information cascade data through Survival Analysis to learn the
parameters of the influence and susceptibility vectors. The experimental results on a synthetic data
set and a real Microblog data set show that this method better measures the propagation probability
and information cascade predictions compared to other methods.

Keywords: mutual influence; Survival Analysis; information dissemination; propagation probability;
TMIVM (Topic Mutual Influence Vector Model)

1. Introduction

Efficiently acquiring and disseminating valuable information, thereby, revealing the mechanisms
and rules of information dissemination in social networks, has become the research focus of scholars.
At present, the existing achievements mainly involve the fields of influence maximization [1–3],
forwarding behavior prediction [4,5], social recommendations [6,7], viral marketing [8,9], and so on.
Modeling and measuring the probability of information dissemination among the users of social
networks provides an essential basis for such research. A relatively simple method is to set the
propagation probability for social relations in the study of an information cascade, and use various
propagation models to simulate the process of information dissemination [10]. This type of method has
apparent limitations: Predicting the propagation path of information is based on a pre-set propagation
probability, which can easily cause large deviations. The information dissemination effect is different
for different users, so it is difficult for researchers to set a reasonable value for each propagation
probability in advance. Another more effective method is to construct a probability generation model
for information dissemination based on historical data. The basis for the probability generation
model to calculate the propagation probability is determined by the historical data of information
cascades. If there is no interaction between users in the previous data, then the model will overfit
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when it performs its parameter inference. That is, the propagation probability between the users
will be 0, which means that no information can be transmitted between these two users in the future.
This is obviously inconsistent with an actual situation. In the real world, users will have different
preferences for different topics. Furthermore, the information dissemination patterns of different topics
in social networks are also different, such that the mutual influence between users will be different
for different topics [11]. Based on the above factors, this paper proposes the TMIVM (Topic Mutual
Influence Vector Model), which calculates the mutual influence between social network users in the
topic dimension. Specifically, the TMIVM associates two vectors for each user namely, an Influence
vector and a Susceptibility vector. The influence vector indicates the degree to which the user can
influence others, while the susceptibility vector indicates the degree to which the user is influenced by
others. The dimension of the vector represents the different topic categories. In this way, under different
topics, the mutual influence between users can be calculated by the product of the corresponding
elements of the influence vector and the susceptibility vector. The main contributions of this article are
as follows:

1. A new topic-related mutual influence calculation model, TMIVM, is proposed. The characteristics
of this model use the vectorization method to express a user’s influence and susceptibility.
Historical information cascade data are used for parameter training without calculating too many
variables, significantly improving calculation efficiency.

2. An information propagation probability calculation method, based on Survival Analysis and
TMIVM, is designed. This method fully considers the textual content of information and the
time-series model of information dissemination. Survival Analysis is used to construct the
likelihood function of cascade propagation, and the parameters are inferred by gradient descent.

3. Many experiments are carried out on synthetic and real data sets. The results demonstrate the
feasibility of the information propagation probability measurement method based on the TMIVM.
Compared to other comparison methods, the performance of our method is better in terms of its
information cascade prediction, among other aspects.

2. Related Work

Existing research has focused on establishing an information propagation probability variable
for the social relationships between users, followed by estimating that variable using the information
of the underlying structure of the social network, information cascade records, and user attributes.
For example, Kempe et al. used network topology (degree and centrality) to measure the probability of
information transmission among users in an independent cascade propagation model when studying
the problem of influence maximization [2]. Java et al. evaluated the efficiency of the influence
model in a blog network and proposed a method to calculate the propagation probability by blog
forwarding frequency, concluding that selecting high-impact user groups can maximize the information
dissemination effect [10]. Yang et al. constructed a linear influence model in the process of studying the
predictions of the popularity of twitter blog information and designed a time-dependent user influence
function, based on the assumption that information dissemination is dominated by user influence [12].
To solve the problem of predicting the propagation probability in complex networks, Saito et al. used
the node infection probability model to fit the information cascade data in an independent cascade
model, and calculated the posterior propagation probability value via the EM (Expected Maximum)
method [13]. Artzi et al. studied the forwarding behavior of users, calculating the probability of users
affected according to the content of blog posts and user attributes [14]. Xiong et al. put forward a SCIR
model of information dissemination based on an infectious disease model (SIR). The authors considered
that a user’s browsing information without forwarding is the R state, and the probability of infection
between users is related to the infected users with the same degree density [15]. These methods aimed
to study issues related to the dissemination of information in social networks and did not focus on
the role of user interactions in disseminating information. The present article considers the user’s
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point of view, combined with user interaction behavior and information cascade data, to construct
a propagation probability calculation method based on mutual influence.

To accurately measure the propagation probability of information or mutual influence, relevant
scholars have conducted a great deal of empirical research and model verification. Some have proposed
various methods that are similar to the work in this article. Myers explored the potential information
dissemination network structure of social networks and proposed a CONNIE model that uses convex
programming and heuristic methods to infer the prior probability for each infection edge [16].
Gomez-Rodriguez et al. proposed the NETINF model, which uses sub-module optimization features to
obtain an optimal network connectivity structure [17]. Both of these methods are probabilistic generative
models, and both assume that the propagation probabilities in social networks are predefined constants,
which affects the efficiency of the model. Based on this, Gomez-Rodriguez et al. improved their model
and proposed a continuous-time model, NETRATE, based on the survival model. By maximizing
the likelihood function of the observed data, the propagation probability of the information among
users was inferred [18]. Later, to improve the accuracy of information propagation predictions,
Gomez-Rodriguez et al. constructed additive and multiplicative risk functions in the survival model
and experimentally confirmed that the new method is more effective [19]. Du et al. suggested that
the dissemination patterns of different types of topic information are different; combined with the
topic attributes of that information, the authors proposed the TOPICCASCADE model to calculate
topic-related propagation probability [11]. Wang et al. constructed the influence and susceptibility
vectors with latent variables for users and proposed a LIS model, based on user behavior time-series
information in cascade data. Their experimental results on real data sets proved that the model has
good performance in its propagation predictions and other aspects [20]. Most of these methods are
based on edge modeling in a communication network, while the LIS model is based on the influence
and susceptibility of users. The latter requires only a few parameters, and its calculation efficiency is
high, thus providing a reference for the construction of the model in this paper.

In the modeling process, we use Survival Analysis to build a cascade likelihood function.
Before that, let us briefly introduce Survival Analysis.

Survival Analysis. Survival Analysis is the theoretical basis of this paper’s method and is a subject
that studies the statistical phenomena of survival phenomena and response time data [21]. It is mainly
used for statistical analysis of the expected duration of one or more events, such as the death of
biological organisms or malfunctions in machine systems. In [18], the idea of Survival Analysis was first
introduced in the context of studying information dissemination in social networks and achieved good
experimental results. First, define a non-negative continuous random variable T, which represents the
time of an event. Then, if f(t) represents the probability density function of the random variable T
and F(t) is the cumulative distribution function representing the random variable T, it follows that
F(t) = P(T ≤ t) =

∫
∞

0 f(u)du. The survival function S(t) represents the probability that the event has
not occurred until time t, as defined below,

S(t) = P(T ≥ t) = 1− F(t) =
∫
∞

t
f(u)du, (1)

where S(t) is a monotonically decreasing continuous function, so S(0) = 1 and S(∞) = limt→∞S(t) = 0,
which are the boundary conditions.

The hazard function, h(t), is the basic function in Survival Analysis, which reflects the risk of
death of the research object at a certain moment; that is, the event does not occur until time t but occurs
in the time interval [t, t + ∆t). The probability, ∆t, is an infinitesimal amount of time t. Given S(t) and
F(t), h(t) can be calculated by

h(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t
∣∣∣T ≥ t)

∆t
=

P(t ≤ T ≤ t + ∆t)
∆t

·
1

P(T ≥ t)
=

f(t)
S(t)

. (2)
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The above equation uses the Bayesian principle P(A∩ B) = P(A)·P(B
∣∣∣A) . To find the difference

between the two sides of Formula (1), we can take f(t) = −S′ (t) and include Formula (2) to obtain
the first-order linear ordinary differential equation, −S′(t) + h(t)·S(t) = 0, with respect to the survival
function S(t). Combined with the boundary condition, S(0) = 1, both S(t) and f(t) can then be
expressed as a function of h(t):

ln S(t) = −
∫ t

0
h(u)du, f(t) = h(t)S(t). (3)

Therefore, when the expression of any one of the survival function S(t), the hazard function
h(t), or the probability density function f(t) is known, the expressions of the other two functions can
be derived. This provides a theoretical basis for the construction and simplification of the method
presented below.

3. Proposed Model: TMIVM

We will first provide several related definitions, as shown in Table 1.

Table 1. Symbol definitions and explanations.

Symbol Explanation

G Social Networks
V A set of users
E A set of following relationships between users
K Number of topics
m An original blog message

mo Topic distribution vector of information m
Cm Cascade recording of information m’s propagation

Pm
4uN

The parent node of uN in information m’s cascade
I Influence vector
S Susceptibility vector

MIu→v Mutual influence of user u on user v
Dm

u→v Probability of information m being propagated to v by user u

In general, a social network can be defined as a directed graph model G = (V, E), where V
represents a set of users, and E represents a set of directed edges. For any pair of users u, v ∈ V, if
there is a directed edge, then (u, v) ∈ E; if not, then (u, v) < E. The edges in the social network are
formed by the social relationships between users, which may be relationships defined by following,
forwarding, or friends. In this context, E refers to a collection of following relationships. Due to the
characteristics of the social platform system in actual use, information will be spontaneously pushed to
a user’s followers, causing the information to spread along the underlying network.

We use the symbol Cm to represent the cascade records caused by information m among users.
According to the previous analysis, these records mainly include three aspects: user, infection
time, and cascading tree structure. Clearly, a piece of information produces a cascading
record. Formally, the mathematical method represents the cascade records as a set of triples:
Cm =

{(
um

1 , tm
1 , Pm

4u1

)
,
(
um

2 , tm
2 , Pm

4u2

)
, . . . ,

(
um

N , tm
N , Pm

4uN

)}
, 1 ≤ i ≤ N, where tm

i represents the
time at which user um

i forwards the information, and Pm
4ui

represents the parent user of user um
i

in the cascading tree; that is, the user who affects their forwarding. The scale of the cascade record
Cm refers to the total number of users who forward this information in information dissemination,
represented by

∣∣∣Cm
∣∣∣. Therefore, in a cascade record, the set

{
Pm
4u1

, Pm
4u2

, . . . , Pm
4uN

}
represents a tree

structure built by forwarding the relationships between users. As there is only one publisher of
the original information, if um

j is the root node in the cascade tree, then tm
j = min

{
tm
1 , . . . , tm

N

}
is

satisfied, indicating the release of the original information m. The time is mt = tm
j , the publisher
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is mu = um
j , and Pm

4uN
= ∅, 1 ≤ j ≤ N. In addition, if node um

j is the cascade parent node of
node um

i , then Pm
4ui

= um
j and tj < ti are established, indicating that the time of forwarding the

information must be later than the time at which the information is released. Taking Figure 1 as
an example, the specific type of information is not considered at present, and the cascade records are
C =

{
(a, ta, ∅), (b, tb, a), (c, tc, a), (d, td, c), (f, tf, c)

}
; a is the root node, ta = min{ta, tb, tc, td, tf}.

As P4f = c, tc < tf holds.
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Mutual influence model. Establishing a mutual influence model for social network users is the
focus of this work. We model two K-dimensional non-negative vectors for each user: an influence
vector Iu =

(
I1
u, I2

u, . . . , IK
u

)
and a susceptibility vector Su =

(
S1

u, S2
u, . . . , SK

u

)
, where Ik

u ≥ 0, Sk
u ≥ 0,

∀1 ≤ k ≤ K. The larger the value of an element in Iu or Su is, the higher the degree to which the user
influences or is influenced by others, respectively. K represents the number of topics, indicating that
the user’s influence and susceptibility are different in different topics. In this way, the mutual influence
MIu→v between user u and user v can be expressed as,

MIu→v = Iu ◦ Sv =
(
I1
u · S

1
v, I2

u · S
2
v, . . . , IK

u · S
K
v

)
, (4)

where MIu→v ≥ 0, and ◦ is the Hadamard product of the vector, which represents the product of the
corresponding elements of the vector [22]. By definition, the mutual influence is asymmetric, that
is, MIu→v ,MIv→u. Unlike existing models, this model characterizes the mutual influence from the
user’s point of view, instead of simply setting a weight coefficient for the relationship edge of the
underlying network structure. The approach in the literature suggests that the influence of different
user pairs is independent. However, this assumption is not scientific enough because the interactions
associated with the same user are clearly related to the degree of influence or susceptibility of the user.
In consideration of this, when using Formula (4) to calculate the influence on other users, the influence
vector Iu is used, and the susceptibility vector Su is likewise applied to calculate the degree of influence
by other users. This user-centered calculation can effectively associate the influence between different
user pairs, which is consistent with the modeling motivation in the literature [23]. The mutual influence
MIu→v between users is also a k-dimensional non-negative vector. The element Ik

u · S
k
v represents the

influence of user u on user v with respect to topic K.
Calculation of propagation probability. In the process of modeling information propagation

in social networks based on Survival Analysis, the non-negative continuous random variable t is
instantiated by combining the information propagation process. In social networks, information
spreads like a virus. Users who publish original information are like infection sources. Users who
forward information are equivalent to the infected. Users who have not forwarded the information
are immune. Therefore, in this paper, we regard the time interval for users to forward information as
a random event of the variable T, T ∈ [0,+∞). Thus, the survival function S(t) can be interpreted as
the probability that a user has not forwarded the information until time t, and the hazard function h(t)
can be interpreted as the risk coefficient of a user who has not yet forwarded the information at time t.
Therefore, the cumulative distribution function F(t) can be interpreted as the probability that a user
will forward information within the interval spanning from 0 to t. Here, we first need to define the
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probability of information propagation between users, which is related to the topic of the information
and the interaction between users, as follows,

Dm
u→v = MI′u→v ·mo =

∑
k

Ik
u · S

k
v ·m

k
o, (5)

where Dm
u→v ≥ 0, MI′u→v represents the transposition of the vector, mo is the topic distribution vector

of information m, and the different elements of the vector represent the information’s propensity
under different topics. The definition of Formula (5) shows that the topic content of information has
an influence on the dissemination of that information among users and that popular information is
more likely to induce social network users to spread and discuss it. In addition, the formula also implies
an implicit condition Dm

u→v , 0 that holds if and only if the information that user u has forwarded is
visible to user v.

The likelihood function of cascade records. In the Sina Weibo data collected in this paper, there
are 2,749,631 cascade records triggered by original blog posts, where the distribution of the forwarding
interval is shown in Figure 2. Figure 2a shows the probability distribution of the forwarding time within
one week. It can be seen that the forwarding probability increases first and then decreases. Figure 2b
shows the forwarding probability distribution of the time interval within 120 min in Figure 2a, which
more clearly illustrates the effect of the forwarding probability increasing first and then decreasing.
According to the results of the data analysis, the Rayleigh model can better capture the above
distribution rule of the forwarding time interval. In this paper, this model is used to instantiate the
Survival Analysis. Then, the conditional probability density function of an uninfected user v affected
by an infected user u at time tm who forwards the information m is as follows,

f(tm
∣∣∣tm

u , Dm
u→v) = Dm

u→v · (t
m
− tm

u ) · exp
(
−

1
2
·Dm

u→v · (t
m
− tm

u )2
)
, (6)

where exp(·) is the exponential function with the natural constant e as the base. Formula (6) reflects the
distribution law of the time interval of a user forwarding information, as shown in Figure 2. Then,
at time tm, the conditional hazard function of an infected user u for an uninfected user v related to
information m is as follows:

h(tm
∣∣∣tm

u , Dm
u→v) = Dm

u→v · (t
m
− tm

u ). (7)
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Figure 2. Distribution statistics of the time interval between the original blog posts being forwarded.
(a) Distribution of forwarding time intervals within one week; (b) Distribution of forwarding time
intervals within 2 h.

Formula (7) shows that the risk of infected users to uninfected users increases with time.
When the user cannot browse to information m through u (meaning that the danger does not exist),
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then h(tm
∣∣∣tm

u , Dm
u→·) = 0. Similarly, under the influence of an infected user u, the probability that user

v will not forward the information m in time tm is:

S(tm
∣∣∣tm

u , Dm
u→v) = exp

(
−

1
2
·Dm

u→v · (t
m
− tm

u )2
)
. (8)

In summary, Formulas (6)–(8) are the probability density function, hazard function, and survival
function in Survival Analysis, respectively. In this paper, the time interval variable t of a user forwarding
information is expressed concretely. The definitions of these formulas are all related to the specific
information, m, and the propagation probability, which indicates that the method in this paper focuses
on the information content attributes in the propagation process. It is worth noting that the calculation
of these formulas is not related to the specific time of information publishing or forwarding but only to
the time difference between user behaviors.

In this paper, the recorded data on a particular information cascade in a social network in the
experiment are limited to a specific period [0, Tm

w ], which is called the observation period of information
m. During the observation period, the cascade record contains two types of users: infected and
uninfected. The uninfected users are not the same as those who never forward a message but are simply
recorded as not forwarding a message during the observation period. To simplify the computational
complexity (∀m, making Tm

w = Tw), all information cascades adopt the same observation period.
For the uninfected users, um

i ∈ NUm, it is necessary to calculate the probability that the users will
not forward the information until the end of the observation time. NUm refers to the set of users who
do not forward information in the cascade of m, also known as negative examples. As each infected
user can independently affect other uninfected users, the survival probability of uninfected users in the
cascade record of m is determined by the product of the relevant survival function of each infected
user, as follows,

E−um
i
(Cm) =

∏
um

j ∈Ωm
i

S
(
Tw

∣∣∣∣tm
j , Dm

j→i

)
, (9)

where Ωm
i represents the set of users whose forwarding information is visible to ui during the

propagation of information m. For example, Ωm
e = {b, d, f} of user e is not infected in Figure 1. Ωm

i can
also be ∅, which means that the user um

i has neither forwarded the information nor browsed m through
other users.

For the infected users, um
i ∈ PUm, it is necessary to calculate the probability that the users will be

influenced by other users during the observation time and forward the information. PUm refers to
the set of users who forward information m in the cascade, also known as positive examples. In the
cascade record, every infected user has a clear cascade path, such that the probability of forwarding
information is determined by the parent node in the cascade tree. However, the previous assumption
is that users can only be infected once, and the probability of surviving without being infected when
seeing other users forwarding information should also be calculated,

E+
um

i
(Cm) = f

(
tm
i

∣∣∣tm
4i, Dm

4i→i

)
·

∏
q,4i, um

q ∈Ωm
i ∩tm

q <tm
i

S
(
tm
i

∣∣∣∣tm
q , Dm

q→i

)
, (10)

where 4 i is a simplification of Pm
4ui

, representing the parent node of user ui in the cascade tree
constructed by the propagation record of m. The first item of Formula (10) shows that infecting the
parent node 4 i has a direct impact on um

i forwarding information at time tm
i , while the second item

shows that, in addition to node 4 i, the user is also affected by other users but will not be affected
by other users when facing the same information after infection. Using the transformation relation
f(t) = h(t)S(t), Formula (10) can be written as follows:

E+
um

i
(Cm) = h

(
tm
i

∣∣∣tm
4i, Dm

4i→i

)
·

∏
um

q ∈Ωm
i ∩tm

q <tm
i

S
(
tm
i

∣∣∣∣tm
q , Dm

q→i

)
. (11)
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In any cascade record, except for the root node user who publishes the original information, all other
users are either infected or uninfected; that is, NUm

∪ PUm = V, NUm
∩ PUm = ∅. For an information

cascade record, Cm, the likelihood function can be expressed as the product of the probability of all
users who are infected or uninfected:

E(Cm) =
∏

um
i ∈PUm

E+
um

i
(Cm) ×

∏
um

i ∈NUm

E−um
i
(Cm). (12)

Introducing Formulas (9) and (11), we obtain:

E(Cm) =
∏

um
i ∈PUm

h
(
tm
i

∣∣∣tm
4i, Dm

4i→i

)
·

∏
um

q ∈Ωm
i ∩tm

q <tm
i

S
(
tm
i

∣∣∣∣tm
q , Dm

q→i

)
·

∏
um

i ∈NUm

∏
um

j ∈Ωm
i

S
(
Tw

∣∣∣∣tm
j , Dm

j→i

)
. (13)

Generally, information cascade data C contain multiple cascade records
{
C1, C2, . . . , CM

}
, where

M represents the total amount of information. Different information causes different cascade records,
and these cascade records are independent of each other. Therefore, the likelihood function of the
cascade data is the product of the likelihood functions of all individual cascade records:

E(Cm) =
∏

um
i ∈PUm

h
(
tm
i

∣∣∣tm
4i, Dm

4i→i

)
·

∏
um

q ∈Ωm
i ∩tm

q <tm
i

S
(
tm
i

∣∣∣∣tm
q , Dm

q→i

)
·

∏
um

i ∈NUm

∏
um

j ∈Ωm
i

S
(
Tw

∣∣∣∣tm
j , Dm

j→i

)
. (14)

Based on Formula (14), the research problems in this paper can be described as follows:
Problem definition: Given social network cascade data G = (G, C), where G = (V, E) represents

the social network structure and users, and C =
{
C1, C2, . . . , CM

}
is an information cascade record, our

goal is to train a set of values of user influence vectors I and susceptibility vectors S to optimize the
likelihood function value of C; that is, to solve the following optimization problems,

minimize
I,S

− lnE(C) + λI‖I‖2F + λS‖S‖2Fsubject to Ik
ui
≥ 0, Sk

ui
≥ 0, ∀k, i, (15)

where I =
{
Ik
ui

}
and S =

{
Sk

ui

}
. To avoid overfitting problems in the optimization process, regularization

terms are introduced into the objective function, where λI and λS are the regularization factors, and ‖ · ‖F
is the Frobenius norm. In this paper, the negative log-likelihood function of probability production is
constructed by the mutual influence model, following which the parameters of the user influence and
susceptibility vectors are estimated based on an optimization problem called TMIVM (Topic Mutual
Influence Vector Model). The objective function of the optimization problem can be obtained by
introducing Formulas (7) and (8) into (15):

Ẽ(C) = −
∑

m
∑

um
i ∈PUm(ln

∑
k Ik

u4i
· Sk

ui
·mk

o · ∆m
i,4i) +

∑
m

∑
um

i ∈PUm
∑

um
q ∈Ωm

i ∩tm
q <tm

i

1
2 ·∑

k Ik
uq · S

k
ui
·mk

o · (∆m
i,q)

2 +
∑

m
∑
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i ∈NUm

∑
um

j ∈Ωm
i

1
2 ·

∑
k Ik

uj
· Sk

ui
·mk

o · (∆m
Tw,j

)2+

λI
∑

ui

∑
k

(
Ik
ui

)2
+ λS

∑
ui

∑
k

(
Sk

ui

)2
,

(16)

where ∆m
i,j = tm

ui
− tm

uj
. From the above analysis, we can see that this method only needs to solve Ik

ui

and Sk
ui

. This user-centered influence vector model has a total parameter number of 2K|V|, while the
modeling method with the user social side as the parameter needs to solve |V|2 parameters. The scale
of users in a social network is large (i.e., K� |V|). Thus, solving fewer parameters can improve the
effectiveness of this method.
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4. Experiment and Result Analysis

We carried out many experiments on a synthetic data set and the real Sina Weibo data set to test
and verify the performance of the method proposed in this paper compared to other similar methods.
The experimental results demonstrate that, compared to other methods, the TMIVM-based method
offers better performance in its information forwarding predictions, cascade scale predictions, user
topic level interaction measurements, etc.

To accurately measure the propagation probability of information among users, some calculation
methods based on mutual influence have been proposed by relevant scholars (see the discussion
of relevant research in Section 2). In this paper, the following three representative methods were
selected and compared to the proposed method in the experimental process to show its effectiveness.
These three methods are as follows:

ICEM method: This method was proposed by Saito et al. and predicts the probability of
information transmission in the independent cascade model [13]. This method considers that
information in social networks is spread based on the underlying concern’s network structure,
such that each propagation edge corresponds to a propagation probability κv, w, also known as
the interaction between users. Based on this, combined with the independent cascade model of
information dissemination, a probabilistic production model of cascade records is constructed. Finally,
the parameters are learned by the expected maximum (EM) method,

κv,w =
1∣∣∣S+v,w

∣∣∣+ ∣∣∣S−v,w

∣∣∣ ∑
s∈S+v,w

κ̂v,w

P̂
s
w

,

where S+v,w indicates that the information is diffused from user v to the cascade record set of w, while
S−v,w indicates that user v has forwarded the information but w has not.

NETRATE method: This method infers the information propagation network and propagation
probability through Survival Analysis [18] by assuming that the mutual influence between any two
users can be represented by a scalar parameter αi,j. The hazard function is constructed based on the
exponential, power-law, and Rayleigh distributions, respectively, to model the likelihood function for
the time-series cascade data of users forwarding information, and the likelihood function is maximized
to solve for αi,j by using the convexity of the function. The experimental results in [18] show that the
network structure inferred by the Rayleigh distribution and the interactions between users provides
higher accuracy and better performance. In this paper, we used the NETRATE method based on
Rayleigh distribution to carry out the comparative experiments.

LIS method: The main idea of this method is similar to that in this paper: modeling an influence
vector and a susceptibility vector for each user [20]. However, this method does not consider the
influence of information content on information dissemination. The influence vector and susceptibility
vector are implicit variables, which do not show the weights of influence or susceptibility in different
topics, instead associating a state variable with each user. In the process of information dissemination,
the state variable of the user will change. By constructing the joint probability distribution of the state
variable of the user, the influence vector and the susceptibility vector of the user can be solved.

The core idea of the TMIVM is to associate the influence vectors and susceptibility vectors of
different topics for each user in a social network, while the ICEM and NETRATE methods build scalar
parameters of mutual influence based on the relationships between users. To increase the comparability
of the methods and prevent the overfitting problem in the above methods, we decomposed the
scalar data into non-negative matrices according to the methods in [24]. For example, a certain
method found the mutual influence αi,j between ui and uj. Through the matrix factorization technique

αi,j =
∑

k ai
kbj

k = aibj, where ai and bj are the influence vectors of ui and the susceptibility vectors of
uj, respectively.
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4.1. The Synthetic Data Set

The synthetic data set in this paper refers to a directed graph generated by structural modeling
to simulate a real social network. Based on the underlying simulation structure, different types of
topic information are propagated using a simulation with preset parameters. The performance of the
proposed method and the comparison methods was evaluated according to the propagation cascade
records of the information. To verify the effectiveness of the method on user impact, susceptibility
measurement, and information dissemination, we chose the widely used Forest Fire Model and
a Kronecker Graph as the experimental objects. Through the social network analysis toolkit (SNAP) of
Stanford University, we simulated and generated two directed graphs for the simulation experiments;
namely, the Forest Fire Model, with 1024 nodes and 2084 directed edges, and the Peripheral Kronecker
Graph(core-periphery [0.9, 0.5;0.5, 0.3]), with 1024 nodes and 2655 directed edges. A directed edge in the
sampled graph structure data was considered to be a user’s attention relationship in the microblogging
system. For example, the directed edge

(
ui, uj

)
indicates that user uj follows user ui and that user uj is

a fan of ui, such the information forwarded by ui is visible to uj, which determines the direction of
information flow (to a certain extent).

The key to the implementation of this method is to use the communication content as the input
parameter of the algorithm. The topic distribution of the information content can distinguish the
mutual influence of users on different topics. We used the LDA model to construct the topic distribution
of the information and assumed that the number of topic categories of information in the composite
data was K = 6. In general, a user’s interest and preferences remain unchanged over a period of time.
Therefore, for each user, a multi-dimensional variable ϑi ∼ U(0, 1)6 was randomly sampled to obtain
the topic distribution of information released by the user at different times, where U(0, 1) refers to the
uniform distribution between 0 to 1. To simplify the calculation, we chose the symmetric Dirichlet
distribution to sample the topic distribution of information; that is, all elements in ϑi were equal.
Next, using ϑi as a super-parameter of the Dirichlet distribution, we sampled the topic distributions of
different information for different users in Dir(ϑi). In this way, we ensured that the topic information
published by the same user was related, and avoided the information published by different users
being different in their topic distribution. The information topic distribution obtained by sampling
the Dir(ϑi) function was more in line with the actual situation. As the topic carried by one piece of
information is relatively clear, it was unlikely to have a tendency on all topics and, generally, the
distribution was focused on a few topic categories. To simplify the calculation, the topic distribution
mo did not change throughout the whole process of information propagation.

Given the network structure data of the above synthetic Forest Fire Model and Kronecker Graph
Model G∗, we also needed to construct cascade record data at different scales. First, we sampled the
influence vector Ii and the susceptibility vector Si for each user ui, where Ii ∼ U[0, 1]6, Si ∼ U[0, 1]6,
and the values of different dimensions of the vector represent the influence and susceptibility of users
with respect to different topics. That is, considering the elements of the influence and susceptibility
vectors, 0 indicates that a user has no influence or is unlikely to be influenced by others on a topic,
while 1 means that a user has the most influence or is the most likely to be influenced by other users
with respect to a certain topic. Then, a user ui was randomly selected as the information publisher,
becoming the root node user in the cascade tree. The topic distribution mo of the published information
m was determined by the Dir(ϑi) sampling function. As the calculation formulas in the algorithm and
the comparison algorithm in this paper do not depend on the absolute time of the user publishing or
forwarding information, the time of the root node user publishing information was set as "0", thereby
constituting the first data item (ui, 0, ∅) in the cascade record Cm triggered by m. In the cascade
communication, root node users affect their fans, and the information transmission path is controlled
by the sampled attention relationship, while the infected fans, in turn, affect their fans, and the final
information continues to spread. Based on the known cascade information m, according to the edge
structure data and the defined parameter values in G∗, the breadth-first search method can be used to
simulate the dynamics of information diffusion. It can be seen, based on the hypothesis, that every
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new infected (forwarding information) user has only one chance to infect their fans. The time of user
infection is determined by the sampling in Formula (6). If a user is affected by multiple users and
forwards information, the synthetic data set only needs to record the first time that it is successfully
affected. The end of the cascade propagation process occurs when no new infected node appears
or there is no new node forwarding information within the specified observation time window Tw.
To simplify the calculation, the topic distribution mo was not changed throughout the whole process of
information propagation.

Using the Forest Fire Model and Kronecker Graph, according to the data sampling method
described above, we simulated three sets of information cascade data, including 1000, 2000, and
5000 cascade records. Each data set was randomly divided into five equal parts. We used the five-fold
cross-validation method to evaluate the algorithm performance; that is, four parts were used for the
training model, and the remaining part was used for the testing model. When Tw = 10, the four
different measurement models of mutual influence obtained different experimental results. Next, we
compared and analyzed these experimental results.

The user influence and susceptibility vector values were known in advance in the synthetic data
set, and the four algorithms estimated these vector values based on the sampling data set. The accuracy
of the algorithm was measured by the Mean Absolute Error (MAE). The MAE of the influence vector
was calculated as follows: 1

M
∑

u ‖Iu − I∗u‖1, where M is the total number of users, Iu is the influence
vector value of sampling, I∗u is the influence vector value estimated by the algorithm, and ‖ · ‖1 is the
1-norm of the vector. Similarly, the MAE index of the user susceptibility vector was obtained as shown
in Figure 3. It can be seen in this figure that the performance trends of the four algorithms were similar
in the different data sets. An increase of scale in the cascade data, resulted in a smaller MAE value,
and the higher the accuracy of the algorithm. This is because large-scale cascade data improve the
accuracy of algorithm parameter learning. For different data sets, the accuracy of the four algorithms
in the Forest Fire model was significantly higher than that in the Kronecker graph, which may be due
to the different structures of the underlying graph. No matter how the data were set, the MAE of
the TMIVM algorithm proposed in this paper was the smallest, and its accuracy was higher for the
inference of user influence and the susceptibility vector value, which demonstrates the effectiveness of
this method in measuring user influence and susceptibility. At the same time, the measurement of
user influence and susceptibility based on vector representations showed better performance, as the
ICEM and NETRATE methods used edges for object modeling, as well as ultimately needing matrix
decomposition technology to obtain the vector representations of user influence and susceptibility,
thus reducing their accuracy. The results in Figure 3 also indirectly reflect the fact that it is difficult
to quantitatively infer the influence and susceptibility of users. In this experiment, the MAE of the
TMIVM algorithm, with the best performance, only reached about 0.3.

The most direct application of this method is to predict the forwarding behavior of specific
information to accurately measure the influence and susceptibility of users. The application scenario,
in this paper, involves calculating the probability of whether a user will forward information according
to Formula (11), given time t and the visible set of infected users Ω. We know the specific time when
the user forwards the information; thus, the performance of the algorithm could be evaluated with
this data as a reference. This is a typical classification problem. The probability of users forwarding
information was successfully obtained, and the receiver operating characteristic curve (ROC) was used
to measure the performance of the classifiers constructed by different algorithms, in order to indirectly
explore the accuracy of user influence and susceptibility measurement. Figure 4 shows the ROC curves
of the algorithms in the cascade record with a data scale of 5000. The abscissa is the false positive rate
(FPR), that is, the proportion of users who are judged to forward information but actually have forward
no information among all infected users. The ordinate is the true rate (TPR), which is the proportion of
users who are judged to forward information who actually forward information among all infected
users. The closer the ROC curve is to the upper left corner, the better the performance of the classifier.
It can be seen that the TMIVM provided the best performance: When the FPR was 0, its TPR value
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could reach more than 54%. The performance of the LIS method was second: Its TPR value could
exceed 33% when the FPR is equal to 0. ICEM and NETRATE were the worst, as they did not consider
the topic of information and could not accurately predict the behavior of users forwarding information.
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To explain the performance of user influence and susceptibility in forwarding prediction
applications in detail, we calculated the AUC values and standard deviations of the four algorithms
in different data sets, as shown in Tables 2 and 3. The AUC is defined as the area under the ROC
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curve. The larger the value, the better the performance of the algorithm. In the 1000-scale data,
the accuracy of the algorithm to predict user forwarding behavior was not high, and the standard
deviation was also large because the amount of training data was small. Therefore, the accuracy of
the model suffered. As the data size increased, the algorithm parameters were better calculated, the
forwarding prediction became more accurate, and the standard deviation became smaller. As the
LIS and TMIVM methods both consider user influence and susceptibility, the AUC values of these
two methods were relatively high, and their accuracy was higher. Information content can directly
affect a user’s forwarding behavior. Compared to the LIS method, using the topic hidden variable
mechanism, the TMIVM method directly considers the information content in terms of user forwarding
behavior predictions. Therefore, the AUC value in the forest fire model was increased by more than
10% in the proposed method. More importantly, the variance of the AUC value under the proposed
method was the smallest in the different graph models and data sets at different scales, indicating that
it was more stable.

Table 2. Predicted AUC values in the forest fire model.

Cascade Scale
Comparison Method

ICEM NETRATE LIS TMIVM

1000 0.539 ± 0.028 0.561 ± 0.024 0.612 ± 0.021 0.685 ± 0.015
2000 0.558 ± 0.033 0.597 ± 0.037 0.651 ± 0.017 0.734 ± 0.014
5000 0.603 ± 0.031 0.647 ± 0.018 0.715 ± 0.015 0.788 ± 0.008

Table 3. Predicted AUC values in the Kronecker graph model.

Cascade Scale
Comparison Method

ICEM NETRATE LIS TMIVM

1000 0.525 ± 0.045 0.554 ± 0.031 0.568 ± 0.027 0.653 ± 0.019
2000 0.547 ± 0.041 0.589 ± 0.026 0.617 ± 0.028 0.699 ± 0.012
5000 0.596 ± 0.039 0.638 ± 0.021 0.679 ± 0.022 0.741 ± 0.010

In addition, we predicted the scale of the information cascade with different topic distributions.
To simplify the experimental method, for each piece of information in the test data set, the original
information publisher (root node user) was regarded as the initial infected user. The propagation
probability of information among users was calculated by Formula (5); then, the propagation range of
the information was simulated based on the independent cascade propagation model. Finally, the
number of infected users was calculated. We analyzed the scale of communication according to topic
categories, to reflect the impact of topic distribution on information dissemination in social networks.
For each piece of information, the first three topic categories with the highest topic inclination were
taken as the belonging topic categories in this experiment. The prediction results of the dissemination
scale of this information were then considered as the experimental examples of these three belonging
topic categories. This process not only enriched the number of experimental samples of the topic
categories, but also conformed to the actual situation. That is, each piece of information could not
cover all topic categories. By setting the first three topic categories, the test results of each piece of
information were mapped to the three belonging topic categories.

The experimental results of the four algorithms in the forest fire model with a cascading scale of
5000 are shown in Figure 5. Here, in different topics, the prediction accuracy of LIS and TMIVM, based
on vector representations, was higher and more stable. The MAPE value of the LIS method was less
than the value of the six topics. The MAPE values were all around 0.2, indicating that the method of
fusing topic distribution can predict the scale of information dissemination more effectively. The ICEM
and NETRATE methods not only offered low prediction accuracy but also great performance differences
under different topics. As these methods do not distinguish the topic attributes of information, their
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accuracy is not high when predicting the cascade size. In short, the mutual influence measurement
model proposed in this paper can be effectively used to estimate the propagation probability of
information in social networks. Further integration of the topic attributes of information could improve
the accuracy of the model in cascading scale prediction.
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Figure 6 shows the computational efficiency of the algorithm for solving user influence and
susceptibility in the forest fire model. The NETRATE algorithm only needed to be run once for each node
to obtain the influence value between all nodes, and the other three methods are iterative algorithms.
Therefore, the former did not participate in the calculation efficiency comparison. This time is the
average time required for the core iteration steps of the algorithm, excluding the time required for data
preprocessing and the subsequent matrix decomposition. It can be seen that the iterative calculation
efficiency of the ICEM method was more efficient. This is because there were only 2655 edges in the
Kronecker graph model; therefore, the algorithm only needed to solve 2655 parameters, and each E-M
estimation does not cost much time. The LIS and TMIVM methods needed to solve 2048 6-dimensional
vector parameters, each iteration required solving the gradient function and step size update, which
took more time. However, the results of the LIS and TMIVM methods were not subject to matrix
factorization. In contrast, the TMIVM method was the least efficient, as it uses the Adagrad method to
determine the learning rate; therefore, it took slightly more time than the LIS method.Entropy 2020, 22, x FOR PEER REVIEW 14 of 18 
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4.2. Real Data Set

The real data set in this paper comes from Sina Weibo, the largest microblog service platform
in China. The collection method mainly involved selecting 100 users as seed users to crawl microblog
data according to their activity on the platform. Finally, we obtained a real data set of 174,206 users and
23,846,644 microblogs, including 9,234,475 original microblogs. Microblog data include the publishing
time, user information, forwarding content, original blog information, etc.
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Through heuristic data filtering methods, we obtained a relatively complete cascading data set on
the real Weibo platform, involving a total of 10,794 users and 2,949,798 pieces of Weibo data, as shown
in Table 4. Obviously, in the real data set, the number of users was much smaller than the number of
relationships formed between users; on average, each original Weibo user is forwarded 50.4 times, and
the largest cascade record triggered the forwarding behavior of 1158 users. During the experiment, the
data in Table 4 were randomly divided into 10 parts, and the performance of all algorithms was tested
using the 10-fold cross-validation method. During the experiment, the method proposed in this paper
used the topic features of the Weibo questions. Therefore, the textual content of 57,347 original Weibo
posts was calculated using the classic LDA model [25]. At this point, the topic category parameter was
set to K = 20.

Table 4. Description of the microblog data set.

Attribute Description Statistics

User 10,794
Number of following relationships 341,652

Original microblogs 57,347
Retweets 2,892,451

Compared to synthetic data, in real data sets, because the user’s influence and susceptibility
cannot be determined in advance, we directly used the forwarding cascade prediction of information
to test the performance of the algorithm; that is, the known social network G = (V, E), V = 10, 794,
| E | = 341, 794, and the original Weibo m forwarding record before time t—the algorithm needed to
speculate the probability of a user forwarding m at time t, where t is the time when the user actually
forwarded the information observed in the real data set. Similarly, the ROC curve was used to compare
the performance of different algorithms, as shown in Figure 7.
Entropy 2020, 22, x FOR PEER REVIEW 15 of 18 

 

 

Figure 7. Information forwarding cascade prediction: ROC curve. 

Compared to Figure 4, for the cascade prediction problem of Weibo, the results of the four 

algorithms in the Weibo data set were better than those in the synthetic data set. This is because the 

cascade propagation dynamics of information in Sina Weibo are more in line with the assumptions 

of various methods. For example, users will publish microblogs with consistent topic distributions 

according to their own interests. Users will only pay attention to other users who are interested, and 

the information propagation path will thus be more reasonable. For the TMIVM method, when the 

true rate reached 80%, its false-positive rate was only about 8%, indicating that the method has a 

strong ability to discriminate user forwarding behavior. 

Figure 8 shows the ability of the four algorithms to predict the cascade of information in the 

Weibo data set. The smaller the MAPE value is, the better the performance of the method in 

predicting the cascade size. It can be seen from the figure that the MAPE values of all algorithms were 

above 40%. Compared to the synthetic data set, the scale of the microblog cascade is uneven, which 

introduces challenges for accurate predictions. The relationship of concern between users is not static 

and may change at any time, which makes it difficult to capture the underlying structure of 

information dissemination and can easily affect the simulation of information dissemination. In 

general, the LIS and TMIVM methods, based on user influence and susceptibility, were superior to 

the ICEM and NETRATE methods in modeling the probability of edge propagation between users. 

In addition, the latter two methods were also poorly documented, as they over-fit the cascading data 

set, resulting in the inaccurate calculation of propagation probabilities between users. This reflects 

the rationality of using mutual influence to calculate the propagation probability of information 

between users. 

 

Figure 8. Prediction of an intermediate scale real data set. 

According to the implementation code of the method in the synthetic data set, under the same 

running environment, we tested the running times of the different methods using the real data set. 

For the three iterative algorithms, the time needed to execute a single iteration was tested, as shown 

Figure 7. Information forwarding cascade prediction: ROC curve.

Compared to Figure 4, for the cascade prediction problem of Weibo, the results of the four
algorithms in the Weibo data set were better than those in the synthetic data set. This is because the
cascade propagation dynamics of information in Sina Weibo are more in line with the assumptions
of various methods. For example, users will publish microblogs with consistent topic distributions
according to their own interests. Users will only pay attention to other users who are interested, and
the information propagation path will thus be more reasonable. For the TMIVM method, when the
true rate reached 80%, its false-positive rate was only about 8%, indicating that the method has a strong
ability to discriminate user forwarding behavior.

Figure 8 shows the ability of the four algorithms to predict the cascade of information in the Weibo
data set. The smaller the MAPE value is, the better the performance of the method in predicting the
cascade size. It can be seen from the figure that the MAPE values of all algorithms were above 40%.
Compared to the synthetic data set, the scale of the microblog cascade is uneven, which introduces
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challenges for accurate predictions. The relationship of concern between users is not static and
may change at any time, which makes it difficult to capture the underlying structure of information
dissemination and can easily affect the simulation of information dissemination. In general, the LIS
and TMIVM methods, based on user influence and susceptibility, were superior to the ICEM and
NETRATE methods in modeling the probability of edge propagation between users. In addition, the
latter two methods were also poorly documented, as they over-fit the cascading data set, resulting
in the inaccurate calculation of propagation probabilities between users. This reflects the rationality of
using mutual influence to calculate the propagation probability of information between users.
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According to the implementation code of the method in the synthetic data set, under the same
running environment, we tested the running times of the different methods using the real data set.
For the three iterative algorithms, the time needed to execute a single iteration was tested, as shown
in Figure 9. Unlike the results in Figure 6, the ICEM method took the most time for one iteration,
while the LIS and TMIVM methods took less time. This is because, in each iteration, the ICEM
method needed to calculate 341,652 parameters, while the other two methods only needed to calculate
21,588 parameters. When the number of users in the social network data set increases, the number of
relationships between users increases exponentially, and the computational advantage of the proposed
method becomes increasingly more obvious.
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5. Conclusions

In this paper, we proposed a method to calculate the mutual influence among users at the
topic level, mainly by establishing an influence vector and a susceptibility vector for each user.
The dimension of the vector represents the different topic categories. The topic related to the fact that
a mutual influence can be simply obtained by multiplying the influence vector elements with the
susceptibility vector elements of the corresponding dimension. At the same time, combined with the
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topic distribution of information, we constructed a method to calculate the propagation probability of
specific information in social networks. Then, we used Survival Analysis to establish the likelihood
function of cascade records from the perspective of users. Finally, we used the classic gradient descent
method to optimize the solution. Compared to existing modeling methods, which take the relationship
edge between users as their parameters, the efficiency of this method in parameter training is obvious.
Furthermore, the method for modeling the relationships between users considers the communication
behavior of information among users to be mutually independent, which is unreasonable since
all the communication paths related to the same user have a certain dependence. The vectorized
influence and susceptibility model constructed by TMIVM can express this association when calculating
the propagation probability, thereby improving the accuracy of information dissemination analysis.
The topic carried by the information is a direct factor in promoting the social behavior or discussion of
users. The main feature of this method is its ability to integrate the content analysis of informational
text, which can effectively capture the differences of information communication in different topics,
making the cascade communication analysis more realistic. The calculation of propagation probability
based on a vector representation of influence and susceptibility is an important application of the
quantitative analysis of mutual influence in the field of communication. It can effectively overcome the
over-fitting problem, as well as help in the dynamic analysis of information transmission. The large
number of experimental results using the synthetic data set and the real Sina Weibo data set show
that the performance of this method is better than that of other comparative methods for propagation
path prediction, user forwarding behavior analysis, propagation cascade size estimation, etc., thereby
demonstrating the effectiveness of this method. In terms of computational efficiency, with an increase
in the number of users and the number of relationships between users in the social network data
set, the method presented in this paper takes less time for a single iteration, thus highlighting its
computational efficiency.
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