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Abstract: Recent literature shows that many testing procedures used to evaluate asset pricing 
models result in spurious rejection probabilities. Model misspecification, the strong factor structure 
of test assets, or skewed test statistics largely explain this. In this paper we use the relative entropy 
of pricing kernels to provide an alternative framework for testing asset pricing models. Building on 
the fact that the law of one price guarantees the existence of a valid pricing kernel, we study the 
relationship between the mean-variance efficiency of a model’s factor-mimicking portfolio, as 
measured by the cross-sectional generalized least squares (GLS) 𝑅  statistic, and the relative 
entropy of the pricing kernel, as determined by the Kullback–Leibler divergence. In this regard, we 
suggest an entropy-based decomposition that accurately captures the divergence between the 
factor-mimicking portfolio and the minimum-variance pricing kernel resulting from the Hansen-
Jagannathan bound. Our results show that, although GLS 𝑅  statistics and relative entropy are 
strongly correlated, the relative entropy approach allows us to explicitly decompose the explanatory 
power of the model into two components, namely, the relative entropy of the pricing kernel and 
that corresponding to its correlation with asset returns. This makes the relative entropy a versatile 
tool for designing robust tests in asset pricing. 

Keywords: pricing kernel; factor-mimicking portfolio; relative entropy; Kullback-Leibler 
divergence; Hansen-Jagannathan bound; CAPM; Fama-French model; consumption-CAPM 

 

1. Introduction 

Research on asset pricing encompasses a wide range of theories and models that seek to identify 
the fundamental risk factors that determine asset prices from a broad perspective. Following [1] (p. 
xiii), the asset pricing theory tries to understand the prices of claims to uncertain payments by 
accounting for both the delay in time and the risk of future payments. Since asset prices in conjunction 
with expected payoffs predetermine expected returns, a large part of the asset pricing literature 
focuses on explaining both the time-series evolution and the cross-sectional properties of expected 
asset returns, that is, the variation of expected returns across time and across assets, respectively. This 
makes asset pricing models extremely useful tools in very diverse areas, such as capital budgeting, 
interest rate forecasting, financial planning, accounting, or regulation [2]. 

While the literature on the topic has generally analyzed a wide variety of assets, ranging from 
fixed-income securities to derivatives, and even non-publicly traded assets, research on the formation 
of stock prices has traditionally raised great interest, given its direct applicability for developing new 
trading strategies in a market that has historically provided returns significantly higher than others, 
such as the bond market [3] (p. xix). In this regard, although most empirical work on asset pricing 
has typically used single-factor or multifactor models to test the validity of different asset pricing 
models, currently the stochastic discount factor (hereafter, SDF) or pricing kernel model is the 
dominant approach in contemporary asset pricing research, not just for stocks but for any asset class 
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[4] (p. 83). This model assumes that the price of every asset is given by the expectation conditional on 
time-t information of the product of the pricing kernel and the asset payoff. In this framework, the 
pricing kernel represents the ratio of price to probability for all states of nature or marginal rate of 
substitution, meaning that it can be perfectly used as a valid risk factor in a single-factor asset pricing 
model, in order to determine expected returns [1] (pp. 100–101). 

Regarding model evaluation techniques, most cross-sectional model testing procedures focus on 
studying the size and/or variability of pricing errors, which are determined for each asset as the 
difference between the expected return—i.e., the average return in sample—and the result provided 
by the model. Such testing procedures usually come in the form of a quadratic test statistic 
determined as a function of pricing errors, as is the case of the J-test for overidentifying restrictions 
[5], the Gibbons-Ross-Shanken (GRS) test statistic [6], the Hansen-Jagannathan distance [7], or the 
cross-sectional 𝑅  statistic. However, recent evidence highlights several weaknesses for these testing 
procedures. Reference [1] (pp. 215–216) shows that large standard errors rather than small pricing 
errors can lead the J-test to under-reject asset pricing models. The GRS test statistic and the Hansen-
Jagannathan distance share the same problem. Similarly, the ordinary least squares (OLS) 𝑅  statistic 
usually constitutes a low hurdle in examining model success, albeit the generalized least squares 
(GLS) 𝑅  statistic allows for a much more rigorous model evaluation [8]. 

In this paper, we adapt the approach pioneered by [9], suggesting two entropy-based indicators 
that are strongly correlated with asset pricing model performance, in order to overcome the problems 
tied to classic model evaluation tests in cross-sectional analysis. This approach may constitute a 
starting point for developing new testing procedures useful in asset pricing, exploiting the high 
potential of non-quadratic distances in model assessment [10]. Building on the fact that under very 
weak conditions imposed on the behavior of financial markets—in particular, the law of one price—
there is at least a valid pricing kernel that prices all assets perfectly in sample [11–13], we use the 
minimum-variance pricing kernel, as defined by [14] (hereafter, HJ pricing kernel or Hansen-
Jagannathan SDF), to split the explanatory power of any asset pricing model into two components, 
namely: (i) the relative entropy between the HJ pricing kernel and the model’s SDF-mimicking 
portfolio, and (ii) the relative entropy between the correlation of asset payoffs with the HJ pricing 
kernel and the correlation of asset payoffs with the model’s SDF-mimicking portfolio. For this 
purpose, we use the relative entropy resulting from the Kullback–Leibler information criterion. In 
order to study the relationship between our approach and a robust model evaluation test statistic, we 
explicitly relate the results of our model to those provided by the GLS 𝑅  statistic, as it constitutes a 
powerful measure of model performance [8]. 

This paper contributes to the literature that deals with specific issues on model evaluation 
techniques used in asset pricing [8,15,16], and to the literature that relates entropy to asset pricing 
theory [9,17–20]. To the best of our knowledge, this is the first study to explicitly decompose the 
relative entropy of pricing kernels into the specific components referred to above, relating them to 
the GLS 𝑅  statistic using a factor-mimicking portfolio approach. 

Regarding issues concerning model evaluation tests in asset pricing, [8] provide a 
comprehensive analysis of the subject. The authors emphasize three main drawbacks of these 
methodologies. First, test assets that are typically used in asset pricing—namely, portfolios of stocks 
sorted by size and book-to-market equity (hereafter, BE/ME)—exhibit a strong factor structure that 
makes the models perform artificially well in sample when model factors are correlated with size and 
BE/ME portfolios but not with the residuals of the size-BE/ME portfolios. Second, while the cross-
sectional OLS 𝑅  statistic is one of the most widely used tools for evaluating model performance, it 
has little connection to the factors’ proximity to the minimum-variance frontier in the mean-variance 
space of returns. This is a critical issue, since any return on the minimum-variance frontier carries all 
pricing information about payoffs in the payoff space, providing zero pricing errors when used as a 
factor in a single-factor model [1] (p. 19). As noted above, [8] argue that this problem is significantly 
mitigated by the cross-sectional GLS 𝑅  statistic. Following [21], the authors highlight that the GLS 𝑅  statistic is entirely determined by the factor’s proximity to the minimum-variance frontier, which 
makes it more suitable than the OLS 𝑅  statistic to evaluate the performance of asset pricing models. 
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Third, [8] explain that asset pricing test statistics are frequently biased and skewed, leading to 
sampling issues that exacerbate the problems mentioned above and reduce the reliability of p-values 
and standard errors. 

On a purely economic basis, it is worth mentioning that the vast majority of factor asset pricing 
models constitute special cases of the SDF model. Indeed, any single-factor or multifactor asset 
pricing model can be easily transformed into a SDF model simply by carrying out a linear 
transformation on model factors [1] (pp. 106–108). In fact, it is possible to determine a linear 
combination of test assets—that is, an asset portfolio—which exactly replicates the results provided 
by the pricing kernel. This factor-mimicking portfolio constitutes a useful tool in different situations, 
for example, when there is some measurement error in the set of economic variables driving the 
pricing kernel [1] (pp. 125–126). In this paper, we use that factor-mimicking portfolio to synthesize 
all model factors into one single explanatory variable, in order to determine its relative entropy with 
respect to the HJ pricing kernel. Importantly, the HJ pricing kernel is the minimum-variance 
mimicking portfolio that allows the SDF model to price perfectly all asset payoffs in the payoff space 
[14], among those resulting from the linear combination of a constant—the risk-free rate—and N risky 
payoffs. 

Our results show that our entropy-based approach allows sorting factor-based asset pricing 
models in a similar manner to most model evaluation statistics. Specifically, using different sets of 
portfolios comprising all stocks traded in the Australian market, for the period from 1992 to 2018, we 
show that our entropy decomposition is strongly correlated with the GLS 𝑅  statistic, for some of 
the most prominent asset pricing models in the literature, namely, the capital asset pricing model 
(CAPM) [22–24], the consumption-CAPM (CCAPM) [25,26] and the Fama-French three- and five-
factor models [27,28]. Indeed, our results suggest that the entropy of the pricing kernel, as defined 
above, explains up to 78% of the variability of the GLS 𝑅  statistic. Our results also reveal that, 
among the components into which we divide the explanatory power of the model, the relative 
entropy of the correlation between pricing kernels and asset payoffs is the most strongly correlated 
with GLS 𝑅  statistics, reaching a correlation of up to 72% in absolute terms. Interestingly, that 
component accurately accounts for the coherence of pricing kernels over time, relative to the HJ 
pricing kernel. 

Hereafter, the paper proceeds as follows. The next section defines the models and methods 
under analysis. The section thereafter describes the data and the results. This is followed by a section 
that discusses the results. The last section concludes the paper. 

2. Models and Methods 

In this section we first describe the general mechanics of the pricing kernel model and relate it 
to factor models, as they constitute the most widely used representations for estimating asset pricing 
models. Subsequently, we describe the procedure that allows us to switch from a factor-based asset 
pricing model to a pricing kernel model, using the SDF-mimicking portfolio for that purpose. This 
allows us to comprise all the factors of the model into a single explanatory variable—the SDF-
mimicking portfolio—and standardize the data frequency for all models under consideration, which 
is essential given the presence of low-frequency series—e.g., consumption data—among the factors 
considered. Finally, we use the HJ pricing kernel, which exactly satisfies the pricing function by 
construction, to suggest an entropy decomposition that is appropriate for evaluating the empirical 
performance of asset pricing models. 

Assuming a complete market, where there is the same number of securities as states of nature, 
the law of one price—that is, the fact that every asset that provides the same payoff as another has 
the same price—guarantees that there is one and only one pricing kernel in the payoff space that 
allows all assets to be priced with no error term left in the pricing function [11–13]. Accordingly, the 
following pricing function is exactly satisfied: 𝐩𝐭 = 𝐄𝐭(𝑚 𝐱𝐭 𝟏), (1)
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where 𝐩𝐭 is the N-dimensional vector of asset prices at time t, 𝐄𝐭(·) is the expectation conditional on 
time-t information, 𝑚  is the pricing kernel, and 𝐱𝐭 𝟏 is the N-dimensional vector of asset payoffs. 
Particularizing Expression (1) to asset returns, that is, investments with price one and payoff 𝑅 : 𝐄𝐭(𝑚 𝐑𝐭 𝟏) = 𝟏, (2)

where 𝐑𝐭 𝟏 is the N-dimensional vector of asset returns. Defining an excess return as the difference 
between returns, that is, a zero-cost portfolio consisting in short-selling one security to invest the 
proceeds in another security, then every excess return satisfies: 𝐄𝐭(𝑚 𝐑𝐭 𝟏𝐞 ) = 𝟎, (3)

where 𝐑𝐭 𝟏𝐞  is the N-dimensional vector of excess returns in the payoff space. 
Market completeness, together with the law of one price, ensures the existence of a single pricing 

kernel that satisfies Expression (1) and that lies in the payoff space. Importantly, the law of one price 
still guarantees the existence of a single valid pricing kernel in the payoff space when the market is 
incomplete—that is, when there are fewer securities than states of nature—but it does no guarantee 
its uniqueness. Indeed, in an incomplete market there are potentially infinite pricing kernels that 
satisfy Expression (1) [1] (pp. 66–67). Accordingly, we can particularize Expression (3) as follows, for 
the case of incomplete markets: 𝐄𝐭(𝑥∗ 𝐑𝐭 𝟏𝐞 ) = 𝟎, (4)

with 𝑥∗ ∈ 𝑚  denoting the single valid pricing kernel in the payoff space. Assuming that 𝑚  
is linear in a K-dimensional vector of factors 𝐟 (not necessarily in the payoff space), the pricing kernel 
can be written as follows: 𝑚 = 𝑎 + 𝐛𝐭𝐟𝐭 𝟏, (5)

where 𝑎  and 𝐛𝐭  are parameters. As noted above, most factor asset pricing models can be 
considered special cases of the SDF model. Since most empirical work in asset pricing uses beta 
models rather than the pricing kernel, the Equivalence Theorem allows us to transform Expression 
(3) into a beta model straightforwardly [11,13,29,30]. Specifically, writing second moments in terms 
of covariances: 𝐄𝐭(𝑚 𝐑𝐭 𝟏𝐞 ) = 𝐜𝐨𝐯𝐭(𝑚 , 𝐑𝐭 𝟏𝐞 ) + 𝐸 (𝑚 )𝐄𝐭(𝐑𝐭 𝟏𝐞 ) = 0, (6)

or equivalently: 𝐄𝐭(𝐑𝐭 𝟏𝐞 ) = − 𝐜𝐨𝐯𝐭(𝑚 , 𝐑𝐭 𝟏𝐞 )𝐸 (𝑚 ) , (7)

where expected excess returns are largely determined by the conditional covariance between the 
pricing kernel and excess returns. Multiplying and dividing Expression (7) by 𝜎 (𝑚 ): 𝐄𝐭(𝐑𝐭 𝟏𝐞 ) = 𝐜𝐨𝐯𝐭 ,𝐑𝐭 𝟏𝐞

σ ( ) − σ ( )( ) = β𝐭, ,𝐑𝐞λ , , (8)

where λ ,  can be interpreted as the price of risk and β𝐭, ,𝐑𝐞  as the risk loadings. Similarly, 
Expression (5) allows us to rewrite Expression (8) as follows: 𝐄𝐭(𝐑𝐭 𝟏𝐞 ) = β𝐭,𝐟,𝐑𝐞λ𝐭,𝐟 (9)

Although conditioning information has become increasingly popular in empirical research on 
asset pricing [31–35], most classic regression tests use unconditional rather than conditional 
moments. Ignoring conditioning information for the sake of simplicity, the law of iterated 
expectations allows us to transform the conditional SDF model into its unconditional counterpart, 
naturally suppressing the t subscripts in Expressions (3) and (5): 𝐄(𝑚 𝐑𝐭 𝟏𝐞 ) = 𝟎, (10)𝑚 = 𝑎 + 𝐛 𝐟𝐭 𝟏 (11)
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Similarly, we can rewrite Expression (9) as follows: 𝐄(𝐑𝐭 𝟏𝐞 ) = β𝐟,𝐑𝐞λ𝐟, (12)

where β𝐟,𝐑𝐞 is the 𝑁 × 𝐾 matrix of slopes of the time-series regressions of excess returns on factors 𝐟, and λ𝐟 is the vector of slopes of the cross-sectional regression of expected returns on β𝐟,𝐑𝐞. As 
before, λ𝐟 can be interpreted as the prices of risk or risk premiums on factors. 

Remarkably, most unconditional factor-based asset pricing models can be written in terms of 
Expression (12) by simply particularizing the vector of factors 𝐟 to specific explanatory variables. In 
particular, the CAPM assumes that 𝐟 = RMRF, where RMRF is the return of the value-weighted 
market portfolio minus the risk-free rate, while the Fama-French three- and five-factor models 
assume that 𝐟 = (RMRF SMB HML) and 𝐟 = (RMRF SMB HML RMW CMA), respectively, where SMB 
is the excess return of small minus big market value firms, HML is the excess return of the high minus 
low BE/ME firms, RMW is the excess return of the most profitable stocks minus the least profitable, 
and CMA is the excess return of firms that invest conservatively minus those that invest aggressively. 
Similarly, the CCAPM assumes that 𝐟 = Δ𝐶, where Δ𝐶 is the growth in per capita consumption in 
nondurables and services. 

Once the coefficients of Expression (12) are estimated, Expressions (10) and (11) allow 
determining 𝑎 and 𝐛 as a function of λ𝐅 and model factors. Importantly, when the payoff space 
comprises solely excess returns, the pricing function does not identify the mean of the pricing kernel 
and any arbitrary value for the coefficient 𝑎  will produce exactly the same fitted values. 
Consequently, in order to normalize the pricing kernel, we follow the common practice of setting 𝑎 
to one, in which case [1] (p. 107): 𝑎 = 1 (13)𝐛 = −𝐜𝐨𝐯(𝐟𝐭 𝟏, 𝐟𝐭 𝟏) 𝟏λ𝐅 (14)

where 𝐟 is the vector of demeaned factors. This calculation ensures that 𝐸(𝑚 ) = 1, which is 
convenient to allow comparability with the HJ pricing kernel, as defined below. 

At this point, it is important to underline that, while the CAPM and the Fama-French models 
use traded factors as explanatory variables, the CCAPM uses a non-traded factor—per capita 
consumption growth—as a key determinant of asset prices. Since consumption data is generally 
reported both on an annual and quarterly basis, Expression (12) does not allow the CCAPM to be 
used at monthly or higher frequencies. However, this drawback can be overcome by determining the 
projection of the pricing kernel on the payoff space, that is, the SDF-mimicking portfolio 𝑥∗, which 
carries exactly the same pricing information as the pricing kernel. Therefore, following [1] (p. 67): 𝑚 = proj 𝑚 |𝑅 + ε , (15)

where proj 𝑚 |𝑅  is the mimicking portfolio of the pricing kernel, 𝑅  is the space of excess 
returns, and ε  is the error. Expression (15) can be rewritten as the regression of 𝑚  on the set 
of excess returns used as test assets. Accordingly: 𝑚 = 𝐰 𝐑𝐭 𝟏𝐞 + ε , (16)

where 𝐰 is the N-dimensional vector of regression coefficients or portfolio weights for 𝑥∗, so that: 𝑥∗ = 𝐰 𝐑𝐭 𝟏𝐞  (17)

Once determined 𝑥∗, Expression (4) allows us to estimate expected excess returns under the 
same conditions as Expression (3), but at a frequency equal to that of market data [1] (pp. 125–126). 

Regardless of the performance of any specific asset pricing model, it is always possible to 
determine an ad hoc SDF-mimicking portfolio which prices assets by construction. That mimicking 
portfolio shall leave no error term in the pricing function when used in sample, although it will 
perform poorly out of sample, making it useless for explaining or forecasting excess returns [1] (pp. 
123–125). In any case, the relative entropy between the ad hoc SDF-mimicking portfolio and any other 
pricing kernel allows us to explicitly determine the divergence between both discount factors, which 
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makes the relative entropy an accurate tool to evaluate asset pricing model performance. Following 
[9], we set the ad hoc SDF-mimicking portfolio to the HJ pricing kernel, which is given by this 
expression [14]: 𝑚∗ = 1𝑅 − 1𝑅 𝐄(𝐑𝐭 𝟏𝐞 ) Σ 𝟏 𝐑𝐭 𝟏𝐞 − 𝐄(𝐑𝐭 𝟏𝐞 ) , (18)

where 𝑚∗  is the HJ pricing kernel, 𝑅  is the risk-free rate, and Σ is the covariance matrix of 
excess returns. Remarkably, when the payoff space consists solely of excess returns, the risk-free rate 
is meaningless and can be arbitrarily chosen. 

Although research on variance and entropy bounds on the discount factor focuses largely on the 
distribution of the pricing kernel [9,14,18], it is worth noting that the ability of an asset pricing model 
to correctly price excess returns depends both on the randomness of the SDF and its correlation with 
excess returns. Indeed, given that 𝑅 = 1 𝐸 (𝑚 )⁄ , according to Expression (7) every single excess 
return satisfies: 𝐸 (𝑅 ) = −𝑅 , ρ , , σ (𝑚 )σ (𝑅 ), (19)

where ρ , ,  is the correlation at time t between the pricing kernel and the excess return. Expression 
(19) shows that the Sharpe ratio of excess returns 𝐸 (𝑅 ) σ (𝑅 )⁄  is entirely determined by ρ , ,  
and σ (𝑚 ), which means that our model evaluation procedure must consider both estimates. 
Accordingly, we use the Kullback-Leibler divergence to define the following performance indicators: 𝐼 ∗(π || θ) = log(dπ dθ⁄ ) dπ, (20)

𝐼ρ υ || µ = log dυ dµ⁄ dυ, (21)

where 𝐼 ∗  and 𝐼ρ  are the Kullback-Leibler divergences for the pricing kernel and the correlation 
between the pricing kernel and excess returns, respectively, π and θ  are the state probability 
measures for 𝑚∗ and 𝑥∗, respectively, and υ and µ are the state probability measures for ρ ∗,  and ρ ∗, , respectively. 

In the next section we use Expression (12) to estimate all models under consideration and then 
determine their implicit pricing kernels using Expressions (11), (13) and (14). This allows us to 
estimate the SDF-mimicking portfolio for each model using Expressions (16) and (17), in order to 
switch all calculations to a monthly basis. We use the HJ pricing kernel, as determined by Expression 
(18), to estimate the relative entropy for both the pricing kernels and their correlations with excess 
returns, according to Expressions (20) and (21). Finally, we perform a regression and correlation 
analysis aimed at analyzing the relationship of 𝐼 ∗ and 𝐼ρ with the cross-sectional GLS 𝑅  statistic 
as a proxy for the relative efficiency of the model’s factor-mimicking portfolio [8]. 

3. Results 

As noted above, in this section we study the potential of our entropy-based decomposition, as 
defined in the previous section, to evaluate the performance of some classic asset pricing models, 
namely, the CCAPM, the CAPM, and the Fama-French three- and five-factor models. Additionally, 
we analyze the consistency between the results provided by the model and the GLS 𝑅  statistic of 
the cross-sectional regression of expected excess returns on betas. 

We evaluate our methodology on three sets of stock portfolios comprising all stocks traded in 
the Australian Securities Exchange, for the period from July 1992 to June 2018. We compile all market 
data from the Datastream database, on a monthly basis. Specifically, we compile the following data 
series: (i) total return index (RI series), (ii) market value (MV series), (iii) market-to-book equity (PTBV 
series), (iv) price-to-cash flow ratio (PC series), (v) primary SIC codes, and (vi) tax rate (WC08346 
series). We use the rules suggested by [36] for excluding non-common equity securities from 
Datastream data. We use the three-month interest rate of the Treasury Bill for Australia, as provided 
by the OECD, as a proxy for the risk-free rate. 
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Regarding the specific portfolios that constitute our test assets, we follow the recommendations 
suggested by [8] and [37], combining portfolios sorted by different market anomalies and industry 
portfolios to mitigate the factor structure of test assets. Specifically, we generate the following 
portfolios: (i) 25 portfolios sorted by size and BE/ME (hereafter, size-BE/ME portfolios), (ii) 20 
portfolios sorted by size and price-to-cash flow ratio (hereafter, size-P/CF portfolios), and (iii) 41 
industry portfolios, sorted by two-digit SIC codes. We use the [27] methodology to form all portfolios. 
Additionally, we follow [27] and [28] methodology to determine RMRF, SMB, HML, RMW and CMA 
market factors. All data series are available in the Supplementary Material. 

We compile all macroeconomic data series from the OECD Statistics section. Regarding 
consumption data, although the CCAPM requires using the per capita consumption growth in 
nondurables and services as a factor, the limited availability of those series for Australia in the OECD 
Statistics section hinders the use of that variable. In any case, [35] show that total consumption 
outperforms consumption in nondurables and services when used as an explanatory variable in the 
CCAPM. Accordingly, we estimate consumption growth using quarterly final consumption data in 
national currency, non-seasonally adjusted series (“Private final consumption expenditure” series, 
CQR measure). We use the population series for Australia, as provided by the OECD, to determine 
per capita consumption growth. 

Table 1 shows the main summary statistics for portfolios and factors under consideration, while 
Table 2 shows the correlations between our test assets and the explanatory variables. Panels A and B 
in Table 1 show that the size effect—that is, the fact those stocks with lower market equity provide 
higher returns, and vice versa—works as expected, with portfolios in first size quintiles providing 
significantly higher returns. However, as shown in Panel A, the value effect—that is, the fact those 
stocks with higher BE/ME provide higher returns, and vice versa–exhibits a much more diffuse 
pattern, except for portfolios comprising the largest companies, which provide higher returns as the 
BE/ME ratio increases. Nevertheless, these counterintuitive results for the BE/ME portfolios are 
shared with other studies in the area [38]. Similarly, Panel B shows that P/CF quintiles do not reveal 
a clear pattern, with portfolios providing arbitrarily high or low returns regardless of the P/CF ratio. 
As usual, industry portfolios (Table 1, Panel C) provide the lowest spread between the best and the 
worst performing portfolios among the assets under study. Specifically, this spread amounts to 6.34% 
for industry portfolios, while it rises to 10.97% and 9.36% for size-BE/ME and size-P/CF portfolios, 
respectively. 
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Table 1. Summary statistics. 

Panel A: 25 Portfolios Size-BE/ME 
 BE/ME quintiles  BE/ME quintiles 

Size Low 2 3 4 High Size Low 2 3 4 High 
 Means  St. Dev. 

Small 11.70 9.52 7.02 8.60 8.40 Small 32.81 20.41 16.84 20.30 13.90 
2 6.40 4.65 5.27 5.65 5.15 2 20.28 12.38 13.18 15.70 10.36 
3 3.40 2.59 2.48 2.83 4.08 3 9.80 8.87 8.53 7.41 7.48 
4 1.59 1.74 2.43 1.73 2.41 4 7.39 6.71 6.30 5.27 6.28 

Big 0.73 0.95 0.90 1.17 1.60 Big 5.15 4.53 4.78 4.22 6.38 
Panel B: 20 Portfolios Size-P/CF 

 P/CF quintiles  P/CF quintiles 
Size Low 2 3 4 High Size Low 2 3 4 High 

 Means  St. Dev. 
Small 6.43 7.76 8.27 4.81 10.03 Small 13.43 15.87 14.92 12.90  55.04 

2 5.83 5.01 3.92 2.94 2.96 2 13.14 11.56 8.44 7.51 8.98 
3 2.37 2.29 3.28 2.49 1.99 3 8.74 8.59 8.85 5.18 6.05 

Big 1.30 1.32 1.57 0.98 0.67 Big 7.53 9.02 7.41 4.34 4.13 
Panel C: 41 Industry Portfolios 

 Mean deciles  St. Dev. Deciles 
 Low 2 3 4 5  Low 2 3 4 5 

Deciles 1-5 0.75 0.89 0.96 1.05 1.10 Deciles 1-5 5.04 5.35 5.59 5.99 6.37 
 6 7 8 9 High  6 7 8 9 High 

Deciles 6-10 1.35 1.53 1.75 2.24 7.09 Deciles 6-10 6.97 7.49 8.80 11.12 89.35 
Panel D: Market Factors and Macroeconomic Series 

 RMRF SMB HML RMW CMA  ΔC (quarters)  ΔC (years)  ΔC (Q4-Q4) 
Means 1.09 4.19 0.52 1.48 0.38 Means 0.51 Means 1.75 Means 1.71 
St. Dev. 3.99 6.78 5.63 5.43 5.00 St. Dev. 4.84 St. Dev. 1.56 St. Dev. 1.80 

Note: All results are determined using monthly data, unless otherwise indicated. Means and standard deviations are percentages. 
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Table 2. Correlations. 

Panel A: 25 Portfolios Size-BE/ME 
 BE/ME quintiles  BE/ME quintiles 

Size Low 2 3 4 High Size Low 2 3 4 High 
 RMRF  SMB 

Small 0.32 0.28 0.34 0.25 0.32 Small 0.33 0.52 0.47 0.45 0.61 
2 0.23 0.31 0.32 0.32 0.35 2 0.51 0.57 0.57 0.61 0.60 
3 0.57 0.52 0.52 0.57 0.52 3 0.49 0.53 0.57 0.55 0.49 
4 0.62 0.68 0.66 0.71 0.62 4 0.41 0.44 0.45 0.35 0.37 

Big 0.75 0.90 0.86 0.81 0.57 Big 0.08 0.11 0.06 0.02 0.18 
 HML  RMW 

Small −0.14 −0.20 −0.04 0.16 0.05 Small 0.13 0.20 0.33 0.25 0.36 
2 −0.52 −0.14 −0.09 0.09 0.16 2 0.37 0.36 0.33 0.46 0.29 
3 −0.20 −0.25 −0.09 −0.05 0.05 3 0.40 0.32 0.46 0.34 0.22 
4 −0.19 −0.21 −0.19 −0.10 0.00 4 0.28 0.37 0.40 0.31 0.26 

Big −0.20 −0.18 −0.07 0.02 0.19 Big 0.26 0.17 0.10 0.08 0.17 
 CMA  ΔC (quarters) 

Small 0.03 −0.05 −0.03 −0.04 −0.06 Small 0.06 −0.08 0.06 0.10 0.01 
2 0.04 −0.07 −0.10 −0.33 −0.05 2 0.08 −0.06 −0.12 0.05 0.06 
3 0.02 −0.07 −0.12 −0.15 0.10 3 0.09 0.04 0.02 −0.07 0.00 
4 −0.07 −0.09 −0.10 −0.01 0.13 4 0.00 −0.04 0.05 −0.01 0.01 

Big −0.11 −0.14 0.05 0.06 0.13 Big 0.12 0.01 0.02 0.11 0.16 
Panel B: 20 Portfolios Size-P/CF 

 P/CF quintiles  P/CF quintiles 
Size Low 2 3 4 High Size Low 2 3 4 High 

 RMRF  SMB 
Small 0.39 0.35 0.38 0.20 0.13 Small 0.50 0.65 0.62 0.34 0.18 

2 0.39 0.43 0.43 0.39 0.51 2 0.68 0.75 0.65 0.46 0.49 
3 0.62 0.59 0.48 0.68 0.66 3 0.46 0.46 0.49 0.36 0.35 

Big 0.59 0.59 0.57 0.92 0.91 Big 0.32 0.17 0.17 0.13 0.03 
 HML  RMW 

Small −0.04 −0.07 0.01 0.09 −0.14 Small 0.34 0.39 0.23 0.13 0.07 
2 −0.39 −0.08 −0.02 −0.02 −0.05 2 0.60 0.46 0.39 0.11 0.19 
3 −0.22 −0.11 −0.03 −0.02 −0.16 3 0.39 0.35 0.38 0.23 0.24 

Big −0.16 −0.17 −0.04 −0.07 −0.11 Big 0.36 0.23 0.26 0.18 0.10 
 CMA  ΔC (quarters) 

Small 0.03 0.00 −0.13 0.05 −0.03 Small −0.01 0.03 0.04 0.08 0.07 
2 −0.20 −0.17 0.06 −0.07 −0.09 2 0.01 0.03 −0.02 0.15 0.08 
3 −0.08 −0.08 0.08 0.06 −0.05 3 0.04 −0.09 −0.08 −0.02 0.02 

Big −0.14 −0.06 0.07 −0.05 −0.03 Big 0.08 −0.05 0.01 0.05 0.05 
Panel C: 41 Industry Portfolios 

 Correlation deciles  
 Low 2 3 4 5 6 7 8 9 10 Min 

RMRF 0.29 0.40 0.44 0.48 0.52 0.57 0.61 0.64 0.68 0.77 0.08 
SMB −0.02 0.01 0.05 0.08 0.14 0.16 0.20 0.24 0.28 0.39 −0.11 
HML −0.14 −0.11 −0.09 −0.07 −0.05 −0.04 −0.03 −0.02 0.00 0.05 −0.19 
RMW 0.01 0.03 0.04 0.07 0.10 0.11 0.13 0.17 0.24 0.34 −0.01 
CMA −0.06 −0.05 −0.05 −0.04 −0.02 −0.01 0.00 0.03 0.07 0.11 −0.13 

ΔC (quarters) −0.10 −0.03 0.00 0.04 0.07 0.08 0.11 0.12 0.17 0.24 −0.20 
Note: All results are determined using quarterly data, unless otherwise indicated. 

Regarding factors, Table 1, Panel D shows that the mean excess return of the value-weighted 
market portfolio for the Australian Securities Exchange, RMRF, is relatively high (1.09% on a monthly 
basis) compared to that reported for other markets, generally ranging from 4% and 8% on an annual 
basis [1] (pp. 460–461). On the other hand, consumption growth statistics take normal values, with 
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an annual mean of 1.75% and a standard deviation of 1.56%. When we determine annual 
consumption growth using consumption data exclusively for the fourth quarter, as suggested by [39], 
those statistics amount to 1.71% and 1.80%, respectively (referred to as Q4-Q4 consumption growth 
in Table 1). 

Table 2 shows that both size-BE/ME and size-P/CF portfolios exhibit high positive correlations 
with RMF, SMB and RMW, while they are poorly correlated with CMA and consumption growth. 
On the other hand, industry portfolios are significantly less correlated with most factors, with the 
sole exception of RMRF. Remarkably, most portfolios under consideration are negatively correlated 
with HML. In any case, it is worth noting that the correlations shown in Table 2 do not determine the 
performance of asset pricing models under study, rather, the performance is determined by the 
correlation between the expected returns and the covariances (or betas) of returns and factors, as 
shown in Expression (9). 

Table 3 summarizes the regression results provided by Expression (12) for the factor models 
under consideration, while Table 4 shows the estimates resulting from the pricing kernel model, with 
the SDF-mimicking portfolio 𝑥∗, as determined by Expression (17), as the only explanatory variable in 
Expression (12). For all models we use the generalized method of moments (GMM) to simultaneously 
estimate betas and lambdas in Expression (12). Standard errors are corrected for the cross-sectional 
autocorrelation of the error term and for the fact that betas are generated regressors. 

Most of the asset pricing models considered in Table 3 perform as one might expect, with the 
Fama-French three- and five-factor models providing the best results, and the CCAPM and the 
CAPM performing significantly worse. Specifically, in all cases, the Fama-French five-factor model 
provides the lowest mean absolute error (MAE), with values ranging from 0.38% for industry 
portfolios (row C4 in Table 3) to 0.49% for size-P/CF portfolios (row B4). On the other hand, the 
CCAPM is the worst-performing model among those under study. In any case, as noted above, the 
lack of monthly consumption data series leads us to preliminarily estimate the CCAPM using 
quarterly data. This makes it necessary to divide the MAEs provided by the CCAPM by three to allow 
for comparison with the other models. Thus, while the CCAPM provides quarterly MAEs of 8.64%, 
6.26%, and 1.63%, for size-BE/ME, size-P/CF, and industry portfolios, respectively, their monthly 
counterparts drop to 2.88%, 2.09%, and 0.54%. As mentioned above, the SDF-mimicking portfolio 
implicit in the CCAPM allows us to directly determine monthly estimates, as shown in Table 4. 

The Fama-French five-factor model also provides the highest OLS 𝑅  statistics among the 
models studied in Table 3, with values exceeding 90% for size-BE/ME and size-P/CF portfolios. In 
contrast, the CCAPM and the CAPM provide OLS 𝑅  statistics of less than 50% in virtually all cases. 
Interestingly, the CCAPM delivers a trivial OLS 𝑅  statistic of 3.9% for size-BE/ME portfolios (row 
A1), while clearly outperforming the CAPM for industry portfolios, with an OLS 𝑅  statistic of 62.4% 
(row C1). 
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Table 3. Regression results for factor models. 

   CCAPM Fama-French Factors    

Row Model Intercept λΔC λRMRF λSMB λHML λRMW λCMA R2 MAE (%) J-Test 
Panel A: 25 Portfolios Size-BE/ME 

A1 CCAPM 0.132 0.049      0.039 8.64 63.720 
  (5.501) (2.142)      0.015  (0.000) 

A2 CAPM −0.031  0.062     0.495 1.87 59.485 
  (−1.695)  (3.543)     0.205  (0.000) 

A3 Fama-French (3 factors) −0.018  0.025 0.053 0.001   0.905 0.69 48.611 
  (−1.241)  (1.632) (9.682) (0.139)   0.800  (0.001) 

A4 Fama-French (5 factors) −0.008  0.013 0.051 0.008 0.000 0.018 0.962 0.47 32.635 
  (−.579)  (0.866) (9.375) (1.397) (−0.032) (1.719) 0.899  (0.026) 

Panel B: 20 Portfolios Size-P/CF 
B1 CCAPM 0.105 0.130      0.321 6.26 13.599 

  (2.389) (0.993)      0.100  (0.755) 
B2 CAPM −0.027  0.057     0.324 1.87 58.275 

  (−0.998)  (2.134)     0.023  (0.000) 
B3 Fama-French (3 factors) 0.006  −0.001 0.056 −0.006   0.882 0.72 33.152 

  (0.715)  (−0.067) (6.925) (−0.282)   0.784  (0.007) 
B4 Fama-French (5 factors) 0.002  0.004 0.048 −0.017 −0.006 0.026 0.949 0.49 19.895 

  (0.220)  (0.346) (10.063) (−0.638) (−0.327) (1.139) 0.906  (0.134) 
Panel C: 41 Industry Portfolios 

C1 CCAPM 0.046 −0.035      0.624 1.63 57.663 
  (4.042) (−0.956)      0.374  (0.027) 

C2 CAPM −0.010  0.028     0.480 0.59 55.031 
  (−0.584)  (1.289)     0.141  (0.046) 

C3 Fama-French (3 factors) −0.001  0.015 0.034 −0.054   0.786 0.41 35.219 
  (−0.057)  (1.091) (3.057) (−0.803)   0.301  (0.553) 

C4 Fama-French (5 factors) 0.003  0.009 0.027 −0.036 0.016 0.009 0.820 0.38 39.990 
  (0.918)  (1.756) (3.448) (−1.477) (1.433) (0.333) −0.835  (0.258) 

Notes: The table displays two rows for each model, where the first row shows the coefficient estimates and the second row the t-statistics. Ordinary lest squares 
(OLS) and generalized least squares (GLS) 𝑅  statistics are provided, in that order. All p-values resulting from the J-tests are in parentheses. We use monthly data 
to estimate all models with the sole exception of the consumption-capital asset pricing model (CCAPM), which is estimated using quarterly data. 
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Notably, the J-test for over-identifying restrictions rejects most models considered in Table 3. 
Nevertheless, the J-test fails to reject Fama-French models in some cases, specifically for rows B4, C3 
and C4. Surprisingly, the J-test does not reject the CCAPM for size-P/CF portfolios (row B1) despite 
its poor performance. In any case, it is worth mentioning that it is largely the high variances and 
covariances of GMM moments, rather than small pricing errors, that make the J-test not reject this 
model. 

As shown in Table 3, the vast majority of risk premiums are not statistically significant, with the 
sole exception of SMB and, for some models, RMRF and consumption growth coefficients. 
Additionally, most risk premiums are far from the mean of factors (see Table 1, Panel D), meaning 
that, in general, the models are not well-behaved. In any case, the risk premiums on RMRF, SMB, and 
HML for the Fama-French five-factor model are relatively close to their means, for most portfolios 
under consideration. 

Table 4. Regression results for pricing kernel models. 

               Mimicking Portfolio Statistics 
Row Model Intercept λx* R2 MAE (%) J-Test I·103 St. Dev. Skewness Kurtosis 

Panel A: 25 Portfolios Size-BE/ME 
A1 CCAPM 0.038 −0.065 0.020 2.48 198.447 34.088 0.26 0.17 3.64 

  (9.665) (−2.555) −0.002  (0.000) 54.430    

A2 CAPM −0.031 −2.377 0.495 1.87 60.753 0.013 1.54 0.31 3.62 
  (−1.713) (−3.582) 0.239  (0.000) 204.846    

A3 Fama-French 
(3 factors) 

−0.018 −0.820 0.905 0.69 56.735 0.002 0.91 −0.36 3.84 
  (−3.442) (−8.746) 0.866  (0.000) 50.586    

A4 
Fama-French 

(5 factors) 
−0.008 −0.766 0.962 0.47 41.206 0.001 0.88 −0.65 3.90 

  (−1.905) (−9.102) 0.944  (0.011) 19.648    

A5 
HJ pricing 

kernel 
0.000 −0.733 1.000 0.00 0.000  0.86 −0.78 3.98 

  (0.000) (−9.394) 1.000  (1.000)     

Panel B: 20 Portfolios Size-P/CF 
B1 CCAPM 0.033 −0.281 0.293 1.78 136.998 0.004 0.51 −0.19 3.57 

  (8.113) (−2.159) 0.256  (0.000) 84.068    
B2 CAPM −0.027 −1.993 0.324 1.87 59.771 0.011 1.41 0.35 3.36 

  (−1.010) (−2.162) 0.040  (0.000) 200.626    

B3 Fama-French 
(3 factors) 

0.006 −0.551 0.882 0.72 40.265 0.002 0.74 −0.79 4.40 
  (1.470) (−6.198) 0.851  (0.002) 62.167    

B4 
Fama-French 

(5 factors) 
0.002 −0.558 0.949 0.49 29.279 0.001 0.75 −0.73 3.99 

  (0.408) (−5.173) 0.943  (0.045) 29.770    

B5 
HJ pricing 

kernel 
0.000 −0.635 1.000 0.00 0.000  0.80 −0.74 3.67 

  (0.000) (−5.226) 1.000  (1.000)     
Panel C: 41 Industry Portfolios 

C1 CCAPM 0.013 −0.100 0.617 0.50 75.236 0.002 0.34 −0.11 3.79 
  (5.794) (−1.090) −0.280  (0.000) 1683.533    

C2 CAPM −0.010 −0.476 0.480 0.59 55.926 0.003 0.69 0.43 3.42 
  (−0.589) (−1.300) 0.176  (0.039) 76.332    

C3 
Fama-French 

(3 factors) −0.001 −0.308 0.786 0.41 60.335 0.002 0.55 0.35 3.42 
  (−0.054) (−1.337) 0.616  (0.016) 83.164    

C4 
Fama-French 

(5 factors) 
0.003 −0.166 0.820 0.38 67.735 0.002 0.41 0.34 3.97 

  (0.463) (−1.353) 0.779  (0.003) 143.076    

C5 
HJ pricing 

kernel 
0.000 −0.392 1.000 0.00 0.000  0.63 0.06 3.12 

    (0.000) (−1.417) 1.000   (1.000)         

Notes: The table displays two rows for each model, where the first row shows the coefficient estimates 
and the second row the t-statistics. OLS and GLS 𝑅  statistics are provided, in that order. The column 
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headed “I·103’” shows the Kullback-Leibler divergences 𝐼 ∗ and 𝐼ρ, in that order, in thousands. All p-
values resulting from the J-tests are in parentheses. We use monthly data to estimate all models. 

Table 4 shows that the SDF-mimicking portfolio provides exactly the same results as the factor 
models shown in Table 3 for most performance indicators. In particular, the MAEs and OLS 𝑅  
statistics shown in Table 4 are fully in line with those in Table 3, meaning that the mimicking portfolio 
of the pricing kernel does a good job in replicating the results provided by factor models. In contrast, 
cross-sectional GLS 𝑅  statistics shown in Tables 3 and 4 differ, given their dependency on errors 
resulting from time-series regressions used to estimate betas. In any case, Tables 3 and 4 show that 
GLS 𝑅  statistics are lower than their OLS counterparts in all cases, which is consistent with the fact 
that the GLS 𝑅  statistic constitutes a more challenging hurdle for asset pricing models than the OLS 𝑅  statistic. 

Regarding the HJ pricing kernel, Table 4 shows that it results in a perfect fit for all portfolios 
under consideration, providing OLS and GLS 𝑅  statistics equal to one, MAEs equal to zero, and J-
tests that assign zero probability of rejection in all cases. Figure 1 plots the real and fitted values 
provided by all SDF-mimicking portfolios, with the angle of 45 degrees representing a perfect fit. As 
shown, all plots in Figure 1 are consistent with the results in Tables 3 and 4, with the Fama–French 
three- and five-factor models providing the best results, the CCAPM and the CAPM performing 
significantly worse, and the HJ pricing kernel ensuring a perfect fit. 

Table 4 also summarizes the main descriptive statistics for all SDF-mimicking portfolios, more 
particularly, their standard deviations, skewness, and kurtosis. It is worth noting that, since our test 
assets comprise solely excess returns, the mean of pricing kernels is set to one in order to allow 
comparability with the HJ pricing kernel, under the assumption that 𝑅 = 1 in Expression (18). 
Figure 2 depicts the histogram of standardized SDF-mimicking portfolios for all models under study. 
As shown in Table 4 and Figure 2, most pricing kernels share common features. Specifically, in most 
cases, the SDF-mimicking portfolios follow a skewed leptokurtic distribution, which is consistent 
with the high randomness required for pricing kernels to correctly price assets [4] (p. 95). 

Noteworthy, although the HJ pricing kernel delivers 𝑅  statistics equal to one and a perfect fit 
for all portfolios, it exhibits a relatively low volatility. In contrast, the SDF-mimicking portfolios of 
the best-performing models—i.e., the Fama-French models—are extraordinarily volatile, which is 
coherent with the minimum-variance of the HJ pricing kernel, as defined by [14]. This fact emphasizes 
the importance of higher-order moments in evaluating the performance of asset pricing models and, 
consequently, the pertinence of entropy-based methodologies for that purpose. 

Figure 3 plots the evolution over time of the demeaned SDF-mimicking portfolios and asset 
returns, for all models into consideration. Although all plots in Figure 3 are consistent with the 
stationary nature of the pricing kernel, the SDF-mimicking portfolios of the best-performing models 
do not appear to follow an independent and identically distributed (i.i.d.) pattern, especially for size-
BE/ME and size-P/CF portfolios. Remarkably, the SDF-mimicking portfolios of the Fama-French 
models track the HJ pricing kernel behavior precisely for size-BE/ME portfolios, while they exhibit 
an inverse pattern for size-P/CF and industry portfolios, especially for years ranging from 1992 to 
2000. As noted below, our entropy model correctly captures these patterns, allowing us to explicitly 
decompose the explanatory power of the asset pricing models into a pricing kernel component and a 
correlation component. 

Table 4 shows the results provided by Expressions (20) and (21) for 𝐼 ∗(π || θ) and 𝐼ρ υ || µ , 
respectively. As shown, in general, the better the performance of the asset pricing model, the lower 
the relative entropy of the SDF-mimicking portfolio, and vice versa. Specifically, Table 4 shows that 
higher GLS 𝑅  statistics are always accompanied by lower divergences between the SDF-mimicking 
portfolio and the HJ pricing kernel, for at least one of the components defined in Expressions (20) and 
(21). Importantly, those models with SDF-mimicking portfolios following inverse patterns relative to 
the HJ pricing kernel—as is the case of Fama-French models in rows B3, B4, C3 and C4 (see Figure 
3)—exhibit a correlation entropy 𝐼ρ υ || µ  significantly higher than those models in which the SDF-
mimicking portfolio correctly tracks the HJ pricing kernel (rows A3 and A4), even when the pricing 
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kernel component 𝐼 ∗(π || θ) is not affected by this fact and the GLS 𝑅  statistic remains largely 
unchanged. This suggests that our entropy model adequately captures the correlation structure of 
the pricing kernels. 
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Figure 1. Realized excess returns versus fitted values. We depict the 25 portfolios size-book-to-market 
equity (BE/ME) according to a code with two numbers, the first number being the size code (with 1 
being the smallest and 5 the largest) and the second number being the BE/ME ratio code (with 1 
representing a low ratio and 5 a high ratio). Size-price-to-cash flow ratio (P/CF) portfolios are also 
represented by a code with two numbers, the first number being the size code (as in size-BE/ME 
portfolios, 1 is the smallest size and 5 the largest size) and the second number being the P/CF ratio 
code (with 1 representing a low ratio and 5 a high ratio). We depict industry portfolios according to 
the letter “I” followed by the first two digits of the SIC code. 
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Figure 2. Histogram of standardized stochastic discount factor (SDF)-mimicking portfolios. 
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Figure 3. Excess returns and pricing kernels in time series. The figure depicts the evolution over time 
of the demeaned SDF-mimicking portfolios (dashed red lines) and the excess returns of portfolios 
under consideration (dashed grey lines). 

In order to make explicit the relationship between the GLS 𝑅  statistic and the relative entropy 
of the pricing kernels, as measured by 𝐼 ∗(π || θ) and 𝐼ρ υ || µ , Panel A in Table 5 shows the results 
provided by the regression and correlation analysis for these variables. Expression (19) shows that 
the relationship of expected excess returns with ρ , ,  and σ (𝑚 )  is not additive but 
multiplicative. Accordingly, we perform all calculations both in levels and in logs. Additionally, 
Panels B and C in Table 5 show the same analysis for the case of the OLS 𝑅  statistic and the MAE, 
respectively. 

Table 5. Relationship between model performance and the relative entropy of pricing kernels. 

Panel A: GLS 𝑹𝟐 Statistic 
 GLS 𝑅 = 𝑎 + 𝑏𝐼 ∗ + 𝑐𝐼ρ + ε GLS 𝑅 = 𝑎 + 𝑏log(𝐼 ∗) + 𝑐log 𝐼ρ + ε 
 Estimate Std. Error t value Estimate Std. Error t value 

Intercept 0.635 0.112 5.655 −1.114 0.331 −3.367 𝐼 ∗ −17.762 10.192 −1.743 −0.076 0.024 −3.167 𝐼ρ −0.590 0.216 −2.725 −0.278 0.059 −4.682 𝑅  0.513   0.775   
 Correlations: Levels Correlations: Logs 
 GLS 𝑅  𝐼 ∗ 𝐼ρ GLS 𝑅  𝐼 ∗ 𝐼ρ GLS 𝑅  1.000 −0.334 −0.591 1.000 −0.476 −0.724 𝐼 ∗  1.000 −0.115  1.000 −0.034 𝐼ρ     1.000     1.000 

Panel B: OLS 𝑹𝟐 Statistic 
 OLS 𝑅 = 𝑎 + 𝑏𝐼 ∗ + 𝑐𝐼ρ + ε OLS 𝑅 = 𝑎 + 𝑏log(𝐼 ∗) + 𝑐log 𝐼ρ + ε 
 Estimate Std. Error t value Estimate Std. Error t value 

Intercept 0.704 0.089 7.952 −0.576 0.281 −2.047 𝐼 ∗ −19.931 8.036 −2.480 −0.084 0.020 −4.128 𝐼ρ −0.088 0.171 −0.514 −0.082 0.050 −1.619 𝑅  0.408   0.681   
 Correlations: Levels Correlations: Logs 
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 OLS 𝑅  𝐼 ∗ 𝐼ρ OLS 𝑅  𝐼 ∗ 𝐼ρ OLS 𝑅  1.000 −0.625 −0.059 1.000 −0.767 −0.278 𝐼 ∗  1.000 −0.115  1.000 −0.034 𝐼ρ     1.000     1.000 
Panel C: MAE 

 MAE = 𝑎 + 𝑏𝐼 ∗ + 𝑐𝐼ρ + ε MAE = 𝑎 + 𝑏log(𝐼 ∗) + 𝑐log 𝐼ρ + ε 
 Estimate Std. Error t value Estimate Std. Error t value 

Intercept 0.009 0.002 4.188 −2.645 0.803 −3.292 𝐼 ∗ 0.459 0.200 2.291 0.169 0.058 2.911 𝐼ρ −0.002 0.004 −0.359 0.056 0.144 0.391 𝑅  0.385   0.488   
 Correlations: Levels Correlations: Logs 
 MAE 𝐼 ∗ 𝐼ρ MAE 𝐼 ∗ 𝐼ρ 

MAE 1.000 0.614 −0.164 1.000 0.692 0.070 𝐼 ∗  1.000 −0.115  1.000 −0.034 𝐼ρ     1.000     1.000 

Panel A in Table 5 shows that the GLS 𝑅  statistic and our entropy-based model are strongly 
related, especially when we use logarithms. In that case, the regression coefficients for 𝐼 ∗(π || θ) and 𝐼ρ υ || µ  are strongly significant and the 𝑅  statistic amounts to 77.5%. These results worsen when 
we use levels rather than logs, which is consistent with the multiplicative nature of terms in 
Expression (19). Regarding correlations, Panel A in Table 5 shows that, while both 𝐼 ∗(π || θ) and 
(especially) 𝐼ρ υ || µ  are strongly correlated with the GLS 𝑅  statistic, the correlation between 𝐼 ∗(π || θ)  and 𝐼ρ υ || µ  is small, which means that both terms are not redundant but 
complementary. 

On the other hand, Panels B and C in Table 5 show that our entropy-based decomposition 
performs worse in explaining the OLS 𝑅  statistic and the MAE. In fact, while the regression 
coefficients shown in Panels B and C for 𝐼 ∗(π || θ)  remain statistically significant and their 
explanatory power even increases compared to that shown in Panel A for the GLS 𝑅  statistic, 𝐼ρ υ || µ  loses most of its significance and is far less correlated with the OLS 𝑅  statistic and the 
MAE than with the GLS 𝑅  statistic. 

4. Discussion 

The results shown in the previous section suggest that our relative entropy approach, as defined 
in Section 2, is strongly related to the mean-variance efficiency of the factor-mimicking portfolio of 
some of the most prominent asset pricing models in the literature, which makes it a useful tool to 
evaluate asset pricing model performance. Specifically, our results suggest that an entropy-based 
decomposition of the explanatory power of the model into a component that is purely determined by 
the SDF-mimicking portfolio—given by 𝐼 ∗(π || θ)—and a component determined by the correlation 
between the pricing kernel and asset returns—𝐼ρ υ || µ —can contribute to improve the robustness 
and informativeness of model evaluation tests in an insightful manner. More particularly, our results 
offer three major findings on the relationship between the relative entropy of pricing kernels and the 
performance of asset pricing models. First, we show that our entropy-based decomposition is 
strongly related to the GLS 𝑅  statistic. Using data for the Australian stock market, our results show 
that the correlation between the GLS 𝑅  statistic and 𝐼 ∗(π || θ)  in logs is −47.6%, while that 
correlation amounts to −72.4% for 𝐼ρ υ || µ . Moreover, the 𝑅  statistic of the regression of the cross-
sectional GLS 𝑅  statistic on 𝐼 ∗(π || θ)  and 𝐼ρ υ || µ  in logs amounts to 77.5%. These results 
suggest the existence of a strong negative relationship between the cross-sectional GLS 𝑅  statistic 
and the relative entropy of the pricing kernel, as defined in our study. We believe this is important 
evidence on the explanatory power of the model, given that the GLS 𝑅  statistic is directly influenced 
by the proximity of model factors to the minimum-variance frontier [8,21]. Furthermore, this 
statement is reinforced by the fact that our entropy-based-decomposition works worse in explaining 
both the OLS 𝑅  statistic and the MAE, as shown in Table 5. 
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Second, our results suggest that the relative entropy of the correlation between the pricing kernel 
and asset returns, 𝐼ρ υ || µ , is not only relevant in model evaluation, but it is more related to the 
proximity of model factors to the minimum-variance frontier than the pricing kernel component 𝐼 ∗(π || θ) . Indeed, Table 5 not only shows that the GLS 𝑅  statistic and 𝐼ρ υ || µ  are strongly 
correlated, but also that this correlation decreases significantly for other performance indicators less 
related to the mean-variance efficiency, such as the OLS 𝑅  statistic and the MAE. This is an 
important point, since most of the volatility and entropy bounds studied in the literature generally 
focus exclusively on the entropy of the pricing kernel. To the best of our knowledge, this is the first 
study to explicitly decompose the relative entropy of pricing kernels into the specific components 
defined above, using a SDF-mimicking portfolio approach for that purpose. 

Third, our results provide proof that the correlation component 𝐼ρ υ || µ  allows the coherence 
of the pattern followed by pricing kernels over time to be accounted for, using the HJ pricing kernel 
as a reference. Given that the purpose of asset pricing theory is not only to produce models that result 
in small pricing errors, but also to understand the fundamental macroeconomic sources of risk that 
determine asset prices, this feature is crucial even for the best-performing models. Our results not 
only show that the higher the correlation component, the lower the explanatory power of the model, 
but also reveal that when the pricing kernels of the best-performing models follow well-differentiated 
patterns with respect to the HJ pricing kernel, their correlation component 𝐼ρ υ || µ  takes relatively 
high values, regardless of their GLS 𝑅  statistics. This feature is especially important for testing 
macroeconomic asset pricing models and conditional models, where date conventions (e.g., 
beginning-of-period or end-of-period timing assumptions) or the number of lags in instruments 
largely condition the correlations between the explanatory variables and asset payoffs [16,40]. 

These findings lead us to conclude that our entropy-based methodology can be useful to 
complement other fruitful studies on the area. Particularly, we believe that it can be a powerful tool 
for defining tighter bounds than those suggested by [9] and [20] for plausible pricing kernels. Indeed, 
our approach can allow models to split entropy bounds, as defined by these authors, into a first 
component purely determined by the randomness of the SDF, and a second component determined 
by the correlation between the pricing kernel and asset returns. This can help to more precisely 
diagnose the reasons that make some macroeconomic asset pricing models perform well with 
relatively low risk aversion coefficients, as is the case with the habit model of [41], or explain the 
reasons that make some multifactor models provide extremely low pricing errors, although the 
rationale behind their pricing kernels does not require defining an explicit economic setup, as is the 
case with Fama-French models. In this regard, the decomposition of the pricing kernels into an 
observable component and a potentially unobservable one, as suggested by [20], can particularly 
benefit from our entropy-based methodology. 

5. Conclusions 

Although research on asset pricing has provided us with a wide variety of models and theories 
aimed at finding the key determinants of asset prices and expected returns, the SDF or pricing kernel 
model is currently the dominant approach in asset pricing research. Moreover, since any valid pricing 
kernel is directly related to a mean-variance efficient return that carries all pricing information, 
discount factors, beta models, and mean-variance frontiers are distinct but closely related 
representations. As noted above, the fact that the law of one price guarantees the existence of at least 
one valid pricing kernel allows the SDF approach to produce a potentially infinite number of pricing 
kernels that mechanically price assets in sample. In this regard, the HJ pricing kernel, as defined by 
[14], lacks any economic content beyond its close relationship with the maximum Sharpe ratio 
available in the payoff space. However, this fact makes it a useful reference to evaluate the plausibility 
of candidate pricing kernels. 

In this framework, entropy-based methodologies constitute an important step forward for that 
purpose. Pioneering this approach, [9] largely translates the volatility bound as defined by [14] into 
entropy terms. Although further research makes significant progress in determining the entropy 
components of pricing kernels and risk premiums [17–20], most of that research focuses on the 
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relative entropy of the pricing kernel itself, ignoring the important role of the correlation between the 
pricing kernel and asset returns in evaluating the performance of asset pricing models. 

Given the above considerations, it this paper we use the HJ pricing kernel as a reference to 
explicitly decompose the explanatory power of asset pricing models into two components, namely, 
the relative entropy of the candidate pricing kernel itself and the relative entropy of its correlation 
with asset returns. Our results show that, while frequently ignored by the literature on the topic, the 
correlation component is strongly related to the relative mean-variance efficiency of the model’s 
factor-mimicking portfolio, as measured by the cross-sectional GLS 𝑅  statistic. Conversely, the 
relative entropy of the pricing kernel itself is much more correlated with other measures less 
connected to the mean-variance frontier, such as the OLS 𝑅  statistic and the MAE. This opens a 
range of possibilities for the development of new testing procedures that better capture the dynamics 
of factor-mimicking portfolios, while avoiding the problems that arise from quadratic test statistics 
typically used to evaluate asset pricing model performance, such as the J-test for over-identifying 
restrictions or the GRS test statistic. 

In this regard, we believe that a natural continuation of our research should address some 
specific issues, such as the derivation of an orthogonal decomposition of our relative entropy model, 
which allows us to determine the fraction of the explanatory power of the model that is attributable 
to both the pricing kernel and the correlation components. Moreover, it is convenient to explore the 
potential of our entropy-based decomposition to develop test statistics suitable for evaluating asset 
pricing models. For that purpose, approaches such as that suggested by [7] can be particularly useful. 
Additionally, reference portfolios other than the HJ pricing kernel should be validated. Entropy-
based methods, such as those suggested by [42] and [43], can provide useful insight in this regard. 
Furthermore, given that the absence of arbitrage opportunities—that is, the fact that non-negative 
payoffs that are positive with positive probability have positive prices—guarantees the existence of 
at least a strictly positive pricing kernel [14] and the fact that intertemporal marginal rates of 
substitution must be positive, the implications of this constraint for our entropy-based decomposition 
must be sufficiently addressed. For this purpose, approaches that naturally impose the non-
negativity restriction on the pricing kernel, such as that followed by [20], can be particularly useful. 

In any case, future research should extend the scope of our paper to other asset pricing models, 
as well as to other markets and other assets, in order to check the validity of our methodology in 
different settings. Importantly, the use of payoffs other than excess returns implies that the 
expectation of the pricing kernel is meaningful for model evaluation, and the impact of this fact 
should be sufficiently addressed in future research. 
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