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Abstract: Based on the theoretical model of a heated ideal working fluid in the cylinder, the optimal
motion path of the piston in this system, for the maximum work output, is re-studied by establishing
the changed Lagrangian function and applying the elimination method when the initial internal
energy, initial volume, finial volume and the process time are given and generalized radiative heat
transfer law between the working fluid and heat bath is considered. The analytical solutions of the
intermediate Euler-Lagrange arc with square, cubic and radiative heat transfer laws are taken as
examples and obtained. The optimal motion path of the piston with cubic heat transfer law, which
is obtained by applying the elimination method, is compared with that obtained by applying the
Taylor formula expansion method through numerical example. The comparing result shows that the
accuracy of the result which is obtained by applying the elimination method is not affected by the
length of time of the expansion process of the working fluid, so this result is more universal.

Keywords: generalized radiative heat transfer law; optimal motion path; maximum work output;
elimination method; finite time thermodynamics

1. Introduction

Finding the optimal configurations of thermodynamic processes and systems under different
given optimal objectives is one of the most active research directions of the finite time thermodynamics
(FTT) theory [1–10]. For the system of a heated ideal working fluid (WF) in the cylinder, Refs. [11,12]
studied the optimal motion path (MP) of the piston under the maximum work output. In this system,
the WF was assumed to be ideal gas and the heat transfer law (HTL) between the WF and heat bath was
Newton’s HTL. Refs. [13–16] used the optimization results obtained in Refs. [11,12] to study the optimal
MPs of the piston under the maximum power output [13] and the maximum work output [14] when
the power input was given, as well as the optimal operation processes of internal [15] and external [16]
combustion engines. In practical process, HTL is not always Newton’s HTL and also obeys other laws,
and HTLs will affect the optimal configurations of thermodynamic processes and systems. Ref. [17]
studied the optimal MP of the piston of a heated ideal WF in the cylinder with linear phenomenological
HTL and obtained the analytical solution. Refs. [18,19] used the optimization results obtained in
Ref. [17] to optimize the operation processes of internal [18] and external [19] combustion engines with
linear phenomenological HTL. Refs. [20–22] studied the optimal MPs of the piston of a heated ideal
WF in the cylinder under generalized radiative [20], Dulong–Petit [21] and convective-radiative [22]
HTLs, respectively, and obtained the first-order approximate analytical solutions by using the Taylor
formula expansion method. Refs. [20–22] applied the Taylor formula expansion method to simplify a
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complex differential equation to a linear equation, obtained the equation set of the system, and solved
the problem that the analytical solution could not be obtained for the too complex differential equation.
The results obtained in Refs. [20–22] have certain theoretical guiding significance. However, the Taylor
formula expansion method has its own limitation, and the approximate analytical solution obtained
by using the first order Taylor formula expansion method also has limitation. The Taylor formula
expansion method is only suitable for the expansion process in which the total process time is very
short (for example, the expansion time in Refs. [20–22]). Considering time-dependent heat conductance,
Chen et al. [23,24] also studied the optimal MPs of the piston of a heated ideal WF in the cylinder
under Newton’s [23] and generalized radiative [24] HTLs, respectively. Chen et al. [25] studied the
optimal MPs of the piston of a heated ideal WF in the cylinder under generalized convective HTL.

In this paper, on the basis of Refs. [11,12,17,20–22], using the elimination method to eliminate
the variable V(t) by applying optimal control theory (OCT), the optimal MP of the piston of a heated
ideal WF in the cylinder is studied by using the single variable E(t) when the HTL between the WF
and heat bath is generalized radiative HTL. The analytical solutions of intermediate arc, with square,
cubic and radiative HTLs, will be taken as examples in this paper. Numerical examples of the optimal
MP of the piston for cases of cubic HTL, which is obtained by using the elimination method, will
be provided in this paper, and will be compared with those obtained by using the Taylor formula
expansion method. The research on the effect of HTL on the optimal MP of a heated ideal WF in the
cylinder can enrich FTT.

2. Modeling

Figure 1 shows the model diagram of a cylinder with a moveable piston. In this system, assuming
there is 1 mol ideal WF contained in the cylinder, the rate of heat flow f (t) pumped into the cylinder is
given, and the HTL between the WF and heat bath is generalized radiative HTL. q ∝ ∆(Tn) is the heat
flow rate through the cylinder wall. K is the heat conductance, Tex and T are the temperatures of the
heat bath and WF, respectively, n is the power exponent and Sign(n) is a symbolic function: if n > 0,
then Sign(n) = 1, and if n < 0, then Sign(n) = −1. Furthermore, both the inertia impacts of the WF
and the piston, and the friction loss of the piston are all ignored.
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Figure 1. Model diagram of the cylinder with a moveable piston.

In this system, the first law of thermodynamics can be written as

f (t) −
.
E(t) −

.
W(t) − Sign(n)[Tn(t) − Tex

n]K = 0 (1)

where W(t) is the work, E is the internal energy, the dot above the variable represents the rate of change
of this variable with time.
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When the WF in the cylinder is heated, the WF will expand, and the work W produced during
this process in the time interval (0, tm) is

W =

∫ tm

0
p(t)

.
V(t)dt (2)

where V and p are the volume and pressure of the WF, respectively. As demonstrated by Ref. [12],
the irreversible efficiency η of the process can be written as

η = W/
{
RTex ln[Vm/V(0)] + Ep

}
(3)

where RTex ln[Vm/V(0)] is the maximum work produced by the WF expanding from V(0) to Vm under
constant temperature Tex, and Ep =

∫ tm

0 f (t)dt is the total energy added to the WF.

3. Optimal Solutions

The general solution is provided first, and three special cases are then provided.

3.1. General Solution

As the WF is an ideal gas, the equations E = CVT and pV = RT can also be used, where R is
the gas constant, and CV is molar specific heat at constant volume. One can have p = ER/VCV by
combining the above two equations. Substituting it into Equation (2) yields

W =

∫ tm

0

ER
CV

.
V(t)
V(t)

dt (4)

Combining Equations (1) and (4) yields

W =

∫ tm

0
F(t)dt−

∫ tm

0

[
.
E(t) +

Sign(n)K
CVn En(t)

]
dt (5)

where F(t) = f (t) + Sign(n)KTex
n.

As demonstrated by Ref. [20], the optimization problem is

maximize W =

∫ tm

0

.
V(t)E(t)R

V(t)CV
dt (6)

The constraint condition is Equation (1).
For the above problem, the changed Lagrangian function is established [20]

L =

.
V(t)E(t)R

V(t)CV
+ λ(t)

 .
E(t) − F(t) +

.
V(t)E(t)R

V(t)CV
+ Sign(n)

[
E(t)
CV

]n

K

 (7)

The Lagrange multiplier λ(t) in Equation (7) is a function of time.
Solving the Euler-Lagrange (E− L) equation for the problem of Equation (7) gives [20]

.
E =

E
.
F(t)

(n− 1)K( E
CV

)
n
Sign(n) + F(t)(n + 1)

(8)



Entropy 2020, 22, 720 4 of 13

When n = 2, 3 and 4, if the expansion process time is short (for example tm = 0.05 s), the first-order
approximate analytical solution for Equation (8) can be obtained by applying Taylor formula expansion
method [20], and the first-order approximate analytical solution is

E(t) = E′(0) +
.
E
′

(0)t + O(t)

≈ E′(0) + E
.
F(t)

(n+1)F(t)+Sign(n)(n−1)( E
CV

)
n

K
t

(9)

In this paper, the elimination method introduced in Appendix B of Ref. [12] is adopted to obtain
an analytical solution about the E − L arc. Using the OCT to eliminate the variable V(t), the above
optimization problem becomes a one-variable problem, and the optimal MP of the piston can be
obtained by the single variable E(t).

Since the MP only depends on the term
∫ tm

0

[ .
E(t) + Sign(n)K

CVn En(t)
]
dt of Equation (5), the optimization

problem can be changed to the problem

minimize
∫ tm

0

[
E(t) +

Sign(n)K
CVn En(t)

]
dt (10)

When Equation (1) is divided by E(t), one can have

F(t) −K[E(t)/CV]
nSign(n) −

.
E(t)

E(t)
=

.
V(t)R

V(t)CV
(11)

Since the values of V(0) and Vm are assumed to be given, the constraint of the equivalent optimization
problem can be obtained by integrating Equation (11) over time

∫ tm

0
F(t)−K[E(t)/CV ]

nSign(n)−
.
E(t)

E(t) dt

= (R/CV) ln[Vm/V(0)] = constant
(12)

To minimize Equation (10) under the constraint of Equation (12), the modified Lagrangian function
is formed as:

L =
.
E(t) +

Sign(n)K
CVn En(t) +

λ
E

{
F(t) −K[E(t)/CV]

nSign(n) −
.
E(t)

}
(13)

whereλ is the constant Lagrange multiplier. The problem has become the one-variable optimization problem.
The E− L equation for Equation (13) is

0 = Cn
VE2(

∂L
∂E
−

d
dt
∂L

∂
.
E
) = nKEn+1

− Sign(n)(n− 1)λKEn
− λCn

VF (14)

Since Lagrange multiplier λ is a constant, it can be obtained by substituting initial values of E(0) and
F(0) into Equation (14)

λ =
nKEn+1(0)

Sign(n)(n− 1)KEn(0) + CVnF(0)
(15)

Substituting λ from Equation (15) into Equation (14) yields

En+1(t) − En(t) KEn+1(0)(n−1)Sign(n)
KEn(0)(n−1)Sign(n)+F(0)CVn

−F(t) En+1(0)CV
n

KEn(0)(n−1)Sign(n)+F(0)CVn = 0
(16)
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Solving Equation (16), the analytical solution of E(t) can be obtained. Substituting the analytical
solution of E(t) into Equation (1) and integrating, the analytical solution of V(t) can be written as

V(t) =
[

E
E(0)

]Cv
R

exp

CV

R

∫ t

0

F− Sign(n)K( E
CV

)
n

E
dt

V(0) (17)

The optimal process that is determined by Equations (16) and (17) is named E− L arc.
As the same with the results obtained in Ref. [12], one can also conclude that the optimal MP of

the piston when the work output is the maximum consists of three segments; this problem is called the
linkage problem of OCT. The solution for this problem consists of following three segments: an initial
adiabatic process, a middle E− L arc, and a final adiabatic process.

Two items of f (t) and K[Tn(t) − Tn
ex] are all equal to zero in the adiabatic process; integrating

Equation (1), one can obtain
E(V) = (V/Vi)

−R/CV E(Vi) (18)

For the initial adiabatic process, assuming the initial values of E(0) and V(0) are given, E′(0) and
V′(0) are the final values of internal energy and volume, respectively. The motion equations of the
three segments are as follows.

Segment (1) is the adiabatic process of the WF expanding form V(0) to V′(0) at t = 0. For this
process, one has

E′(0) = E(0)[V(0)/V′(0)]R/CV (19)

Segment (2) is the E− L arc between t = 0 and t = tm. In this segment, the WF expands from the
initial state [V′(0) and E′(0)] at t = 0 to t = tm. For different HTLs, i.e., n equals to different values,
the shapes of E−L arc and the corresponding solution methods are all different. When n = −1, 1, 2 and 3,
solving Equation (16), the analytical solutions of E(t) can be obtained, and corresponding E− L arcs
can also be obtained. When n equals to other values, the analytical solutions cannot be obtained by
Equation (16), and numerical algorithm must be used to obtain the numerical solutions.

Segment (3) is the adiabatic process of WF expanding to final volume Vm at tm. For this process,
one can use

Em = [V(tm)/Vm]
R/CV E(tm) (20)

where E(tm) and V(tm) can be solved by Equations (16) and (17) at time tm.
When E(0), V(0) and Vm are given, the above linkage problem becomes the one-dimensional

optimization problem of expansion work W and E′(0), i.e., solving the optimal final state [E′(0), V′(0)]
of initial adiabatic expansion to obtain the maximum expansion work W.

Combining Equations (1) and (4), one can obtain

W =

∫ tm

0
F(t)dt + E′(0) − Em −

Sign(n)K
CVn

∫ tm

0
En(t)dt (21)

The maximum expansion work W is a function of the variable E′(0), and solving the equation
dW/dE′(0) = 0, the optimal value of E′(0) can be obtained. Substituting W from Equation (21) into
the differential equation dW/dE′(0) = 0 yields

dEm

dE′(0)
+

d
[
Sign(n)K

∫ tm

0 (E/CV)
ndt

]
dE′(0)

= 0 (22)

The analytical solutions of the E− L arc obtained in this paper for n = 1 and n = −1 are the same
as those of obtained in Refs. [12,17], and the corresponding numerical examples have been also given
in Ref. [20]. Herein, other three cases are provided.
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3.2. Case of n = 2

Substituting n = 2 into Equation (16) yields

E3(t) −
KE′3(0)

KE′2(0) + CV2F(0)
E2(t) −

CV
2E′3(0)

KE′2(0) + CV2F(0)
F(t) = 0 (23)

There are three roots of Equation (23), and the acceptable one is as following

E(t) =
2A1K+2 3√2A1

2K2/B 1 +
3√4B1

6
(24)

where

A1 =
E′3(0)

KE′2(0) + CV2F(0)
(25)

B1 =
[
27A1CV

2F(t) + 2A1
3K3 + 3

√

3
√

27A1
2C4

VF2(t) + 4A1
4CV2K3F(t)

]1/3
(26)

Substituting Equation (24) into Equation (17) yields

V(t) = V′(0)
[

E
E′(0)

]−Cv/R

exp

 1
CVR

∫ t

0

C2
VF−KE2

E
dt

 (27)

The E− L arc in stage (2) is determined by Equations (24)–(27).
Substituting n = 2 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em −

K
CV2

∫ tm

0
E2(t)dt (28)

Substituting t = tm into Equations (24) and (27) yields

E(tm) =
2A1K+2 3√2A1

2K2/B′1 +
3√4B′1

6
(29)

V(tm) = V′(0)
[

E(tm)

E′(0)

]−Cv/R

exp

 1
CVR

∫ tm

0

C2
VF−KE2

E
dt

 (30)

where

B′1 =
[
27A1CV

2F(tm) + 2A1
3K3 + 3

√

3
√

27A1
2C4

VF2(tm) + 4A1
4CV2K3F(tm)

]1/3
(31)

Combining Equations (19), (20), (29) and (30) yields

Em = E(0)
(

Vm

V(0)

)−R/Cv
exp

 1
CVR

∫ tm

0

C2
VF−KE2

E
dt




R/CV

(32)

Taking the derivation of Equation (28) with respect to E′(0) and setting it equal to zero, the optimal
value of E′(0) should satisfy the following equation

dEm

dE′(0)
+

K
CV2

d
∫ tm

0 E2(t)dt

dE′(0)
= 0 (33)
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3.3. Case of n = 3

Substituting n = 3 into Equation (16) yields

E4(t) −
2KE′4(0)

2KE′3(0) + CV3F(0)
E3(t) −

CV
3E′4(0)

2KE′3(0) + CV3F(0)
F(t) = 0 (34)

There are four roots of Equation (34), and the acceptable one is as following

E(t) = 1
2

[
A2

2
K2
−

2A2C3
VF(t)

(3B2/4)1/3 +
(

2B2
9

)1/3
]1/2

+ A2K
2 + 1

2

[
2A2

2K2 +
2A2C3

VF(t)

(3B2/4)1/3 −

(
2B2

9

)1/3

+
2A3

2K3[
A2

2K2−2A2C3
VF(t)/(3B2/4)1/3+(2B2/9)1/3

]1/2

1/2 (35)

where

A2 =
E′4(0)

2KE′3(0) + CV3F(0)
(36)

B2 = −9A3
2C3

VK2F(t) +
√

3
√

16A3
2C9

VF3(t) + 27A6
2C6

VK4F2(t) (37)

Substituting Equation (35) into Equation (17) yields

V(t) =
[

E′(0)
E

]CV/R

exp

 1
C2

VR

∫ t

0

FC3
V − E3K

E
dt

V′(0) (38)

The E− L arc in stage (2) is determined by Equations (35)–(38).
Substituting n = 3 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em − (K/CV

3)

∫ tm

0
E3(t)dt (39)

Substituting t = tm into Equations (35) and (38) yields

E(tm) =
1
2

A2
2K2
−

2A2C3
VF(t)(

3B′
2

/4
)1/3 +

(
2B′

2
9

)1/3
1/2

+ A2K
2 +

1
2


2A2

2K2 +
2A2C3

VF(t)(
3B′

2
/4

)1/3 −

(
2B′

2
9

)1/3
+

2A3
2K3[

A2
2K2−2A2C3

VF(t)/
(
3B′

2
/4

)1/3
+

(
2B′

2
/9

)1/3
]1/2


1/2

(40)

V(tm) = V′(0)
[

E(tm)

E′(0)

]CV
R

exp

 1
C2

VR

∫ tm

0

C3
VF−KE3

E
dt

 (41)

where
B′

2
= −9A3

2C3
VK2F(tm) +

√

3
√

16A3
2C9

VF3(tm) + 27A6
2C6

VK4F2(tm) (42)

Combining Equations (19), (20), (40) and (41) yields

Em = E(0)
(

Vm

V(0)

)−R/Cv
exp

 1
C2

VR

∫ tm

0

C3
VF−KE3

E
dt




R/CV

(43)
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Taking the derivation of Equation (39) with respect to E′(0), and setting it equal to zero, the optimal
value of E′(0), should satisfy the following equation

dEm

dE′(0)
+

K
CV3

d
∫ tm

0 E3(t)dt

dE′(0)
= 0 (44)

3.4. Case of n = 4

Substituting n = 4 into Equation (16) yields

E5(t) −
3KE′5(0)

3KE′4(0) + CV4F(0)
E4(t) −

CV
4E′5(0)

3KE′4(0) + CV4F(0)
F(t) = 0 (45)

The analytical solution of E(t), with respect to F(t) and E′(0), cannot be obtained because
Equation (45) cannot be solved directly. As a result, the method used for cases of n = 1, n = −1,
n = 2 and n = 3 cannot be adopted for case of n = 4. Such an optimization problem can only be
solved numerically.

Substituting n = 4 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em −

K
CV4

∫ tm

0
E4(t)dt (46)

4. Numerical Example

In this section, only the numerical examples when n = 3 are taken as examples and provided.
In this case, V(0) = 1 × 10−3 m3, CV = 1.5R, E(0) = 3780 J, Tex = 300 K, Vm = 8 × 10−3 m3 and

f (t) = 4200te−t W are selected. Tables 1 and 2 list the values of the state variables obtained by using
the elimination method with variable K for cases of tm = 2 s and tm = 0.05 s. Table 3 lists the values of
the state variables obtained by using the Taylor formula expansion method with variable K for case of
tm = 0.05 s. Figures 2 and 3 show the optimal E and V versus t in the E− L arc obtained by using the
elimination method for the case of tm = 2 s. Figure 4 shows the optimal E versus t in the E − L arc
obtained, respectively, by using the elimination and Taylor formula expansion methods for the case of
tm = 0.05 s. Figure 5 shows the optimal V versus t in the E− L arc obtained, respectively, by using the
elimination and Taylor formula expansion methods for case of tm = 0.05 s.

The error percentage of internal energy between results obtained by using the elimination method
and those obtained by using the Taylor formula expansion method for case of n = 3 is approximately
1.92%, and that of volume is approximately 2.54%.

Table 1. Parameters versus K obtained by using the elimination method for case of n = 3 when tm = 2 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
1.341 1.316 1.295

E′(0)(J) 3108.480 3147.350 3181.910
V(tm)

(
10−3m3

)
4.9940 5.205 5.388

E(tm)(J) 3412.680 3419.810 3428.710
Em(J) 2492.780 2567.670 2634.600
W(J) 4630.820 4661.790 4690.000
η 0.603 0.607 0.611



Entropy 2020, 22, 720 9 of 13

Table 2. Parameters versus K obtained by using the elimination method for case of n = 3 when
tm = 0.05 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
2.226 2.221 2.216

E′(0)(J) 2217.500 2220.850 2224.2000
V(tm)

(
10−3m3

)
2.2677 2.288 2.306

E(tm)(J) 2268.590 2265.820 2264.350
Em(J) 978.929 983.553 988.173
W(J) 2880.230 2886.190 2892.120
η 0.555 0.556 0.557

Table 3. Parameters versus K obtained by using the method of Taylor series expansion for case of n = 3
when tm = 0.05 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
2.280 2.282 2.284

E′(0)(J) 2181.93 2181.100 2179.820
V(tm)

(
10−3m3

)
2.326 2.355 2.382

E(tm)(J) 2237.070 2229.330 2222.680
Em(J) 981.919 986.471 991.195
W(J) 2896.100 2904.8000 2913.4000
η 0.558 0.560 0.561
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5. Conclusions

Based on the Refs. [11,12,17,20–22], using the elimination method to eliminate the variable V(t)
by applying OCT, the optimal MP of the piston of a heated ideal WF in the cylinder is studied by
the single variable E(t) when the HTL between the WF and heat bath is generalized radiative HTL.
The general solution and those for three special cases of n = 2, n = 3 and n = 4 are provided.

Numerical examples obtained by using the elimination method for the optimal MP when n = 3
are provided in this paper, and compared with those obtained by using the Taylor formula expansion
method. The expansion process time tm has great influences not only on the values of initial E′(0) and
V′(0), but also on the optimal MP of the piston. Finally, it can be found that the optimal MPs obtained
by using the elimination method are similar to those obtained by using the Taylor formula expansion
method when the expansion process time is very short.

The model utilized herein includes only heat transfer loss, without considering friction and the
inertia of the piston. Therefore, it is an endoreversible model as those discussed in Refs. [26–37]. It can be
extended by adding some other dissipations, such as those discussed by Mozurkewich and Berry [38,39]
and Hoffmann et al. [40]. Using the elimination method, a more accurate semi-analytical solution is
obtained for the optimal MP of the piston in general. The work in this paper can enrich FTT theory.
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Nomenclature

Cv Molar heat capacity, J/(mol·K)
E Internal energy, J
f Rate of heated, W
K Heat conductance, W/Kn

L Modified Lagrangian, W
n Heat transfer power exponent
p Pressure, Pa
q Heat flow rate through the cylinder wall, W
R Gas constant, J/(mol·K)
Sign(n) Sign function
T Temperature, K
t Time, s
V Volume, m3

W Work output, J
Greek symbols
η Efficiency
λ Lagrange multiplier
Subscripts
ex External heat bath
m Final state of expansion process
0 Ambient or reference
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