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Abstract: We study the Voronoi diagrams of a finite set of Cauchy distributions and their dual
complexes from the viewpoint of information geometry by considering the Fisher-Rao distance, the
Kullback-Leibler divergence, the chi square divergence, and a flat divergence derived from Tsallis
entropy related to the conformal flattening of the Fisher-Rao geometry. We prove that the Voronoi
diagrams of the Fisher-Rao distance, the chi square divergence, and the Kullback-Leibler divergences
all coincide with a hyperbolic Voronoi diagram on the corresponding Cauchy location-scale
parameters, and that the dual Cauchy hyperbolic Delaunay complexes are Fisher orthogonal to
the Cauchy hyperbolic Voronoi diagrams. The dual Voronoi diagrams with respect to the dual
flat divergences amount to dual Bregman Voronoi diagrams, and their dual complexes are regular
triangulations. The primal Bregman Voronoi diagram is the Euclidean Voronoi diagram and the dual
Bregman Voronoi diagram coincides with the Cauchy hyperbolic Voronoi diagram. In addition, we
prove that the square root of the Kullback-Leibler divergence between Cauchy distributions yields a
metric distance which is Hilbertian for the Cauchy scale families.

Keywords: Cauchy distribution; Fisher-Rao distance; Kullback-Leibler divergence; chi square
divergence; Bregman divergence; Jensen-Bregman divergence; Legendre-Fenchel divergence;
metrization; Voronoi diagram; hyperbolic geometry; q-Gaussian; conformal flattening

1. Introduction

Let P = {P1, . . . , Pn} be a finite set of points in a space X equipped with a measure of dissimilarity
D(·, ·) : X × X → R+. The Voronoi diagram [1] of P partitions X into elementary Voronoi cells
Vor(P1), . . . , Vor(Pn) (also called Dirichlet cells [2]) such that

VorD(Pi):=
{

X ∈ X, D(Pi, X) ≤ D(Pj, X), ∀j ∈ {1, . . . , n}
}

(1)

denotes the proximity cell of point generator Pi (also called Voronoi site), i.e., the locii of points X ∈ X
closer with respect to D to Pi than to any other generator Pj.

When the dissimilarity D is chosen as the Euclidean distance ρE, we recover the ordinary Voronoi
diagram [1]. The Euclidean distance ρE(P, Q) between two points P and Q is defined as

ρE(P, Q) = ‖p− q‖2, (2)

where p and q denote the Cartesian coordinates of point P and Q, respectively, and ‖ · ‖2 the `2-norm.
Figure 1 (left) displays the Voronoi cells of an ordinary Voronoi diagram for a given set of generators.

The Voronoi diagram and its dual Delaunay complex [3] are fundamental data structures of
computational geometry [4]. These core geometric data-structures find many applications in robotics,
3D reconstruction, geographic information systems (GISs), etc. See the textbook [1] for some of their
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applications. The Delaunay simplicial complex is obtained by drawing a straight edge between two
generators iff their Voronoi cells share an edge (Figure 1, right). In Euclidean geometry, the Delaunay
simplicial complex triangulates the convex hull of the generators, and is therefore called the Delaunay
triangulation. Figure 1 depicts the dual Delaunay triangulations corresponding to ordinary Voronoi
diagrams. In general, when considering arbitrary dissimilarity D, the Delaunay simplicial complex
may not triangulate the convex hull of the generators (see [5] and Section 4).

Figure 1. Euclidean Voronoi diagram of a set of generators (black square) in the plane with colored
Voronoi cells (left). Euclidean Voronoi diagrams (red) and their dual Delaunay triangulations (blue) for
n = 8 points (middle) and n = 256 points (right).

When the dissimilarity is oriented or asymmetric, i.e., D(P, Q) 6= D(Q, P), one can define the
reverse or dual dissimilarity D∗(P, Q):=D(Q, P). This duality is termed reference duality in [6], and is
an involution:

(D∗)∗(P, Q) = D(P, Q). (3)

The dissimilarity D(P : Q) is called the forward dissimilarity.
In the remainder, we shall use the ‘:’ notational convention [7] between the arguments of the

dissimilarity to emphasize that a dissimilarity D is asymmetric: D(P : Q) 6= D(Q : P). For an oriented
dissimilarity D(· : ·), we can define two types of dual Voronoi cells as follows:

VorD(Pi) :=
{

X ∈ X, D(Pi : X) ≤ D(Pj : X), ∀j ∈ {1, . . . , n}
}

, (4)

and

Vor∗D(Pi) :=
{

X ∈ X D(X : Pi) ≤ D(X : Pj), ∀j ∈ {1, . . . , n}
}

, (5)

=
{

X ∈ X D∗(Pi : X) ≤ D∗(Pj : X), ∀j ∈ {1, . . . , n}
}

, (6)

= Vor∗D(Pi) = VorD∗(Pi). (7)

That is, the dual Voronoi cell Vor∗D(Pi) with respect to a dissimilarity D is the primal Voronoi cell
VorD∗(Pi) for the dual (reverse) dissimilarity D∗.

In general, we can build a Voronoi diagram as a minimization diagram [8] by defining the n
functions fi(X):=D(Pi : X). Then X ∈ VorD(Pi) iff fi(X) ≤ f j(X) for all j ∈ {1, . . . , n}. Thus, by
building the lower envelope [8] of the n functions f1(X), . . . , fn(X), we can retrieve the Voronoi diagram.

An important class of smooth asymmetric dissimilarities are the Bregman divergences [9].
A Bregman divergence BF is defined for a smooth and strictly convex functional generator F(θ) by

BF(θ1 : θ2):=F(θ1)− F(θ2)− (θ1 − θ2)
>∇F(θ2), (8)

where ∇F denotes the gradient of F. In information geometry [7,10,11], Bregman divergences are the
canonical divergences of dually flat spaces [7]. Dually flat spaces generalize the (self-dual) Euclidean
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geometry obtained for the generator FEucl(θ) =
1
2 θ>θ. In information sciences, dually flat spaces can be

obtained, for example, as the induced information geometry of the Kullback-Leibler divergence [12] of
an exponential family manifold [7,13] or a mixture manifold [14]. The dual Bregman Voronoi diagrams
and their dual regular complexes have been studied in [15,16].

In this paper, we study the Voronoi diagrams induced by the Fisher-Rao distance [17–19], the
Kullback-Leibler (KL) divergence [12] and the chi square distance [20] for the family C of Cauchy
distributions. Cauchy distributions also called Lorentzian distributions in the literature [21,22].

The paper is organized with our main contributions as follows:
In Section 2, we concisely review the information geometry of the Cauchy family: We first describe

the hyperbolic Fisher-Rao geometry in Section 2.1 and make a connection between the Fisher-Rao
distance and the chi square divergence, then we point out the remarkable fact that any α-geometry
coincides with the Fisher-Rao geometry (Section 2.2), and we finally present dually flat geometric
structures on the Cauchy manifold related to Tsallis’ quadratic entropy [23,24] which amount to a
conformal flattening of the Fisher-Rao geometry (Section 2.4). Section 3.3 proves that the square root
of the KL divergence between any two Cauchy distributions yields a metric distance (Theorem 3),
and that this metric distance can be isometrically embedded in a Hilbert space for the case of Cauchy
scale families (Theorem 4). Section 4 shows that the Cauchy Voronoi diagrams induced either by the
Fisher-Rao distance, the chi-square divergence, or the Kullback-Leibler divergence (and its square
root metrization) all coincide with a hyperbolic Voronoi diagram [25] calculated on the Cauchy
2D location-scale parameters. This result yields a practical and efficient construction algorithm of
hyperbolic Cauchy Voronoi diagrams [25,26] (Theorem 5) and their dual hyperbolic Cauchy Delaunay
complexes (explained in detail in Section 6). We prove that the hyperbolic Cauchy Voronoi diagrams
are Fisher orthogonal to the dual Cauchy Delaunay complexes (Theorem 6). In Section 4.2, we show
that the primal Voronoi diagram with respect to the flat divergence coincides with the hyperbolic
Voronoi diagram, and that the Voronoi diagram with respect to the reverse flat divergence matches the
ordinary Euclidean Voronoi diagram. Finally, we conclude this work in Section 5.

2. Information Geometry of the Cauchy Family

We start by reporting the Fisher-Rao geometry of the Cauchy manifold (Section 2.1), then show
that all α-geometries coincide with the Fisher-Rao geometry (Section 2.2). Then we recall that we can
associate an information-geometric structure to any parametric divergence (Section 2.3), and finally
dually flatten this Fisher-Rao curved geometry using Tsallis’s quadratic entropy [23,24] (Section 2.4)
and a conformal Fisher metric.

2.1. Fisher-Rao Geometry of the Cauchy Manifold

Information geometry [7,10,11] investigates the geometry of families of probability measures. The
2D family C of Cauchy distributions

C :=
{

pλ(x):=
s

π(s2 + (x− l)2)
, λ:=(l, s) ∈ H:=R×R+

}
, (9)

is a location-scale family [27] (and also a univariate elliptical distribution family [28]) where l ∈ R and
s > 0 denote the location parameter and the scale parameter, respectively:

pl,s(x):=
1
s

p
(

x− l
s

)
, (10)

where
p(x):=

1
π(1 + x2)

=: p0,1(x) (11)

is the Cauchy standard distribution.
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Let lλ(x):= log pλ(x) denote the log density. The parameter space H:=R× R+ of the Cauchy
family is called the upper plane. The Fisher-Rao geometry [17,19,29] of C consists in modeling C as a
Riemannian manifold (C, gFR) by choosing the Fisher Information metric [7] (FIm)

gFR(λ) = [gFR
ij (λ)], gFR

ij (λ):=Epλ

[
∂ilλ(x)∂jlλ(x)

]
, (12)

as the Riemannian metric tensor, where ∂m := ∂
∂λm

for m ∈ {1, 2} (i.e., ∂1 = ∂
∂l and ∂2 = ∂

∂s ). The
matrix [gFR

ij ] is called the Fisher Information Matrix (FIM), and is the expression of the FIm tensor in a

local coordinate system {e1, e2}: gFR
ij (λ) = g(ei, ej) with i, j ∈ {1, 2}.

The Fisher-Rao distance ρFR[pλ1 , pλ2 ] = ρFR[pl1,s1 , pl2,s2 ] is then defined as the Riemannian geodesic
length distance on the Cauchy manifold (C, gFR):

ρFR
(

pλ1 (x) , pλ2 (x)
)
= min

λ(s)
such that

λ(0)=λ1,λ(1)=λ2

∫ 1

0

√(
dλ(t)

dt

)T
gFR(λ(s))

dλ(t)
dt

dt. (13)

The Fisher information metric tensor for the Cauchy family [28] is

gFR(λ) = gFR(l, s) =
1

2s2

[
1 0
0 1

]
, (14)

where λ = (l, s) ∈ H.
A generic formula for the Fisher-Rao distance between two univariate elliptical distributions is

reported in [28]. This formula when instantiated for the Cauchy distributions yields the following
closed-form formula for the Fisher-Rao distance:

ρFR[pl1,s1 , pl2,s2 ] =
1√
2

∣∣∣∣∣∣log
tan

(
ψ1
2

)
tan

(
ψ2
2

)
∣∣∣∣∣∣ , (15)

where

ψi = arcsin
( si

A

)
, i ∈ {1, 2}, (16)

A2 = s2
1 +

(
(l2 − l1)2 − (s2

1 − s2
2)
)2

4(l2 − l1)2 . (17)

However, by noticing that the metric tensor for the Cauchy family (Equation (14)) is equal to the
scaled metric tensor gP of the Poincaré (P) hyperbolic upper plane [30]:

gP(x, y) =
1
y2

[
1 0
0 1

]
, (18)

we get a relationship between the square infinitesimal lengths (line elements) ds2
FR = dl2+ds2

2s2 and

ds2
P = dx2+dy2

y2 as follows:

dsFR =
1√
2

dsP. (19)

It follows that the Fisher-Rao distance between two Cauchy distributions is simply obtained by
rescaling the 2D hyperbolic distance expressed in the Poincaré upper plane [30]:

ρFR[pl1,s1 , pl2,s2 ] =
1√
2

ρP(l1, s1; l2, s2) (20)
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where
ρP(l1, s1; l2, s2):=arccosh (1 + δ(l1, s1, l2, s2)) , (21)

with
arccosh(x):= log

(
x +

√
x2 − 1

)
, x > 1, (22)

and

δ(l1, s1; l2, s2):=
(l2 − l1)2 + (s2 − s1)

2

2s1s2
. (23)

This latter term δ shall naturally appear in Section 2.4 when studying the dually flat space obtained
by conformal flattening the Fisher-Rao geometry. The expression δ(l1, s1, l2, s2) of Equation (23) can be
interpreted as a conformal divergence for the squared Euclidean distance [31–33].

We may also write the delta term using the 2D Cartesian coordinates λ = (λ(1), λ(2)) as:

δ(λ1, λ2):=
(λ

(1)
2 − λ

(1)
1 )2 + (λ

(2)
2 − λ

(1)
1 )2

2λ
(2)
1 λ

(2)
2

=
‖λ1 − λ2‖2

2

2λ
(2)
1 λ

(2)
2

, (24)

where λ ∈ H.
In particular, when l1 = l2, we get the simplified Fisher-Rao distance for Cauchy scale families:

ρFR[pl,s1 , pl,s2 ] =
1√
2

∣∣∣∣log
(

s1

s2

)∣∣∣∣ . (25)

Proposition 1. The Fisher-Rao distance between two Cauchy distributions is

ρFR[pl1,s1 , pl2,s2 ] =


1√
2

∣∣∣log s1
s2

∣∣∣ when l1 = l2,
1√
2

arccosh
(

1 + (l2−l1)2+(s2−s1)
2

2s1s2

)
when l1 6= l2.

The Fisher-Rao manifold of Cauchy distributions has constant negative scalar curvature κ = −2,
see [28] for detailed calculations.

Remark 1. It is well-known that the Fisher-Rao geometry of location-scale families amount to a hyperbolic
geometry [27]. For d-variate scale-isotropic Cauchy distributions pλ(x) with λ = (l, s) ∈ Rd ×R, the Fisher
information metric is gFR(λ) =

1
2s2 I, where I denotes the (d + 1)× (d + 1) identity matrix. It follows that

ρFR[pl1,s1 , pl2,s2 ] =
1√
2

arccosh (1 + ∆(l1, s1, l2, s2)) , (26)

where

∆(l1, s1, l2, s2):=
‖l2 − l1‖2

2 + (s2 − s1)
2

2s1s2
, (27)

where ‖ · ‖2 is the d-dimensional Euclidean `2-norm: ‖x‖ =
√

x>x. That is, ρFR[pl1,s1 , pl2,s2 ] is the scaled
d-dimensional real hyperbolic distance [30] expressed in the Poincaré upper space model.

Let us mention that recently the Riemannian geometry of location-scale models was also studied
from the complementary viewpoint of warped metrics [34,35].
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Remark 2. Li and Zhao [36] proposed to use the Wasserstein Information metric (WIm) expressed using the
distribution parameter coordinates by the Wasserstein Information Matrix (WIM). They reported the explicit
formula of the WIM for generic location-scale families:

IW(l, s) =

[
Epλ

[x2]−2lEpλ
[x]+l2

s2 0
0 1

]
. (28)

In particular, the WIM of the Gaussian family (a location-scale family) is the identity matrix and yields the
Euclidean geometry (see the Wasserstein geometry of Gaussians [37]). Although the WIM can be calculated
for the Gaussian location-scale family, let us notice that the moments greater or equal to one (i.e., E[X] and
E[X2]) are not finite for the Cauchy distributions. Thus, the WIM is not well-defined for the Cauchy family
since Equation (28) makes sense only for finite moments.

2.2. The Dualistic α-Geometry of the Statistical Cauchy Manifold

A statistical manifold [38] is a triplet (M, g, T) where g is a Riemannian metric tensor and T is a
cubic totally symmetric tensor (i.e., Tσ(i)σ(j)σ(k) = Tijk for any permutation σ). For a parametric family
of probability densities M = {pλ(x)}, the cubic tensor is called the skewness tensor [7], and defined by:

Tijk(θ):=Epλ

[
∂ilλ(x)∂jlλ(x)∂klλ(x)

]
. (29)

A statistical manifold structure (M, g, T) allows one to construct Amari’s dualistic α-geometry [7]
for any α ∈ R: Namely a quadruplet (M, gFR,∇−α,∇α) where ∇−α and ∇α are dual torsion-free affine
connections coupled to the Fisher metric gFR (i.e.,∇−α = (∇α)∗). We refer the reader to the textbook [7]
and the overview [11] for further details.

The Fisher-Rao geometry (M, gFR) corresponds to the 0-geometry, i.e., the self-dual geometry
where ∇0:=g∇ is the Levi-Civita metric connection [7] induced by the metric tensor (with (g∇)∗ = g∇).
That is, we have

(C, gFR) = (C, gFR,∇0,∇0). (30)

In information geometry, the invariance principle states that the geometry should be invariant under
the transformation of a random variable X to Y provided that Y = t(X) is a sufficient statistics [7]
of X. The α-geometry (M, gFR,∇−α,∇α) and its special case of Fisher-Rao geometry are invariant
geometry [7,11] for any α ∈ R.

A remarkable fact is that all the α-geometries of the Cauchy family coincide with the Fisher-Rao
geometry since the cubic skewness tensor T vanishes everywhere [28], i.e., Tijk = 0. The non-zero
coefficients of the Christoffel symbols of the α-connections (including the Levi-Civita metric connection
derived from the Fisher metric tensor) are:

αΓ1
12 = αΓ1

21 = αΓ2
22 = −1

s
, (31)

αΓ2
11 =

1
s

. (32)

Thus, all α-geometries coincide and have constant negative scalar curvature κ = −2. In other
words, we cannot choose a value for α to make the Cauchy manifold dually flat [7]. To contrast
with this result, Mitchell [28] reported values of α for which the α-geometry is dually flat for some
parametric location-scale families of distributions: For example, it is well known that the manifold
N of univariate Gaussian distributions is ±1-flat [7]. The manifold Sk of t-Student’s distributions
with k degrees of freedom is proven dually flat when α = ± k+5

k−1 [28]. Dually flat manifolds are
Hessian manifolds [39] with dual geodesics being straight lines in one of the two dual global affine
coordinate systems. On a global Hessian manifold, the canonical divergences are Bregman divergences.
Thus, these dually flat Bregman manifolds are computationally friendly [15] as many techniques
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of computational geometry [4] can be naturally extended to these Hessian spaces (e.g., the smallest
enclosing balls [40]).

2.3. Dualistic Structures Induced by a Divergence

A divergence or contrast function [13] is a smooth parametric dissimilarity. Let M denote the
manifold of its parameter space. Eguchi [13] showed how to associate to any divergence D a canonical
information-geometric structure (M, Dg, D∇, D∇∗). Moreover, the construction allows proving that
D∇∗ = D∗∇. That is the dual connection D∇∗ for the divergence D corresponds to the primal
connection for the reverse divergence D∗ (see [7,11] for details).

Conversely, Matsumoto [41] proved that given an information-geometric structure (M, g,∇,∇∗),
one can build a divergence D such that (M, g, T) = (M, Dg, DT) from which we can derive the
structure (M, Dg, D∇, D∇∗). Thus, when calculating the Voronoi diagram VorD for an arbitrary
divergence D, we may use the induced information-geometric structure (M, Dg, D∇, D∇∗) to
investigate some of the properties of the Voronoi diagram: For example, is the bisector BiD
D∇-autoparallel?, or is the bisector BiD of two generators orthogonal with respect to the metric
Dg to their D∇-geodesic? Section 4 will study these questions in particular cases.

2.4. Dually Flat Geometry of the Cauchy Manifold by Conformal Flattening

The Cauchy distributions are usually handled in information geometry using the wider scope of
q-Gaussians [7,22,42] (deformed exponential families [43]). The q-Gaussians also include the Student’s
t-distributions. Cauchy distributions are q-Gaussians for q = 2. These q-Gaussians are also called
q-normal distributions [44], and they can be obtained as maximum entropy distributions with respect
to Tsallis’ entropy Tq(·) [23,24] (see Theorem 4.12 of [7]):

Tq(p):=
1

q− 1

(
1−

∫ ∞

−∞
pq(x)dx

)
, q 6= 1. (33)

When q = 2, we have the following Tsallis’ quadratic entropy:

T2(p):=1−
∫ ∞

−∞
p2(x)dx. (34)

We have limq→1 Tq(p) = S(p):=−
∫

p(x) log p(x)dx, Shannon entropy.
Thus, q-Gaussians are q-exponential families [21], generalizing the MaxEnt exponential families

derived from Shannon entropy [45]. The integral E(p):=
∫ ∞
−∞ p2(x)dx corresponds to Onicescu’s

informational energy [46,47]. Tsallis’ entropy is considered in non-extensive statistical physics [24].
A dually flat structure construction for q-Gaussians is reported in [7] (Sec. 4.3, pp. 84–89).

We instantiate this construction for the Cauchy distributions (2-Gaussians):
Let

expC(u):=
1

1− u
, u 6= 1, (35)

denote the deformed q-exponential and

logC(u):=1− 1
u

, u 6= 0, (36)

its compositional inverse, the deformed q-logarithm.
The probability density of a 2-Gaussian can be factorized as

pθ(x) = expC(θ
>x− F(θ)), (37)
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where θ denotes the 2D natural parameters. We have:

logC(pθ(x)) = 1− 1
s

π(s2 + (x− l)2) = 1− π

(
s +

(x− l)2

s

)
, (38)

=: θ>t(x)− F(θ), (39)

=

(
2π

l
s

)
x +

(
−π

s

)
x2︸ ︷︷ ︸

θ>t(x)

−
(

πs + π
l2

s
− 1
)

︸ ︷︷ ︸
F(θ)

. (40)

Therefore the natural parameter is θ(l, s) = (θ1, θ2) =
(

2π l
s ,−π

s

)
∈ Θ = R×R− (for t(x) =

(x, x2)) and the deformed log-normalizer is

F(θ(λ)) = πs + π
l2

s
− 1 =: Fλ(λ), (41)

F(θ) = −π2

θ2
−

θ2
1

4θ2
− 1. (42)

In general, we obtain a strictly convex and C3-function Fq(θ), called the q-free energy for a
q-Gaussian family. Here, we let F(θ):=F2(q) for the Cauchy family: F(θ) is the Cauchy free energy.

We convert back the natural parameter θ ∈ Θ to the ordinary parameter λ ∈ H as follows:

λ(θ) = (l, s) =
(
− θ1

2θ2
,− π

θ2

)
. (43)

The gradient of the deformed log-normalizer is:

∇F(θ) =

 − θ1
2θ2

π2

θ2
2
+

θ2
1

4θ2
2

 . (44)

The gradient ∇F(θ) defines the dual global affine coordinate system η:=∇F(θ) where η ∈ H =

R×R+ is the dual parameter space.
It follows the following divergence Dflat[pλ1 : pλ2 ] [7] between Cauchy densities which is by

construction equivalent to a Bregman divergence BF(θ1 : θ2) (canonical divergence in dually flat space)
between their corresponding natural parameters (Eq. (4.95) of [7] instantiated for q = 2):

Dflat[pλ1 : pλ2 ] :=
1∫

p2
λ2
(x)dx

(∫ p2
λ2
(x)

pλ1(x)
dx− 1

)
, (45)

= 2πs2

(
s2

1 + s2
2 + (l1 − l2)2

2s1s2
− 1

)
, (46)

= 2πs2
(s1 − s2)

2 + (l1 − l2)2

2s1s2
, (47)

= 2πs2δ(l1, s1, l2, s2), (48)

= BF(θ1 : θ2), (49)

where θ1 := θ(λ1) and θ2 := θ(λ2). We term BF(θ1 : θ2) the Bregman-Tsallis (quadratic) divergence (BFq

for general q-Gaussians).



Entropy 2020, 22, 713 9 of 34

We used a computer algebra system (CAS, see Section 7) to calculate the closed-form formulas of
the following definite integrals: ∫

p2
λ2
(x)dx =

1
2πs2

, (50)

∫ p2
λ2
(x)

pλ1

dx =
s2

1 + s2
2 + (l1 − l2)2

2s1s2
. (51)

Here, observe that the equivalent Bregman divergence is not on swapped parameter order as it is
the case for ordinary exponential families: DKL[pθ1 : pθ2 ] = BF(θ2 : θ1) where F denotes the cumulant
function of the exponential family, see [7,11].

We term the divergence Dflat the flat divergence because its induced affine connection [13] Dflat∇
has zero curvature (i.e., the 4D Riemann-Christofel curvature tensor induced by the connection vanishes,
see [7] p. 134).

Since Dflat[pλ1 : pλ2 ] = 2πs2δ(l1, s1, l2, s2) = π
s1

(
(s1 − s2)

2 + (l1 − l2)2), the flat divergence is
interpreted as a conformal squared Euclidean distance [33], with conformal factor π

s1
. In general, the

Fisher-Rao geometry of q-Gaussians has scalar curvature [44] κ = − q
3−q . Thus, we recover the scalar

curvature κ = −2 for the Fisher-Rao Cauchy manifold since q = 2.

Theorem 1. The flat divergence Dflat[pλ1 : pλ2 ] between two Cauchy distributions is equivalent to a Bregman
divergence BF(θ1 : θ2) on the corresponding natural parameters, and yields the following closed-form formula
using the ordinary location-scale parameterization:

Dflat[pλ1 : pλ2 ] = 2πs2δ(l1, s1, l2, s2) =
π

s1

(
(s1 − s2)

2 + (l1 − l2)2
)
=

π

s1
‖λ1 − λ2‖2

2. (52)

The conversion of η-coordinates to θ-coordinates are calculated as follows:

θ(η) =

 2πη1√
η2−η2

1
−π−√
η2−η2

1

 := ∇F∗(η), (53)

where
F∗(η):=θ(η)>η − F(θ(η)), (54)

is the Legendre-Fenchel convex conjugate [7]:

F∗(η) = 1− 2π
√

η2 − η2
1 . (55)

Since
η(λ) = η(θ(λ)) = (λ1, λ2

1 + λ2
2) = (l, l2 + s2), (56)

we have
F∗λ(λ):=F∗(η(λ)) = 1− 2π

√
l2 + s2 − l2 = 1− 2πs (57)

that is independent of the location parameter l. Moreover, we have [7]

F∗λ(λ):=1− 1∫
p2(x)dx

= 1− 1
1

2πs
= 1− 2πs. (58)

We can convert the dual parameter η to the ordinary parameter λ ∈ H as follows:

λ(η) = (l, s) = (η1,
√

η2 − η2
1). (59)
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It follows that we have the following equivalent expressions for the flat divergence:

Dflat[pλ1 : pλ2 ] = BF(θ1 : θ2) = BF∗(η2 : η1) = AF(θ1 : η2) = AF∗(η2 : θ1), (60)

where
AF(θ1 : η2):=F(θ1) + F∗(η2)− θ>1 η2, (61)

is the Legendre-Fenchel divergence measuring the inequality gap of the Fenchel-Young inequality:

F(θ1) + F∗(η2) ≥ θ>1 η2. (62)

That is, AF(θ1 : η2) = rhs(θ1 : η2)− lhs(θ1 : η2) ≥ 0, where rhs(θ1 : η2):=F(θ1) + F∗(η2) and
lhs(θ1 : η2) = θ>1 η2.

The Hessian metrics of the dual convex potential functions F(θ) and F∗(η) are:

∇2F(θ) =

 − 1
2θ2

θ1
2θ2

2
θ1

2θ2
2

− θ2
1

2θ2
2
− 2π2

θ2
2

 =: gF(θ), (63)

∇2F∗(η) =

 2√
η2−η2

1
+

2η2
1

(η2−η2
1)

3
2
− η1

(η2−η2
1)

3
2

− η1

(η2−η2
1)

3
2

1
2 (η2 − η2

1)
3
2

 =: g∗F(η). (64)

We check the Crouzeix identity [11,48]:

∇2F(θ)∇2F∗(η(θ)) = ∇2F(θ(η))∇2F∗(η) = I, (65)

where I denotes the 2× 2 identity matrix.
The Hessian metric ∇2F(θ) is also called the q-Fisher metric [44] (for q = 2). Let gλ

FR(λ) and
gθ

FR(θ) denote the Fisher information metric expressed using the λ-coordinates and the θ-coordinates,
respectively. Then, we have

gθ
FR(θ) = Jac>λ (θ)× gλ

FR(λ(θ))× Jacλ(θ), (66)

where Jacλ(θ) denotes the Jacobian matrix:

Jacλ(θ):=

[
∂λi
∂θj

]
. (67)

Similarly, we can express the Hessian metric gF :=∇2F(θ) using the λ-coordinate system:

gλ
F(λ) = Jac>θ (λ)× gθ

F(θ(λ))× Jacθ(λ). (68)

We calculate explicitly the following Jacobian matrices:

Jacθ(λ) = π

 2
λ2
−2 λ1

λ2
2

0 1
λ2

2

 . (69)

and

Jacλ(θ) =

 − 1
2θ2

θ1
2θ2

2

0 π
θ2

2

 . (70)
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We check that we have

gθ
F(θ) = −2θ2

π2 gθ
FR(θ), (71)

gλ
F(λ) =

2
πσ

gλ
FR(λ). (72)

That is, the Riemannian metric tensors gλ
FR(λ) and gλ

F(λ) (or gθ
F(θ) and gθ

FR(θ)) are conformally
equivalent. This is, there exists a smooth function u(λ) = log 2

πσ such that gλ
F(λ) = eu(λ)gλ

FR(λ).
This dually flat space construction of the Cauchy manifold(

C, g(θ) = ∇2F(θ), Dflat∇, Dflat∇∗ = D∗flat∇
)

can be interpreted as a conformal flattening of the curved α-geometry [7,44,49]. The relationships
between the curvature tensors of dual ±α-connections are studied in [50].

Notice that this dually flat geometry can be recovered from the divergence-based structure of
Section 2.3 by considering the Bregman-Tsallis divergence. Figure 2 illustrates the relationships between
the invariant α-geometry and the dually flat geometry of the Cauchy manifold. The q-Gaussians
can further be generalized by χ-family with corresponding deformed logarithm and exponential
functions [7,45]. The χ-family unifies both the dually flat exponential family with the dually flat
mixture family [45].

A statistical dissimilarity D[pλ1 : pλ2 ] between two parametric distributions pλ1 and pλ2 amounts
to an equivalent dissimilarity D(θ1 : θ2) between their parameters: D(θ1 : θ2):=D[pλ1 : pλ2 ]. When the
parametric dissimilarity is smooth, one can construct the divergence-based α-geometry [11,51]. Thus,
the dually flat space structure of the Cauchy manifold can also be obtained from the divergence-based
±α-geometry obtained from the flat divergence Dflat (see Figure 2). It can be shown that the dually flat
space q-geometry is the unique geometry in the intersection of the conformal Fisher-Rao geometry with
the deformed χ-geometry (Theorem 13 of [45]) when the manifold is the positive orthant Rd+1. Please
note that a dually flat space in information geometry is usually not Riemannian flat (with respect to the
Levi-Civita connection, e.g., the Gaussian manifold). In particular, Matsuzoe proved in [52] that the
Riemannian manifold (C,∇2F(θ)) induced by the q-Fisher metric is of constant curvature −1 when
q = 2.

Cauchy family C

χ-family

invariant geometry

dually flat space (Hessian manifold)
(C, g = ∇2Fq(θ),

F∇, F∇∗ = F∗∇)

α-geometry
(C, gFR,∇α,∇−α)

Fisher-Rao geometry
(C, gFR)

Levi-Civita metric connection g∇

conformal metric transformation

free energy Fq

α = 0

q = 2

Deformed
exponential family

conformal Riemannian geometry
(C, qgF (p) = eu(p)gFR(p))

q-Gaussian

(Bregman generator)

statistical divergence:
D[pθ1 : pθ2 ] =: D(θ1 : θ2)

Divergence
(contrast function)

dualistic structure Divergence-based α-geometry
(Θ, Dg, D∇α, D∇−α = ( D∇α)∗)

Bregman-Tsallis divergence BFq

α = 1

Dflat[pλ1
: pλ2

] = BF (θ1 : θ2)

Fisher information metric
Cubic skewness tensor

free energy Fχ

statistical manifold ( Dg, DT )

Figure 2. Information-geometric structures on the Cauchy manifold and their relationships.

There are many alternative possible ways to build a dually flat space from a q-Gaussian family once
a convex Bregman generator F(θ) has been built from the density pq(θ) of a q-Gaussian. The method
presented above is a natural generalization of the dually flat space construction for exponential families.
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To give another approach, let us mention that Matsuzoe [52] also introduced another Hessian metric
gM(θ) = [gM

ij (θ)] defined by:

gM
ij (θ):=

∫
∂i pθ(x)∂j logq pθ(x)dx. (73)

This metric is conformal to both the Fisher metric and the q-Fisher metric, and is obtained by
generalizing equivalent representations of the Fisher information matrix (see α-representations in [7]).

3. Invariant Divergences: f -Divergences and α-Divergences

3.1. Invariant Divergences in Information Geometry

The f -divergences [20,53] between two densities p(x) and q(x) is defined for a positive convex
function f , strictly convex at 1, with f (1) = 0 as:

I f [p : q]:=
∫
X

p(x) f
(

q(x)
p(x)

)
dx, (74)

The KL divergence is a f -divergence obtained for the generator f (u) = − log(u).
An invariant divergence is a divergence D which satisfies the information monotonicity [7]: D[pX :

pY] ≥ D[pt(X) : pt(Y)] with equality iff t(X) is a sufficient statistic. The invariant divergences are the
f -divergences for the simplex sample space [7]. Moreover, the standard f -divergences (calibrated with
f (1) = 0 and f ′(1) = f ′′(1) = 1) induce the Fisher information metric (FIm) for its metric tensor I f g
when the sample space is the probability simplex: I f g = gFR, see [7].

3.2. α-Divergences between Location-Scale Densities

Let Iα[p : q] denote the α-divergence [7,54,55] between p and q:

Iα[p : q]:=
1

α(1− α)
(1− Cα[p : q]), α 6∈ {0, 1} (75)

where Cα[p : q] is Chernoff α-coefficient [56,57]:

Cα[p : q] :=
∫

pα(x)q1−α(x)dx, (76)

=
∫

q(x)
(

p(x)
q(x)

)α

, (77)

= C1−α[q : p]. (78)

We have Iα[p : q] = I1−α[q : p] = Iα
∗[p : q].

The α-divergences include the chi square divergence (α = 2), the squared Hellinger divergence (α = 1
2 ,

symmetric) and in the limit cases the Kullback-Leibler (KL) divergence (α → 1) and the reverse KL
divergence (α→ 0). The α-divergences are f -divergences for the generator:

fα(u) =


u1−α−u
α(α−1) , if α 6= 0, α 6= 1

u log(u), if α = 0 (reverse Kullback-Leibler divergence),
− log(u), if α = 1 (Kullback-Leibler divergence).

(79)

For location scale families, let

Cα(l1, s1; l2, s2):=Cα

[
pl1,s1 : pl2,s2

]
. (80)
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Using change of variables in the integrals, one can show the following identities:

Cα(l1, s1; l2, s2) = Cα

(
0, 1;

l2 − l1
s1

,
s2

s1

)
, (81)

= Cα

(
l1 − l2

s2
,

s1

s2
; 0, 1

)
, (82)

= C1−α

(
0, 1;

l1 − l2
s2

,
s1

s2

)
, (83)

= C1−α(l2, s2; l1, s1). (84)

For the location-scale families which include the normal family N , the Cauchy family C and the
t-Student families Sk with fixed degree of freedom k, the α-divergences are not symmetric in general
(e.g., α-divergences between two normal distributions). However, we have shown that the chi square
divergences and the KL divergence are symmetric when densities belong to the Cauchy family. Thus,
it is of interest to prove whether the α-divergences between Cauchy densities are symmetric or not,
and report their closed-form formula for all α ∈ R.

Using symbolic integration described in Section 7, we found that

C3(pλ1 ; pλ2 ) =
3s4

2 + (2s2
1 + 6l2

2 − 12l1l2 + 6l2
1)s

2
2 + 3s4

1 + (6l2
2 − 12l1l2 + 6l2

1)s
2
1 + 3l4

2 − 12l1l3
2 + 18l2

1 l2
2 − 12l3

1 l2 + 3l4
1)

8s2
1s2

2
, (85)

and checked that this Chernoff similarity coefficient is symmetric:

C3(pλ1 ; pλ2) = C3(pλ2 ; pλ1). (86)

Therefore the 3-divergence I3 between two Cauchy distributions is symmetric. In particular, when
l1 = l2 = l, we find that

C3(pl,s1 ; pl,s2) =
3(s4

1 + s4
2) + 2s2

1s2
2

8s2
1s2

2
, (87)

= 1 +
3
4
(s2

1 − s2
2)

2

2s2
1s2

2
, (88)

= 1 +
3
4

δ(l2, s2
1, l2

2 , s2
2). (89)

In the Section7, we proved by symbolic calculations that the α-divergences are symmetric for
α ∈ {0, 1, 2, 3, 4}.

Remark 3. The Cauchy family can also be interpreted as a family of univariate elliptical distributions [28].
A univariate elliptical distribution has canonical parametric density:

qµ,σ(x):=
1
σ

h

((
x− µ

σ

)2
)

, (90)

for some function h(u). For example, the Gaussian distributions are elliptical distributions obtained for
h(u) = 1√

2π
exp

(
− 1

2 u
)

. Location-scale densities pl,s with standard density p0,1 can be interpreted as

univariate elliptical distributions qµ,σ with h(u) = p0,1(u2) and (µ, σ) = (l, s): pl,s = qµ,σ. It follows that
the Cauchy densities are elliptical distributions for h(u) = 1

π(1+u) . By doing a change of variable in the KL
divergence integral, we find again the following identity:

DKL
[
qµ1,σ1 : qµ2,σ2

]
= DKL

[
q0,1 : q µ2−µ1

σ2
, σ1

σ2

]
. (91)
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3.3. Metrization of the Kullback-Leibler Divergence

The Kullback-Leibler divergence [12] DKL[p : q] between two continuous probability densities p and
q defined over the real line support is an oriented dissimilarity measure defined by:

DKL[p : q]:=
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx. (92)

The closed-form formula for the KL divergence between two Cauchy distributions requires to
perform a (non-trivial) integration task. The following closed-form expression has been reported
in [58] using advanced symbolic integration:

DKL[pl1,s1 : pl2,s2 ] = log
(

1 +
(s1 − s2)

2 + (l1 − l2)2

4s1s2

)
. (93)

Although the KL divergence is usually asymmetric, it is a remarkable fact that it is symmetric
between any two Cauchy densities. However, the KL divergence of Equations (92) and (93) does not
satisfy the triangle inequality, and therefore although symmetric, it is not a metric distance.

The KL divergence between two Cauchy distributions is related to the Pearson Dχ2
P
[p : q] and

Neyman Dχ2
N
[p : q] chi square divergences [20]:

Dχ2
P
[p : q] :=

∫
(q(x)− p(x))2

p(x)
dx, (94)

Dχ2
N
[p : q] :=

∫
(q(x)− p(x))2

q(x)
dx = D∗

χ2
P
[p : q] = Dχ2

P
[q : p]. (95)

Indeed, the formula for the Pearson and Neyman chi square divergences between two Cauchy
distributions coincide, and (surprisingly) amount to the δ distance:

Dχ2
P
[pl1,s1 : pl2,s2 ] = Dχ2

N
[pl1,s1 : pl2,s2 ], (96)

=
(s1 − s2)

2 + (l2 − l1)2

2s1s2
, (97)

=: δ(l1, s1; l2, s2). (98)

Since the Pearson and Neyman chi square divergences are symmetric, let us write Dχ2 [p : q] =
Dχ2

P
[p : q] in the remainder. We can rewrite the Fisher-Rao distance between two Cauchy distributions

using the Dχ2 divergence as follows:

ρFR[pl1,s1 , pl2,s2 ] =
1√
2

arccosh
(

1 + Dχ2 [pl1,s1 : pl2,s2 ]
)

. (99)

Figure 3 plots the strictly increasing chi-to-Fisher-Rao conversion function:

tχ→FR(u):=
1√
2

arccosh (1 + u) . (100)
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Figure 3. Plot of the chi-to-Fisher-Rao conversion function: A strictly increasing function.

Since the Cauchy family is a location-scale family, we have the following general invariance
property of f -divergences:

Theorem 2. The f -divergence [53] between two location-scale densities pl1,s1 and pl2,s2 can be reduced to the
calculation of the f -divergence between one standard density with another location-scale density:

I f [pl1,s1 : pl2,s2 ] = I f

[
p : p l2−l1

s1
, s2

s1

]
= I f

[
p l1−l2

s2
, s1

s2

: p
]

. (101)

Proof. The proof follows from changes of the variable x in the definite integral of Equation (74):

Consider y = x−l1
s1

with dx = s1dy, x = s1y + l1 and x−l2
s2

= s1y+l1−l2
s2

=
y− l2−l1

s1
s2
s1

. We have

I f [pl1,s1 : pl2,s2 ] :=
∫
X

pl1,s1(x) f
(

pl2,s2(x)
pl1,s1(x)

)
dx, (102)

=
∫
Y

1
s1

p(y) f


1
s2

p

(
y− l2−l1

s1
s2
s1

)
1
s1

p(y)

 s1dy, (103)

=
∫

p(y) f

 p l2−l1
s1

, s2
s1

(y)

p(y)

dy, (104)

= I f

[
p : p l2−l1

s1
, s2

s1

]
. (105)

The proof for I f [pl1,s1 : pl2,s2 ] = I f (p l1−l2
s2

, s1
s2

: p) is similar. One can also use the conjugate generator

f ∗(u):=u f ( 1
u ) which yields the reverse f -divergence: I f ∗ [p : q] = I f [q : p] = I f

∗[p : q].
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Since the KL divergence is expressed by DKL[pl1,s1 : pl2,s2 ] = log
(

1 + 1
2 δ(l1, s1; l2, s2)

)
, we also

check that

δ(l1, s1; l2, s2) = δ

(
0, 1;

l1 − l2
s2

,
s1

s2

)
, (106)

= δ

(
l2 − l1

s1
,

s2

s1
; 0, 1

)
, (107)

=: δ(a, b), (108)

where

δ(a, b):=
a2 + (b− 1)2

4b
. (109)

It follows the following corollary for scale families:

Corollary 1. The f -divergences between scale densities is scale-invariant and amount to a scalar scale-invariant
divergence D f (s1 : s2) := I f [ps1 : ps2 ].

Proof.

D f (s1 : s2) := I f [ps1 : ps2 ] = I f

(
p : p s2

s1

)
=: D f

(
1 :

s2

s1

)
, (110)

= I f

[
p s1

s2
: q
]
=: D f

(
s1

s2
: 1
)

. (111)

Many algorithms and data-structures can be designed efficiently when dealing with metric
distances: For example, the metric ball tree [59] or the vantage point tree [60,61] are two such data
structures for querying efficiently nearest neighbors in metric spaces. Thus, it is of interest to consider
statistical dissimilarities which are metric distances. The total variation distance [12] and the square-root
of the Jensen-Shannon divergence [62] are two common examples of statistical metric distances often
met in the literature. In general, the metrization of f -divergences was investigated in [63,64].

We shall prove the following theorem:

Theorem 3. The square root of the Kullback-Leibler divergence between two Cauchy density pl1,s1 and pl2,s2 is
a metric distance:

ρKL[pl1,s1 , pl2,s2 ] :=
√

DKL[pl1,s1 : pl2,s2 ] =

√
log
(

1 +
(s1 − s2)2 + (l1 − l2)2

4s1s2

)
. (112)

Proof. The proof consists in showing that the square root of the conversion function of the Fisher-Rao
distance to the KL divergence is a metric transform [65]. A metric transform t(u) : R+ → R+ is a
transform which preserves the metric distance ρ, i.e., (t ◦ ρ)(p, q) = t(ρ(p, q)) is a metric distance.
The following are sufficient conditions for function t(u) to be a metric transform:

1. t is a strictly increasing function,
2. t(0) = 0,
3. t satisfies that subadditive property: t(a + b) ≤ t(a) + t(b) for all a, b ≥ 0.

For example, strictly concave functions t(u) with t(0) = 0 are metric transforms. In general, one
can check that t(u) is subadditive by verifying that the ratio of functions t(u)

u is non-decreasing.
The following transform

√
tFR→KL(u) converts the Fisher-Rao distance ρFR to the Kullback-Leibler

divergence DKL:

tFR→KL(u) := log
(

1
2
+

1
2

cosh(
√

2u)
)

, (113)
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where

cosh(x):=
ex + e−x

2
. (114)

The square root of that conversion function is a subadditive function since
√

tFR→KL(u)
u is

non-decreasing (see Figure 4) and
√

tFR→KL(0) = 0.

sq
rt

(l
og

(c
os

h(
sq

rt
(2

)*
u)

/2
+

1/
2)

)/
u

u

 0.35

 0.4
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 0.5
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 0.6

 0.65

 0.7

 0.75
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Figure 4. Plot of the function
√

tFR→KL(u)
u .

Since the Fisher-Rao distance is a metric distance and since
√

tFR→KL(u) is a metric transform,
we conclude that

ρKL[pl1,s1 : pl2,s2 ] :=
√

DKL[pl1,s1 : pl2,s2 ] =
√

tFR→KL(ρFR[pl1,s1 : pl2,s2 ]) (115)

is a metric distance.

A metric distance ρ(p, q) is said to be Hilbertian if there exists an embedding φ(·) into a Hilbert
space such that ρ(p, q) = ‖φ(p)− φ(q)‖H , where ‖ · ‖H is a norm. A metric is said to be Euclidean if
there exists an embedding with associated norm `2, the Euclidean norm. For example, the square root of
the celebrated Jensen-Shannon divergence is a Hilbertian distance [62].

Let us prove the following:

Theorem 4. The square root of the KL divergence between to Cauchy densities of the same scale family is a
Hilbertian distance.

Proof. For Cauchy distributions with fixed location parameter l, the KL divergence of Equation (93)
simplifies to:

DKL[pl,s1 : pl,s2 ] = log
(
(s1 + s2)

2

4s1s2

)
. (116)

We can rewrite this KL divergence as

DKL[pl,s1 : pl,s2 ] = 2 log
(

A(s1, s2)

G(s1, s2)

)
, (117)

where A(s1, s2) = s1+s2
2 and G(s1, s2) =

√
s1s2 are the arithmetic mean and the geometric mean of s1

and s2, respectively. Then we use Lemma 3 of [66] to conclude that
√

DKL[pl,s1 : pl,s2 ] is a Hilbertian
metric distance.
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Another proof consists in rewriting the KL divergence as a scaled Jensen-Bregman divergence [66,67]:

DKL[pl,s1 : pl,s2 ] = 2 JBF(s1, s2), (118)

where

JBF(θ1, θ2):=
F(θ1) + F(θ2)

2
− F

(
θ1 + θ2

2

)
, (119)

for a strictly convex generator F. We use F(θ) = − log(u), i.e., the Burg information yielding the
Jensen-Burg divergence JBF. Then we use Corollary 1 of [66] (i.e., F is the cumulant of an infinitely
divisible distribution) to conclude that

√
JBF(θ1, θ2) is a metric distance (and hence, ρKL(l, s1, l, s2) =√

DKL[pl,s1 : pl,s2 ] =
√

2
√

JBF(s1, s2) is a Hilbertian metric distance).

The α-skewed Jensen-Bregman divergence is defined by

JBα
F(θ1 : θ2):=αF(θ1) + (1− α)F(θ2)− F (αθ1 + (1− α)θ2) , (120)

and the maximal α-skewed Jensen-Bregman divergence is called the Jensen-Chernoff divergence:

JBα∗
F (θ1 : θ2):= max

α∈(0,1)
JBα

F(θ1 : θ2). (121)

The maximal exponent α∗ corresponds to the error exponent in Bayesian hypothesis testing on
exponential family manifolds [57]. In general, the metrization of Jensen-Bregman divergence (and
Jensen-Chernoff) was studied in [68].

Furthermore, by combining Corollary 1 of [66] with Theorem 3 of [67], we get the
following proposition:

Proposition 2. The square root of the Bhattacharyya divergence between two densities of an exponential family
is a metric distance when the exponential family is infinitely divisible.

This proposition holds because the Bhattacharyya divergence

DBhat[p, q] = − log
(∫ √

p(x)q(x)dx
)

, (122)

between two parametric densities p(x) = pθ1(x) and q(x) = pθ2(x) of an exponential family with
cumulant function F amounts to a Jensen-Bregman divergence [67] (Theorem 3 of [67]):

DBhat[pθ1(x), pθ2(x)] = JBF(θ1, θ2). (123)

Notice that Proposition 2 recovers the fact that the square root of the Bhattacharyya divergence
between two zero-centered normal distributions is a metric (proved differently in [69]) since the set of
normal distributions form an infinitely divisible exponential family.

4. Cauchy Voronoi Diagrams and Dual Cauchy Delaunay Complexes

Let us consider the Voronoi diagram [1] of a finite set P = {pλ1 , . . . pλn} of n Cauchy distributions
with the location-scale parameters λi = (li, si) ∈ H for i ∈ {1, . . . , n}. We shall consider the Fisher-Rao
distance ρFR, the KL divergence DKL and its square root metrization ρKL, the chi square divergence
Dχ2 , and the flat divergence Dflat.
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4.1. The Hyperbolic Cauchy Voronoi Diagrams

Observe that the Voronoi diagram does not change under any strictly increasing function t
of the dissimilarity measure (e.g., square root function): VorD◦t(P) = VorD(P). Thus, we get the
following theorem:

Theorem 5. The Cauchy Voronoi diagrams under the Fisher-Rao distance, the the chi-square divergence and
the Kullback-Leibler divergence all coincide, and amount to a hyperbolic Voronoi diagram on the corresponding
location-scale parameters.

Proof. The KL divergence can be expressed as

DKL[pl1,s1 : pl2,s2 ] = log
(

1 +
1
2

δ(l1, s1, l2, s2)

)
. (124)

Thus, both the DKL and ρFR dissimilarities are expressed as strictly increasing functions of δ (a
synonym for the Dχ2 divergence). Therefore the Voronoi bisectors between two Cauchy distributions
pl1,s1 and pl2,s2 for D ∈ {ρFR, DKL,

√
DKL, Dχ2} amounts to the same expression:

BiD(pλ1 : pλ2) = {λ ∈ H : δ(λ, λ1) = δ(λ, λ2)} , (125)

BiD(pl1,s1 : pl2,s2) = {(l, s) ∈ H : δ(l, s, l1, s1) = δ(l, s, l2, s2)} . (126)

It follows that we can calculate the Cauchy Voronoi diagram of n Cauchy distributions in
optimal Θ(n log n) time by calculating the 2D hyperbolic Voronoi diagram [25,26] on the location-scale
parameters (see Section 6 for details). Figure 5 displays the Voronoi diagram of a set of Cauchy
distributions by its equivalent parameter hyperbolic Voronoi diagram in the Poincaré upper plane
model, the Poincaré disk model, and the Klein disk model. Figure 6 shows the hyperbolic Voronoi
diagram in the upper plane with colored Voronoi cells. A model of hyperbolic geometry is said to
be conformal if it preserves angles, i.e., its underlying Riemannian metric tensor is a scalar positive
function of the Euclidean metric tensor. The Poincaré disk model and the Poincaré upper plane
model are both conformal models [30]. The Klein model is not conformal, except at the disk origin.
Let D = {p : ‖p‖ < 1} denote the open unit disk domain for the Poincaré and Klein disk models.
Indeed, the Riemannian metric corresponding to the Klein disk model is

ds2
Klein(p) =

ds2
Eucl

1− ‖p‖2 +
〈p, dp〉

(1− ‖p‖2)
2 , (127)

where dp = dx + dy and dsEucl =
√

dx2 + dy2 denotes the Euclidean line element. Since ds2
Klein(0) =

ds2
Eucl, we deduce that Klein model is conformal at the origin (when measuring the angles between

two vectors v1 and v2 of the tangent plane T0).
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Figure 5. Hyperbolic Voronoi diagram of a set of Cauchy distributions in the Poincaré upper plane
(top), the Poincaré disk model (bottom left), and the Klein disk model (bottom right).

Figure 6. A hyperbolic Cauchy Voronoi diagram of a finite set of Cauchy distributions (black square
generators, colored Voronoi cells, and black cell borders).
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The dual of the Voronoi diagram is called the Delaunay (simplicial) complex [4,5]: We build the
Delaunay complex by drawing an edge between generators whose Voronoi cells are adjacent. For the
ordinary Euclidean Delaunay complex with points in general position (i.e., no d + 2 cospherical points
in dimension d), the Delaunay complex triangulates the convex hull of the points [8,70]. Therefore it is
called the Delaunay triangulation [1,3,8]. Figure 7 displays an Euclidean Voronoi diagram with its dual
Delaunay triangulation.

Figure 7. Duality between the ordinary Euclidean Voronoi diagram and the Delaunay structures: The
Voronoi diagram partitions the space into Voronoi proximity cells. The Delaunay complex triangulates
the convex hull of the generators. A Delaunay edge is drawn between the generators of adjacent
Voronoi cells. Observe that the Delaunay edges cuts orthogonally the corresponding Voronoi bisectors
in Euclidean geometry.

Similarly, for the hyperbolic Voronoi diagram, we construct the hyperbolic Delaunay complex by
drawing a hyperbolic geodesic edge between any two generators whose Voronoi cells are adjacent.
However, we do not necessarily obtain anymore a geodesic triangulation of the hyperbolic geodesic
convex hull but rather a simplicial complex, hence the name hyperbolic Delaunay complex [5,71,72].
In extreme cases, the hyperbolic Delaunay complex has a tree structure. See Figure 8 for examples of a
hyperbolic Delaunay triangulation and a hyperbolic Delaunay complex which is not a triangulation
In fact, hyperbolic geometry is very well-suited for embedding isometrically with low distortion
weighted tree graphs [73]. Hyperbolic embeddings of hierarchical structures [74] has become a hot
topic in machine learning.

Let us now prove that these Cauchy hyperbolic Voronoi/Delaunay structures are Fisher orthogonal:

Theorem 6. The Cauchy Voronoi diagram is Fisher orthogonal to the Cauchy Delaunay complex.

Proof. It is enough to prove that the corresponding hyperbolic geodesic γ(pλ1 , pλ2) is orthogonal to
the bisector Bi(pλ1 : pλ2). The distance in the Klein disk model is

ρKlein(p, q) = ρK(p, q):= arccosh

(
1− 〈p, q〉√

(1− ‖p‖2) (1− ‖q‖2)

)
. (128)

The equation of the hyperbolic bisector in the Klein disk model [25] is

BiρKlein (λ1 : λ2) =

{
λ ∈ D : λ>

(√
1− ‖λ1‖2λ2 −

√
1− ‖λ2‖2λ1

)
+
√

1− ‖λ2‖2 −
√

1− ‖λ1‖2 = 0
}

. (129)



Entropy 2020, 22, 713 22 of 34

Using a Möbius transformation [25] (i.e., a hyperbolic “rigid motion”), we may consider without
loss of generality that pλ1 = −pλ2 . It follows that the bisector equation writes simply as

BiρKlein =
{

λ : 2
√

1− ‖pλ1‖λ
>λ1 = 0

}
. (130)

Since the Klein disk model is conformal at the origin, we deduce from Equation (130) that we have
γ(pλ1 , pλ2) ⊥ Bi(pλ1 : pλ2).

Figure 8. Examples of hyperbolic Voronoi Delaunay complexes drawn in the Klein model: Delaunay
complex triangulates the convex hull yielding the Delaunay triangulation (top left), and Delaunay
complex which does not triangulate the convex hull, (top right). Bottom: A hyperbolic Voronoi
diagram and its dual Delaunay complex displayed in the Poincaré disk model (left) and in the Klein
disk model (right).

Figure 9 displays two bisectors with their corresponding geodesics in the Klein model. We check
that the Euclidean angles are deformed when the intersection point is not at the disk origin. Section 6
provides further details for the efficient construction of the hyperbolic Voronoi diagram in the
Klein model.
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non-conformal (Klein) conformal (Poincaré)

non-conformal (Klein) conformal at the origin (Klein)

Figure 9. In hyperbolic geometry, the Voronoi bisector between two generators is orthogonal to the
geodesic linking them. The top figures display a pair of (bisector,geodesic) in the Klein model (left),
and the same pair in the Poincaré model (right). When viewed in Klein non-conformal model, the
bisector does not intersect orthogonally (with respect to the Euclidean geometry) the geodesic (left)
except when the intersection point is at the disk origin (bottom right).

Remark 4. The hyperbolic Cauchy Voronoi diagram can be used for classification tasks in statistics as
originally motivated by C.R. Rao in his celebrated paper [17]: Let pλ1 , . . . , pλn be n Cauchy distributions,
and x1, . . . , xs be s identically and independently samples drawn from a Cauchy distribution pλ. We can
estimate λ̂ the location-scale parameters from the s samples [75], and then decide the multiple test hypothesis
Hi : pλ = pλi by choosing the hypothesis Hi such that ρFR(pλi , pλ) ≤ ρFR(pλj , pλ) for all j ∈ {1, . . . , n}.
This classification task amounts to perform a nearest neighbor query in the Fisher-Rao hyperbolic Cauchy Voronoi
diagram. Hypothesis testing for comparing location parameters based on Rao’s distance is investigated in [76].

Figure 10 displays the hyperbolic Voronoi Cauchy diagram induced by 300 Cauchy
distribution generators.

Notice that it is possible to construct a set of points such that all hyperbolic Voronoi cells for that
point set are unbounded. See Figure 11 for such an example.

The ordinary Euclidean Delaunay triangulation satisfies the empty sphere property [4,77]: That
is the circumscribing spheres passing through the vertices of the Delaunay triangles of the Delaunay
complex are empty of any other Voronoi site. This property still holds for the hyperbolic Delaunay
complex which is obtained by a filtration of the ordinary Euclidean Delaunay triangulation in [5].
A hyperbolic ball in the Poincaré conformal disk model or the upper plane model has the shape of a
Euclidean ball with displaced center [71]. Figure 12 displays the Delaunay complex with the empty
sphere property in the Poincaré and Klein disk models. The centers of these circumscribing spheres
are located at the T-junctions of the Voronoi diagrams.
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Figure 10. Equivalent hyperbolic Voronoi diagram and dual Delaunay complex of a set of Cauchy
distributions in the Poincaré upper plane (left), the Poincaré disk model (middle), and the Klein disk
model (right). Top row figures for n = 24 Cauchy distributions, middle row figures for n = 1024
distributions and bottom row figures for a quasi-regular set of n = 25 Cauchy distributions.

Figure 11. A hyperbolic Voronoi diagram with all unbounded Voronoi cells.
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Figure 12. Delaunay triangles of the hyperbolic Delaunay complex satisfy the empty circumscribing
sphere property. The empty sphere centers are located on the Voronoi T-junction vertices. The
hyperbolic spheres are displayed as ordinary Euclidean sphere (with displaced center) in the Poincaré
model (left column) and as ellipsoids (with displaced center) in the Klein model (right column). The
centers of the empty hyperbolic spheres are located at the Voronoi T-junctions.

4.2. The Dual Voronoi Diagrams on the Cauchy Dually Flat Manifold

The dual Cauchy Voronoi diagrams with respect to the flat divergence Dflat (and dual reverse flat
divergence D∗flat which corresponds to a dual Bregman-Tsallis divergence) of Section 2.4 amount to
calculate 2D dual Bregman Voronoi diagrams [15,16]. We get the following dual bisectors: The primal
bisector with respect to the dual flat divergence is:

BiDflat(pλ1 : pλ2) =
{

pλ : Dflat[pλ1 : pλ] = Dflat[pλ2 : pλ]
}

, (131)

= {λ : δ(l1, s1; l, s) = δ(l2, s2; l, s)} . (132)

Thus, this primal bisector with respect to the flat divergence corresponds to the hyperbolic bisector
of the Fisher-Rao distance/chi square/ KL divergences:

BiDflat(pλ1 : pλ2) = BiρFR(pλ1 : pλ2) = BiDKL(pλ1 : pλ2) = BiD
χ2 (pλ1 : pλ2). (133)
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The dual bisector with respect to the dual flat divergence (reverse Bregman-Tsallis divergence) is:

Bi∗Dflat
(pλ1 : pλ2) =

{
pλ : Dflat[pλ : pλ1 ] = Dflat[pλ : pλ2 ]

}
, (134)

= {λ : ‖λ− λ1‖ = ‖λ− λ2‖} . (135)

That is, the dual bisector corresponds to an ordinary Euclidean bisector:

Bi∗Dflat
(pλ1 : pλ2) = BiρE(pλ1 , pλ2). (136)

Notice that Bi∗Dflat
(pλ1 : pλ2) = BiD∗flat

(pλ1 : pλ2).
To summarize, one primal bisector coincides with the Fisher-Rao bisector while the dual bisector

amounts to the ordinary Euclidean bisector.

Theorem 7. The dual Cauchy Voronoi diagrams with respect to the flat divergence can be calculated efficiently
in Θ(n log n)-time.

The construction of 2D Bregman Voronoi diagrams is described in [15].

4.3. The Cauchy Voronoi Diagrams with Respect to α-Divergences

The dual bisectors with respect to the α-divergences between any two parametric probability
densities pλ1(x) and pλ2(x) are

BiIα(pλ1 : pλ2) =
{

pλ : Iα[pλ1 : pλ] = Iα[pλ2 : pλ]
}

, (137)

=
{

λ : Cα(pλ1 ; pλ) = Cα(pλ2 ; pλ)
}

, (138)

and

Bi∗Iα
(pλ1 : pλ2) =

{
pλ : Iα[pλ : pλ1 ] = Iα[pλ : pλ2 ]

}
, (139)

= BiI1−α
(pλ1 : pλ2). (140)

It is an open problem to prove when the dual α-bisectors coincide for the Cauchy family.
We have shown it is the case for the χ2-divergence and the KL divergence. In theory, the Risch
semi-algorithm [78] allows one to answer whether a definite integral has a closed-form formula or not.
However, the Risch semi-algorithm is only a semi-algorithm as it requires to implement an oracle to
check whether some mathematical expressions are equivalent to zero or not.

5. Conclusions

In this paper, we have considered the construction of Voronoi diagrams of finite sets of Cauchy
distributions with respect to some common statistical distances. Since statistical distances can
potentially be asymmetric, we defined the dual Voronoi diagrams with respect to the forward and
reverse/dual statistical distances. From the viewpoint of information geometry [7], we have reported
the construction of two types of geometry on the Cauchy manifold: (1) The invariant α-geometry
equipped with the Fisher metric tensor gFR and the skewness tensor T from which we can build a
family of pairs of torsion-free affine connections coupled with the metric, and (2) a dually flat geometry
induced by a Bregman generator defined by the free energy Fq of the q-Gaussians (here, instantiated to
q = 2 when dealing with the Cauchy family). The metric tensor of the latter geometry is called the
q-Fisher information metric, and is a Riemannian conformal metric of the Fisher information metric.
We have shown that the Fisher-Rao distance amount to a scaled hyperbolic distance in the Poincaré
upper plane model (Proposition 1), and that all Amari’s α-geometries [7] coincide with the Fisher-Rao
geometry since the cubic tensor vanishes, thus yielding a hyperbolic manifold of negative constant



Entropy 2020, 22, 713 27 of 34

scalar curvature κ = −2 for the Cauchy α-geometric manifolds. We noticed that the Fisher-Rao
distance and the KL divergence can be expressed as a strictly increasing function of the chi square
divergence. Then we explained how to conformally flatten the curved Fisher-Rao geometry to obtain
a dually flat space where the flat divergence amounts to a canonical Bregman divergence built from
Tsallis’ quadratic entropy (Theorem 1). We reported the Hessian metrics of the dual potential functions
of the dually flat space, and showed that there are other alternative choices for building Hessian
structures [52].

Table 1 summarizes the various closed-form formula of statistical dissimilarities obtained for
the Cauchy family. We proved that the square root of the KL divergence between any two Cauchy
distributions is a metric distance (Theorem 3) in general, and more precisely a Hilbertian metric for
the scale Cauchy families (Theorem 4). It follows that the Cauchy Voronoi diagram for the Fisher-Rao
distance coincides with the Voronoi diagram with respect to the KL divergence or the chi square
divergence (Figure 13). We showed how to build this hyperbolic Cauchy diagram from an equivalent
hyperbolic Voronoi diagram on the corresponding location-scale parameters (see also Section 6). Then
we proved that the dual hyperbolic Cauchy Delaunay complex is Fisher orthogonal to the Fisher-Rao
hyperbolic Cauchy Voronoi diagram (Theorem 6). The dual Voronoi diagrams with respect to the
dual flat divergences can be built from the corresponding dual Bregman-Tsallis divergences with
the primal Voronoi diagram coinciding with the hyperbolic Voronoi diagram and the dual diagram
coinciding with the ordinary Euclidean Voronoi diagram (Figure 13). These results are particular to the
special case of the Cauchy location-scale family, and do not hold in general for arbitrary location-scale
families since the cubic tensor may not vanish [28] and the KL divergence is usually asymmetric (e.g.,
the Gaussian location-scale family). However, the Fisher-Rao geometry of any location-scale family
amounts after a potential rescaling to hyperbolic geometry [27,79].

VorρFR = VorρKL = Vorρ2
χ
= VorDflat VorD∗flat

= VorρE .

Figure 13. Voronoi diagrams of a set of Cauchy distributions with respect to the Fisher-Rao (FR)
distance ρFR, the Kullback-Leibler (KL) divergence DKL, the χ2-divergence Dχ2 , and the asymmetric
Bregman-Tsallis flat divergence Dflat.
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Table 1. Summary of the main closed-form formula for the statistical distances between Cauchy
densities and their induced Voronoi diagrams.

Formula Voronoi

Dχ2 [pl1,s1
, pl2,s2 ] =

(l2−l1)2+(s2−s1)2

2s1s2
VorDχ2 hyperbolic Voronoi

ρFR[pl1,s1
, pl2,s2 ] =

1√
2

arccosh(1 + Dχ2 [pl1,s1
, pl2,s2 ]) VorρFR hyperbolic Voronoi

DKL[pl1,s1
, pl2,s2 ] = log

(
1 + 1

2 Dχ2 [pl1,s1
, pl2,s2 ]

)
VorDKL hyperbolic Voronoi

ρKL[pl1,s1
, pl2,s2 ] =

√
DKL[pl1,s1

, pl2,s2 ] (metric) VorρKL hyperbolic Voronoi
Dflat[pl1,s1

, pl2,s2 ] = 2πs2Dχ2 [pl1,s1
, pl2,s2 ] Bregman Voronoi:

VorDflat hyperbolic Voronoi, Vor∗Dflat
Euclidean Voronoi.

6. Klein Hyperbolic Voronoi Diagram from a Clipped Power Diagram

We concisely recall the efficient construction of the hyperbolic Voronoi diagram in the Klein disk
model [25]. Let P = {p1, . . . , pn} be a set of n points in the d-dimensional open unit ball domain
D =

{
x ∈ Rd : ‖x‖2 < 1

}
, where ‖ · ‖2 denotes the Euclidean `2-norm. The hyperbolic distance

between two points p and q is expressed in the Klein model as follows:

ρK(p, q):= arccosh

 1− 〈p, q〉√(
1− ‖p‖2

2
) (

1− ‖q‖2
2
)
 . (141)

It follows that the Klein bisector between any two points in the Klein disk is an hyperplane (affine
equation) clipped to D:

BiρK (λ1 : λ2) =

{
λ ∈ D : λ>

(√
1− ‖λ1‖2

2λ2 −
√

1− ‖λ2‖2
2λ1

)
+
√

1− ‖λ2‖2
2 −

√
1− ‖λ1‖2

2 = 0
}

. (142)

The Klein bisector is a hyperplane (i.e., line in 2D) restricted to the disk domain D. A Voronoi
diagram is said to be affine [8] when all bisectors are hyperplanes. It is known that affine Voronoi
diagrams can be constructed from equivalent power diagrams [8]. Thus, the Klein hyperbolic Voronoi
diagram is equivalent to a clipped power diagram:

VorρK (P) = VorDPD(S) ∩D, (143)

where
DPD(σ, x):=‖x− c‖2 − w, (144)

denotes the power “distance” between a point x (and more generally a weighted point [80] when the
weight can be negative) to a sphere σ = (c, w), and S = {σ1 = (c1, w1), . . . , σn = (cn, wn)} is the
equivalent set of weighted points. The power distance is a signed distance since we have the following
property: DPD(σ, x) < 0 iff x ∈ int(σ), i.e., the point x falls inside the sphere σ = {x : ‖x− c‖2

2 = w}.
The power bisector is a hyperplane of equation

BiPD(σi, σj) =
{

x ∈ Rd : 2x>(cj − ci) + wi − wj = 0
}

(145)

Notice that by shifting all weights by a predefined constant a, we obtain the same power bisector
since (wi + a) − (wj + a) = wi − wj is kept invariant. Thus, we may consider without loss of
generality that all weights are non-negative, and that the weighted points correspond to spheres
with non-negative radius r2

i = wi.
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By identifying Equation (142) with Equation (145), we get the following equivalent spheres
σi = (ci, wi) [25] for the points in the Klein disk:

ci =
pi

2
√

1− ‖pi‖2
, (146)

wi =
‖pi‖2

2

4
(

1− ‖pi‖2
2

) − 1√
1− ‖pi‖2

2

. (147)

We can then shift all weights by the constant a = mini∈{1,...,n} wi so that w′i = wi + a ≥ 0.
Thus, the Klein hyperbolic Voronoi diagram is a power diagram clipped to the unit ball D [80–82].

In computational geometry [4], the power diagram can be calculated from the intersection of n
halfspaces by lifting the spheres σi to corresponding halfspaces H+

i of Rd+1 as follows: Let F =

{(x, z) ∈ Rd+1 : z ≥ ∑d
i=1 x2

i } be the epigraph of the paraboloid function, and ∂F denotes its
boundary. We lift a point x ∈ Rd to ∂F using the upper arrow operator x↑ = (x, z = ∑d

i=1 x2
i ), and we

project orthogonally a point (x, z) of the potential function F by dropping its last z-coordinate so that
we have ↓ (x↑) = x. Now, when we lift a sphere σ = (c, w) to F , the set of lifted points σ↑ all belong
to a hyperplane Hσ, called the polar hyperplane of equation:

Hσ : z = 2c>x− c>c + w. (148)

Let H+
σ denote the upper halfspace with bounding hyperplane Hσ: H+

σ : z ≥ 2c>x − c>c + w.
Then one can show [4] that VorDPD(S) is obtained as the vertical projection ↓ of the intersection of all
these polar halfspacesHi with ∂F :

VorDPD(S) =↓
((
∩n

i=1H+
i
)
∩ ∂F

)
. (149)

Transforming back and forth non-vertical (d + 1)-dimensional hyperplanes to corresponding
d-dimensional spheres allows one to design various efficient algorithms, e.g., computing the
intersection or the union of spheres [4], useful primitives for molecular chemistry [1].

Let H−D denote the lower halfspace (containing the origin (x = 0, z = 0)) supported by the polar
hyperplane associated with the boundary sphere of the disk domain D. Computing the clipped power
diagram VorDPD(S) ∩D can be done equivalently as follows:

VorDPD(S) ∩D = ↓
(((
∩n

i=1H+
i
)
∩ ∂F

)
∩ H−D

)
, (150)

= ↓
(((
∩n

i=1H+
i
)
∩ H−D

)
∩ ∂F

)
, (151)

using the commutative property of the set intersection.
The advantage of the method of Equation (151) is that we begin to clip the power diagram

using H−D before explicitly calculating it. Indeed, we first compute the intersection polytope of n + 1
hyperplanes PK :=

(
∩n

i=1H
+
i
)
∩ H−D . Then we project down orthogonally the intersection of PK with

∂F to get the clipped power diagram equivalent to the hyperbolic Klein Voronoi diagram:

VorρK (P) =↓ (PK ∩ ∂F ) . (152)

By doing so, we potentially reduce the algorithmic complexity by avoiding to compute some of
the vertices of PPD:=

(
∩n

i=1H
+
i
)

whose orthogonal projection fall outside the domain D.
More generally, a Bregman Voronoi diagram [15] can be calculated equivalently as a power

diagram (and intersection of d + 1-dimensional halfspaces) using an arbitrary smooth and strictly
convex potential function F instead of the the paraboloid potential function of Euclidean geometry [25].
The non-empty intersection of halfspaces can in turn be calculated as an equivalent convex hull [4]. Thus,
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we can compute in practice the hyperbolic Voronoi diagram in the Klein model using the Quickhull
algorithm [83].

7. Symbolic Calculations with a Computer Algebra System

We use the open source computer algebra system MAXIMA(can be freely downloaded at http:
//maxima.sourceforge.net/) to calculate the gradient (partial derivatives) and Hessian of the deformed
log-normalizer, and some definite integrals based on the Cauchy location-scale densities.

/* Written in Maxima */
assume(s>0);
CauchyStd(x) := (1/(%pi*(x**2+1)));
Cauchy(x,l,s) := (s/(%pi*((x-l)**2+s**2)));
/* check that we get a probability density (=1) */
integrate(Cauchy(x,l,s),x,-inf,inf);
/* calculate the the deformed log-normalizer */
logC(u):=1-(1/u);
logC(Cauchy(x,l,s));
ratsimp(%);
/* calculate partial derivatives of the deformed log-normalizer */
theta(l,s):=[2*%pi*l/s,-%pi/s];
F(theta):=(-%pi**2/theta[2])-(theta[1]**2/(4*theta[2]))-1;
derivative(F(theta),theta[1],1);
derivative(F(theta),theta[2],1);
/* calculated definite integrals */
assume(s1>0);
assume(s2>0);
integrate(Cauchy(x,l2,s2)**2,x,-inf,inf);
integrate(Cauchy(x,l2,s2)**2/Cauchy(x,l1,s1),x,-inf,inf);

We calculate the function θ(η) by solving the following system of equations:

solve([-t1/(2*t2)=e1, (%pi/t2)**2+ (t1/t2)**2/4=e2],[t1, t2]);

The Hessian metrics of the dual potential functions F and F∗ (denoted by G in the code) can be
calculated as follows:

F(theta):=(-%pi**2/theta[2])-(theta[1]**2/(4*theta[2]))-1;
hessian(F(theta),[theta[1], theta[2]]);
G(eta):=1-2*%pi*sqrt(eta[2]-eta[1]**2);
hessian(G(eta),[eta[1], eta[2]]);

The plot of the Fisher-Rao to the square root KL divergence can be plotted using the
following commands:

t(u):=sqrt(log((1/2)+(1/2)*cosh(sqrt(2)*u)));
plot2d(t(u)/u,[u,0,10]);

Symbolic calculations for the α-Chernoff coefficient between two Cauchy distributions prove that
the α-Chernoff coefficient is symmetric for α = 3 and α = 4 as exemplified by the MAXIMA code below:

assume(s1>0);
assume(s2>0);
assume(s>0);
CauchyStd(x) := (1/(%pi*(x**2+1)));

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
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Cauchy(x,l,s) := (s/(%pi*((x-l)**2+s**2)));
/* closed-form */
a: 3;
integrate((Cauchy(x,l2,s2)**a) * (Cauchy(x,l1,s1)**(1-a)),x,-inf,inf);
term1(l1,s1,l2,s2):=ratsimp(%);
integrate((Cauchy(x,l2,s2)**(1-a)) * (Cauchy(x,l1,s1)**(a)),x,-inf,inf);
term2(l1,s1,l2,s2):=ratsimp(%);
/* Is the a-divergence symmetric? */
term1(l1,s1,l2,s2)-term2(l1,s1,l2,s2);
ratsimp(%);
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10. Calin, O.; Udrişte, C. Geometric Modeling in Probability and Statistics; Springer: Berlin, Germany, 2014.
11. Nielsen, F. An elementary introduction to information geometry. arXiv 2018, arXiv:1808.08271.
12. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
13. Eguchi, S. Geometry of minimum contrast. Hiroshima Math. J. 1992, 22, 631–647. [CrossRef]
14. Nielsen, F.; Hadjeres, G. Monte Carlo information geometry: The dually flat case. arXiv 2018,

arXiv:1803.07225.
15. Boissonnat, J.D.; Nielsen, F.; Nock, R. Bregman Voronoi diagrams. Discrete Comput. Geom. 2010, 44, 281–307.

[CrossRef]
16. Nielsen, F.; Boissonnat, J.D.; Nock, R. Visualizing Bregman voronoi diagrams. In Proceedings of the

twenty-third annual symposium on Computational geometry (SoCG), Gyeongju, Korea, 6–8 June 2007;
pp. 121–122.

17. Rao, C.R. Information and the Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Cal.
Math. Soc. 1945, 37, 81–91.

18. Atkinson, C.; Mitchell, A.F. Rao’s distance measure. Sankhyā The Indian J. Stat. Series A 1981, 43, 345–365.
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