
entropy

Article

RZcoin: Ethereum-Based Decentralized Payment with
Optional Privacy Service

Hong Zhao 1,2, Xue Bai 1, Shihui Zheng 1 and Licheng Wang 1,*
1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing 100876, China; marcus.zhao@tron.network (H.Z.);
bupt_bx_xxaq2013@bupt.edu.cn (X.B.); shihuizh@bupt.edu.cn (S.Z.)

2 Technical Department, Golden Siv Technology Limited, Level 7, K11 ATELIER Victoria Dockside,
18 Salisbury Rd, Tsim Sha Tsui, Hong Kong, China

* Correspondence: wanglc@bupt.edu.cn

Received: 6 May 2020; Accepted: 24 June 2020; Published: 27 June 2020
����������
�������

Abstract: As the blockchain 2.0 platform, Ethereum’s turing complete programming language and
smart contract components make it play an important role in the commercialization of blockchain.
With the further development of blockchain applications, the privacy and security issues of Ethereum
have gradually emerged. To solve this problem, we proposed a blockchain privacy protection model
called RZcash in the previous work. It implements the dynamically updateable and verifiable hiding
of the asset information in Ethereum, namely the account balance and transaction amount. However,
RZcash does not pay attention to the key redundancy problem that may be caused by the creation of
secret accounts. In addition, the large size of proofs gives it high communication costs. In response to
these problems, we further improve RZcash. For the key redundancy problem, we construct a new
signature scheme based on the ciphertext equivalent test commitment. Moreover, we use the Schnorr
signature and bulletproof to improve the corresponding proof scheme in RZcash, thereby reducing
the size of proof. Based on these improvements, we propose a decentralized payment system,
called RZcoin, based on Ethereum. Finally, we implement the algorithm model of RZcoin and
evaluate its security and performance. The results show that RZcoin has higher security and Lower
communication cost than RZcash.

Keywords: blockchain; privacy protection; zero-knowledge proof; publicly verifiable

1. Introduction

1.1. Background

With the rise of Bitcoin [1], the cryptocurrency system gradually attracted widespread attention
worldwide. Since then, systems such as Ethereum [2] have begun to emerge. In June 2019,
Facebook took the lead in publishing a white paper on the global cryptocurrency project called Libra [3].
According to the white paper, Libra will be the simple, borderless currency and financial infrastructure
that serves billions of people around the world. The emergence of Libra has led governments to
recognize the need for blockchain research and applications and start developing their own legal
digital currency. However, at the recent hearing on Libra, the privacy of cryptocurrency system was
questioned. The privacy disclosure has become a key issue that must be resolved in the process of
legalizing the cryptocurrency.

Throughout the history of cryptocurrency, privacy has always been the design goal of these
systems. From the beginning, privacy protection has been the focus of researchers. In 1982,
David Chaum, known as the father of the digital currency, proposed Ecash [4]. Chaum used

Entropy 2020, 22, 712; doi:10.3390/e22070712 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e22070712
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/7/712?type=check_update&version=2

Entropy 2020, 22, 712 2 of 28

self-designed blind signature technology to implement an anonymous communication mechanism.
Ecash became the first anonymous digital currency system to achieve untrackable, protecting users’
privacy while ensuring currency circulation. However, because it relies on the assistance of central
agencies (i.e., banks) to solve problems such as double-spending, it was not widely used in the
end. B-money is the first truly decentralized cryptocurrency in the world, and was proposed by
Dai in 1998 [5]. It is the first to introduce the concept of PoW (Proof of Work) proposed by Adam
in [6] into the issuance of digital currency. The decentralized structure helps these systems solve
privacy disclosure issues caused by centralization. However, in order to achieve distributed consensus,
Dai proposed that the transaction must be publicly broadcast through the whole network. It weakens
the privacy of cryptocurrency system to some extent. In 2004, with the advent of RPoW (Reusable
Proofs of Work) [7], the development of the cryptocurrency turned a corner. Based on B-money,
Nakamoto introduces technologies such as timestamp [8–11], Merkle tree [12] and the longest chain
mechanism to solve the double-spending problem. The privacy setting of cryptocurrency system that
subsequently appeared (e.g., Ethereum) is basically based on Ecash and B-money. The core technology
of these systems is blockchain. This concept originates from “Bitcoin: A Peer-to-Peer Cash Payment
System” published by Nakamoto in the cryptography mailing list of cryptography Info Page at the
end of 2008. It is essentially a distributed ledger that shares and stores data in a decentralized manner.
The birth of blockchain benefits from the privacy needs of digital currencies. Its technical structure
gradually formed and improved in the development process of these currency systems. However,
these blockchain-based systems only cut off the connection between the identity of users and the
transaction script. Sensitive information such as the asset value is still exposed to the network. In the
anonymous mechanism, the transaction address is hidden by a hash function. Users can generate
multiple addresses to participate in the transaction. However, due to the uniqueness of the hash
value and the accuracy of the behavior analysis of users, it is possible to reconstruct the connection
between the identity and the account address by analyzing a large number of transactions. Moreover,
since the transaction amount is public throughout the network, malicious adversaries may concentrate
on attacking transactions with high value. This will make the transaction script easily destroyed,
resulting in the disclosure of important data such as business information.

The above problems not only affect the legalization of digital currency, but also hinder the
application of the blockchain in the industrial Internet and other fields. China’s legal digital currency
will be issued soon. The government has also begun to actively develop the blockchain technology.
Therefore, it is urgent to build a blockchain system with complete privacy protection services.
In response to this demand, we proposed a blockchain privacy protection solution called RZcash in
2019. It realizes the hiding of account balance and transaction amount in Ethereum by integrating
the existing cryptographic technology [13]. Specifically, in RZcash, we use Pedersen commitment to
achieve dynamic hiding of asset information, use the rangeproof scheme based on the two-party ring
signature to provide evidence for the legality of asset commitments, and use the zero-knowledge proof
based on ECDSA to ensure that secret accounts are created correctly. We proved that RZcash has good
performance while ensuring security and privacy. However, due to the large size of rangeproof and
zero-knowledge proof, its communication cost is higher. In addition, RZcash does not pay attention to
the key redundancy problem that may be caused by the creation of secret accounts. These problems
may hinder the practical application of RZcash, so it needs to be further improved.

1.2. Motivation and Contribution

In this regard, we proposed a series of improvements in this paper. Based on RZcash, we further
improve its core algorithms and propose a decentralized payment scheme called RZcoin that provides
the optional privacy protection service. When users need the service, they must create a new secret
account through the creation transaction. The account can be traded with other secret accounts or
with open accounts (i.e., the external account of Ethereum). The former is called the secret transaction,
and the latter is called the semi-secret transaction. In general, our main contributions are as follows:

Entropy 2020, 22, 712 3 of 28

• We further improve the privacy protection mechanism called RZcash. For the key redundancy
problem, we propose a signature scheme called CEs based on the ciphertext equivalent test scheme
[14]. It achieves the creation of secret accounts without regenerating the private key. In addition,
compared to ECDSA, its signature size is reduced by 80%. In addition, we use Schnorr signature
to reconstruct the zero-knowledge proof of RZcash and reduce the size of proof by 1/3. We also
use bulletproof to reduce the size of rangeproofs.

• We combine the improved privacy protection mechanism with Ethereum and propose a
decentralized payment called RZcoin with optional privacy services. In RZcoin, the hidden
asset can be publicly verifiable and dynamically updated. Users can neither overspend nor forge
their assets. All proofs required for transactions involving the privacy service (i.e., secret and
semi-secret transactions) are attached to the "extraData" module of transactions.

• We implement the above decentralized payment scheme based on the Ethereum test chain and
evaluate its performance. At the same time, we also propose the adversarial model it faces and
give the corresponding security analysis. The result shows that the scheme can provide the
privacy service to users with good performance while ensuring security.

1.3. Related Work

By summarizing the existing research results, we observe that the privacy service structure of the
blockchain system is mainly divided into two modes: off-chain and on-chain.

In the off-chain model, the private data is stored and calculated in the off-chain environment,
thereby avoiding the privacy disclosure caused by the on-chain storage. For example, the Keep project
initiated by Luongo et al. expands the basic application of smart contracts through the form of private
data containers [15]. In addition, it establishes an access channel between Ethereum smart contracts
and the private data through secure multiparty computing (SMPC). In 2017, Microsoft proposed
an Ethereum-based blockchain framework called Confidential Consortium (CCF) [16]. It uses local
trusted execution environments (TEEs, such as Intel SGX) to provide the secure off-chain operating and
storage space for the code and data of the blockchain system. Although these two projects are still in
the theoretical stage, they provide a unique idea for the privacy protection research of the blockchain.

Most of the existing research results achieved privacy protection in an on-chain mode, such as
Dash [17], Monero [18], Zerocash [19] and so on. This type of system mainly implements real-time
hiding of transaction information by using cryptographic technologies such as commitment. The key
technology on which they are based is divided into two main categories. The one is ring signature [20].
Its typical use case is Monero. It hides the transaction amount through confidential transaction and
uses a new type of ring signature called MLSAG to hide participants in the transaction [21–23]. The
ring signature cannot only hide the source of the transaction, but also prove the correctness of hidden
amount. The other is zero-knowledge proof [24]. In 2015, BenSasson et al. further developed the
zk-SNARKs technology on the basis of zero-knowledge proof, which enables people to succinctly and
non-interactively prove that they know certain information without revealing specific knowledge.
Zcash is created based on zk-SNARKs. Subsequently, zero-knowledge proof has gradually become the
mainstream technology for privacy protection. Mimblewimble [25], PLONK [26], Halo [27], Sonic [28]
and other blockchain privacy protection projects were proposed. These projects are to improve the
existing zk-SNARKs, in order to reduce the number of trusted settings needed for its operation, so as
to improve the efficiency and universality. Although zero-knowledge proof is inefficient and difficult
to implement, it is still considered to be the most effective solution to privacy issues of blockchain.

Compared to Bitcoin, the privacy requirement of Ethereum is more complex. In addition to
hiding the transaction amount and participants, Ethereum also needs to hide the account balance and
transaction details of the smart contract. In the past two years, Mobius [29], Zether [30], AZTEC [31],
PGC [32] and other privacy protection schemes for Ethereum were proposed. However, because most
of their privacy services are provided based on smart contracts, the expensive consumption of GAS
prevents it from being put into practical use. In this regard, the privacy protection mechanism we

Entropy 2020, 22, 712 4 of 28

proposed refers to the idea of off-chain computing. It encapsulates the encryption and verification
procedures involving secret transactions in TEEs, and performs the additional calculations required
for secret transactions in the off-chain environment. The privacy protection mechanism we proposed
has good portability and can be combined with existing zero-knowledge virtual machines to delegate
some computing work to the off-chain semi-trusted server.

1.4. Roadmap

The rest of this paper proceeds as follows. In Section 2, we introduce some basic knowledge used
in this paper. In Section 3, we present our main originality, i.e., the ciphertext-equivalent signature (CEs)
for RZcoin. In Section 4, we present the system model and the adversarial model of RZcoin. In Section 5,
we introduce the interactive details of the involved roles of RZcoin. In Section 6, we give the security
analysis of RZcoin according to the system model given in Section 4. In Section 7, we implement
the core model of RZcoin and provide the performance analysis, especially the improvements to
the corresponding proof sizes. Finally, we summarize the full text and point out the future research
direction in Section 8.

2. Preliminary

2.1. Ethereum System

Ethereum is known as the blockchain 2.0 platform. It is widely used because of its turing-complete
scripting language, account-based transaction model and practical smart contract components.
According to the description in its white paper, the architecture of Ethereum is mainly divided into
seven layers: application, contract, consensus, protocol, network, data and storage, which arranged in
order from top to bottom as shown in Figure 1. Among them, the data layer mainly deals with various
types of data in Ethereum. It is the gathering place of cryptographic technology and the focus of our
research. Our privacy protection mechanism is mainly applied to this layer.

Figure 1. Ethereum Architecture.

We can see that the main body of the data layer is the transaction. It is stored in the transaction
pool and packaged into blocks by the full node after passing the legality verification. Then it is
recorded in the blockchain after multi-party consensus. As shown in Table 1, the transaction format

Entropy 2020, 22, 712 5 of 28

of blockchain system is basically the same, which mainly includes information such as the address
of transaction participants, the transaction amount, the hash value and the signature of transaction.
In addition, the transaction in Ethereum also includes the payload module. This module is mainly
used to store other information required for transactions. In RZcoin, we use it to carry the extra data
needed for secret transactions.

Table 1. Transaction Format of the Blockchain System.

Transaction

Hash Hash value of the transaction
AccountNonce Total number of transactions initiated by sender

GasInfo Information about GAS of the transaction
Sender Address of the transaction sender

Recipient Address of the transaction recipient
Amount Transaction amount

Timestamp Creation time of the transaction
Signature Signature data for the transaction
Payload Other data of the transaction

2.2. Number Theory Knowledge

As a basic tool in the public key cryptography, number theory played a very important role in
the research and development of modern cryptography. The discrete logarithm problem (DLP) is
the basic conclusion in it and is widely used in many public key cryptographic schemes. In 1985,
Koblitz and Miller first proposed the creative idea of applying the elliptic curve to cryptography and
constructed the discrete logarithm problem on elliptic curves (ECDLP) based on the Abelian addition
group consisting of elliptic curve points [33]. The cryptographic schemes used in this paper are mainly
based on ECDLP. The relevant definition is as follows.

Definition 1 (DLP [33]). Let g be a generator of the cyclic group G with prime order, i.e., G = 〈g〉. Randomly
select h from G. If there exists a negligible function negl(λ) for all probabilistic polynomial time (PPT)
adversaries A , where λ is a security parameter, such that

P [h = ga | a← A (g, h)] ≤ negl(λ) (1)

then we say that it is difficult to solve the discrete logarithm problem.

Let E be the elliptic curve group on the finite field Fq, where q = pm. In this paper, we take m as 1.
Let G be a generator of E(Fq). Similar to the above, the definition of ECDLP is given below.

Definition 2 (ECDLP [33]). Let G be the base point of group E(Fq). Randomly select point H from E(Fq).
If for all PPT adversaries A , there exists a negligible function negl(λ) such that

P [H = k · G | k← A (G, H)] ≤ negl(λ) (2)

then we say that it is difficult to solve the elliptic curve discrete logarithm problem.

All privacy protection schemes used in this paper involve the point addition operation on elliptic
curves. Therefore, we can provide security for our privacy protection solution based on ECDLP.
For example, for the Pedersen commitment CM = s · G + r · H we used, when the adversary only
knows CM, G and H, he cannot obtain the secret value s in polynomial time because of ECDLP.

To solve the problem of the construction of secret accounts in RZcoin, we propose the
ciphertext equivalent signature scheme called CEs based on the existing ciphertext equivalent scheme.

Entropy 2020, 22, 712 6 of 28

This scheme mainly relies on bilinear mapping in number theory [34]. The definition of bilinear
mapping is as follows.

Definition 3 (Bilinear Mapping). Given an addition cyclic group G1 of prime order q and a multiplication
cyclic group G2, we define a mapping relationship e : G1 × G1 → G2 such that it satisfies the
following properties:

• Bilinear : ∀ P, Q ∈ G1, ∀ a, b ∈ Z∗q , e(a · P, b ·Q) = e(P, Q)ab is established, where Z∗q = {1, ..., q− 1};
• Non-degenerate : ∃ P, Q ∈ G1, e(P, Q) 6= 1 ∈ G2 is established;
• Computability : ∀ P, Q ∈ G1, there is an efficient polynomial time algorithm for computing e(P, Q).

If all the above properties are satisfied, the mapping relationship e is called a bilinear mapping.

2.3. Pedersen Commitment

In this paper, we use the Pedersen commitment scheme based on elliptic curves to hide the
asset information [35]. Its inherent homomorphism can prove the linear relationship between the
hidden asset.

Definition 4 (Pedersen Commitment [35]). For the elliptic curve group E(Fq), randomly pick G, H R←
E(Fq). logH

G is unknowable. The Pedersen commitment scheme contains the following three algorithms:

• pp← Setup(1λ). For security parameter 1λ, it outputs public parameters pp which will exist as implicit
input in the following algorithms.

• CM← Com(s, r). For the secret value s ∈ Z∗q , pick the random number r R← Z∗q , then output:

CM = s · G + r · H (3)

• {0, 1} ← Open(CM, s, r). If Equation (3) holds, the output of this algorithm is 1. Otherwise the output
is 0.

On the basis of the above scheme, Bunz et al. proposed the Pedersen vector commitment
in the bulletproof scheme published in 2018 to further strengthen the scalability of confidential
transactions [36]. Bulletproof uses this scheme to achieve the hiding of the secret set s. In short,
it constructs the corresponding Pedersen commitment for each element in the set of secret values,
thereby achieving complete hiding and computable binding of all secret values. In the following
definition, the concept of vector refers to a set of n elements.

Definition 5 (Pedersen Vector Commitment [36]). For the elliptic curve group E(Fq), randomly pick

{G = (G1, G2, ..., Gn), H} R← E(Fq), where n is the size of vector and logH
G is unknowable. A Pedersen vector

commitment scheme contains the following three algorithms:

• pp← Setup(1λ). For security parameter 1λ, it outputs public parameters pp which will exist as implicit
input in the following algorithms.

• CM← Com(s, r). For the secret vector s ∈ Zn
q , pick the random number r R← Z∗q , then output:

CM = s ·G + r · H = r · H +
n

∑
i=1

si · Gi (4)

where Zn
q denotes the set of vectors containing n elements in Zq.

• {0, 1} ← Open(CM, s, r). If Equation (4) holds, the output is 1. Otherwise the output is 0.

It was proved that because of the hardness of ECDLP, both of these commitment schemes are
unconditionally hiding and computationally binding. The definition of these properties is as follows.

Entropy 2020, 22, 712 7 of 28

Theorem 1 (Unconditionally Hiding [35]). If a commitment Com(s, r) will not reveal any useful information
about s, it is considered to be unconditionally hiding. That is, for any PPT adversary A , his advantage satisfies:

AdvA (λ) = P


b = b′

∣∣∣∣∣
pp← Setup(1λ);

(s0, s1)← A (pp);

b R← {0, 1}, r R← Z∗q ,

CM← Com(sb, r);

b′ ← A (pp, CM).


=

1
2

(5)

Remark 1. The proof of this theorem can be referred to [35].The so-called unconditional hiding means that
any two commitments are computationally indistinguishable. That is to say, even if the commitment CM is
constructed by a value randomly selected from the set(s0, s1) known to the adversary, he can only guess the
value contained in the CM correctly with half the probability.

Theorem 2 (Computationally Binding [35]). If a commitment Com(s, r) can be opened to two different
messages, ECDLP can be easily solved. That is, for any PPT adversary A , there is a negligible function negl(λ)
that makes his advantage satisfy:

AdvA (λ) = P

CM1 = CM2

∣∣∣∣∣
pp← Setup(1λ);

(s1, s2, r1, r2)← A (pp);

CM1 ← Com(s1, r1),

CM2 ← Com(s2, r2).

 ≤ negl(λ) (6)

Remark 2. The proof of this theorem can be referred to [35]. The theorem means that the content of commitment
cannot be changed after it is generated. That is to say, for the commitment CM1 that was generated based on s1 ,
the adversary cannot use the different value s2 to construct the commitment CM2 to satisfy CM1 = CM2.

2.4. Zero-Knowledge Proof

As early as 1985, Goldwasser, Micali, and Rackoff came up with a groundbreaking idea called
“zero-knowledge proof”. The original proof system is an interactive two-party protocol in which
the prover can convince the verifier that certain statement is correct without providing the verifier
with any useful information. In 1988, a non-interactive zero-knowledge proof scheme (NIZK) was
proposed [37]. It extends the application of zero knowledge proof and lays a foundation for its
application in blockchain.

In the existing blockchain privacy protection schemes, zero-knowledge proof is used to provide
evidence for the legality of confidential transactions. Moreover, it works with the public key signature
scheme to achieve accountability. Currently, zero-knowledge proof is considered to be the most
effective solution to blockchain privacy issues. Therefore, for the hidden asset in RZcoin, we choose a
zero-knowledge proof to provide evidence for its legitimacy.

2.4.1. Ramgeproof

In RZcoin, we use bulletproof to implement rangeproofs to further reduce the size of proof [36].
Bulletproof optimizes the inner-product argument proposed by Bootle [38], reduces its communication
complexity from 6log2n to 2log2n, and constructes a non-interactive zero-knowledge proof scheme
with low communication complexity based on it. By constructing the inner-product operation of
the Pedersen vector commitments of two polynomials L(x) and R(x), bulletproof transforms the
rangeproof of s equivalently into the special zero coefficient problem of inner product. In bulletproof,
L denotes the Pedersen vector commitment of L(x); R denotes the Pedersen vector commitment of
R(x). That is, if and only if s is within a certain range, the zero coefficient of 〈L, R〉 = ∑n

i=1 LiRi has a

Entropy 2020, 22, 712 8 of 28

specific form. This construction is implemented using the homomorphic property of Pedersen vector
commitment. The definition of bulletproof is as follows.

Definition 6 (Bulletproof [36]). For the input value a and global parameters G, H ∈ E(Fq), this scheme can
prove that a ∈ [0, 2n − 1] is true for the commitment CM = a · G + r · H. The value a here corresponds to the
secret value s to be hidden in our scheme. In this definition, in order to ensure comparability with the details of
scheme in [36], we choose to use a to denote the secret value. It mainly contains the following three algorithms:

• {G = (G1, G2, ..., Gn), H = (H1, H2, ..., Hn), G, H} ← Setup(1λ). For security parameter 1λ,
it outputs public parameters {G, H, G, H} which will exist as implicit input in the following algorithms.
The definition of these parameters was introduced earlier.

• proo f ← Proo f Gen(a, r). The prover generates the rangeproof of a according to the following steps:

(1) Convert a to a binary string aL ∈ {0, 1}n and calculate aR = {aL1−1 , ..., aLn−1};
(2) Choose blinding vectors sL, sR ∈ Zn

q and random parameters r1, r2 ∈ Z∗q to generate auxiliary
parameters A, S.

(3) Use Fiat-Shamir heuristic to achieve non-interaction, i.e., use the hash fuction instead of the challenge
interaction of y, z.

(4) Construct the two linear polynomials L(x), R(x) and calculate:

T(x) = 〈L(x), R(x)〉 (7)

(5) Use the polynomial identity test protocol to prove that Equation (7) holds and send proo f =

{τx, µ, T(x), L, R}.
• {0, 1} ← Proo f Ver(proo f). The verifier needs to check that if L, R ∈ proo f are actually L(x) and R(x)

and if Equation (7) holds. If the verification is passed, it means that a is indeed in the range [0, 2n − 1].
Otherwise, it means that a is out of range and the commitment CM is illegal.

Remark 3. The specific details of the above definition can be found in [36]. For example, the symbols and
calculation rules involved in bulletproof are described in detail in Section 2.3. For the first four steps included in
the algorithm Proo f Gen, the corresponding calculation details can be found in the formula (36)–(45). In addition,
the details of the fifth step can be found on page 17. In addition, the related content of algorithm Proo f Ver can
be found on page 18.

2.4.2. Proof of Account Validity

In RZcoin, if users want to use the privacy protection service, they should create a new secret
account for secret transactions. Although the account information will become visible throughout
the network as the secret initial transaction recorded in the blockchain, the validity of new account
cannot be verified directly because its balance is hidden in the commitment. Therefore, a proof must
be attached to the secret initial transaction for validity verification.

Similar to the Ethereum, the account balance is zero during the initial creation period.
Only through transactions with other accounts can the balance be increased. In other words, we only
need to prove that the initial balance is zero. We implement this proof operation using the
zero-knowledge proof based on ECDSA in RZcash. In this paper, we use the "key-prefixed" variant of
Schnorr signature to reconstruct the scheme, thereby reducing the size of proof.

Definition 7 (The “key-prefixed” Schnorr signature [39]). The "key-prefixed" variant of Schnorr signature
is defined by the following three algorithms:

• (x, X)← KeyGen(x). Let G be the base point of E(Fq), the public key X is generated by:

X = x · G (8)

Entropy 2020, 22, 712 9 of 28

• σ← Sign(x, m). Pick the random number r, the signer calculates the random challenge c and the signature
σ by the following steps. Here, Hash denotes a collision-resistant hash function. In this paper, we use
SHA256 to achieve it.

R = r · G, c = Hash(X, R, m), s = r + cx, (9)

σ = (R, s) (10)

• {0, 1} ← Ver(σ, X, m). If Equation (11) holds, the signature σ is valid and the output is 1. Otherwise,
the output is 0.

s · G = R + c · X (11)

Based on the above scheme, we re-explain our original zero-knowledge proof as follows.
To facilitate the subsequent algorithm description, we will call this scheme Szkp. Szkp mainly contains
the following three algorithms:

• pp← Setup(1λ). For security parameter 1λ, it outputs public parameters pp which will exist as
implicit input in the following algorithms.

• z ← zkpGen(x, m). For the value x to be proved and the auxiliary parameter m, this algorithm
calls the schnorr signature scheme to generate the corresponding evidence z.

(x, X)← KeyGen(x), σ← Sign(x, m) (12)

z = {X, m, σ} (13)

• {0, 1} ← zkpVer(z). For the input z, if 1 ← Ver(σ, X, m), then the verification is passed, this
algorithm outputs 1. Otherwise it outputs 0.

3. Ciphertext Equivalent Signature Scheme

In the existing blockchain system, each account contains a pair of keys (sk, pk). It can construct any
number of addresses for asset circulation based on its public key pk, but its available asset is only bound
to its private key sk. Every time the user initiates a transaction, he needs to sign the transaction with
his sk to ensure its non-repudiation. In RZcash, the privacy service is optional. To ensure the security
of secret assets, RZcash requires that each user who uses this service must create a secret account to
store encrypted assets and construct secret (or semi-secret) transactions. Correspondingly, the key pair
bound to this new account should also be regenerated. It can isolate the user’s open transactions from
secret transactions, thereby avoiding the privacy disclosure caused by the same public key. However,
it will quickly increase the storage space required for user keys. The cost of key management will also
increase. The probability of the disclosure of private keys will increase accordingly.

To solve this problem, we attempt to improve the existing ciphertext equivalence test scheme
and construct a new public key signature scheme, which is called ciphertext equivalence signature
scheme (CEs). The so-called ciphertext equivalence test is to determine whether two different
ciphertexts contain the same plaintext information without decryption. The ciphertext equivalent
test scheme we used was proposed by Zhu et al. in 2018. This work improves the PKEwET scheme
proposed by Lin et al. in 2016, and uses the straight line to construct equivalent tests to obtain better
performance and lower ciphertext space. The specific details of the scheme called PKEwET-L are
shown in Figure 2. This figure only introduces the core algorithm of PKEwET-L. Its concept definition
and implementation detailscan be found in the original paper [14]. In simple terms, this scheme uses
the straight line constructed by the message to implement the ciphertext authorization and equivalent
test functions. The principle is: the straight line constructed by the same message must be the same.
The scheme performs four authorizations based on four different scenarios, and each authorization
performs different equivalent test functions. Its application scenarios are very comprehensive. Zhu et al.
conducted a detailed analysis of its correctness and security. The results show that it can achieve
OW-CCA security based on CDH and IND-CCA security based on DDH respectively for two different

Entropy 2020, 22, 712 10 of 28

types of attackers under the random prediction model. The specific analysis process can be found in
Section 3.2.5 of [14].

Figure 2. Algorithmic Composition of PKEwET-L in [14].

Inspired by the straight line construction of this scheme, we further optimize the design of its
equivalent test and propose a public key signature mechanism called CEs suitable for the blockchain
system. Based on the original private key of users, CEs generates a new public key by constructing the
ciphertext equivalent commitment. The public key is bound to the secret account and is used to sign
and verify secret transactions. The address for receiving secret transactions is also generated based on
it. CEs does not need to generate a new private key, so it can reduce the cost of key management while
ensuring the non-repudiation of signatures.

Definition 8. The ciphertext equivalence signature scheme CEs is defined as the following four algorithms:

• pp← Setup(1λ). For security parameter 1λ, it outputs public parameters pp which will exist as implicit
input in the following algorithms.

• (s̃k, p̃k) ← KGen(sk). Let G be the base point of the elliptic curve E(Fq). Hash1 and Hash2 are
collision-resistant hash functions. The key pair (s̃k, p̃k) is generated based on the original private key sk:

s̃k = sk (14)

b̃1 = Hash1(s̃k), b̃2 = Hash2(s̃k) (15)

p̃k = {b̃1 · G || b̃2 · G} (16)

In this paper, we implement Hash1 and Hash2 based on SHA256. Their construction methods are:
Hash1 = SHA256(0||x), Hash2 = SHA256(1||x). That is, we construct these two different hash
functions by making simple changes to the input x.

• Sig← SGen(T, s̃k). Generate a signature for transaction T by Equation (17). Here, b̃1 and b̃2 must be

positive numbers that are not zero, and b̃1/b̃2 = b̃1(b̃2
−1

) mod q.

Sig = Hash1(T)(b̃1/b̃2) · G (17)

• {0, 1} ← SVer(Sig, p̃k). For bilinear pairing e, verify:

e(Sig, b̃2 · G) = e(b̃1 · G, Hash1(T) · G) (18)

If Equation (18) holds, the verification of Sig is passed.

Entropy 2020, 22, 712 11 of 28

Like the other general public key signature scheme, our scheme is unforgeable and
non-repudiation. Among them, the definition of unforgeability is as follows:

Theorem 3 (Unforgeability). A adversary cannot successfully forge a valid signature without knowing the
signer’s private key. That is, for any PPT adversary A , there is a negligible function negl(λ) that makes his
advantage satisfy:

AdvA (λ) = P

b = 1

∣∣∣∣∣
pp← Setup(1λ);

s̃k′, p̃k′ ← A (pp), s̃k′ 6= s̃k;

Sig′ ← SigGen(T, s̃k′);

b← SigVer(Sig′, p̃k′).

 ≤ negl(λ) (19)

Proof of Theorem 3. As shown in Equation (17), the generation process of the signature Sig can be
divided into three parts: the hash value of the transaction Hash1(T) ∈ Z∗q , the scalar (b̃1/b̃2) ∈ Z∗q
and the base point G. Since the transaction T and the point G are publicly known throughout the
network, the scalar (b̃1/b̃2) is the main target of attacks. In other words, there are two main methods
for signature forgery attacks on CEs:

(1) Attack on b̃1 and b̃2. For the hash function Hash1, the adversary A needs to find a pair of
collisions with the same hash value b̃1. Similarly, A also needs to find a pair of collisions with
the same hash value b̃2 for Hash2. That is, A needs to launch the strong collision attack on
Hash1(T), Hash2(T) at the same time and all succeed.

(2) Attack on (b̃1/b̃2). A needs to launch an attack on ECDLP to Sig.

For the first attack mentioned above, we use the hash function with strong collision to achieve
defense. In the implementation of CEs, we construct these two hash functions based on SHA256.
By adding randomness to the input of SHA256, we implement Hash1 and Hash2. It was proved that
the SHA256 algorithm is more secure than MD5 and SHA-1 in defending against birthday attacks and
known differential attacks. In other words, SHA256 has good resistance to strong collision. Therefore,
CEs can resist this attack. For the second attack, since ECDLP is a difficult problem, there is currently
no effective solution to the problem. As a result, CEs can also resist such attack.

Because CEs satisfy the unforgeability, a valid signature can only be generated by the signer
himself. Therefore, CEs is non-repudiation.

4. Overview of RZcoin

4.1. System Model

RZcoin is a decentralized payment system that provides optional privacy services based on the
account model blockchain. In this paper, we choose Ethereum as the underlying blockchain system to
build it. Each user needs to register an Ethereum account for subsequent transactions when entering
RZcoin for the first time. The user can choose to mortgage a certain amount of assets to become an
accounting node (i.e., full node) to participate in mining, or can only perform daily transactions as
lightweight nodes. When a transaction is initiated, the complete information of it will be broadcast
across the entire network through P2P communication. Some full nodes collect these transactions and
verify their validity. Valid transactions will be integrated into blocks and recorded in the blockchain
through a consensus mechanism (e.g., PoW).

RZcoin mainly contains three roles, namely payer, payee and verifier. When the transaction
requires privacy services, its payer and payee need to first create a new account to store and transfer
secret assets. We call this account a secret account. After the creation is completed, the payer and
the payee can use their secret accounts for the next secret transfer without regenerating. In RZcoin

Entropy 2020, 22, 712 12 of 28

we implemented, the verifier is mainly played by the full node. When the full node receives the
transaction, it will verify the evidence, and the verification. In addition, only if the verification is
passed, the transaction can be uploaded to the chain. Subsequently, the payee updates its balance
according to the transaction data recorded in the chain. Assuming that the node A is the transaction
payer and the node B is the transaction payee, the basic workflow of RZcoin is shown in Figure 3.
To highlight the subject, the figure omits the description of the process of open transactions in RZcoin.

Figure 3. The Workflow of RZcoin.

Since the privacy service provided by RZcoin is optional, users can have both open accounts
and secret accounts. The composition of transactions between different accounts is also different.
Transactions between public accounts do not involve privacy services, so we do not describe them in
this paper. Next, we will introduce the work that each role is responsible for in secret transactions.

- Payer: When the payer wants to initiate a secret transaction, he needs to update the current
commitment of secret assets (i.e., its balance commitment) based on the amount spent in this
transaction. He also generates the commitment corresponding to the transaction amount. For these
commitments, he needs to provide corresponding evidence to prove its legitimacy, such as range
proofs. At the same time, he will use the public key of payee to encrypt the transaction amount and
corresponding random number. These ciphertexts will be sent to the payee so that he can verify
the correctness of the amount. The payer packages the above data into a transaction, signs it and
sends it to the network.

- Verifier: For the received secret transaction, the full node will verify the validity of the transaction
signature, range proofs and the updated balance commitment. If the verification is passed, the
transaction will be packaged into a block and recorded in the blockchain through distributed
consensus.

- Payee: For the secret transaction related to him in the blockchain, the payee uses his private key to
decrypt the ciphertext in it and verifies the corresponding commitment. If the verification fails, the
payee will publish the evidence to the network and declare the secret transaction invalid. If the
verification is successful, the payee updates his locally stored balance and random numbers.

To ensure security, the secret information owned by payer and payee must be stored in their
respective TEEs, and calculations involving this information are also performed in it.

Entropy 2020, 22, 712 13 of 28

4.2. Adversarial Model

We define some types of attacks that RZcoin may face to lay the foundation for subsequent
security analysis. RZcoin mainly faces the following three attack modes, namely balance forgery
attack, signature forgery attack and over-spending attack. Next, we will introduce the principles and
operations of these attacks.

4.2.1. Balance Forgery Attack

When the user wants to use the privacy service, he needs to create a secret account bound to
his private key and publishes the initial information of it, such as its initial balance and account
address, in the form of secret initial transaction on the blockchain network. The initial balance in such
transaction is expressed in the form of commitment. That is, the balance of secret account is hidden
from the beginning. Since then, the balance was updated in a hidden state. No one except the account
owner can know the secret balance at any time.

Since RZcoin is built on Ethereum, the setting requirements of the initial balance are the same
as that of Ethereum, i.e., the initial balance must be set to zero. Since the account creation is a local
operation of the user, an adversary may want to violate the above system settings to forge the account
balance commitment. When the adversary sets an account balance, he may want to use any known
positive integer to replace zero to generate the commitment, thereby fabricating an available asset with
no legal source for himself.

4.2.2. Signature Forgery Attack

For each secret transaction in the system, its initiator needs to sign it to ensure the traceability
of the transaction source. This also realizes the non-repudiation of transactions. RZcoin uses CEs
to generate the public key of secret accounts and sign secret transactions. In this regard, malicious
adversaries may want to obtain key parameters of the signature by analyzing some public information
in the Internet (e.g., a message signed with the same private key). The parameter can be used to forge
the signer’s signature, thereby further forging his transaction. Using this method, the adversary may
want to transfer the victim’s secret assets to his account or spend them. This is the so-called signature
forgery attack.

4.2.3. Over-Spending Attack

In RZcoin, The asset information involved in each secret transaction is hidden in the commitment.
Except for its payer and payee, no one can know the amount of this transaction. In addition, the secret
balance of the transaction participants cannot be known by other nodes in the network. Malicious
adversaries may want to spend more than their account balance in a single secret transaction and
forge the legal range proof to disguise the unreasonable consumption behavior. This is the so-called
signature over-spending attack.

5. Description of RZcoin

In this section, we will systematically introduce the transaction details in RZcoin. Because the
focus of our work is on privacy services, we will focus on the secret and semi-secret transactions in
RZcoin to introduce the details of their construction process and entire transaction cycle. Since the use
of secret services requires the construction of a new secret account, the secret initial transaction is also
the focus of our description. The specific process of open transactions is omitted. We start with the
definition of some notations involved in RZcoin.

5.1. Notations

Table 2 shows some symbols used in the description of RZcoin and their meanings. For example,
the symbols G and H represent two different points of the elliptic curve group E(Fp), where G is the

Entropy 2020, 22, 712 14 of 28

base point of the curve and H is any point other than the base point. It requires that the discrete
logarithm logH

G of H relative to G must be unknown. (s̃k, p̃k) is a key pair generated by the user calling
CEs when creating a secret account, where s̃k represents the private key of the secret account, which is
the same as the original private key of the user’s open account; p̃k represents the public key of the
secret account, which can be used to generate the address of secret account. ID and ĨD respectively
represent the addresses of open account and secret account, which are used to receive and initiate
transactions. Their subscript role indicates the role played by the owner of address in this transaction,
such as payer and payee. B̃role represents the secret balance corresponding to ĨDrole and Brole is the
open balance. Ãpay means the transaction amount involving secret assets, Apay is the opposite.

For the secret balance and transaction amount, RZcoin can hide them in the commitment. C̃Mrole
represents the commitment corresponding to B̃role. r̃role represents the random number required to
generate C̃Mrole. C̃Mpay represents the commitment corresponding to Ãpay. r̃pay represents the random
number required to generate C̃Mpay. For the legality of these commitments, we use bulletproof and
Szkp to generate corresponding evidence. R̃cm represents the range proof corresponding to cm and
Z̃cm represents the zero-knowledge proof corresponding to the cm. Some of the above variables will
be stored in the transaction Tx. σ̃ and σ represent the signature of transactions initiated by the secret
account and open account respectively.

Table 2. System Symbols and Their Meaning.

Notation Description

Fp Finite field with order p
G, H Two points of E(Fp), where G is the base point

(sk, pk) Key pair of open accounts
(s̃k, p̃k) Key pair of secret accounts
IDrole Address of open account of role
ĨDrole Address of secret account of role
Brole Open balance of role
B̃role Secret balance of role
r̃role Random number required for B̃role

C̃Mrole Commitment of B̃role
Apay Transaction amount involving open assets
Ãpay Transaction amount involving secret assets
r̃pay Random number required for Ãpay

C̃Mpay Commitment of Ãpay
R̃cm Range proof of cm
Z̃cm Zero-knowledge proof of cm

σ̃ Signature generated by secret accounts
σ Signature generated by open accounts

5.2. Secret Initial Transaction

The secret initial transaction is the first transaction generated by users after calling the privacy
service. Its construction depends on the algorithm called AccountGen. Its input is the user’s private
key sk. Its output includes the secret initial transaction Txinit, the secret balance B̃ and corresponding r̃
which need to be stored locally. It can be written as {Txinit, B̃, r̃} ← AccountGen(sk). The steps of this
algorithm are as follows:

(1) Call the key generation algorithm KGen in CEs to generate the key pair (s̃k, p̃k). At the same time,
ĨD will be generated based on p̃k. Its generation method is consistent with the same functional in
Ethereum.

(s̃k, p̃k)← KGen(sk) (20)

(2) Set the initial balance B̃ = 0 and randomly select r̃ from Zq for subsequent commitment
construction.

Entropy 2020, 22, 712 15 of 28

(3) Calculate the commitment C̃M of B̃. To prove that B̃ is 0, the proof generation algorithm zkpGen
in Szkp needs to be called to generate the corresponding evidence Z̃C̃M. m here is set by the
system and its value will not affect the generation of evidence.

C̃M = B̃ · G + r̃ · H = r̃ · H (21)

Z̃C̃M ← zkpGen(r̃, m) (22)

(4) Integrate the data generated in the above steps into Txinit.

Txinit = { ĨD, p̃k, C̃M, Z̃C̃M} (23)

(5) Use s̃k to sign this transaction, i.e., call the signature generation algorithm SGen in CEs to generate
the signature σ̃init. Attach the signature to Txinit and broadcast Txinit through the network.

σ̃init ← SGen(Txinit, s̃k) (24)

Txinit←Txinit||σ̃init (25)

In the above process, s̃k is bound to all assets in the secret account, namely B̃. The randomness of
r̃ determines the security of secret assets. Therefore, s̃k, B̃ and r̃ must be stored in the TEE hardware
environment of the user’s local machine to ensure security. Whenever there is a transfer of secret assets,
the user needs to update the locally stored B̃ and r̃ to ensure data consistency across the network.

When Txinit is broadcast through the entire network, some full nodes will receive it and call the
algorithm AccountVer to verify its validity. Its input is Txinit and its output is 1 or 0. It can be written
as {0, 1} ← AccountVer(Txinit). If the output is 1, it means that all verifications were passed. The full
node will then package it together with other valid transactions into a new block, participate in the
consensus process of the entire network and wait to be recorded in the blockchain. The steps of this
algorithm are as follows:

(1) Call the signature verification algorithm SVer in CEs to verify the legality of σ̃init. If it returns 1,
the verification is passed. Otherwise, the algorithm is aborted and Txinit is discarded.

(2) Call the proof verification algorithm zkpVer in Szkp to verify Z̃C̃M. If it returns 1, the verification
is passed. Otherwise, the algorithm is aborted and Txinit is discarded.

(3) If all above verifications are passed, the algorithm returns 1, otherwise 0.

The process of the secret initial transaction is shown in Figure 3. All users in the system can
construct a new secret account in this way.

5.3. Secret Transaction

In the previous section, we briefly introduced the concept of secret transactions. The entire
process of secret transactions does not involve open assets. All transaction information is hidden
through privacy services. Next, we will take a specific transaction scenario as an example to introduce
the specific process of secret transactions. In this scenario, node A is the payer of the transaction.
It uses its secret account ĨDA to initiate this transaction. Node B is the payee of the transaction.
It receives the transfer from payer through its secret account ĨDB . The full node plays the role of
verifier. The overall process of the transaction is shown in Figure 4. Next, we will explain in detail
according to different roles.

Entropy 2020, 22, 712 16 of 28

Figure 4. The Interactive Process of Secret Transactions.

5.3.1. Payer A

The construction of secret transactions depends on the algorithm SecretPay. The payer A will call
it to generate the key parameters required in the secret transaction. Its input includes s̃kA, A’s current

balance B̃old
A , the corresponding r̃old

A , the amount Ãpay, p̃kB , B’s current balance commitment C̃M
old
B ,

ĨDA and ĨDB . Its output includes the secret transaction Tx p̃ay, A’s updated balance B̃new
A and the

corresponding r̃new
A . Among them, B̃new

A and r̃new
A are used to update the corresponding variables stored

in the local TEE. Tx p̃ay is released to the blockchain network. It can be written as {Tx p̃ay, B̃new
A , r̃new

A } ←

SecretPay(ĨDA, ĨDB , s̃kA, B̃old
A , r̃old

A , Ãpay, p̃kB , C̃M
old
B). The steps of this algorithm are as follows:

(1) Randomly select r̃pay∈ Z∗q to generate the commitment of Ãpay, and update the locally saved
variables;

B̃new
A = B̃old

A − Ãpay (26)

r̃new
A = r̃old

A − r̃pay (27)

(2) For the updated balance B̃new
A , r̃new

A is used to generate C̃M
new
A . At the same time, r̃pay is used to

generate C̃Mpay.
C̃M

new
A = B̃new

A · G + r̃new
A · H (28)

C̃Mpay = Ãpay · G + r̃pay · H (29)

(3) For the two commitments generated in the previous step, the proof generation algorithm
Proo f Gen in bulletproof is used to generate the corresponding evidence.

R̃C̃M
new
A
← Proo f Gen(B̃new

A , r̃new
A) (30)

R̃C̃Mpay
← Proo f Gen(Ãpay, r̃pay) (31)

(4) Use p̃kB to encrypt Ãpay and r̃pay. This operation allows B to confirm the transaction amount and
verify it with the corresponding commitment to ensure that A has not cheated. The encryption
algorithm here is not limited.

C ← Enc p̃kB
(Ãpay, r̃pay) (32)

(5) Update the balance commitment of B and attach it to the transaction.

C̃M
new
B = C̃M

old
B + C̃Mpay (33)

Entropy 2020, 22, 712 17 of 28

(6) Construct the secret transaction Tx p̃ay as follows, use s̃kA to generate its signature by SGen in
CEs, and finally broadcast it through the network.

Tx p̃ay = { ĨDA, ĨDB , C̃M
new
A , C̃Mpay,

C̃M
new
B , R̃C̃M

new
A

, R̃C̃Mpay
, C} (34)

σp̃ay ← SGen(Tx p̃ay, s̃kA) (35)

Tx p̃ay←Tx p̃ay||σp̃ay (36)

5.3.2. Verifier

After receiving the transaction, the full node needs to call the algorithm SecretVer to verify the

validity of Tx p̃ay. Its input includes Tx p̃ay,C̃M
old
A ,C̃M

old
B and p̃kA. Its output is 0 or 1. It can be written

as {0, 1} ← SecretVer(Tx p̃ay, C̃M
old
A , C̃M

old
B , p̃kA). Only when all the following verifications are passed,

the output will be 1. The full node will package Tx p̃ay into blocks and record it in the blockchain.
The steps of this algorithm are as follows:

(1) Call SVer in CEs to verify the validity of σp̃ay. If it returns 1, the verification is passed and the
following steps can be continued. Otherwise the transaction is discarded.

(2) Call the proof verification algorithm Proo f Ver in bulletproof to verify R̃C̃M
new
A

and R̃C̃Mpay
. If they

all return 1, the verification is passed and the following steps can be continued. Otherwise the
transaction is discarded.

(3) Respectively verify the algebraic relationship between these balance commitments. If Equations
(37) and (38) hold, the verification is passed and the following steps can be continued. Otherwise
the transaction is discarded.

C̃M
new
A = C̃M

old
A − C̃Mpay (37)

C̃M
new
B = C̃M

old
B + C̃Mpay (38)

(4) If all above verifications are passed, the algorithm returns 1. Otherwise it returns 0.

5.3.3. Payee B

When the payee B finds Tx p̃ay in the blockchain, he needs to call the algorithm SecretUpdate
to perform the final verification process shown below. Its input is Tx p̃ay and s̃kB . Its output
is the verification result. 1 means pass and 0 means failure. It can be written as {0, 1} ←
SecretUpdate(Tx p̃ay, s̃kB). If the verification is passed, the locally stored variables will be updated.
If the verification fails, B will cancel the transaction and broadcast the corresponding evidence through
the entire network, namely Ãpay and r̃pay. The steps of this algorithm are as follows:

(1) Use s̃kB stored locally to decrypt the ciphertext C.

Ãpay, r̃pay ← Decs̃kB
(C) (39)

(2) Use the decrypted Ãpay and r̃pay to verify the legitimacy of C̃Mpay. If the equation holds, the
algorithm returns 1. Otherwise it returns 0.

C̃Mpay = Ãpay · G + r̃pay · H (40)

5.4. Semi-Secret Transaction

The semi-secret transactions refers to transactions involving one of the payer and payee using
public accounts. It realizes the conversion between secret assets and open assets. When the payer

Entropy 2020, 22, 712 18 of 28

and payee are the same user, this conversion realizes the "cash-out" and "recharge" operations of the
user’s secret assets. Next, we will use two specific scenarios as examples to show the interactive
process of semi-secret transactions, which are called Scene 1 and Scene 2 respectively. Scene 1 is used
to describe it initiated by the open account and Scene 2 is used to describe it initiated by the secret
account. There are three nodes involved in these two scenarios: A, B and C. A plays the role of payer
in Scene 1. It uses the open account to initiate the semi-secret transaction Txpay1. B plays the role of
payee in Scene 1. Subsequently, B plays the role of payer in Scene 2. It uses the secret account to initiate
the semi-secret transaction Txpay2. C plays the role of payee in Scene 2. In these two scenarios, the full
node is responsible for verifying transactions. The interactive process of these scenarios is shown in
Figure 5. Next, we will first introduce Scene 1 according to different roles.

Figure 5. The Interactive Process of Semi-Secret Transactions.

5.4.1. Scene 1

Payer A:

The construction of Txpay1 depends on the algorithm open2secretPay. The payer A will call
it to generate the key parameters required in this transaction. It can be written as Txpay1 ←
open2secretPay(Apay1, skA, Bold

A , IDA, p̃kB , C̃M
old
B , ĨDB). The steps of this algorithm are as follows:

(1) Randomly select r̃pay1∈ Z∗q for the update operation of the random number saved by B. Since
the transaction amount is a public value, only the commitment corresponding to r̃pay1 and its
zero-knowledge proof need be generated.

C̃Mr̃pay1
= r̃pay1 · H (41)

Z̃r̃pay1
← zkpGen(r̃pay1, m) (42)

Entropy 2020, 22, 712 19 of 28

(2) Use p̃kB to encrypt r̃pay1 to get the ciphertext C1. The ciphertext is sent to the B together with
Txpay1, assisting B to update the local random number.

C1 ← Enc p̃kB
(r̃pay1) (43)

(3) Update C̃M
old
B based on Apay1.

C̃M
new
B = C̃M

old
B + Apay1 · G + r̃pay1 · H (44)

(4) A update his open balance Bold
A .

Bnew
A = Bold

A − Apay1 (45)

(5) Construct Txpay1 as follows, use skA to generate the corresponding transaction signature, and
finally broadcast Txpay1 through the entire network. SigGen is the original signature algorithm of
the blockchain system (generally ECDSA).

Txpay1 = {IDA, IDB , Bnew
A , Apay1, C̃M

new
B ,

C̃Mr̃pay1
, Z̃r̃pay1

, C1} (46)

σpay1 = SigGen(Txpay1, skA) (47)

Txpay1←Txpay1||σpay1 (48)

Verifier:

After receiving the transaction Txpay1, the full node needs to call the algorithm
open2secretVer to verify the validity of the transaction. It can be written as {0, 1} ←
open2secretVer(Txpay1, pkA, Bold

A , C̃M
old
B). Only when its output is 1, can Txpay1 be finally recorded in

the blockchain. The steps of this algorithm are as follows:

(1) Call SigVer to verify the legality of σpay1, if it returns 1, the verification is passed. Otherwise the
transaction is discarded.

(2) Call zkpVer to verify the legality of Z̃r̃pay1
. If it returns 1, the verification is passed. Otherwise the

transaction is discarded;
(3) Verify the correctness of the balance updates of A and B. If Equations (49) and (50) hold,

the verification is passed. Otherwise the transaction is discarded.

Bnew
A = Bold

A − Apay1 (49)

C̃M
new
B = C̃M

old
B + Apay1 · G + C̃Mr̃pay1

(50)

Payee B:

When B finds that Txpay1 is recorded in the blockchain, it calls the algorithm
open2secretUpdate to update the locally stored variables. It can be written as {B̃new

B , r̃new
B } ←

open2secretUpdate(Txpay1, s̃kB , B̃old
B , r̃old

B). The steps of this algorithm are as follows:

(1) Use the locally saved s̃kB to decrypt the ciphertext C1 to obtain the random number corresponding
to the transaction.

r̃pay1 ← Decs̃kB
(C1) (51)

(2) Use the decrypted r̃pay1 to update the locally stored variables.

r̃new
B = r̃old

B + r̃pay1 (52)

Entropy 2020, 22, 712 20 of 28

B̃new
B = B̃old

B + Apay1 (53)

5.4.2. Scene 2

In Scene 1, we describe the conversion from open assets to secret assets. Next, we will introduce
Scene 2 according to different roles.

Payer B:

The construction of Txpay2 depends on the algorithm secret2openPay. The payer B will call it to
generate the key parameters required in this transaction. It can be written as {Txpay2, B̃new

B , r̃new
B } ←

secret2openPay(ĨDB , ĨDC , Apay2, s̃kB , B̃old
B , r̃old

B , pkrecC, Bold
C). The steps of this algorithm are as follows:

(1) Randomly select r̃pay2∈ Z∗q to update the balance and random number of B’s secret account
stored locally.

B̃new
B = B̃old

B − Apay2 (54)

r̃new
B = r̃old

B − r̃pay2 (55)

(2) Generate the commitment of r̃pay2 and its corresponding zero-knowledge proof.

C̃Mr̃pay2 = r̃pay2 · H (56)

Z̃r̃pay2 ← zkpGen(r̃pay2, m) (57)

(3) Generate the updated balance and commitment.

C̃M
new
B = B̃new

B · G + B̃new
B · H (58)

Bnew
C = Bold

C + Apay2 (59)

(4) Call bulletproof to generate the corresponding evidence of the updated commitment.

R̃C̃M
new
B
← Proo f Gen(B̃new

B , r̃new
B) (60)

(5) Construct Txpay2 as follows, use s̃kB to generate the transaction signature, and finally broadcast
Txpay2 through the entire network.

Txpay2 = { ĨDB , IDC , C̃M
new
B , Apay2, Bnew

C ,

R̃C̃M
new
B

, C̃Mr̃pay2 , Z̃r̃pay2} (61)

σpay2 ← SGen(Txpay2, s̃kB) (62)

Txpay2←Txpay2||σpay2 (63)

Verifier:

After receiving Txpay2, the full node needs to call the algorithm secret2openVer to verify the

validity of the transaction. It can be written as {0, 1} ← secret2openVer(Txpay2, p̃kB , C̃M
old
B , B̃old

C).
Only when the output is 1, can Txpay2 be finally recorded in the blockchain.

(1) Call SVer to verify the validity of σpay2. If it returns 1, the verification is passed. Otherwise the
transaction is discarded.

(2) Call zkpVer to verify the validity of Z̃r̃pay2 . If it returns 1, the verification is passed. Otherwise the
transaction is discarded.

(3) Call Proo f Ver to verify the validity of R̃C̃M
new
B

. If it returns 1, the verification is passed.
Otherwise the transaction is discarded.

Entropy 2020, 22, 712 21 of 28

(4) Verify the correctness of the updated balance of B and C. If Equations (64) and (65) hold,
the verification is passed. Otherwise the transaction is discarded.

Bnew
C = Bold

C + Apay2 (64)

C̃M
new
B = C̃M

old
B − Apay2 · G− C̃Mr̃pay2 (65)

Payee C:

When C finds that Txpay2 was recorded in the blockchain, it only needs to update the locally
stored balance of its open account. This operation has nothing to do with the secret service and will
not be described here.

6. Security Analysis

In the previous article, we defined three attack models that RZcoin may face. In this section,
we will perform the heuristic analysis of security of RZcoin based on these attack models.

6.1. Balance Forgery Attack

This attack mainly refers to an attack against the initial balance. As long as the initial balance is
legal, RZcoin will ensure the legality of balances updated subsequently. RZcoin chooses to use the
non-interactive zero-knowledge proof scheme called Szkp to resist this attack. This scheme can prove
that the user honestly calculated the initial balance commitment of the secret account without exposing
the secret information C̃M = r̃ · H. This solution is based on the schnorr signature, so its security is
based on the security of schnorr signature. The schnorr signature scheme we used is the so-called
"key-prefxed" variant. This variant is considered to have better multi-user security than the classic
variant and is therefore widely used [40].We chose this variant to make our solution more portable.
The schnorr signature has higher security than ECDSA, so the security of our scheme is also improved.

Because of the schnorr signature, the proof generated by Szkp also satisfies unforgeability. This
property is based on the ECDLP. Based on it, a malicious adversary cannot know the discrete logarithm

logC̃M
′

H of the forged commitment C̃M
′

relative to H, where C̃M
′
= B̃′ · G + r̃′ · H, without knowing

the discrete logarithm logH
G . That is, he cannot transform C̃M

′
into C̃M

′
= (B̃′logH

G + r̃′) · H. Therefore,
the adversary cannot construct a legal zero-knowledge proof. This shows that RZcoin can resist the
balance forgery attack.

6.2. Signature Forgery Attack

The signature mechanism of RZcoin is implemented through CEs. In Section 3, We analyzed its
unforgeability. We divided the attacks against this scheme into two categories, and gave heuristic
security analysis separately. We use CEs to separate the signature mechanism of secret transactions
from that of open transactions. In this case, even if the signature of open transactions is attacked,
as long as the private key is not leaked, the security of the signature of secret transactions will not be
affected. Therefore, RZcoin can resist the signature forgery attacks.

6.3. Over-Spending Attack

In RZcoin, the asset information involved in each secret transaction is hidden in the commitment.
Except for payer and payee, no node can know the transaction amount. To ensure the validity of
secret transactions, we require the payer to provide the legality proof for its hidden asset information.
Therefore, a malicious adversary who wants to launch an over-spending attack must be able to forge a
legal proof to disguise his unreasonable consumption behavior. The security proof of bulletproof used
in this article was given in [36]. Therefore, RZcoin can resist the over-spending attacks.

Entropy 2020, 22, 712 22 of 28

7. Simulation and Performance Evaluation

We use python to simulate RZcoin and test its performance. We will first evaluate the underlying
improvements, such as CEs and Szkp. Then we will evaluate the performance of each algorithm in
RZcoin from the running time and memory consumption. We will start with the configuration of
simulation environment.

7.1. Configuration of Simulation Environment

To facilitate testing, we chose to implement RZcoin’s core algorithm on the laptop with Ubuntu
18.04.2 LTS operating system. The hardware and software configuration of the entire test environment
is shown in Table 3. In addition, the elliptic curve point multiplication and point addition operations in
RZcoin are implemented through the python version of ECDSA algorithm library. The type of elliptic
curve we selected is secp256k1, and the parameter configuration of this curve is shown in Table 4. CEs is
based on the pypbc library to achieve the pairing operation required for the generation and verification
of signatures. For all basic operations in RZcoin, we choose to use the GNU multiple precision
operation library (GMP) to ensure the accuracy of large number operations in this mechanism [41].
In addition, all large number operations are implemented in the prime field. For this field, we require
the size of the prime to be 256 bits and the same order as the curve scp256k1. To ensure the safety of
RZcoin, all random numbers are generated by calling the random algorithm library that comes with
python and the precision is set to 256 bits.

Table 3. The Hardware and Software Configuration of RZcoin’s Test Environment [41].

Name Configuration

CPU 2.60GHz Intel(R) Core (TM) i7-6500U CPU
OS Ubuntu 18.04.2 LTS

RAM 8 GB
python 3.7.4
pypbc 2.1.0

Table 4. The Parameter Configuration of Curve secp256k1.

Parameter Recommended Value

p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

a 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

b 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000007

G 02 79BE667E F9DCBBAC 55A06295 CE870B07
029BFCDB 2DCE28D9 59F2815B 16F81798

N FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
BAAEDCE6 AF48A03B BFD25E8C D0364141

h 01

7.2. Evaluation of Improvements

In RZcoin, we mainly give three improvements: (1) We propose CEs to solve the key redundancy
problem caused by secret accounts; (2) We use Schnorr to reconstruct the zero-knowledge proof scheme
to reduce the size of proof; (3) We used bulletproof to further reduce the size of the transaction. In the
previous section, we performed a heuristic analysis of their security. It shows that these improvements
improved the security of RZcoin. In this section, we will further evaluate their performance. To facilitate
evaluation, the accuracy of the running time of all algorithms is set to six decimal places.

Entropy 2020, 22, 712 23 of 28

7.2.1. Evaluation of CEs

The signature scheme mainly contains three algorithms, namely KeyGen, SigGen, and SigVer.
We will evaluate the running time of these three algorithms and the size of the generated signature.
The test results are shown in Table 5, where all the data are the average of the results obtained after
20 tests. Since the signature of CEs is a single value, its size is much smaller than that of ECDSA.
Compared to ECDSA, its signature size is reduced by 80%. However, in terms of running time, CEs
are not as good as ECDSA. However, the design goal of CEs is to solve the security risks caused by key
redundancy. In RZcoin, two different types of accounts use different signature keys and mechanisms.
Even if the signature mechanism of the one is attacked, the security of the other account can be
guaranteed as long as the private key is not stolen. This setting will improve the security of the account
to a certain extent. Since the running time is at the millisecond level, the difference in performance
between the two algorithms is not very large. In addition, KeyGen only runs once when the account is
created, so it has little impact on the system’s daily performance.

Table 5. Comparison of Performance between CEs and ECDSA.

CEs ECDSA

Time of KeyGen (/s) 0.010977 0.000087
Time of SigGen (/s) 0.001926 0.000452
Time of SigVer (/s) 0.004263 0.001930

Size of Signature (/byte) 56 296

7.2.2. Evaluation of Szkp

The purpose of using schnorr signatures to achieve improvements is mainly as follows: (1) Schnorr
has higher security than ECDSA. Using it to achieve optimization can further enhance the security
of the solution. (2) The size of the signature generated by schnorr is smaller than that of ECDSA.
Therefore, this improvement can further reduce the size of transaction. (3) The schnorr signature is
linear, so the zero-knowledge proof based on it also has this property. It provides the possibility for
subsequent scalability improvements. We will test the proof generation and verification algorithm of
Szkp and compare the results with the original scheme ZKP in RZcash. The test results are shown in
Table 6, where all the data are the average of the results obtained after 20 tests. It can be seen from
Table 6 that the size of proof generated by Szkp is about 2/3 of that of ZKP. In addition, the difference
between the two schemes in verification time is not very large.

Table 6. Comparison of Performance between Szkp and ZKP.

Szkp(RZcoin) ZKP(RZcash)

Time of proofGen (/s) 0.008463 0.000532
Time of proofVer (/s) 0.005645 0.002015

Size of zkproof (/byte) 200 304

7.2.3. Evaluation of Bulletproof

We use bulletproof to reduce the size of range proofs. Therefore, we mainly focus on the
comparison between it and the range proof scheme RP of RZcash in the size of the generated proof.
We use N to denote the maximum bit length of the object (ie number) allowed by the range proof.
In its performance test, we will gradually adjust N from 2 to 64 to evaluate the influence of N on the
size of returned result. The test results are shown in Table 7, where all the data are the average of the
results obtained after 20 tests. As shown in Table 7, the proof size of bulletproof is smaller than RP,
and as N increases, the difference between them becomes larger and larger. Therefore, bulletproof
effectively reduces the size of proof.

Entropy 2020, 22, 712 24 of 28

Table 7. Comparison of Performance between Bulletproof and RP.

N 2 4 8 16 32 64

Bulletproof (/byte) 1694 2046 2279 2521 2760 3012
RP (/byte) 1604 3200 6376 12764 25598 51134

7.3. Performance Evaluation

The above evaluation results of these improvements show that although they increase the running
time to a certain extent, the size of generated proof (or signature) is much smaller than that before
optimization. In addition, the security of RZcoin has also been improved. Overall, these are some good
improvements. However, by simplifying RZcoin’s model algorithms, we achieved good performance
in the operation of the overall system. The algorithm description for RZcoin is shown in Table 8.
In Scane2, payee does not need to perform any operations related to privacy services. He only needs
to update the public balance saved locally. Therefore, RZcoin does not contain related algorithms.
In the model, we use N to denote the maximum bit length of the object (ie number) allowed by the
range proof. In the performance test of RZcoin’s algorithm, we will gradually adjust N from 2 to 64 to
evaluate the influence of N on the algorithm running time and the size of returned result. These data
are the average of the results obtained after 20 tests. To facilitate evaluation, the accuracy of the
calculation time of all algorithms is set to six decimal places.

Table 8. The Algorithm Description for RZcoin.

Name Function Caller

AccountGen used to build the
secret account users

AccountVer used to verify Txinit full nodes

SecretPay used to build secret
transactions payer

SecretVer used to verify
secret transactions full nodes

SecretUpdate used for local updates payee

open2secretPay used to construct semi-secret
transactions in Scane1 payer

open2secretVer used to verify semi-secret
transactions in Scane1 full nodes

open2secretUpdate used for local updates payee

secret2openPay used to construct semi-secret
transactions in Scane2 payer

secret2openVer used to verify semi-secret
transactions in Scane2 full nodes

Figure 6 shows the test results of the running time of AccountGen and AccountVer involved in
the secret initial transaction. At the same time, for the results returned by AccountGen (specifically
transactions), Table 9 also shows its memory usage. It can be seen that the running time of these two
algorithms is not affected by the change of N. The size of secret initial transactions will also not change
as N grows.

Entropy 2020, 22, 712 25 of 28

Figure 6. The Comparison of Algorithm Performance of Secret Initial Transactions.

Table 9. The Size of Secret Initial Transactions.

N 2 4 8 16 32 64

Txinit(/byte) 450 449 452 450 454 452

Figure 7 shows the test results of the running time of SecretPay, SecretVer and SecretUpdate
involved in the secret transaction. At the same time, Table 10 also shows the memory usage of Tx p̃ay.
It can be seen that the running time of SecretPay and SecretVer increases with the increase of N.
However, the running time of SecretUpdate is not affected by the change of N. The size of secret
transactions will gradually increase as N grows.

Figure 7. The Comparison of Algorithm Performance of Secret Transactions.

Table 10. The Size of Secret Transactions.

N 2 4 8 16 32 64

Tx p̃ay(/byte) 4036 4740 5206 5690 6168 6672

Entropy 2020, 22, 712 26 of 28

Figure 8 shows the test results of the running time of open2secretPay, open2secretVer,
open2secretUpdate, secret2openPay and secret2openVer involved in the semi-secret transaction. At the
same time, Table 11 also shows the memory usage of Txpay1 and Txpay2. The running time of
secret2openPay and secret2openVer increases with the increase of N. However, the running time of
open2secretPay, open2secretVer and open2secretUpdate are not affected by the change of N. In addition,
Txpay2 will gradually increase as N grows, but Txpay1 will not change with N.

Figure 8. The Comparison of Algorithm Performance of Semi-secret Transactions.

Table 11. The Size of Semi-secret Transactions.

N 2 4 8 16 32 64

Txpay1(/byte) 890 906 889 894 890 892
Txpay2(/byte) 2344 2696 2929 3171 3410 3662

By summarizing and comparing the above test results, we observe that as long as the payer uses
his secret account to initiate transactions, the size of transactions will increase with the growth of N,
regardless of the account used by the payee. The running time of the generation algorithm of secret
transactions that the payer needs to call and the verification algorithm of secret transactions that the
full node needs to call will also show a positive growth trend with the change of N. The running time
of all algorithms is in the millisecond level. This shows that RZcoin has good performance.

8. Conclusions

Based on our previous work, called RZcash, we will further improve its core algorithm and
propose a decentralized payment called RZcoin that provides the optional privacy protection service.
For the key redundancy caused by the secret account, we propose a signature scheme called CEs based
on the ciphertext equivalent test scheme. We also use Schnorr signature and bulletproof to reduce the
size of proof required for services. We implement the above decentralized payment scheme based
on the Ethereum test chain and evaluate its performance. At the same time, we also propose the
adversarial model it faces and give the corresponding security analysis. The result shows that the
scheme can provide the privacy service to users with good performance and lower communication
cost while ensuring security. Next, we will further explore how the privacy protection scheme for
smart contracts can be combined with RZcoin.

Entropy 2020, 22, 712 27 of 28

Author Contributions: X.B. wrote the first draft of the manuscript. All authors contributed equally to this work
and approved the submission. Conceptualization, X.B.; Data curation, X.B. and L.W.; Formal analysis, H.Z., X.B.
and S.Z.; Funding acquisition, H.Z.; Methodology, X.B.; Project administration, H.Z.; Resources, H.Z.; Software,
X.B.; Validation, H.Z., S.Z. and L.W.; Writing—original draft, X.B.; Writing—review and editing, H.Z., S.Z. and
L.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Shandong Provincial Key Research and Development
Program of China (2018CXGC0701), the National Natural Science Foundation of China (NSFC) (No. 61972050),
and in part by the 111 Project (No. B08004).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2019. Available online: https://bitcoin.org/
bitcoin.pdf (accessed on 15 June 2020).

2. Wood, G. Ethereum: A Secure Decentralized Generalized Transaction Ledger. Ethereum project yellow paper,
151:1-32. 2014. Available online: https://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Enseignements/
ProjetsCrypto/Ethereum/ethereum-yellowpaper.pdf (accessed on 15 June 2020).

3. Libra Whitepaper. 2019. Available online: https://libra.org/en-US/white-paper/ (accessed on 15 June 2020).
4. Chaum, D. Blind signatures for untraceable payments. In Proceedings of the Advances in Cryptology: Crypto

82, Santa Barbara, CA, USA, 23–25 August 1982.
5. Dai, W. b-Money. 1998. Available online: www.weidai.com/bmoney.txt (accessed on 15 June 2020).
6. Back, A. Hashcash: A Denial of Service Counter-Measure. In Proceedings of the 2002 USENIX Annual

Technical Conference, Monterey, CA, USA, 10–15 June 2002.
7. Finney, H. Reusable Proofs of Work. 2004. Available online: https://cryptome.org/rpow.htm (accessed on

15 June 2020).
8. Massias, H.; Avila, X.S.; Quisquater, J.J. Design of a secure timestamping service with minimal trust

requirements [C]. In Proceedings of the 20th Symposium on Information Theory in the Benelux, Haasrode,
Belgium, 27–28 May 1999.

9. Haber, S.; Stornetta, W.S. How to time-stamp a digital document. J. Cryptol. 1991, 3, 99–111. [CrossRef]
10. Bayer, D.; Haber, S.; Stornetta, W.S. Improving the efficiency and reliability of digital time-stamping.

In Sequences II: Methods in Communication, Security and Computer Science; Springer: New York, NY, USA,
1993; pp. 329–334.

11. Haber, S.; Stornetta, W.S. Secure names for bit-strings. In Proceedings of the 4th ACM Conference on
Computer and Communications Security, Zurich, Switzerland, 1–4 April 1997; pp. 28–35.

12. Merkle, R.C. Protocols for public key cryptosystems. In Proceedings of the 1980 Symposium on Security and
Privacy, Oakland, CA, USA, 14–16 April 1980; pp. 122–133.

13. Bai, X.; Wang, L.C.; Zhou, L.J.; Yang, S.; Li, L. RZcash: A Privacy Protection Scheme for the Account-based
Blockchain. In Proceeding ofthe 17th International Conference on Privacy, Security and Trust (PST),
Fredericton, NB, Canada, 26–28 August 2019; pp. 1–9.

14. Zhu, H.J. Research on The Ciphertext-Based Equivalent Test Scheme. Ph.D. Thesis, Beijing University of Posts
and Telecommunications, Beijing, China, 2018.

15. Luongo, M.; Pon, C.; Cardozo, A.S. Keep. Available online: https://github.com/keep-network/whitepaper
(accessed on 15 June 2020).

16. Microsoft. CCF. Available online: https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-
REPORT.pdf (accessed on 15 June 2020).

17. Duffield, E.; Diaz, D. Dash: A Payments-Focused Cryptocurrency. Available online: https://github.com/
dashpay/dash/wiki/Whitepaper (accessed on 15 June 2020).

18. Sun, S.F.; Au, M.H.; Liu, J.K.; Yuen, T.H. RingCT 2.0: A Compact Accumulator-based(Linkable Ring Signature)
Protocol for Blockchain Cryptocurrency Monero. Eur. Symp. Res. Comput. Secur. 2017, 10493, 456–474.

19. Sasson, E.B.; Chiesa, A.; Garman, C. Zerocash: Decentralized Anonymous Payments from Bitcoin.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014.

20. Rivest, R.L.; Shamir, A.; Tauman, Y. How to Leak a Secret: Theory and Applications of Ring Signatures.
In Theoretical Computer Science; Springer: Berlin/Heidelberger, Germany, 2006; pp. 167–186.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Enseignements/ProjetsCrypto/Ethereum/ethereum-yellowpaper.pdf
https://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Enseignements/ProjetsCrypto/Ethereum/ethereum-yellowpaper.pdf
https://libra.org/en-US/white-paper/
www.weidai.com/bmoney.txt
https://cryptome.org/rpow.htm
http://dx.doi.org/10.1007/BF00196791
https://github.com/keep-network/whitepaper
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper

Entropy 2020, 22, 712 28 of 28

21. Back, A. Bitcointalk, Bitcoins with Homomorphic Value. 2014. Available online: https://bitcointalk.org/
index.php?topic=305791.0 (accessed on 15 June 2020).

22. Maxwell, G. Coinjoin: Bitcoin Privacy for the Real World. 2013. Available online: https://bitcointalk.org/
index.php?topic=279249.0.2013 (accessed on 15 June 2020).

23. Maxwell, G. Confidential Transactions. 2015. Available online: https://people.xiph.org/~greg/confidential-
values.txt.2015 (accessed on 15 June 2020).

24. Goldwasser, S.; Micali, S.; Rackoff, C. The knowledge complexity of interactive proof systems. SIAM J. Comput.
1989, 18, 186–208. [CrossRef]

25. Jedusor, T.E. Mimblewimble. 2016. Available online: https://download.wpsoftware.net/bitcoin/wizardry/
mimblewimble.txt (accessed on 15 June 2020).

26. Gabizon, A.; Zachary, J.W.; Ciobotaru, O. Plonk: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch. 2019, 2019, 953. Available online:
https://eprint.iacr.org/2019/953 (accessed on 15 June 2020).

27. Halo. Available online: https://github.com/haloplatform (accessed on 15 June 2020).
28. Maller, M.; Bowe, S.; Kohlweiss, M. Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and

Updatable Structured Reference Strings. In Proceedings of the 2019 ACM SIGSACConference on Computer
and Communications Security, London, UK, 11–15 November 2019; pp. 2111–2128.

29. Meiklejohn, S.; Mercer, R. Mobius: Trustless Tumbling for Transaction Privacy. Nephron Clin. Pract. 2018, 2018,
105–121. [CrossRef]

30. Bnz, B.; Agrawal, S.; Zamani, M. Zether: Towards Privacy in a Smart Contract World. IACR Cryptol. ePrint
Arch. 2019, 2019, 191.

31. Zachary, J.; Williamson. The AZTEC Protocol. 2018. Available online: www.aztecprotocol.com/ (accessed on
15 June 2020).

32. Yu, C.; Ma, X. PGC: Pretty Good Confidential Transaction System with Accountability. IACR 2019, 2019, 319.
33. Li, X. Public-Key Cryptography Based on Elliptic Curve Discrete Logarithm Problem. Com. Eng. App. 2002,

38, 20–22.
34. Barreto, P.S.L.M.; Naehrig, M. Pairing-friendly elliptic curves of prime order. In International Workshop on

Selected Areas in Cryptography; Spring: Berlin/Heidelberg, Germany, 2005; pp. 319–331.
35. Torben, P. Pedersen: Non-interactive and information-theoretic secure verifiable secret sharing. In Proceedings

of the Advances in Cryptology—CRYPTO 1991, Santa Barbara, CA, USA, 11–15 August 1991; pp. 129–140.
36. Bunz, B.; Bootle, J.; Boneh, D. Bulletproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE

Symposium on Security and Privacy (SP); IEEE: Piscataway, NJ, USA, 2018; pp. 315–334.
37. Blum, M.; Feldman, P.; Micali, S. Non-interactive zero-knowledge and its applications (extended abstract).

In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC 1988, Chicago, IL, USA,
2–4 May 1988; pp. 103–112.

38. Bootle, J.; Cerulli, A.; Chaidos, P. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Proceedings of the Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; pp. 327–357.

39. Maxwell, G.; Poelstra, A.; Seurin, Y. Simple Schnorr multi-signatures with applications to Bitcoin. Des. Codes
Cryptogr. 2019, 87, 2139–2164. [CrossRef]

40. Bernstein, D.J. Multi-User Schnorr Security, Revisited. IACR Cryptology ePrint Archive. Report. 2015.
Available online: http://eprint.iacr.org/2015/996 (accessed on 15 June 2020).

41. GNU Multiple Precision Arithmetic Library. Available online: https://github.com/aleaxit/gmpy (accessed
on 15 June 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://bitcointalk.org/index.php?topic=305791.0
https://bitcointalk.org/index.php?topic=305791.0
https://bitcointalk.org/index.php?topic=279249.0.2013
https://bitcointalk.org/index.php?topic=279249.0.2013
https://people.xiph.org/~greg/confidential-values. txt.2015
https://people.xiph.org/~greg/confidential-values. txt.2015
http://dx.doi.org/10.1137/0218012
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://eprint.iacr.org/2019/953
https://github.com/haloplatform
http://dx.doi.org/10.1515/popets-2018-0015
www.aztecprotocol.com/
http://dx.doi.org/10.1007/s10623-019-00608-x
http://eprint.iacr.org/2015/996
 https://github.com/aleaxit/gmpy
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Motivation and Contribution
	Related Work
	Roadmap

	Preliminary
	Ethereum System
	Number Theory Knowledge
	Pedersen Commitment
	Zero-Knowledge Proof
	Ramgeproof
	Proof of Account Validity

	Ciphertext Equivalent Signature Scheme
	Overview of RZcoin
	System Model
	Adversarial Model
	Balance Forgery Attack
	Signature Forgery Attack
	Over-Spending Attack

	Description of RZcoin
	Notations
	Secret Initial Transaction
	Secret Transaction
	Payer A
	Verifier
	Payee B

	Semi-Secret Transaction
	Scene 1
	Scene 2

	Security Analysis
	Balance Forgery Attack
	Signature Forgery Attack
	Over-Spending Attack

	Simulation and Performance Evaluation
	Configuration of Simulation Environment
	Evaluation of Improvements
	Evaluation of CEs
	Evaluation of Szkp
	Evaluation of Bulletproof

	Performance Evaluation

	Conclusions
	References

