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Abstract: The quality of a manufacturing process can be represented by the complex coupling
relationship between quality characteristics, which is defined by the directed weighted network
to evaluate the risk of the manufacturing process. A multistage manufacturing process model is
established to extract the quality information, and the quality characteristics of each process are
mapped to nodes of the network. The mixed embedded partial conditional mutual information
(PMIME) is used to analyze the causal effect between quality characteristics, wherein the causal
relationships are mapped as the directed edges, while the magnitudes of the causal effects are defined
as the weight of edges. The node centrality is measured based on information entropy theory,
and the influence of a node is divided into two parts, which are local and indirect effects. Moreover,
the entropy value of the directed weighted network is determined according to the weighted average
of the centrality of the nodes, and this value is defined as the risk of the manufacturing process.
Finally, the method is verified through a public dataset.
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1. Introduction

In a product manufacturing process, due to the random fluctuations of process factors, deviations
in quality characteristics occur. Moreover, random fluctuations are inherent in all stages of the
manufacturing process and are difficult to avoid. Therefore, quality control of the manufacturing
process has always been an active and important topic [1]. During the manufacturing process, there is
a complex coupling relationship between quality characteristics. In general, machining errors for one
key characteristic may cause some errors for other characteristics coupled with the key characteristic.
Therefore, identifying key quality characteristics is particularly important for quality control in the
manufacturing process. Amiri et al. [2] believed that the quality of a manufacturing process is
represented by two or more correlated quality characteristics. Obviously, analyzing the relationship
between quality characteristics in isolation may lead to erroneous results.

Many scholars have studied the relations between quality characteristics for product design.
Quality Function Deployment (QFD) is a common theory and method for product design management
driven by customer requirements [3]. The QFD is a process and set of tools used to effectively define
customer requirements and convert them into quality characteristics. However, the relations in
the design phase are static, this is because the analysis of the quality characteristics of the design
process is performed before the product is manufactured. During the manufacturing process, quality
characteristics are constantly changing due to changes in many process factors. Therefore, it is not
enough to analyze the relationship of quality characteristics from a static state. At the same time,
the constant changes in quality characteristics have also brought uncertainty to the risk evaluation of the
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manufacturing process. Some quality control methods are presented for the multistage manufacturing
process, such as the quality state space theory [4] and stream of variation theory [5]. These methods
analyze the change of quality characteristics with the process from the perspective of a time series. It is
known that the accumulation of deviations in quality characteristics leads to defects, which are then
exposed in the form of early failures during use. Moreover, the relation between quality characteristics
is more precisely a causal relationship, because the accumulation of quality characteristic deviations
in the previous stage will propagate during the manufacturing process, thereby affecting the quality
characteristics in the following stage.

In this paper, the relation of quality characteristics is considered as a directed weighted complex
network. The quality characteristics of each process are mapped to nodes of the network. And the
partial conditional mutual information (PMIME) is used to analyze the causal effect between quality
characteristics of the manufacturing process. Further, the causal relationship between quality
characteristics are mapped as a directed edge, while the magnitudes of the causal effects are defined as
the weight of edges, thereby a directed weighted network is established. Moreover, the centrality of a
node is measured based on information entropy theory. The influence of a node is divided into two
parts, which are local and indirect effects. The larger the value of entropy of a node, the greater its
influence. Moreover, the entropy H(I) of a single discrete random variable I is a measure of its average
uncertainty. For the set of quality characteristics, the entropy of each quality characteristic represents
the uncertainty of whether it can complete the requirements of the manufacturing process. That is,
the centrality of each node indicates the uncertainty of whether the quality characteristics can meet
the requirements of the manufacturing process in a certain time series. In addition, the quality of the
manufacturing process actually refers to the degree to which a set of quality characteristics meets
its production needs. Therefore, the risk of the manufacturing process is defined as the quality loss
caused by the quality characteristics not meeting the production requirements. In this paper, the risk is
evaluated by quantifying the uncertainty of the manufacturing process. When the uncertainty of the
manufacturing process is greater, the more defects in the manufacturing process and the greater the
quality loss. Furthermore, the quality loss is invisible, which means that the reliability of the products
produced by the manufacturing process is relatively low. Moreover, the quality loss will spread over
the connection between quality characteristics, so the connection between quality characteristics is
actually the risk propagation path of the manufacturing process. Therefore, the entropy value of the
directed weighted network is determined according to the weighted average of the centrality of the
nodes, and the value is defined as the risk of the manufacturing process. Finally, the method is verified
through a public dataset.

The outline of this paper is organized as follows. In Section 2, a literature review related to
complex network theory is applied to solve and describe complicated manufacturing problems and
causality analyses are presented. Section 3 includes details of the proposed approach. Section 4
contains details about a real case to illustrate and verify the proposed method. Finally, the conclusions
drawn and discussion are in Section 5.

2. Literature Review

Due to the random fluctuation of process factors, which makes the quality characteristics uncertain,
there is a complex causal relationship between quality characteristics in a time series. Therefore, it is
essential to establish a model to describe the behavior of the manufacturing process. Some mathematical
models that are proposed by researchers that describe the quality information flow in a multistage
manufacturing process, the assembly process [6,7] and machining process [8] are included. Hu [9]
presented the stream of variation theory for automotive body assembly. Then the variation flow
theory was extended to the machining process [10–12]. However, in the actual manufacturing process,
quality characteristics affect each other. Therefore, analysis of the error transfer and accumulation
of quality characteristics in a multistage manufacturing process may lead to erroneous results.
Jiao and Djurdjanovic [13] presented the compensability of error in product quality to eliminate quality
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errors accumulated in a multistage manufacturing process. These methods provide some opportunities
for the development of modeling and quality control in a multistage manufacturing process.

Many researchers have applied complex network theory to describe and solve complicated
manufacturing problems. Based on the complexity of multistage processes, some network models have
been established to improve product quality. Lin and Chang [14] focused on performance evaluation
of a manufacturing system with multiple production lines based on the network-analysis perspective.
Wang et al. [15] proposed an extended machining error propagation network model to quantitatively
analyze the complex coupling relationship in the small-batch, multistage machining process of aircraft
landing gear parts. Liu et al. [16] used a machining error propagation network of multistage machining
processes to describe complicated interactions among different stages. Cheng and Chu [17] proposed a
network-based assessment approach for change impacts on complex products, and three changeability
indices were presented. Qin et al. [18] utilized a weighted network of multistage machining processes
to quantitatively analyze variation propagation. Moreover, the variation propagation stability was
analyzed by a virus-spreading model. Kim et al. [19] proposed a product network analysis, which
explored a network-leveled relation among all products. Wang et al. [20] proposed a novel approach
to support failure mode, effects, and criticality analysis for multistage processes based on complex
networks. Di Bona et al. [21] proposed a total efficient risk priority number method that integrated
the failure mode, effects, and criticality analysis with other important factors in risk assessment. The
above complex network-based modeling analyzed the quality evaluation and control of multistage
processes from different levels.

Nevertheless, there is a lack of analysis using quality characteristics to describe the quality of
multistage processes. Actually, the accumulation of deviations in quality characteristics leads to
the occurrence of defects, which are exposed in the form of early failures during the use phase.
Moreover, the quality of a product or process is characterized by monitoring correlated profile and
multivariate quality characteristics. Therefore, it is important to analyze the behavior of multistage
processes using quality characteristics. Du et al. [22] defined the key product characteristics and
designed a model for a key characteristics management system. Köksoy [23] presented a method to
optimize multiple quality characteristics based on the mean square error criterion. Ouyang et al. [24]
used a QCAC-Entropy-TOPSIS approach to measure quality characteristics and rank improvement
priorities for all substandard quality characteristics. Li et al. [25] proposed a key quality characteristics
selection technique for imbalanced production data using a two-phase, bi-objective feature selection
method. Diao et al. [26] analyzed the coupling relations among quality characteristics and proposed
a weighted-coupled, network-based quality control method for improving key characteristics in the
product manufacturing process.

However, these methods ignore the causal relationship between quality characteristics and the
direction of causal effects. This is because the accumulation of deviations in quality characteristics
will propagate during the manufacturing process and affect the quality characteristics in the next
stage. Generally, Granger causality [27] and transfer entropy [28,29] are two classic methods for
causal analysis. However, these two classic causal analysis methods are only suitable for a bivariate
time series. With the development of multivariate state space reconstruction, different embedding
schemes [30–33] are used in Granger causality and transfer entropy. Multivariate time series embedding
includes uniform and non-uniform embedding. Uniform embedding may have problems such as
overfitting and false influence detection. A nonuniform embedding scheme solves the above problems
perfectly [34]. Vlachos et al. [35] presented a causality measure of conditional mutual information
from mixed embedding (MIME) for bivariate time series. Further, Kugiumtzis [36] extended the MIME
method to a multivariate time series, which is named as partial MIME (PMIME).
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3. Proposed Method

3.1. Preliminaries

In a multistage manufacturing process, there is a complex causal relationship between quality
characteristics. Moreover, due to the random fluctuation of process factors, each quality characteristic
is uncertain in a time series. Therefore, if we want to study the effect of the causal relationship
between quality characteristics on the quality of manufacturing process, we should first model the
multistage manufacturing process and extract the corresponding quality characteristics. Suppose
that k is the number of machining stages, and the stage set is written as S = {S 1, S2, . . . , Sk}.
Moreover, ε = {ε 1, ε2, . . . , εk} and τ = {τ 1, τ2, . . . , τk} are defined as the number of individual
quality characteristics extracted for a single machining stage and the length of time for each machining
stage. Hence, a model of a multistage manufacturing process is shown in Figure 1.
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Suppose that n is the number of types of quality characteristics, and the characteristic set is
written as = {C 1, C2, . . . , Cn}. Therefore, quality characteristics are extracted from the multistage
manufacturing process. This is shown in Figure 2.
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Therefore, a directed weighted network is represented as following.

G = (N, E, W) (1)

where N = {N 1, N2, . . . , Nn}, and N denotes the set of nodes in a given directed weighted network,
E = {e 11, e12, . . . , ei j , . . .}n×n(1 ≤ i ≤ n, 1 ≤ j ≤ n), and E represents the set of directed edges from
one node to another, W = {w 11, w12, . . . , wi j , . . .}n×n(1 ≤ i ≤ n, 1 ≤ j ≤ n), and set W corresponds
to the weighted values. In this paper, nodes are denoted as the quality characteristics of a multistage
manufacturing process. Obviously, there is a one-to-one correspondence between the characteristic set
C and the node set N. The edges set represents causality among quality characteristics i→ j , and set W
of weighted values indicates the magnitude of the causal effect sent from quality characteristic i→ j .
When wi j > 0, which means that node i has a causal effect on node j, and also means edge ei j exists.
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Otherwise wi j= 0, which means that node i has no causal effect on node j, and also means edge ei j does
not exist. We assume a set of quality characteristics for a multistage manufacturing process, where
C = { C 1, C2, C3, C4, C5 }. A simple example of a directed weighted network is shown in Figure 3.
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3.2. PMIPE Method

In this paper, the PMIME method is used to estimate the direct and directional coupling in a

multivariate time series. Let {x t, yt, z1,t, . . . , zn−2,t
}∑k

i=1 τi

t=1
be a multivariate time series of n variables

X, Y, Z1, Z2, . . . , Zn−2. What we intend to estimate is the casual effect of X on Y conditioning on
Z = { Z 1, Z2, . . . , Zn−2}. Hence, the driving subsystem is X and the response subsystem is Y, and Z is
defined as the other subsystem. Obviously, subsystems X, Y, Z contain all quality characteristics of the
multistage manufacturing process.

Moreover, the future of variable X is represented by a vector of T future values, that is
xT

t = [x t+1, xt+2, . . . , xt+T], 1 ≤ T ≤
∑k

i=1 εi. In addition, the lags of X, Y and Z are sought in a
range given by a maximum lag for each variable, e.g., Lx for X and Ly for Y. Generally, the maximum
lag L of all variables is equal, that is Lx= Ly= Lz. Vt is indicated as the set of all lagged variables at
time t, the part of xt, xt−1, . . . , xt−Lx of X and the same for subsystem Y and Z are contained in Vt. An
iterative technique is performed to form the mixed embedding vector vt ∈ Vt. The detailed method
is shown in the following steps.

Step 1: starting with an empty embedding vector v0
t = ∅ .

Step 2: in the first iteration in order to find the most related to yT
t in Vt, the embedding vector is

represented as v1
t , which is written as follows:

v1
t = argmax

v ∈ Vt

I(y T
t ; v) (2)

where I(.) denotes mutual information (MI). And MI is estimated by the k-nearest neighbors (k-NNs)
method. Then w1

t = [v1
t ] is obtained, simultaneously v1

t is removed from Vt.
Step 3: in the m-th (m ≥ 2) embedding cycle, the mixed embedding vector is augmented by

the component vm
t of Vt, giving most information about yT

t additionally to the information already
contained in wm−1

t = [v1
t , v2

t , . . . , vm−1
t ]. As for step 2, vm

t is denoted as follows:

vm
t = argmax

v ∈ Vt

I(yT
t ; v|w m−1

t ) (3)

For example, in the second iteration, v2
t is written as follows:

v2
t = argmax

v ∈ Vt

I(yT
t ; v|w 1

t ) (4)
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where the conditional mutual information (CMI) is calculated by the k-NNs method, and the mixed
embedding vector is w2

t = [v1
t , v2

t ]. Iterating occurs according to Equation (3) until the additional
information of vm

t selected at the embedding cycle m is not large enough. Moreover, the termination
criterion is quantified as:

I(y T
t ; wk−1

t ) / I(y T
t ; wk

t ) > A (5)

where the threshold A < 1 and the value of A is generally 0.95 or 0.97 in [35,36]. Further, the mixed
embedding vector wt = wk−1

t is obtained.
Step 4: calculating the causality effect of X on Y conditioned on the other variables in Z, the

PMIME is described as
RX→Y|Z= I

(
yT

t ; wx
t |w

y
t , wz

t

)
/ I(y T

t ; wt
)

(6)

where wx
t is denoted as the part of X in wt, and the same with wy

t and wz
t .

3.3. Entropy-Based Centrality Measurement

Based on the PMIME method, the direction of the causal relation and the magnitude of the causal
effect of each quality characteristic can be determined. Moreover, each quality characteristic is mapped
to a node, the direction of the causal relationship between nodes is mapped to directed edges, and the
magnitude of the causal effect between nodes is mapped to the weight of the edges. Hence, a directed
weighted network is defined. Furthermore, Qiao et al. [37] proposed an entropy-based centrality
measurement to identify the vital node. The total power of a node is divided into two parts, including
its local power and its indirect power. The detailed method is described below as follows:

Step 1: a complete directed weighted network is deconstructed into several subnets centered on
certain nodes.

Step 2: calculating structural entropy (SE), the SE takes advantage of topographic properties of
the sub-graph, evaluating the strength of a given node in specific subnet. Above all, the subnet degree
centrality of node i and its neighbor j, which is indicated as SDCi. This is written as

SDCi= DCin
i +DCout

i (7)

where DCin
i denotes the in-degree centrality of node i (the number of nodes pointing to node i) and

DCout
i represents the out-degree centrality of node i (the number of directed edges from node i to

another node). Moreover, the SE for node i in subnet Gi is indicated as follows:

SEi = −
∑M+1

i=1

SDCi∑M+1
i=1 SDCi

log
SDCi∑M+1

i=1 SDCi
(8)

where M refers to the number of nodes directly connected to node i in subnet Gi.
Step 3: calculating frequency entropy (FE), the FE takes advantage of the weighted edges that

reflects the interaction frequency between two nodes. Further, the FE for node i in subnet Gi is stated
as follows:

FEi = −
∑H

j=1

Wi j∑H
k=1 Wik

log
Wi j∑H

k=1 Wik
(9)

where Wi j indicates the weight of a directed edge in the given direction and H is the number of node i
points to other nodes.

Step 4: Combining Equations (8) and (9), the local power of node i is denoted, which is named as
LEi. Moreover, the LEi is stated as follows:

LEi= θ1SEi+θ2FEi (10)

where θ1 and θ2 are the weight coefficients respectively, and θ1+θ2 = 1.



Entropy 2020, 22, 699 7 of 14

Step 5: Calculating the indirect power of node i on its second-order neighbor node k, which is
denoted as IEik. This is written as follows:

IEik = −
∑Nik

k=1

LEi×LEs

Nik
(11)

where Nik is the number of first-order neighbor nodes between node i and k. And LEs represents
the local power of node s, and node s connects nodes i and k. We take a two-path subnet with a
quadrilateral structure as an example, which is shown in Figure 4.
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As described above, node s represents node j and l in Figure 4. Moreover, the indirect power of
node i on its second-order neighbor node k is denoted as follows:

IEik =
LEi × LE j + LEi × LEl

2
(12)

Hence, the total indirect power of node i on its second-order neighbor nodes is denoted as IEi,
which is stated as follows:

IEi =

∑Hi
k=1 IEik

Hi
(13)

where Hi is the total number of second-order neighbor nodes of node i.
Step 6: in line with Equations (10) and (13), the total power of node i is represented by Ei, which is

named as follows:
Ei= µ1LEi+µ2IEi (14)

where µ1 and µ2 are the weight coefficients respectively, and µ1+µ2= 1.

3.4. Risk Evaluation

Burduk and Chlebus [38] thought of risk as the danger of failing to achieve the goals specified
in the decision. In a multistage manufacturing process, the quality can be denoted as the sum of the
characteristics of the process capability to meet explicit and implicit needs. Moreover, entropy is a
measure of the uncertainty of the state of quality characteristics in the manufacturing process, that is, a
measure of quality loss. Hence, risk is defined as the quality entropy of a multistage manufacturing
process. Moreover, since the multistage manufacturing process can be represented by a directed
weighted network, the risk of the multistage manufacturing process is defined as the weighted average
of the centrality of the nodes. Further, the node weight is calculated as follows:

λi =
SDCi∑N

i=1 SDCi
(15)

where, SDCi represents the degree of node i and N is the number of nodes. In addition,
∑N

i=1 λi = 1.
Thus, the risk of a multistage manufacturing process is written as follows:

R =
∑N

i=1
λiEi (16)
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4. Case Study

The data of the case come from the SECOM dataset of the UCI Machine Learning Repository [39],
which is about a semi-conductor manufacturing process and has 1567 samples, each sample with 591
quality characteristics. The first 59 quality characteristics of the data set were extracted as an example
to illustrate the algorithm in this paper. In other words,

∑k
i=1 τi= 1567 and n = 59. Moreover, causality

between 59 quality characteristics was determined based on PMIME, and we used A = 0.95, L = 5
and T = 3. Further, a directed weighted network was setup, which is shown in Figure 5.
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Where the yellow line indicates that the weight of the edge is greater than 0.5, and the blue line
indicates that the weight of the edge is less than or equal to 0.5. Moreover, nodes 18, 50, and 53 are
isolated and not connected to other nodes. In addition, the degree distribution of nodes is shown in
Figure 6.
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Figure 6. The degree distribution of nodes.

According to Figure 6, it can be concluded that the degree distribution of nodes does not have
much regularity, which is neither like Poisson distribution nor power-law distribution. More samples
may be needed to further observe the statistical characteristics of the degree distribution. Moreover,
only a few nodes have a higher degree. We took the subnet of node 1 as an example to explain the
calculating process of the proposed algorithm, and the results of SDCi as shown in Table 1.
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Table 1. The results of SDCi of nodes in subnet G1.

Node DCin
i DCout

i SDCi

1 4 6 10
4 2 3 5
21 5 1 6
23 4 2 6
25 4 0 4
29 3 0 3
34 4 1 5
37 3 4 7
41 1 7 8
52 1 7 8

Based on Equation (8), 10 is set as the base of the logarithmic function, then the structural entropy
of node 1 is described as follows:

SE1 = −
∑10

i=1

SDCi∑10
i=1 SDCi

log
SDCi∑10

i=1 SDCi
= 0.9774 (17)

Moreover, the frequency entropy is calculated by Equation (9), which is written as follows:

FE1 = −
∑6

j=1

Wi j∑6
k=1 Wik

log
Wi j∑6

k=1 Wik
= 0.7108 (18)

In Equation (10), the θ1 and θ2 are set as 0.4 and 0.6, respectively and the local influence of node 1
is defined as follows:

LE1 = 0.4 SE1 + 0.6 FE1 = 0.8174 (19)

Following Equations (11) and (13), the indirect influence of node 1 is stated as follows:

IE1 =

∑30
k=1 IEik

30
= 0.9242 (20)

Further, the µ1 and µ2 are denoted as 0.6 and 0.4 particularly. Then the total influence of node 1 is
expressed as follows:

E1 = 0.6 LE1 + 0.4IE1= 0.8601 (21)

Hence, the total power of each node and the corresponding ranking results are shown in Table 2.
Further, the comparison of the local power, indirect power, and total power of each node is shown

in Figure 7.
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Table 2. The total power of each node and the corresponding ranking results.

Node LEi IEi Ei No. Node LEi IEi Ei No.

1 0.8174 0.9242 0.8601 8 31 0.2373 0 0.1424 51
2 0.5791 0.5867 0.5821 23 32 0.2833 0 0.1670 48
3 1.2070 1.2165 1.2108 1 33 0.9396 0.5878 0.7989 10
4 1.1320 1.0504 1.0994 3 34 1.0982 0.8598 1.0028 6
5 0.4150 0.3554 0.3912 29 35 0.4815 0.6256 0.5392 27
6 0.3607 0.3206 0.3447 32 36 0.2756 0.3326 0.2984 35
7 0.2555 0 0.1533 50 37 1.0614 0.6429 0.8940 7
8 0.2295 0.1497 0.1976 45 38 0.6898 0.4848 0.6078 21
9 0.7851 0.7593 0.7748 13 39 0.7708 0.4683 0.6498 17

10 0.3538 0 0.2123 42 40 0.7977 0.6437 0.7325 15
11 0.1908 0 0.1145 53 41 1.2324 0.7986 1.0589 4
12 0.2889 0 0.1734 46 42 0.7977 0.2768 0.5893 22
13 0.2373 0 0.1424 51 43 0.3571 0.2571 0.3171 33
14 0.1908 0.1374 0.1694 47 44 0.6222 0.4650 0.5593 25
15 0.5103 0.2072 0.3891 30 45 0.3673 0.2016 0.3010 34
16 0.3601 0 0.2161 41 46 0.6222 0.6539 0.6349 19
17 0.2555 0 0.1533 50 47 0.4486 0.2941 0.3868 31
18 0 0 0 54 48 0.6166 0.6633 0.6353 18
19 0.3210 0.0762 0.2231 39 49 0.3689 0 0.2213 40
20 0.2746 0.0844 0.1985 44 50 0 0 0 54
21 0.5498 0.5730 0.5591 26 51 0.2295 0.2156 0.2240 38
22 0.6191 0.6564 0.6340 20 52 1.0325 1.0557 1.0412 5
23 0.8151 0.9143 0.8548 9 53 0 0 0 54
24 0.7538 0.8111 0.7767 12 54 0.2555 0 0.1533 50
25 0.6542 0.4576 0.5756 24 55 0.2295 0 0.1377 52
26 0.3470 0 0.2082 43 56 0.7201 0.7518 0.7328 14
27 0.3074 0.2214 0.2730 36 57 0.7560 0.6060 0.6960 16
28 0.3274 0.1136 0.2419 37 58 0.5651 0.3868 0.4938 28
29 1.1683 1.1283 1.1563 2 59 0.7560 0.8454 0.7918 11
30 0.2649 0 0.1589 49

Combining Table 2 and Figure 7, in the whole network, nodes 3, 4, 29, 34, 41, and 52 are obviously
more important than the other nodes. Moreover, the values of entropy-based centrality of these six
nodes are all bigger than 1, while the total power of the 7th ranked node is 0.8940, which is a big gap
with the top six nodes. Hence, nodes 3, 4, 29, 34, 41, and 52 are considered as vital nodes, for their
changes have a greater influence on the nature of the directed weighted network, and they affect more
nodes, too. Moreover, the value of entropy-based centrality of 32 nodes is less than 0.5, which is more
than half of the data set. And only nine nodes are greater than 0.8, which includes nodes 1, 3, 4, 23, 29,
34, 37, 41 and 52. This is consistent with the information given in Figure 6. That is, only a few nodes
have a higher degree and can affect more nodes. Therefore, the risk of the manufacturing process can
be reduced by improving the quality of key nodes. Moreover, the risk of the manufacturing process is
defined by the weighted average of the centrality of each node. The weight of each node is obtained
through the degree of the node. The greater the degree of the node, the higher the weight, and the
greater the probability that the node poses a risk to the whole manufacturing process. Further, based
on Equation (15), the degree of each node and their weights are shown in Table 3.

Furthermore, following Equation (16), the risk of the whole network is defined as follows:

R =
∑59

i=1
λiEi= 0.6390 (22)

In addition, as shown in Table 2, the biggest value of entropy-based centrality of nodes is 1.2108.
Hence, the risk scope of the whole manufacturing process is from 0 to 1.2108. Supposing the range is
divided into three sets from small to large, which is [0, 0.4036), [0.4036, 0.8072) and [0.8072, 1.2108].
The corresponding risks are low, medium, and high, therefore the risk of manufacturing process is
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medium in this case. Moreover, nodes 3, 4, 29, 34, 41, and 52 account for 25.77% of the weight set.
Obviously, controlling these six nodes is critical to improving the quality of the manufacturing process.

Table 3. The degree of each node and their weights.

Node SDCi λi Node SDCi λi Node SDCi λi

1 10 0.0206 21 8 0.0165 41 25 0.0515
2 7 0.0144 22 7 0.0144 42 11 0.0227
3 26 0.0536 23 12 0.0247 43 2 0.0041
4 21 0.0433 24 8 0.0165 44 7 0.0144
5 3 0.0062 25 9 0.0186 45 6 0.0124
6 2 0.0041 26 7 0.0144 46 10 0.0206
7 4 0.0082 27 5 0.0103 47 5 0.0103
8 3 0.0062 28 6 0.0124 48 10 0.0206
9 9 0.0186 29 18 0.0371 49 8 0.0165
10 7 0.0144 30 42 0.0866 50 0 0.0000
11 2 0.0041 31 3 0.0062 51 3 0.0062
12 5 0.0103 32 5 0.0103 52 13 0.0268
13 3 0.0062 33 4 0.0082 53 0 0.0000
14 2 0.0041 34 22 0.0454 54 4 0.0082
15 5 0.0103 35 9 0.0186 55 3 0.0062
16 8 0.0165 36 4 0.0082 56 9 0.0186
17 4 0.0082 37 16 0.0330 57 8 0.0165
18 0 0.0000 38 8 0.0165 58 5 0.0103
19 6 0.0124 39 10 0.0206 59 11 0.0227
20 4 0.0082 40 11 0.0227

5. Conclusions and Discussion

A key quality characteristic affects many other quality characteristics in a multistage manufacturing
process, and the fluctuation of key quality characteristics in the manufacturing process makes the
quality characteristics affected by it deviate. Therefore, analyzing the individual quality characteristics
in isolation may cause a large deviation in the risk of the manufacturing process. Moreover, the quality
characteristics are constantly changing over time. In this paper, the set of quality characteristics is
divided into three subsystems: the driving subsystem, response subsystem, and the other subsystem.
And the PMIME is used to mine the causality between quality characteristics in the time series. Further,
based on complex networks theory, the causal relationship between quality characteristics is mapped
to a directed edge, while individual quality characteristics are mapped to nodes, and the magnitudes
of the causal effects are defined as the weight of edges. Then a directed weight is established, and the
power of a node is divided into two parts, which are local and indirect effects. An entropy-centrality
approach is applied to rank influential nodes. This method innovatively solves the possible problem
of determining the edges of the complex network through static qualitative analysis because the
status of nodes and the status between nodes are updated at any time. In addition, the quality of
the manufacturing process is represented by two or more correlated quality characteristics. Hence,
a novel index for evaluating risk based on the entropy-centrality of nodes of the complex network has
been proposed. This indicator reflects the risk of the manufacturing process, and its size is constantly
updated with the change of the state of the nodes and the magnitude and direction of the edge.
Therefore, the risk of the manufacturing process can be better controlled according to the change
of indicator.

According to Equation (22), the risk of the manufacturing process is 0.6390. First of all, we should
determine the acceptable threshold of risk according to the actual situation. If the risk is acceptable,
no risk control measures are required for the manufacturing process. Otherwise, we should take risk
control measures for the manufacturing process. Second, nodes 3, 4, 29, 34, 41, and 52 are identified
as key nodes, and controlling the risks of these six nodes can effectively reduce the risk of the entire
manufacturing process. According to the subnets of these six nodes, other quality characteristics that
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are causally related to these six quality characteristics can be quickly determined. We can change the
processing technology, etc., so that the causal chain of quality characteristics is interrupted, that is,
the propagation path of the risk is cut off. For example, node 1 affects node 21, and node 21 has an
effect on other nodes. As long as the impact on node 1 or node 21 is cut off, the risk propagation path
from node 1 to node 21 is interrupted, and the risk of node 1 is reduced. The example can be used to
verify the effectiveness of our proposed risk control strategy. Hence, the structural entropy of node 1 is
described as follows:

SE1 = −
∑9

i=1

SDCi∑9
i=1 SDCi

log
SDCi∑9

i=1 SDCi
= 0.9271 (23)

And the frequency entropy of node 1 is calculated as follows:

FE1 = −
∑5

j=1

Wi j∑5
k=1 Wik

log
Wi j∑5

k=1 Wik
= 0.6235 (24)

Hence, the local influence of node 1 is 0.7449. Moreover, the indirect influence of node 1 is stated
as follows:

IE1 =

∑29
k=1 IEik

29
= 0.8806 (25)

Further, the total influence of node 1 is 0.7992 and the structural entropy of node 21 is changed as
0.8814. Then the local influence and the indirect influence of node 21 is 0.5290 and 0.5513, respectively.
Further, the total influence of node 21 is 0.5379. In addition, the weights of all nodes will also change,
which is shown in Table 4.

Table 4. The weights of each node.

Node λi Node λi Node λi Node λi Node λi

1 0.0187 13 0.0062 25 0.0187 37 0.0333 49 0.0146
2 0.0146 14 0.0042 26 0.0146 38 0.0166 50 0.0000
3 0.0541 15 0.0104 27 0.0104 39 0.0208 51 0.0062
4 0.0437 16 0.0166 28 0.0125 40 0.0229 52 0.0270
5 0.0062 17 0.0083 29 0.0374 41 0.0520 53 0.0000
6 0.0042 18 0.0000 30 0.0873 42 0.0229 54 0.0083
7 0.0083 19 0.0125 31 0.0062 43 0.0042 55 0.0062
8 0.0062 20 0.0083 32 0.0104 44 0.0146 56 0.0187
9 0.0187 21 0.0146 33 0.0083 45 0.0125 57 0.0166

10 0.0146 22 0.0146 34 0.0437 46 0.0208 58 0.0104
11 0.0042 23 0.0249 35 0.0187 47 0.0104 59 0.0229
12 0.0104 24 0.0166 36 0.0083 48 0.0208

Finally, the risk of the manufacturing process is updated to 0.6375, which is lower than before.
Since there are many edges between nodes in this paper, although the risk propagation paths of nodes 1
and 21 are cut off, the role of risk control for the entire manufacturing process is relatively small. At the
same time, it also proves that cutting off the risk propagation path of node 1 and node 21 has a practical
effect on the risk control of the manufacturing process. Moreover, similar risk control measures are
continuously taken for other quality characteristic causal chains until the risk of the manufacturing
process reaches an acceptable level.

In this study, PMIME is used to detect the direct causality in quality characteristics, however, the
curse of dimensionality, resulting in inaccurate estimates of mutual information as the embedding space
increases, is unavoidable. Thus, for future work, we expect to carry out further work on improving the
accuracy of the algorithm under the premise of dimensionality reduction. In addition, the algorithm in
this paper is suitable for a large sample size, but may not be suitable for a small sample size. Therefore,
exploring the establishment of a complex network in the case of small samples and ranking of the
importance of nodes is also a question worthy of further investigation. Moreover, identifying how
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process factors affect the quality of the manufacturing process is also a topic worth studying in future
work. That is, what is the mechanism of the quality characteristic deviation caused by the process
factors, which will have a great impact on the quality control? Furthermore, the PMIME method in this
paper can be used for causality analysis between process factors and quality characteristics, which will
make the research in this paper more significant.
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