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Abstract: Nowadays, across the most important problems faced by health centers are those caused by
the existence of patients who do not attend their appointments. Among others, these patients
cause loss of revenue to the health centers and increase the patients’ waiting list. In order to
tackle these problems, several scheduling systems have been developed. Many of them require
predicting whether a patient will show up for an appointment. However, obtaining these estimates
accurately is currently a challenging problem. In this work, a systematic review of the literature on
predicting patient no-shows is conducted aiming at establishing the current state-of-the-art. Based on
a systematic review following the PRISMA methodology, 50 articles were found and analyzed.
Of these articles, 82% were published in the last 10 years and the most used technique was logistic
regression. In addition, there is significant growth in the size of the databases used to build the
classifiers. An important finding is that only two studies achieved an accuracy higher than the show
rate. Moreover, a single study attained an area under the curve greater than the 0.9 value. These facts
indicate the difficulty of this problem and the need for further research.

Keywords: patient no-show; prediction; systematic review

1. Introduction

The existence of patients who do not keep their appointments, commonly referred to as no-shows,
is currently one of the main problems of health centers. The absence of patients from their appointments
causes the under-utilization of the center’s resources, which extends the waiting time of other patients.
No-shows also have an economic impact on health facilities limiting future staff recruitment and the
improvement of the center’s infrastructure. As an example, considering only the primary care centers
in the United Kingdom, the number of missed appointments exceeds 12 million [1]. Moore et al. [2]
reported that the percentage of no-shows and cancellations represented 32.2% of the scheduled time in
a family planning residence clinic. In terms of economic losses, they reported that the decrease in the
health center’s annual income ranges from 3% to 14%. In the United Kingdom, the annual economic
cost caused by non-shows is 600 million pounds [3]. Besides the problems caused to the health center
and the rest of the patients, missing an appointment can cause serious health problems for the no-show
patients [4].

In order to reduce these negative effects, health centers have implemented various strategies
including sanctions and reminders. However, besides the fact that various articles question their
efficiency [5,6], these strategies have a significant cost associated with them. On the one hand, sanctions
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may limit the access to patients with restricted incomes to medical centers [7]. On the other hand,
reminders have an economic impact that has been estimated at 0.41 euros per reminder [8].

During the last decades, a significant number of scheduling systems have been developed to
provide an alternative to these strategies. These systems aim to achieve better appointment allocation
based on the patient no-show prediction. They are described in several review articles, such as Cayirli and
Veral [9] and Gupta and Denton [10], and more recently by Ahmadi-Javid et al. [11]. An important aspect
to point out is that the efficiency of these systems depends mainly on two elements: the discriminatory
capacity of the predictors and the classification technique used to estimate the probabilities.

Regarding the first of these two elements, several research works have been carried out to discover
which are the best predictors that discriminate the patients who attend their appointments from those
who do not. These investigations have led to the identification of a significant number of predictors,
such as the percentage of previous no-shows, lead time, diagnosis, or age. A recent review of the
literature by Dantas et al. [12] has identified more than 40 potential predictors.

In contrast to the research conducted in the identification of good predictors and in the
construction of accurate scheduling systems that have been conducted since the 1960s, research on the
development of predictive models has mainly been carried out in the last decade. This is primarily
since, until the recent availability of Electronic Health Records (EHR), there were no databases of
sufficient size to build these models accurately. It is important to note that building accurate classifiers
is essential for the scheduling system to work effectively. However, obtaining these predictions is still
an unsolved problem on which a significant number of publications are appearing.

In this work, a systematic review is carried out to establish the state-of-the-art in no-show
prediction. The review aims to identify the models that have been proposed along with their strengths
and weaknesses. To accomplish this, besides identifying each of the different techniques, various
elements such as the characteristics of the database, the protocol employed to evaluate the model,
or the performance obtained are analyzed. The review also identifies which are the most widely used
predictors in the literature.

The rest of the article is structured as follows. In Section 2, the bibliographic search protocol is
presented. This includes the bibliographic databases, the search criteria, the exclusion criteria, and the
variables that will be extracted from each of the selected articles. Next, in Section 3, the selected
articles are described, grouping them according to the proposed technique, and exposing their most
relevant contributions. The article ends in Section 4 where a discussion on the findings is made and
the conclusions are presented.

2. Methods

This section presents the search strategy, the screening criteria as well as the methodology followed
to analyze the selected studies. This is done using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [13].

2.1. Bibliographic Databases and Search Criteria

Two major bibliographic databases were used to search for the articles: Scopus (which covers the
100% of MedLine) and Web of Knowledge. The search terms that were used are shown in Table 1.

Table 1. Consultation employed.

Keywords

(i)
non-attendance OR missed-appointment* OR no-show*
OR broken-appointment* OR missed-clinic-appointment*
OR appointment-no-show*

(ii) predict*
(iii) (i) AND (ii)
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The purpose of this search is to find those articles that aim to identify patients who will not
show up for their appointments. Therefore, initially, the search is restricted to those articles that focus
on no-shows by including the keyword no-show or its synonyms. To discard those articles dealing
exclusively with non-attendance factors or scheduling systems, the keyword predict was added to the
search. In both cases, the term * is added to include variations of the keywords. These queries were
applied to the title, the abstract, and keywords of the articles. The search, which covered the period
from January 1980 to January 2020, was carried out on both databases independently and the results
were merged as explained in the following section.

2.2. Study Selection

The articles analyzed in this systematic review were selected through a four-stage procedure,
as shown in Figure 1.

Excluded:
(n = 625)
(1): 40
(2): 270
(3): 55
(4): 179
(5): 66
(6): 15

Merged:
(n = 52)

Total
(n = 493)

Total
(n = 665)

WOSSCOPUS

Total
(n = 44)

Total
(n = 40)

Excluded:
(n = 449)
(1): 48
(2): 145
(3): 50
(4): 123
(5): 66
(6): 17
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Figure 1. Flow diagram of study selection.

In the first stage, potentially relevant articles were identified from applying the above query to
the SCOPUS and WOS databases. The search on Scopus resulted in 493 potential articles while the
WOS identified 665.
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Next, in the screening stage, the selected articles that did not address the prediction of no-shows
were discarded. For this purpose, based on abstracts reading, articles that met any of the following six
criteria were excluded:

1. The article does not focus on the field of health. For example, articles that focus on predicting
no-shows on airplanes or in restaurants.

2. The article does not focus on predicting no-shows. For instance, articles in the health field that
focus on predicting a dependent variable other than no-shows such as treatment non-adherence.

3. The article focuses exclusively on developing a scheduling system.
4. The article focuses only on identifying which factors are related to the non-attendance of the

patient without focusing on classification rates or other performance measures.
5. The article analyses the incidence of a factor in the no-show rate. For example, the impact of

sending phone reminders on reducing the no-show rate.
6. The article provides only descriptive statistics on the relationship between the factors and the

no-show dependent variable.

In the third stage, articles from both searches were merged, eliminating duplicates and discarding
those that met some of the above exclusion criteria after reading the full article. After this stage,
49 articles were identified.

Finally, an article was added analyzing the references of the selected articles, obtaining a total of
50 articles.

2.3. Summary Measures

Each of the selected articles was analyzed in detail with the aim of extracting the value of the
following variables:

(i) Year of publication.
(ii) Characteristics of the database. Number of patients, number of appointments and duration of the

data collection.
(iii) No-show rate. Percentage of no-show on the whole database.
(iv) Set-up. Performance evaluation framework used. It is given by a triplet [x, y, z] that contains

the data proportion employed for train, validation, and test, respectively, or by “CV” if a
cross-validation framework was employed.

(v) New patients. Indicate if patient’s first visit is included in the analysis.
(vi) Prediction model. Classification model used in the classification problem.
(vii) Performance Measures. Metrics used to evaluate the model performance and its value.
(viii) Feature selection. Whether or not variable selection was applied, and if so, which technique was

used. This is complemented with information on the most important variables found in each study.
(ix) Service: If the study was conducted in a primary care center, in a specialty, or both.

This information was collected in three concept matrices, as shown in Tables 2–4. In the first one,
all the previous descriptions are presented. For studies reporting more than one performance measure,
the value of the most relevant one is provided. The second one shows the most important predictors
reported in each article. Finally, the third one reports the performance measures used in each article.
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Table 2. Summary of studied articles.

Articles Patients Appointments Months Service No-Show Set-Up New Feature Model Performance
Rate Patient Selection Measures

Dervin et al., 1978 291 - × Primary Care 27 [1,0,0] × - LR,LD 67.4 (ACC)
Dove and Schneider, 1981 1333 - 12 Specialty 24.5 [1,0,0] × embedded DT 14.8 (MAE)
Goldman et al., 1982 376 1181 6 Primary Care 18 [2/3,0,1/3] - filter LR -
Snowden et al., 1995 190 - 6 Specialty 20 [3/4,0,1/4] × - NN 91.11 (ACC)
Bean and Talaga, 1995 - 879 4 Both 38.1 [1,0,0] - - DT -
Lee et al., 2005 22,864 22,864 48 Specialty 21 [1,0,0] - - LR 0.84 (AUC)
Qu et al., 2006 - - 24 Primary Care - [1,0,0] × - LR 3.6 (RMSE)
Chariatte et al., 2008 2193 32,816 96 Specialty - [1,0,0] - - MM -
Glowacka et al., 2009 - 1809 9 Both - [1,0,0] × - ARM -
Daggy et al., 2010 5446 32,394 36 Specialty 15.2 [2/3,0,1/3] - wrapper LR 0.82 (AUC)
Alaeddini et al., 2011 99 1543 2 - - [1/3,1/3,1/3] × - LR-BU 79.9 (ACC)
Cronin et al., 2013 - 41,893 22 Specialty 18.6 [1,0,0] × filter LR -
Levy, 2013 4774 - 12 Specialty 16 [1/2,1/4,1/4] × - BN 60–65 (Sens)
Norris et al., 2014 88,345 858,579 60 Primary Care 9.9 [3/5,0,2/5] - filter LR, DT 81.5 (ACC)
Dravenstott et al., 2014 - 103,152 24 Both 9.1 [0.60,0.15,0.25] - filter NN 87 (ACC)
Lotfi and Torres, 2014 367 367 5 Specialty 16 [0.55, 0, 0.45] × embedded DT 78 (ACC)
Huang and Hanauer, 2014 7988 104,799 120 Specialty 11.2 [4/5,0,1/5] × filter LR 86.1 (ACC)
Ma et al., 2014 - 279,628 6 Primary Care 19.2 [1/3,1/3,1/3] × - LR, DT 65 (ACC)
Alaeddini et al., 2015 99 1543 2 - 22.6 [1/3,1/3,1/3] × - LR-BU 0.072 (MSE)
Blumenthal et al., 2015 1432 - 22 Specialty 13.69 [0.78,0,0.22] × filter LR 0.702 (AUC)
Torres et al., 2015 11,546 163,554 29 Specialty 45 [7/10,0,3/10] × filter LR 0.71 (AUC)
Woodward et al., 2015 510 - 8 Specialty 27.25 [1,0,0] × filter LR -
Peng et al., 2016 - 881,933 24 - - [1,0,0] × - LR 0.706 (AUC)
Kurasawa et al., 2016 879 16,026 39 Specialty 5.8 10 Fold CV - embedded L2-LR 0.958 (AUC)
Harris et al., 2016 +79,346 4,760,733 60 - 8.9 [1/10,0, 9/10] - - SUMER 0.706 (AUC)
Huang and Hanauer, 2016 7291 93,206 120 Specialty 17 [2/3,0,1/3] × filter LR 0.706 (AUC)
Lee et al., 2017 - 1 million 24 Specialty 25.4 [2/3,0,1/3] × - GB 0.832 (AUC)
Alaeddini and Hong, 2017 - 410 - Specialty - 5 Fold CV × embedded L1/L2-LR 80 (ACC)
Goffman et al., 2017 - 21,551,572 48 Specialty 13.87 [5/8,0,3/8] × wrapper LR 0.713 (AUC)
Devasahay et al., 2017 410,069 - 11 Specialty 18.59 [1,0,0] × embedded LR, DT 4–23 (Sens)
Harvey et al., 2017 - 54,652 3 Specialty 6.5 [1,0,0] × wrapper LR 0.753 (AUC)
Mieloszyk et al., 2017 - 554,611 192 Specialty - 5 Fold CV × - LR 0.77 (AUC)
Mohammadi et al., 2018 73,811 73,811 27 Specialty 16.7 10 * [7/10,0,3/10] × - LR, NN, BN 0.86 (AUC)
Srinivas and Ravindran, 2018 - 76,285 - Primary Care - [2/3,0,1/3] × - Stacking 0.846 (AUC)
Ding et al., 2018 - 2,232,737 36 Specialty 13-32 [2/3,0,1/3] × embedded L1-LR 0.83 (AUC)
Elvira et al., 2018 323,664 2,234,119 20 Specialty 10.6 [3/5,1/5,1/5] × embedded GB 0.74 (AUC)
Topuz et al., 2018 16,345 105,343 78 Specialty - 10 Fold CV × embedded L1-L2-BN 0.691 (AUC)
Chua and Chow, 2019 - 75,677 24 Specialty 28.6 [0.35,0.15,0.50] × filter LR 0.72 (AUC)
Alloghani et al., 2018 - - 12 - 18.1 [3/4,0,1/4] × - DT, LR 3–25 (Sens)
AlMuhaideb et al., 2019 - 1,087,979 12 Specialty 11.3 10 Fold CV × embedded DT 76.5 (ACC)
Dantas et al., 2019 2660 13,230 17 Specialty 21.9 [3/4,0,1/4] × filter LR 71 (ACC)
Dashtban and Li, 2019 150,000 1,600,000 72 Primary Care - [0.63, 0.12, 25] × - NN 0.71 (AUC)
Ahmadi et al., 2019 - 194,458 36 Specialty 23 [70(CV),30] × wrapper GA-RF 0.697 (AUC)
Lin et al., 2019 - 2,000,000 36 Specialty 18 [0.8,0,0.2] × embedded Bay. Lasso 0.70–0.92 (AUC)
Lenzi et al., 2019 5637 40,740 36 Primary Care 13 [1/2,0,1/2] × wrapper MELR 0.81 (AUC)
Praveena et al., 2019 - 100,000 - Specialty 20 [1,0,0] × - LR, DT 89.6 (ACC)
Li et al., 2019 42,903 115,751 12 Specialty 18 [0.80,0,0.20] × - MELR 0.886 (AUC)
Ahmad et al., 2019 - 10,329 48 Primary Care - [2/3,0,1/3] × - Probit R. 0.70 (AUC)
Gromisch et al., 2020 3742 - 24 Specialty - [1,0,0] × x LR 75 (Sens)
Aladeemy et al., 2020 - 6599 10 Primary Care 18.58 [0.70,0,0.30] × wrapper SACI-DT 0.72 (AUC)
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Table 3. Feature selection.

Articles

Patient Demographic Medical History Appointment Detail Patient Behaviour
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Dervin et al., 1978 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Dove and Schneider, 1981 ◦ × ◦ × ◦ × ◦
Goldman et al., 1982 ◦ × ◦ × × × ◦ ◦ × × ◦ × ×
Snowden et al., 1995 × × ◦ ◦ ◦ ◦ ◦ × × × × ◦ × × × ◦ × ×
Bean and Talaga, 1995 ◦ ◦ ◦ ◦
Lee et al., 2005 ◦ × ◦ × ◦ ◦ ◦ ◦
Qu et al., 2006 ◦ ◦ ◦ ◦ × ◦
Chariatte et al., 2008 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Glowacka et al., 2009 ◦ ◦ × × × ◦ ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦
Daggy et al., 2010 ◦ ◦ ◦ ◦ ◦ ◦ × × ◦ ◦ ◦
Alaeddini et al., 2011 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Cronin et al., 2013 ◦ × ◦ ◦ × ◦ × ◦ ◦
Levy, 2013 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Norris et al., 2014 ◦ ◦ ◦ ◦ × ◦ ◦ ◦
Dravenstott et al., 2014 ◦ × ◦ ◦ ◦ × ◦ × ◦ × ◦ × ◦ ◦ ◦
Lotfi and Torres × × × × × × × ◦ ◦ ×
Huang and Hanauer, 2014 ◦ × ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦ ◦
Ma et al., 2014 ◦ × ◦ ◦ × ◦ × ◦ × ◦ ◦ ◦ × ◦ ×
Alaeddini et al., 2015 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Blumenthal et al., 2015 × ◦ ◦ × ◦ ◦ ◦
Torres et al., 2015 ◦ ◦ ◦ × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Woodward et al., 2015 × × ◦ ◦ ◦
Peng et al., 2016 ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦
Kurasawa et al., 2016 ◦ ◦ ◦ ◦ ◦ ◦ ◦
Harris et al., 2016 ◦
Huang and Hanauer, 2016 ◦ ◦ ◦ ◦ ◦ ◦ × ◦ ◦ ◦ × × ◦
Lee et al., 2017 ◦ × × ◦ × ◦ × × × × × ◦ ◦ × ◦ ◦ × ◦ × × × × × × ◦ ◦ × × × ◦ ◦
Alaeddini and Hong, 2017 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Goffman et al., 2017 ◦ ◦ ◦ × ◦ ◦ ◦ × ◦ ◦ ◦
Devasahay et al., 2017 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Harvey et al., 2017 ◦ ◦ × ◦ × ◦ × ◦ ◦ × ◦ ◦ × ◦ ◦
Mieloszyk et al., 2017 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Mohammadi et al., 2018 ◦ × × ◦ × × ◦ × ◦ × × ◦ × × ◦ ◦ × ◦
Srinivas and Ravindran, 2018 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Chua and Chow, 2019 ◦ × ◦ × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Ding et al., 2018 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Elvira et al., 2018 ◦ × × ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦ ◦
Topuz et al., 2018 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Alloghani et al., 2018 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ × ◦
AlMuhaideb et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Dantas et al., 2019 × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Dashtban and Li, 2019 ◦ ◦ ◦ ◦ ◦ ◦
Ahmadi et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Lin et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Lenzi et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Praveena et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦
Li et al., 2019 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Ahmad et al., 2019 ◦ × × ◦ ◦ × × ◦
Gromisch et al., 2020 ◦ × ◦ ◦ ◦ ◦ ◦ ◦ ◦
Aladeemy et al., 2020 × × × × × ◦ × ◦ × × ◦ ◦ ×
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Table 4. Performance measures.
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Dervin et al., 1978 × × 1
Dove and Schneider, 1981 × × × 2
Goldman et al., 1982 × 0
Snowden et al., 1995 × × × × 3
Bean and Talaga, 1995 × 0
Lee et al., 2005 × × × × × 4
Qu et al., 2006 × 1
Chariatte et al., 2008 0
Glowacka et al., 2009 0
Daggy et al., 2010 × × 1
Alaeddini et al., 2011 × × 2
Cronin et al., 2013 × 0
Levy, 2013 × × × 2
Norris et al., 2014 × × × × 3
Dravenstott et al., 2014 × × × × × × × 6
Lotfi and Torres, 2014 × × × × × × 5
Huang and Hanauer, 2014 × × 1
Ma et al., 2014 × × 1
Alaeddini et al., 2015 × × × 2
Blumenthal et al., 2015 × × × × × × × 6
Torres et al., 2015 × × 1
Woodward et al., 2015 × 0
Peng et al., 2016 × 1
Kurasawa et al., 2016 × × × × × 4
Harris et al., 2016 × × 1
Huang and Hanauer, 2016 × × 1
Lee et al., 2017 × × × × 3
Alaeddini and Hong, 2017 × × 2
Goffman et al., 2017 × × 1
Devasahay et al., 2017 × × × × × 4
Harvey et al., 2017 × × 1
Mieloszyk et al., 2017 × 1
Mohammadi et al., 2018 × × × × × 4
Srinivas and Ravindran, 2018 × × × × 4
Ding et al., 2018 × × 1
Elvira et al., 2018 × × × × × × × 6
Topuz et al. × × × 3
Chua and Chow, 2019 × × 1
Alloghani et al., 2018 × × × × × 4
AlMuhaideb et al., 2019 × × × × × 4
Dantas et al., 2019 × × × × 3
Dashtban and Li, 2019 × × × × 4
Ahmadi et al., 2019 × × × × 3
Lin et al., 2019 × × 1
Lenzi et al., 2019 × × 1
Praveena et al., 2019 × × × × × × 5
Li et al., 2019 × × 1
Ahmad et al., 2019 × 1
Gromisch et al., 2020 × × × 3
Aladeemy et al., 2020 × × × × 3
TOTAL 38 29 21 17 17 6 6 4 4 1 2 1 1 1
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3. Results

Before starting to describe each of the articles, we illustrate in Figure 2 the distribution of the
publication by year and the size of the dataset. In Figure 2a it can be seen that most of the articles
have been published in the last decade. This shows the current interest in the no-show prediction
problem. Another interesting aspect, shown in the right panel of Figure 2b, is the size of the databases
used. It can be seen that there has been a rapid growth in the last years (with a statistically significant
exponential trend) that could be explained by the recent availability of electronic health records.
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Figure 2. (a) Number of articles published per year. (b) Average number of appointments per year
used in the databases on a logarithmic scale.

After analyzing the distribution of the number of articles published annually and the evolution
of the size of the databases, the most relevant aspects of each selected articles are described below.
The exposition is carried out by grouping the articles that use the same predictive model. Within each of
these groups, the articles are presented chronologically. The different models considered are regression
models (30 articles), tree based models (nine articles), neural networks (three articles), Markov based
models (one article), Bayesian models (three articles) and ensemble/stacking models (four articles),
with some of the articles implementing more than one predictive model.

3.1. Regression Models

Without a doubt, logistic regression (LR) is the most commonly used technique to predict missing
attendance. Among the selected studies, Dervin et al. [14] was the first author to use multiple LR to
identify no-shows in 1978. They used 10 predictors obtained from a small sample of 291 family practice
center patients. Unfortunately, the results obtained were disappointing. Applying a combination of LR
and linear discriminant (LD), they were only able to achieve an accuracy of 67.4% in a sample with an
attendance rate of 73%.

Subsequently in 1982, Goldman et al. [15] conducted a similar study in which a multiple LR
was used to predict no-shows in a sample of 376 patients from a primary care center. Among the
25 initial predictors, they identified as the most significant variables age, race, number of no-shows
in the previous 12 months and whether the patient had psycho-social problems. One advantage of
this study is that the authors split the observations into training and test sets in order to obtain more
representative results. However, they did not provide any performance indicators in the test sample.
They only stated that the obtained results were acceptable. A further limitation of this work is that
they remove the first visits in the study, which reduces notably the complexity of the problem.

Another article in which a multiple LR model was used is Lee et al. [16] in 2005. In this article,
a database of about three million appointments was used. However, only the most recent appointment of
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each patient was used to train the model, reducing the previous number to about 22,000 appointments.
The authors reported an accuracy of 73%, which is slightly lower than the attendance rate of 79%.
An important limitation of the study is that the data were not divided into training and test in the
experiments. Also, they did not include the patient’s first visit to the analysis.

In 2006, Qu et al. [17] used LR considering interactions between the six factors used. The results
reported were promising (Root mean squared error of 3.6%). However, as with other previous work,
the fact that the set-up used did not split the data into training and test sets raises the question of how
these results would look in a more realistic scenario.

In 2010, Daggy et al. [7] carried out one of the first works in which the estimation of the no-show
probabilities is incorporated into a scheduling system. Regarding the performance of the model, using a
training and test set-up, the authors reported an AUC of 0.82 in a database containing a 15.2% no-show
rate. With these probabilities, the scheduling system achieved an expected benefit per patient of $100.

In 2011, Alaeddini et al. [18] proposed to combine global predictions, which use information about
the whole population in terms of a set of variables, together with individual predictions, which only
use the past no-show history of patients, to estimate the probabilities. In their model, LR obtained
initial estimates of the probability of no-show for each patient. These were later improved through
a Bayesian update (BU) and a weighting optimization. Unfortunately, although they reported an
accuracy of 79.9% in a training and test set-up, it is not possible to assess the performance of this work
since they did not provide the no-show rate. The authors subsequently extended this model to the
multinomial case to include cancellations [19].

In 2013, Cronin et al. [20] used new and follow-up appointments to predict no-shows through
LR in a dermatology department. To do so, they only included the variables that were significant
in the univariate models. They concluded that patients who are younger, have been waiting a long
time, or have less comprehensive insurance are more prone to miss an appointment. However,
as Goldman et al. [15], they did not provide any performance measures.

In 2014, Norris et al. [21] investigated whether analyzing jointly no-shows and cancellations
would improve no-show predictions. This question was addressed with both multinomial LR and
decision trees. Their experiments showed that the best results were obtained using a binary LR that
took into account only no-shows. This approach obtained an accuracy of 81.5% in identifying no-shows.
However, this figure did not reach 91.1% that would be obtained if all patients were classified as show.
Similarly, Ma et al. [22] applied an LR in which the accuracy did not exceed the one that would be
obtained by a classifier that labels all the observations as attended (65% vs. 80.8%).

The same year, Huang and Hanauer [23] approached the problem from a planning systems
perspective. They claimed that a false positive is a more serious problem than a false negative in
no-show prediction. Classifying a patient as a no-show when he/she actually attends causes serious
issues to the overbooking planning systems. For example, it increases the patient’s time in the clinic
and adds to the cost of the doctor’s extra time. This fact was taken into account to select the threshold.
Despite obtaining an accuracy of 86.1%, in a database with an attendance rate of 88.8%, the waiting
time of patients for medical services was reduced by 6–8%.

In 2015, Woodward et al. [24] used LR to predict the no-shows in HIV-infected patients.
The relevance of this work is that variables such as the presence of drugs or heterosexual contact were
identified as significant while age, which is frequently used in other work, was considered not relevant.
This result seems to indicate that variables that are highly informative in one setting may not be so in
another. The limitation of this study is that they did not present any performance measures. This was
not the case for Torres et al. [25], which reported an AUC of 0.71 in their study. Their LR model was
conducted by including only those variables that were significant in the individual models.

In this year, the first articles considering feature extraction were published. Blumenthal et al. [26]
incorporated for the first time variables obtained through natural language processing techniques from
doctors’ notes. In particular, they generated a variable called non-adherence rate. These authors reported
an AUC of 0.702 in a database with a no-show rate of 13.69%. A year later, Peng et al. [27] analyzed the
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possibility of obtaining discriminative variables by applying principal component analysis to a set of 19
predictors associated with weather. However, the two extracted variables were not significant.

In 2016, several research articles considered the time dependence. Until then, previous
research works considered the appointments within the same patient as independent observations.
Harris et al. [28] built a model called “sums of exponential for regression” (SUMER) that only
considered the attendance record of each patient. Two limitations of this model are the need to
have a large number of appointments for each patient, and that it discards the information of clinical
and socio-demographic variables. In another article, Huang and Hanauer [29] sequentially built
several LR in which each of them predicted the attendance at the next visit of patients with the same
number of previous appointments. In addition to the explanatory variables, the model for patients
with n appointments includes the patient’s attendance record and the probabilities estimated by the
previous i models (i = 1, . . . , n − 1). They reported that the AUC increased slightly as more information
became available, obtaining a maximum AUC of 0.706 in the 19th model. An article published that
year by Kurasawa et al. [30] deserves special attention. In this work, an LR with feature selection is
conducted by means of an L2 regularization. This work is highlighted because of the high value of
the AUC obtained (0.958). The authors claim that this outstanding result is due to the inclusion of an
important number of variables related to the patient’s diagnosis.

In 2017, Alaeddini and Hong [31] adopted the previous idea in Kurasawa et al. [30] of performing
feature selection using penalizers. They proposed a multi-way multi-task learning model based on
multinomial LR and an L1/L2 regularization. Using this model, the authors achieved an accuracy
close to 80%. However, the limitation of this work is the size of the database, which contained only 410
appointments. As an alternative, Goffman et al. [32] considered a traditional stepwise feature selection
approach instead of penalizers. An important contribution of this work is that the variable describing
the patient’s attendance record was obtained through an empirical Markov model based on the ordered
series of no-shows of the last 10 appointments. Stepwise LR was also used by Harvey et al. [33] and
more recently by Gromisch et al. [34]. An interesting article is Mieloszyk et al. [35], which was the first
work that used a five fold cross-validation to perform the feature selection in LR.

In 2018, only one article addressed the prediction of no-shows from a regression-based perspective.
Specifically, Ding et al. [36] asked whether it is preferable to create several local models that consider the
different combinations of clinics and specialties or a single global model. For this purpose, they built
420 multivariate LR models with L1 regularization for feature selection. They observed that the local
models fitted the data better although they exhibited a lot of variability. For this reason, they concluded
that there are no simple rules for determining whether local or global models are preferable, but this
decision depends on the data being analyzed.

In 2020, Lin et al. [37] followed the research line proposed by Ding et al. [36] consisting of
the development of several local models. In this work, 475 LR models were built, one for each
physician. In order to conduct the feature selection and estimate the model’s parameters, the authors
considered Lasso-based Bayesian modeling and automatic relevant determination. The best approach
was achieved using Lasso-based Bayesian, which attained AUC values ranging between 0.70 and
0.92. An approach that lies between building a single global model and many local models is to use
a mixed effects logistic regression model (MELR). This approach was proposed by Lenzi et al. [38]
and Li et al. [39]. In particular, the former, which determines the most parsimonious model based on
the Akaike information criterion, groups by patient and provider, while the latter groups by patient
and appointment confirmation. In these studies, AUCs of 0.81 and 0.886 were reported, respectively.
Another approach that has been considered to predict no-show is probit regression in Ahmad et al. [40],
obtaining an AUC of 0.7. Other research works used LR in 2019, like those of Chua and Chow [41] and
Dantas et al. [42]. However, these studies focus more on feature selection based on a filter method.
In both cases, modest results were obtained. Specifically, Dantas et al. [42], which did not achieve an
accuracy higher than the classification rate.
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3.2. Tree Based Models

Decision Trees (DTs) represent the most widely used method after regression models. The first
work using this technique to identify no-shows was Dove and Schneider [43] in 1981. They analyzed
whether the use of individual characteristics of the patient was better than considering the average
rate of the clinic to predict missing appointments. For this purpose, data from 1333 patients from
35 clinics were used for building a DT using the automatic interaction detection feature algorithm.
The authors, based on the mean absolute error of 14.8%, claimed that the use of patient characteristics
was as accurate as the average clinical rates.

The next study that used DTs to predict no-shows was Bean and Talaga [44] in 1995. In this article,
the tree was constructed using a chi-squared automatic interaction detector (CHAID). A drawback
of this paper is that, although the authors show the probability of no-show for each patient from the
created rules, they do not provide any measure of accuracy.

In 2009, the first scheduling system that considered individualized predictions of patient
attendance was developed by Glowacka et al. [45]. These estimates were determined using an
association rule mining (ARM) that can be viewed as a DT. A limitation of this method is that it does
not classify all observations. Specifically, in this study, the 13 rules generated classified only 390 of the
1809 observations available. Another drawback is, as in the previous work, the lack of a performance
measure of classification.

Later in 2014, Lotfi and Torres [46] used several algorithms to build DTs which predict no-shows
in the most recent appointment. The algorithms considered were CHAID, Exhaustive CHAID,
Classification and Regression Trees and Quick, Unbiased, Efficient Statistical Tree. A drawback
is that the best model had an accuracy of 78%, which is below the attendance rate of 84%. As shown by
Glowacka et al. [45], the estimated probabilities were incorporated into a scheduling system, increasing
center utilization from 46% to 72.9%.

In 2017, Devasahay et al. [47] compared the performance of DTs and LR in predicting no-shows.
They reported a good specificity at the cost of a very poor sensitivity (4% vs. 99%) for specific
thresholds or a poor prediction in these two performance measures (23% vs. 24%) for both DTs and LR.
The authors justified these results due to class imbalance.

Between 2018 and 2019, several works analyzed the advantages of using DTs over LR.
As Devasahay et al. [47], Alloghani et al. [48] obtained good specificity at the cost of very poor
sensitivity (3% vs. 99%) or poor prediction in the above two performance measures (25% vs. 22%) for
specific thresholds values on both models. Better results were obtained by Praveena et al. [49] in which
the accuracy of DTs was higher than the one attained by the LR and also exceeded the attendance rate.
In 2019, AlMuhaideb et al. [50] tried to solve the problem from a different point of view. They used
two algorithms based on information gain to build the tree (JRip and Hoeffding). However, none of
the two building techniques achieved an accuracy that exceeded the attendance rate.

A very recent application of DTs to predict no-show is Aladeemy et al. [51] in 2020. In this
study, the authors considered different techniques such as DTs, random forest, k-nearest neighbors,
support vector machines, boosting, naïve Bayes, and deep learning. They showed that the technique
that achieved the best results was DTs. The novelty of this work is that the variables were selected
through a metaheuristic called Opposition-Based Self-Adaptive Cohort Intelligence (SACI). This work,
together with those published in the previous year, indicates the attention that DTs are receiving in the
prediction of no-shows in recent years.

3.3. Neural Networks

Neural networks (NN) is currently one of the techniques for binary classification that receives
the most attention in the field of artificial intelligence. The first article that used this methodology
to predict no-shows dates back to 1995 by Snowden et al. [52]. In this article, the authors used a
backpropagation NN with a hidden layer of five neurons to obtain a correct classification of 91.11% in
a database with approximately 20% of no-shows. However, a drawback of this work is that only the
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190 patients with complete data from a database of 300 patients were used. Another limitation is that
the network did not make any predictions in 5% of the data. In addition, because they conducted a
single validation experiment, the results may not be reliable.

In 2014, Dravenstott et al. [53] used NN to predict no-shows in a database of three million
observations obtained from primary care and endocrinology departments. A network with two hidden
layers was trained for each department, which obtained an accuracy of 83% and 87%, respectively.
However, none of these networks surpassed the attendance rate.

Recently, in 2019, Dashtban and Li [54] developed a sparse stacked denoising autoencoder for
predicting patient non-attendance that handled incomplete data. The sparsity of the model was
achieved by means of a constraint based on Kullback–Leibler divergence (relative entropy). For this
purpose, one part of the network consisted of an autoencoder. The network was trained with a database
of 1.6 million appointments, obtaining an AUC of 0.71. They also reported an accuracy of 69%, but it is
not possible to evaluate the performance of this network since the no-show rate was not reported.

3.4. Markov Based Models

In 2008, Chariatte et al. [5] proposed a double chain Markov model (MM) as an alternative to the
widely used LR to account for the temporal dependence. The authors expected better performance
than with LR and a better characterization of no-shows. However, they did not report any performance
measures. A drawback of this research work is that they only included patients with more than three
appointments in the study, which significantly reduces the complexity of the problem.

3.5. Bayesian Models

The first study that used a Bayesian network (BN) to predict non-attendance was conducted in
2013 by Levy [55]. The authors considered different thresholds that resulted in a sensitivity ranging
from 60% to 65% and a specificity ranging from 37% to 42%, in a database with a no-show rate of 16%.

Later, in 2018, Mohammadi et al. [56] compared the performance of a Naïve Bayes classifier
with respect to LR and NNs. In order to ensure independence between observations, a database
of 73,811 observations corresponding to the last visit of each patient was used. The model that
obtained the best performance was the Naive Bayes Classifier with an AUC of 0.86. Also that year,
Topuz et al. [57] proposed the Tree Augmented Bayesian Network, which is an improved version of
Naïve Bayes. This BN uses the variables that are previously selected by the Elastic Net algorithm.
The authors showed that this network improved the results obtained by an LR.

3.6. Ensemble/Stacking Methods

Ensemble and stacking methods are techniques that combine predictions from several classifiers.
The difference between these two techniques is that the former makes a weighted sum of these
predictions, while the latter unifies the predictions by means of a classifier.

In 2017, Lee et al. [58] used gradient boosting (GB) for the first time to combine the predictions
from various decision trees. Using 60 variables obtained through text mining together with various
socio-demographic variables, they reported an AUC of 0.832.

The following year, Elvira et al. [59] used GB to minimize the problem of class imbalance. However,
their results were modest since the AUC was lower than 0.75. The authors concluded that they did not have
enough information to predict missing appointments accurately. In turn, Srinivas and Ravindran [60]
developed a stacking model to predict the no-show in a primary care center. This model, which used an
LR to combine the predictions obtained from NNs, random forest (RF) and stochastic GB attained an
AUC of 0.846.

In 2019, Ahmadi et al. [61] used a stacking approach for which the diversity of the model was
achieved providing different variables to an RF model. These variables were selected through a
genetic algorithm.
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4. Discussion and Conclusions

In this work, a systematic review has been carried out on the prediction of patient no-show.
The relevance of the problem can be observed in the fact that 41 of the articles on no-show prediction
(82% of the total) have been published in the last 10 years (and 32, that is 64% of the total, in the last
five years). The review has identified several factors that influence the results reported in each of the
studies analyzed. These factors include the choice of the predictive model, the features used by these
models, the variable selection, the performance assessment framework, the class imbalance together
with the performance measure, the intra-patient temporal dependence, and whether the experiments
take into account the first visits or not. The main findings for each of these factors are described in
detail below.

Predictive models. The revision found out that the most widely used algorithm was LR, which
appears in 30 articles, that is, more than 50% of the total. This can be explained by the fact that the
early works were focused on identifying the most influential factors in patient no-shows, in which
the LR plays a primordial role. The second most frequent predictive model is DTs, used as a primary
technique in 10 articles (20% of the total). Among the different models, the LR with L2 regularization
proposed by Kurasawa et al. [30] stands out, achieving an AUC of 0.958. Another work that deserves
special attention is Snowden et al. [52], which used NN, reaching an accuracy of 91.11% in a database
with an attendance rate of 80%. With the current explosion of deep networks and the growth in
databases, this methodology is a promising line of research.

Features. As both Deyo and Inui [62] and Dantas et al. [12] indicated, there are no universal
variables in the no-show patient databases. The most appropriate variables depend, for example,
on the population under study or the specialty. However, as shown in Table 3, some variables show a
discriminatory capacity in the majority of the studies. Variables such as age, gender, insurance, distance,
weekday, visit time, lead time, and no-show appeared in at least half of the studies. Among these variables,
previous no-shows (along with the number of previous appointments) have been reported as the most
significant. This shows the importance of including the patient’s history in the study and reaffirms the
intra-patient dependence on observations. Although on a smaller scale, variables such as race, marital
status and visit type (first/follow-up) have also been frequently used. A limitation of existing studies
is that, in many cases, using a variable depends on its availability in the EHR.

Feature selection. Another aspect worth mentioning is whether the studies perform feature
selection, as this can significantly influence the performance of predictive models. As a general
rule, the addition of variables with low predictive capacity reduces the generalization of the results.
According to Guyon and Elisseeff [63], feature selection techniques can be divided into three main
groups: filter, wrapper, and embedded. The filtering methods, which are the most used in the
analyzed articles, select the variables before passing them to the predictive model. The majority
of the works that employed a filtering technique used univariate models to select significant
variables [15,20,21,23–26,29,41,42,53]. On the other hand, wrapper methods evaluate multiple models
that are created with different combinations of variables. The most used technique within the wrapper
methods was stepwise feature selection [7,32–34,38]. Other techniques are metaheuristics such as
genetic algorithms [61] or Opposition-Based Self-Adaptive Cohort Intelligence [51]. Finally, embedded
methods incorporate the selection of variables within the model itself. In this category, the most
used techniques were decision trees [43,46,47,50,59] and penalized regression [30,31,36,37,57]. In fact,
studies that applied penalized LR such as Kurasawa et al. [30] and Lin et al. [37] present the best
adjustment measures.

Performance evaluation framework. A very important aspect is the experimental design since it
conditions the generalization of the results. In 13 studies (26% of the total), the performance of the
model was evaluated on the same data that were used to train it. It is a well known fact that this
approach is prone to overfitting the data, which results in a drastic decrease in accuracy when the
developed classifier is used in future data. Thirty-one of the articles (62% of the total) conducted a
single validation in which the data were divided into training and testing. The disadvantage of this
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approach is that there is no guarantee that the easiest-to-classify observations might be in the test
set, which leads to overconfident results. Only six studies (12% of the total) performed a repeated
validation or a k-fold cross-validation. These number indicates that the results reported may be not
realistic with new datasets.

Performance measures. An important aspect to point out from our analysis is that the no-show
prediction performance is evaluated very differently across studies. In particular, 44 out of the
50 articles report at least one measure of performance. Among these, the most commonly used metric
was AUC, included in 29 of the works. Of these 29 works, a single study obtained an AUC value larger
than 0.9 and only six articles (near to 20%) reported an AUC higher than 0.85. The second most used
performance measure was accuracy, reported in 21 articles. Following, 17 studies reported specificity
and sensitivity, six reported PPV and NPV, and four used recall and precision as performance metrics.
Finally, four studies reported an error measure (MAE, MSE or RMSE), and only one proposed to use
F-measure and another one to use G-measure (see the next paragraph). This heterogeneity on the
use of performance measures makes difficult the comparison of results across studies. The detailed
information of the performance measures used can be found in Table 4.

Imbalance problem. As already mentioned, the class imbalance is a common characteristic of
all the studies analyzed. A fact observed in several studies is that the accuracy obtained was lower
than the attendance rate [14,16,21–23,42,46,50,53,59]. In particular, accuracy exceeds the attendance
rate in only 5 of the 15 studies reporting these two values. This low performance could be partly due
to the class imbalance that biases the different algorithms to predict each observation as a show. In the
analyzed studies, 26 of the works report a no-show rate lower than 20%, which represents 68% of the
38 articles that presented this index. Several approaches have been proposed in the literature to deal
with class imbalance in binary classification (see [64] for an overview). They can be categorized in three
groups: (1) those based in training set data transformations aimed at reducing the imbalance between
the classes (by undersampling or oversampling the majority or minority class, respectively), (2) those
based in the use of specific algorithms that take into account the prior imbalanced class distribution
and (3) hybrid approaches combining (1) and (2). Among the analyzed articles, only the cost-sensitive
method proposed by [29] and the ensembles/stacking methods can tackle class imbalance. They fit into
the second of the three above mentioned groups, that is, the algorithm-level approaches. Among these
works, only Elvira et al. [59] relates the classifier choice with the imbalance problem. The authors of
this study also pointed out that accuracy was not an adequate performance measure and proposed
to use the AUC. Alternatively, Kurasawa et al. [30] proposed to use the F-score and Topuz et al. [57]
proposed the G-measure.

Temporal dependence. An important aspect is the intra-patient temporal dependence of the
observations. Several authors avoid this problem using only the last appointment (most recent) to train
the model [7,16,21,23,25,32,46,56]. However, this approach results in a loss of information. Only 7 of
the 50 analyzed articles include the intra-patient temporal dependence in the model. This dependence
was incorporated using different approaches including Markov chains [5], weighting observations by
their temporal closeness [18,19], using an exponential sum for regression [28], building various LR
based on the number of previous visits [29], or using a MELR [38,39]. The last approach provides a
promising approximation in the resolution of the problem since it allows to unify the behavior of the
patient, the socio-demographic variables, and the environmental variables.

New patient. One element that significantly affects the results is the inclusion of new patients
in the analysis. At the time of the first visit of the patient, the available information is very limited.
Only some environmental variables are available (e.g., month, day and time of the appointment)
and perhaps some socio-demographic variables (age and sex of the patient). This limitation makes
it very difficult to predict missing attendance on the first visit. Different authors have addressed
this problem by means of different techniques such as not including in the analysis patients who
do not have a certain number of previous visits [5,28], not including the first appointment in the
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study [7,15,16,21,30,44,53], or including a variable that indicates whether the appointment corresponds
to the first visit [14,17,20,23,27,29,32,34,40–43,48,50–52,56,58–60].

To conclude, the above discussion has shown that the identification of patients who do not
attend their appointments is a challenging and unsolved problem. As it was shown above, this can
be observed in the fact that only five articles attained an accuracy higher than the no-show rate.
This is a consequence of several pitfalls. Firstly, the researchers only had access to a limited number
of predictors with low discrimination capacity and, in addition, those were not the same for all
the researchers. Moreover, many studies were conducted with databases consisting of a small
number of patients, which limited the information provided to the classifiers. However, the recent
availability of more informative databases obtained from EHR opens up new research opportunities.
These current databases containing records of hundreds of thousands of appointments allow the use of
modern predictive techniques such as deep neural networks or novel binary classification algorithms
for high-dimensional settings, such as [65,66]. A second research line consists of developing and
incorporating strategies that reduce the negative effects of class imbalance. For instance, the use
of sampling techniques, cost-sensitive approaches, or the previously commented ensemble models
might improve the performance of the selected classifier. A third possibility is the incorporation
of intra-patient temporal dependence, which would allow a better characterization of the patients’
behavior by unifying their previous attendance records, their socio-demographic characteristics,
and the environmental variables. These strategies could lead to obtaining more accurate predictions
that, when incorporated into scheduling systems, will reduce the economic losses suffered by health
centers and the waiting time for access to the medical services.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
ARM Association Rule Mining
AUC Area under the receiver operating characteristic curve
BN Bayesian Network
BU Bayesian Update
CHAID Chi-squared automatic interaction detector
CV Cross Validation
DT Decision Tree
EHR Electronic Health Records
GA Genetic Algorithm
GB Gradient Boosting
LD Linear Discriminant
LR Logistic Regression
MAS Mean Absolute Error
MELR Mixed effects Logistic Regression
MM Markov model
MSE Mean Squared Error
NN Neural Network
NPV Negative Predictive Value
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PRISMA Preferred Reporting Items for Systematic Reviews and Meta-analyses
PPV Positive Predictive Value
RF Random Forest
RMSE Root Mean Squared Error
SACI Opposition-based Self-Adaptive Cohort Intelligence
Sens Sensitivity
SUMER Sums of exponential for regression
WOS Web of Science
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