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Abstract: This paper investigates the achievable per-user degrees-of-freedom (DoF) in multi-cloud
based sectored hexagonal cellular networks (M-CRAN) at uplink. The network consists of N base
stations (BS) and K ≤ N base band unit pools (BBUP), which function as independent cloud centers.
The communication between BSs and BBUPs occurs by means of finite-capacity fronthaul links of
capacities CF = µF · 1

2 log(1 + P) with P denoting transmit power. In the system model, BBUPs
have limited processing capacity CBBU = µBBU · 1

2 log(1 + P). We propose two different achievability
schemes based on dividing the network into non-interfering parallelogram and hexagonal clusters,
respectively. The minimum number of users in a cluster is determined by the ratio of BBUPs to BSs,
r = K/N. Both of the parallelogram and hexagonal schemes are based on practically implementable
beamforming and adapt the way of forming clusters to the sectorization of the cells. Proposed coding
schemes improve the sum-rate over naive approaches that ignore cell sectorization, both at finite
signal-to-noise ratio (SNR) and in the high-SNR limit. We derive a lower bound on per-user DoF
which is a function of µBBU, µF, and r. We show that cut-set bound are attained for several cases,
the achievability gap between lower and cut-set bounds decreases with the inverse of BBUP-BS ratio
1
r for µF ≤ 2M irrespective of µBBU, and that per-user DoF achieved through hexagonal clustering
can not exceed the per-user DoF of parallelogram clustering for any value of µBBU and r as long as
µF ≤ 2M. Since the achievability gap decreases with inverse of the BBUP-BS ratio for small and
moderate fronthaul capacities, the cut-set bound is almost achieved even for small cluster sizes for
this range of fronthaul capacities. For higher fronthaul capacities, the achievability gap is not always
tight but decreases with processing capacity. However, the cut-set bound, e.g., at 5M

6 , can be achieved
with a moderate clustering size.

Keywords: cloud radio access networks; degrees-of-freedom; sectored cellular networks; limited
fronthaul capacity; BBU pools with limited processing capacity; clustered decoding

1. Introduction

Interference is one of the fundamental obstacles for high data rate communications in current
and future cellular networks because of restricting the effect on overall spectral efficiency in
bits/sec/Hz/base station. Sectorization, which has been used in 4G networks, is one solution to
alleviate intra-cell interference by using multiple antennas at base stations (BS) resulting in directional
beams that cover an intended sector. In the literature, sectorization is often combined with hexagonal
cell models, and mostly each cell is divided into three sectors [1,2]. Here, we follow the works in [3–6]
that totally ignore the interference between the sectors in the same cell. In real systems, this is not
the case since the side lobes of the radiation pattern cause to observe signals from adjacent inter-cell
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sectors. However, we ignore it in the current work since the interference is close to the noise level and
our focus will be on the sum-capacity of the sectored hexagonal network in the high signal-to-noise
ratio (SNR) and the degrees of freedom (DoF) per-user.

Together with sectorization, cooperation between BSs or mobile users is a well-known technique
of decreasing the detrimental effect of interference in cellular networks (see e.g., [7] and references
therein). In the context of cellular networks, cooperation has mostly been used to create alternate
communication paths (by having mobile users or dedicated terminals relay the transmit signals of
adjacent mobiles, see, e.g., [8,9]), or to provide BSs with quantized versions of the transmit/receive
signals of other BSs via backhaul links (allowing for clustered decoding, see, e.g., [10–16]). Cooperation
makes it possible for user data to be jointly processed by several BSs at both uplink and downlink, hence
imitating the benefits of virtual multiple-input multiple-output (MIMO) architecture. This framework
is also known as multi-cell processing (MCP) [7,16]. The study of MCP started for uplink with the
works [12,13] and for downlink with the work [14] based on full cooperation assumption. In uplink,
the received signals at all BSs are relayed to a central processor (CP) via perfect backhaul links (assumed
to be of infinite capacity and error free). Then, the CP decodes all user messages jointly. In contrast,
in downlink, the CP encodes all messages jointly and sends each transmit signal to its corresponding
BS via backhaul links and each mobile user decodes the message itself. With such a full MCP through
unlimited backhaul, there is no signal causing complete interference, that is, all received or transmitted
signals provide useful information in decoding at the CP or mobile users. Then, interference becomes
constructive rather than destructive. Thus, it is exploited.

The exploitation of interference is also possible by implementing the full MCP with limited
capacity backhaul links, which is studied for uplink in [15,16] and for downlink in [17]. In [15,16],
BSs share functions of their received signals using compress-and-forward protocol ([18], Theorem 6),
where each BS first quantizes its received signal and then sends the quantization codeword to the CP.
Then, the CP either decodes the quantization codewords and user messages jointly, or decompress
quantization codewords first and then decodes the user messages. However, in the downlink [17],
the CP precodes the interference across transmit signals of BSs through joint Dirty Paper Coding
(DPC) [19] under individual power constraints for each BS. Therefore, each mobile user decodes
its message by cancelling precoded interference. In [16,17], it is shown that the close to optimal
performance can be achieved in some scenarios by full MCP with modest capacity backhaul links.

Cloud radio access network (CRAN) is a promising architecture for 5G wireless networks [20] to
exploit the interference. For a single-CRAN, each BS in the network acts only as a relay and all BSs are
connected to the single base-band-unit pool (BBUP) that performs encoding/decoding functionalities,
which mimics the function of a CP, over dedicated rate-limited fronthaul links. Therefore, it allows
for natural implementation of full MCP with limited capacity relaying links. In some works such
as [3,21,22], the performance of single-CRAN is investigated. For downlink, it is shown in [3]
that, when each mobile user and sector receiver have M antennas, M/2 DoF per-user is achievable
with moderate fronthaul capacity by applying simple zero forcing scheme with smart assignment
of the messages to different BSs. Similar performance can be achieved for uplink by applying the
ideas in [21]. However, due to complexity, latency, connectivity, scalability, and synchronization
problems, the deployment of multi-cloud radio-access-networks (M-CRAN) is recently considered
in a few works such as [23–30]. For example, Reference [27] studies the problem of optimization of
precoding and joint compression of baseband signals across multiple clusters of BSs in downlink. It
demonstrates that the multivariate compression based solution reduces the inter-cluster interference.
A similar model is studied in [28] by adding access channels from BSs to mobile users as a joint
optimization parameter besides precoding and fronthaul compression optimization. Reference [29]
handles the network sum power consumption minimization problem for downlink M-CRAN while
fronthaul capacity, channel state information CSI error, quality of service and BS power are taken
into account as optimization constraints in order to to determine the beamforming vector of each
user across the network and the optimal quantization noise covariance matrix associated with each
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cluster. This work proposes a distributed iterative solution that achieves the performance of the
case all BSs connected to a single BBUP. While the formerly mentioned works assume non-dynamic
clustering for each BBUP, the authors of [30] propose and analyze dynamic clustering approach based
on instantaneous CSI, where they also consider the allocation of computation resources of BBUPs as
an optimization parameter.

In the present work, we consider uplink of an M-CRAN with multiple-antenna mobile users and
multiple-antenna BSs. We assume N � 1 BSs, K ≤ N BBUPs with limited processing capacity and
limited fronthaul capacity. The main interest of this paper is to understand highest achievable per-DoF
and sum-rate for limited fronthaul and BBUP processing capacity for given BBUP-BS ratio K/N.
We propose two coding schemes in each of which some mobile users are deactivated to decompose
the network into isolated parallelogram and hexagonal clusters, respectively. For both clustering
types, the minimum number of mobile users/sectors are determined regarding a BBUP-BS ratio
due to one-to-one association between BBUPs and clusters. Each BBUP collects quantized versions
of the received signals of the associated cluster through fronthaul links and decodes them jointly.
The considered decoding scheme is thus reminiscent of clustered decoding as performed in [10,31].

The contributions of this paper are:

• We propose a specific non-dynamic way of silencing mobile users in parallelogram clustering.
One could attempt to silence entire cells. We find an efficient way of dividing the network
non-interfering parallelogram clusters by silencing mobile users mostly in single sectors of the
considered cells;

• We propose achievability schemes for both parallelogram and hexagonal clusterings and derive
lower bounds on per-user DoF for both schemes in a function of fronthaul and BBUP processing
capacities and BBUP-BS ratio;

• We prove that the performance of parallelogram clustering can not be worse than hexagonal
clustering for small and moderate fronthaul capacities;

• We show by simulations that, for high fronthaul capacities, the coding scheme proposed for
hexagonal clustering can show better performance than parallelogram clustering if the processing
capacity is large enough according to given BBUP-BS ratio.

The upper bound is obtained through cut-set argument. In several cases, upper and lower bounds
are matched. For small and moderate fronthaul capacities, the achievability gap is given as a function
of fronthaul capacity and BBUP-BS ratio, and it is shown that it decreases with the inverse of the
BBUP-BS ratio irrespective of BBUP processing capacity.

In the finite SNR case, we compare the proposed coding schemes with the following schemes:

• Naive versions of both schemes where all mobile users in certain cells are deactivated,
• Interfering versions of both schemes where the network is decomposed into non-overlapping but

interfering clusters,
• An opportunistic scheme where each message is decoded based on the received signals of three

neighboring sectors that have the strongest channel gains.

Finite SNR analysis shows that, in the strong interference regime, the proposed schemes
outperform all other schemes for almost all SNR range under all scenarios except two; for the 3-sector
decoding scheme, low SNR range and scarce BBUP capacities and, for non-interfering schemes,
moderate SNR range and high BBUP capacities.

An interesting outcome of the finite SNR analysis is that interfering clustering schemes show
either close to or better performance than proposed schemes in the finite SNR range under both weak
and strong interference regimes; therefore, the interfering clusterings can be employed at finite SNR
values with minor performance losses, since they may be more convenient for practical systems.
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1.1. Organization

The rest of the paper is organized as follows: This section ends with some remarks on notation.
The following Section 2 describes the problem definition. Section 3 presents the main results of the
paper. In Sections 4 and 5, we present the coding schemes for the parallelogram and hexagonal
clusterings, respectively. Section 6 presents the achievability results for the naive schemes and Section 7
presents simulation results for DoF per-user. In Section 8, we present the results regarding the finite
SNR analysis. We conclude the paper with Section 9 and some technical proofs are presented in
the appendices.

1.2. Notation

We denote the set of all integers by Z, the set of positive integers by Z+, and the set of real
numbers by R. For other sets, we use calligraphic letters, for example, X . We represent random
variables by uppercase letters, for example, X, and their realizations by lowercase letters, for example,
x. We use boldface notation for vectors, that is, upper case boldface letters such as X for random
vectors and lower case boldface letters such as x for deterministic vectors.) Matrices are depicted with
sans serif font, for example, H. We also write X(n) for the tuple of random vectors (X1, . . . , Xn).

2. Problem Definition

2.1. Network Model

Consider the uplink communication in a cellular network consisting of N � 1 hexagonal cells as
depicted in Figure 1. Each single cell contains a base station (BS) equipped with 3M directional receive
antennas and is divided into three sectors, where each sector is covered by M receive antennas. Usage of
directional antennas, where side lobe radiation patterns are negligible, implies that communications in
the three sectors of a cell do not interfere with each other. It is assumed that different mobile users in
the same sector perform orthogonal multiple-access as is typical for current 4G networks [32]. Thus,
the model is restricted to a single mobile user per sector. For simplicity and symmetry, it is supposed
that each mobile user is equipped with M transmit antennas.

BBU 
Pool 1

BBU 
Pool 2

BBU 
Pool K

Fronthaul Links

Figure 1. Multi-cloud based sectored cellular network.
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It is assumed that the signal from a mobile user attenuates rapidly enough so that it cannot cause
interference to sector receive antennas (Rx) in non-adjacent sectors. These assumptions lead to the
interference graph in Figure 1, where each small circle depicts a mobile user and Rx pair. Solid black
lines between any two circles represent symmetric interference between mobile users and Rxs of
adjacent sectors. Let N = {1, . . . , N} be an index set of all cells and associated BS in the network,
and let T = {1, . . . , 3N} be index set of all sectors and their corresponding users and Rxs. Then,
the observed signal at the Rx u ∈ T is given by the following discrete-time input-output relation:

yu,n′ = ∑
υ∈Tu

Hu,υxυ,n′ + zu,n′ , n′ ∈ {1, . . . , n}, (1)

where

• n denotes the number of channel use;
• Tu denotes the index set of mobile users whose transmitted signal is observed by Rx u (including

mobile user u);
• xv,n′ denotes the M-dimensional time-n′ signal sent by mobile user v;
• zu,n′ denotes the M-dimensional i.i.d. standard Gaussian noise vector corrupting the time-n′

signal at Rx u; it is independent of all other noise vectors;
• and Hu,υ denotes an M-by-M dimensional random matrix with entries that are independently

drawn according to a standard Gaussian distribution that models the channel from mobile user υ

to Rx u.

Channel matrices are randomly drawn but assumed to be constant over the n channel uses
employed for the transmission of a message. In other words, the block length of a transmission is
assumed shorter than the coherence time of the channel. Realizations of the channel matrices are
assumed to be known by corresponding BSs, but not by the mobile users.

2.2. Uplink Communication Model with M-CRAN Architecture

Consider the network model defined in Section 2.1. Assume that the mobile user in sector u ∈ T
wishes to send its message Wu, which is selected at random from the set

{
1, . . . , 2nRu

}
, to the BS in

which its sector is located. To this end, mobile user u encodes its message with the function

f (n)u :Wu → RM×n, Wu 7→ X(n)
u (2)

where X(n)
u = (Xu,1, . . . , Xu,n), and Xu,n′ ∈ RM is a column vector for n′ = 1, . . . , n, satisfying the

power constraint:
1
n

n

∑
n′=1
‖Xu,n′‖2 ≤ P with probability 1. (3)

We assume that the decoding processes of receive signals during the uplink communication is
performed by K ≤ N BBUPs, and that any BS j ∈ N can have access to any BBUP k ∈ {1, . . . , K}
through a one-hop fronthaul link which can be modeled as noise-free but capacity limited.

Definition 1. Observation Function Let Uk be the index set of BSs communicating with BBUP k. Each BS
j ∈ Uk sends an observation function, φ

(n)
j,k
(
Y(3n)

Bj

)
, to BBUP k, where

φ
(n)
j,k : RM×3n → R, (4)

and
Y(3n)

Bj
:=
(
Y(n)

uj,1 , Y(n)
uj,2 , Y(n)

uj,3

)
, (5)

with uj,1, uj,2, and uj,3 denoting the three sectors of BS j.
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To account for capacity limits of the fronthaul links, we require

1
n

K

∑
k=1

H
(
φ
(n)
j,k
(
Y(3n)

Bj

))
≤ CF, ∀j, (6)

where CF = µF ·
1
2

log(1 + P) and µF is fronthaul capacity prelog, which is a positive constant.
Let Dk be the index set of sectors whose messages are to be decoded at BBUP k. After receiving

observation functions, for each BBUP k and each u ∈ Dk, BBUP k applies a deterministic and invertible
function g(n)k,u on the relevant observation functions to decode the message Wu:

Ŵu = g(n)k,u
({

φ
(n)
l,k
(
Y(3n)

Bl

)}
l∈Uk

)
. (7)

Decoding is successful if, for all u ∈ T :

Ŵu = Wu. (8)

Increasing computational power of a processor leads to an increase in complexity. Hence, to take
the computational limitation into consideration, we impose a complexity constraint on the BBUPs
in terms of bit processing capacity per channel use. We assume that any BBUP k can implement the
decoding process if and only if the sum rate of all observation functions that is sent to BBUP k satisfies

1
n ∑

j∈Uk

H
(
φ
(n)
j,k
(
Y(3n)

Bj

))
≤ CBBU, ∀k, (9)

where CBBU = µBBU ·
1
2

log(1 + P) and µBBU is processing capacity prelog, which is a positive constant.

2.3. Capacity and Degrees of Freedom

A rate-tuple {Ru}u∈T is said to be achievable if, for every ε > 0 and sufficiently large n, there

exists encoding, observation, and decoding functions
{

f (n)u
}

,
{

φ
(n)
j,k
}

, and
{

g(n)k,j
}

satisfying (3), (6)
and (9), such that

Pr

[ ⋃
u∈T

{
Ŵu 6= Wu

}]
≤ ε. (10)

The capacity region C (P, µF, µBBU, K) is the closure of all achievable rate-tuples {Ru}u∈T , and the
maximum sum-rate is defined as

C∑ (P, µF, µBBU, K) = sup ∑
u∈T

Ru (11)

where the supremum is over all achievable rates {Ru}u∈T ∈ C (P, µF, µBBU, K).

Definition 2 (Per-User DoF). For any BBUP-BS ratio r ∈ (0, 1], fronthaul capacity prelog µF > 0 and
processsing capacity prelog µBBU > 0, the per user DoF is given as

DoF (µF, µBBU, r) := lim
N→∞

lim
P→∞

C∑ (P, µF, µBBU, r · N)

|T | · 1
2 log(1 + P)

. (12)

Here, note that the allowed interval of r guarantees satisfying the proposed system model
restriction K ≤ N. In the following, we use the abbreviation DoF to designate the per-user DoF.
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3. Main Results

We derive two lower bounds and an upper bound on the DoF. As we will show, they match in some
cases. The first and second lower bounds are achieved by the schemes described in Sections 4 and 5,
respectively. Both schemes are based on deactivating a set of mobile users. In the first scheme,
the mobile users are deactivated so that the remaining active users form parallelogram-like clusters.
In the second, the remaining active users form hexagon-like clusters. We name the two DoF lower
bounds as parallelogram bound and hexagon bound, respectively.

Theorem 1 (Lower Bound). For any µBBU > 0, µF > 0, and 0 < r ≤ 1, the achievable DoF is given by

DoF (µBBU, µF, r) ≥ conv hull {DoFP (µBBU, µF, r) ,DoFH (µBBU, µF, r)} (13)

where

DoFP (µBBU, µF, r) =



max
t1,t2

min
{

µF
3 , µBBU

3t1t2

}
, if µF ≤ M

max
t1,t2

min
{

M+µF(t1t2−1)
3t1t2

, µBBU
3t1t2

}
, if M ≤ µF ≤ 2M

max
t1,t2

min
{

M(2t1+2t2−3)+µF(t1t2−t1−t2+1)
3t1t2

, µBBU
3t1t2

}
, if 2M ≤ µF ≤ 3M

max
t1,t2

min
{

M
(

1− (t1+t2)
3t1t2

)
, µBBU

3t1t2

}
, if 3M ≤ µF

(14)

where above maximizations are over all positive integers t1, t2 satisfying t1t2 ≥
⌈

1
r

⌉
, and

DoFH (µBBU, µF, r) =



max
t

min
{

µF
3t2−1

9t2 , µBBU
9t2

}
, if µF ≤ 2M

max
t

min
{

M(6t−6)+µF(3t2−3t+2)
9t2 , µBBU

9t2

}
, if 2M ≤ µF ≤ 3M

max
t

min
{

M 3t−1
3t , µBBU

9t2

}
, if 3M ≤ µF

(15)

where above maximizations are over all positive integers t satisfying t ≥ d
√

1
3r
e.

Proof. The proof is given in Sections 4 and 5.

Remark 1. For µBBU > 0 and 0 < r ≤ 1

DoFP (µBBU, µF, r) ⊇ DoFH (µBBU, µF, r) for µF ≤ 2M

Proof. The proof is given in Appendix A.

Theorem 2 (Cut-Set Bound). For any µBBU > 0, µF > 0 and 0 < r ≤ 1, the achievable DoF is upper
bounded by

DoF (µF, µBBU, r) ≤ min
{µBBU

3
· r,

µF

3
, M
}

(16)

Proof. The proof is given in Appendix B.

Corollary 1 (Optimality in some special cases).
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• If µF ≤ M and µF ≤
µBBU⌈

1
r

⌉ , then

DoF (µF, µBBU, r) =
µF

3
. (17)

• If µF ≤ M,
1
r
∈ Z+ and µBBU ≤

µF

r
, then

DoF (µF, µBBU, r) =
µBBU

3
· r. (18)

• For M ≤ µF ≤ 2M

DoF (µF, µBBU, r) =
µBBU

3
· r, (19)

if µBBU ≤ min
{

M + µF (t1t2 − 1) ,
µF

r

}
and

1
r
∈ Z+, where (t1, t2) is the integer solution to t1t2 =

1
r

.

• For 2M ≤ µF ≤ 3M

DoF (µF, µBBU, r) =
µBBU

3
· r, (20)

– if µBBU ≤ min
{

M (2t1 + 2t2 − 3) + µF (t1t2 − t1 − t2 + 1) ,
µF

r

}
,

1
r
∈ Z+ and

√
1
3r /∈ Z+,

where (t1, t2) is the integer solution to t1t2 =
1
r

that minimizes t1 + t2, or

– if µBBU ≤ min
{

M (6t− 6) + µF

(
3t2 − 3t + 2

)
,

µF

r

}
and

√
1
3r
∈ Z+, where t =

√
1
3r

.

• For 3M ≤ µF

DoF (µF, µBBU, r) =
µBBU

3
· r, (21)

– if µBBU ≤ min
{

M (3t1t2 − t1 − t2) ,
µF

r

}
, 1

r ∈ Z+ and

√
1
3r

/∈ Z+, where (t1, t2) is the integer

solution to t1t2 =
1
r

that minimizes t1 + t2, or

– if µBBU ≤ min
{

M
(

9t2 − 3t
)

,
µF

r

}
and

√
1
3r
∈ Z+ where t =

√
1
3r

.

Proof. The proofs are given in Appendix C.

Theorem 3. The achievability gap ∆ (µF, µBBU, r) is upper bounded by

∆ (µBBU, µF, r) <
µF

3 ·
⌈

1
r

⌉ If µF ≤ 2M (22)

Proof. The proof is given in Appendix D.

4. Uplink Scheme with Parallelogram Clustering

In the proposed uplink scheme, we deactivate a subset of mobile users so as to partition the
network into non-interfering clusters of active users. These clusters have parallelogram shapes and are
parametrized by positive integer pair (t1, t2).
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4.1. Construction of Parallelogram Clusters

For a given (t1, t2) pair, we define a regular parallelogram grid such that the length of sides of a
parallelogram in the diagonal direction (–30 degree with horizontal axis) is t1 cell-hop length, and the
length of sides in the vertical direction is t2 cell-hop length. Then, we fit this parallelogram grid into our
figurative network in a way that the intersections of the parallelogram grid coincide with BSs, which
are supposed to be at the center of the cells. Subsequently, we deactivate all mobile users coinciding
with the sides of the grid. This process divides the network into parallelogram-like non-interfering
clusters of active users and their sectors, and we refer to them shortly as p-clusters. In Figure 2, we
present an example of parallelogram clustering for (t1, t2) = (2, 2), where users coinciding with green
lines are deactivated. Throughout this section, we refer to active users as only users. Users of a p-cluster
are located in:

• (t1 − 1) (t2 − 1) BSs with three users,
• 2 (t1 − 1) + 2 (t2 − 1) BSs with two users,
• Single BS with one user.

Therefore, the number of users np in a p-cluster is:

np = 3t1t2 − t1 − t2. (23)

BBU 
Pool K -1

BBU 
Pool K

BBU 
Pool 2

BBU 
Pool 1

p

p

Figure 2. Parallelogram clustering for (t1, t2) = (2, 2).

Let K =
{

1, . . . , Kp
}

, with Kp ≤ K, be index set of p-clusters. We associate each p-cluster with
single BBUP and denote the associated BBUP with the same index k ∈ K of the p-cluster. Let Ik be
the index set of BSs whose users are elements of kth p-cluster. Each BS j ∈ Ik sends an observation
function to kth BBUP, i.e., Uk = Ik.

To be able to find a BBUP-BS ratio, we need to equally partition all BSs to BBUPs. Note that any
BS j ∈ N with one user or three users is an element of a single index set Ik, k ∈ K, and any BS j ∈ N
with two users is an element of two different index sets, i.e., Ik and Ik1 , k, k1 ∈ K. Therefore, of the Ik
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BSs of p-cluster k, we associate all of them with one user or three users, and half of them with two
users to the BBUP k. This leads to the BBUP-BS ratio rp:

rp =
1

t1t2
. (24)

We can choose any (t1, t2) ∈ Z+ pair to construct p-clusters that satisfies rp ≤ r:

t1t2 ≥
⌈

1
r

⌉
. (25)

4.2. Coding Scheme

Each mobile user u encodes its message Wu, which is uniformly distributed over the setWu ={
1, . . . , 2nRu

}
, with a multi-antenna Gaussian codebook of power P. Since Rxs of silenced user observe

only interference, each BS j generates its observation function for (active) Rxs through independent
quantization codebooks. To generate quantization codebooks, each BS j applies a point-to-point
Gaussian vector quantizer to receive signal of each Rx so that the noise-level quantization rates
imposed in the following are satisfied. Let Jk denote the sector index set of p-cluster k. We choose
Dk = Jk, where Dk is an index set of sectors whose messages are to be decoded at BBUP k. Each
BS j ∈ Ik with three users transmits a message consisting of three quantization messages of its Rxs
to BBUP k and each BS j ∈ Ik with two users transmits only quantization message of Rx u to BBUP
k if u ∈ Jk. The BS j ∈ Ik with a single user transmits the only quantization message of its cell to
the BBUP k. Depending on the prelogs µBBU and µF, there are three different quantization rates: all
BSs with three users quantize each receive signal at the rate Rq1 = µq1

1
2 log(1 + P) and all BSs with

two users quantize each receive signal at the rate Rq2 = µq2
1
2 log(1 + P), and all BSs with one active

user quantize their receive signals at the rate Rq3 = µq3
1
2 log(1 + P). After receiving quantization

messages, each BBUP k reconstructs all observations with quantization noise term, i.e., {Ŷ(n)
u }u∈Dk .

The input–output relationship experienced by each BBUP k is a multi-user MIMO-MAC channel
([33], Chapter 9) and [34], where the effective noise is the sum of channel and quantization noises.
Since the channel matrix from mobile users of Dk to Rxs of Dk is known by BBUP k and is square and
full rank with probability 1, each BBUP k can perform joint decoding with vanishingly small average
error probability, which leads to achieving the same DoFs as if each user message is decoded in a
point-to-point communication. That is, the prelogs µq1, µq2 and µq3 are achieved for respective mobile
users.

To be able to find DoF for asymptotic case (The limit N → ∞ is only needed to eliminate edge
effects.), i.e., while N → ∞, we need to equally partition deactivated users of the network to p-clusters.
Note that deactivated users around a p-cluster are located on green lines of four different sides and
each side is on the border of two p-clusters. Therefore, when half of the deactivated users around a
p-cluster, i.e., (t1 + t2), are associated with the p-cluster itself, the equal partition of the deactivated
users is performed. Then, the DoF of the scheme can be obtained as:

DoFP (µF, µBBU, r) =
µq1 (3t1t2 − 3t1 − 3t2 + 3) + µq2 (2t1 + 2t2 − 4) + µq3

3t1t2
(26)

where the expression in the numerator refers to the sum-DoF in a given p-cluster and the expression in
the denominator refers to the total number of active and deactivated users for a given p-cluster. In the
following, we will give a policy to choose quantization rates for any (t1, t2) satisfying (25).

4.2.1. Case 1: µBBU ≥ npM

The DoF of M×M MIMO system with independently fading channels, which is our case, is M as
given in [35]: the quantization rate M

2 log(1 + P) is enough to describe message setWu of any user u
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asymptotically. Thus, here, we are not restricted by the processing capacity prelog µBBU, i.e., the only
restricting factor is fronthaul capacity prelog µF. The main policy is to distribute transmission resources
between (active) users of any given BS unless the per sector transmission capacity is more than the
rate providing maximum DoF M, i.e., M

2 log(1 + P). To this end, we determine the quantization rates
regarding µF:

• If µF ≤ M, transmission resource of a fronthaul link is allocated equally among Rxs of a BS:

Rq1 =
µF

3
· 1

2
log(1 + P), Rq2 =

µF

2
· 1

2
log(1 + P), Rq3 = µF

1
2

log(1 + P),

and the achievable DoF is given as

DoFP (µF, µBBU, r) =
µF

3
. (27)

• If M ≤ µF ≤ 2M, transmission resource of a fronthaul link is equally allocated among Rxs of a
BS with two or three users; however, any BS with one user quantizes its received signal at the
maximum rate since each fronthaul link has enough capacity to support that communication rate
( M ≤ µF):

Rq1 =
µF

3
· 1

2
log(1 + P), Rq2 =

µF

2
· 1

2
log(1 + P), Rq3 = M

1
2

log(1 + P),

and the achievable DoF is given by

DoFP (µF, µBBU, r) =
µF (t1t2 − 1) + M

3t1t2
. (28)

• If 2M ≤ µF ≤ 3M, transmission resource of a fronthaul link is equally allocated among Rxs of
a BS with three users; however, any BS with one or two users quantizes their receive signals at
the maximum rate for each Rx since each fronthaul link has enough capacity to support that
communication rate ( M ≤ µF

2 ):

Rq1 =
µF

3
· 1

2
log(1 + P), Rq2 = M

1
2

log(1 + P), Rq3 = M
1
2

log(1 + P),

and the achievable DoF is given by

DoFP (µF, µBBU, r) =
µF (t1t2 − t1 − t2 + 1) + M (2t1 + 2t2 − 3)

3t1t2
. (29)

• If 3M ≤ µF, all BSs quantize their receive signal at the maximum rate at each sector (M ≤ µF
3 ):

Rq1 = Rq2 = Rq3 = M · 1
2

log(1 + P),

and achievable DoF is given as:

DoFP (µF, µBBU, r) = M
(

1− (t1 + t2)

3t1t2

)
. (30)

4.2.2. Case 2: µBBU ≤ npM

Under this condition, the achievable sum-DoF of a p-cluster, which is given in the numerator
of (26), can be restricted by the processing capacity prelog µBBU. If the µBBU is not smaller than the
achievable sum-DoF of a p-cluster for the given interval of µF:
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• If µF t1t2 ≤ µBBU ≤ npM for µF ≤ M,
• If µF (t1t2 − 1) + M ≤ µBBU ≤ npM for M ≤ µF ≤ 2M,
• If µF (t1t2 − t1 − t2 + 1) + M (2t1 + 2t2 − 3) ≤ µBBU ≤ npM for 2M ≤ µF ≤ 3M,
• If µBBU = npM for µF ≥ 3M,

The process that has been implemented in Section 4.2.1 is applied and, hence, the DoF expressions
are given as in (27), (28), (29) and (30), respectively. However, if the processing capacity prelog µBBU is
smaller than the sum-DoF for the given µF:

• If µBBU ≤ µF t1t2 for µF ≤ M,
• If µBBU ≤ µF (t1t2 − 1) + M for M ≤ µF ≤ 2M ,
• If µBBU ≤ µF (t1t2 − t1 − t2 + 1) + M (2t1 + 2t2 − 3) for 2M ≤ µF ≤ 3M,
• If µBBU ≤ npM for µF ≥ 3M,

We distribute the processing resource of a BBUP equally among sectors of a cluster and the
quantization rate at each sector is chosen as

Rq1 = Rq2 = Rq3 =
µBBU

np
· 1

2
log(1 + P),

which leads to:
DoFP (µF, µBBU, r) =

µBBU

3t1t2
. (31)

To provide fairness among the achievable DoFs of users, instances of the proposed scheme are
time-shared so that each mobile user takes all relative positions in a p-cluster, which requires

1
rp

= t1t2, (32)

different instances.

5. Uplink Scheme with Hexagon Clustering

The same as done in the last section, we deactivate a subset of mobile users so as to partition the
network into non-interfering clusters of active users and their sectors. The shape of the clusters is
hexagon and the size of the hexagons are set by a positive integer t.

5.1. Construction of Hexagon Clusters

For a given design parameter t, we choose some BSs as center BSs to construct a regular grid
of equilateral triangles where every three closest center BSs are 2t cell-hops apart from each other.
Therefore, the maximum distance to the closest center BS is t cell-hops and we name the BSs whose
distance is ` cell-hops to the closest center BS as layer-“`” BSs, for ` = 1, . . . , t. We determine all
BSs located at t cell-hops above and below of any center BS as corner and null BSs, respectively.
Then, we create solid green lines between any closest null and corner BSs (t cell-hop apart from each
other), which creates hexagon grids along the entire network. Subsequently, we deactivate mobile
users coinciding with solid green lines. This process divides the network hexagon-like non-interfering
clusters and we shortly name as h-clusters (The hexagonal clustering is first presented in [36].). Figure 3
shows an example of partition for t = 3. Later on, we refer to active users as only users. In an h-cluster,

• There are three users in center BS,
• There are 6` layer-“`”, ` = 1, . . . , t− 1, BSs with 3 users around center BS, i.e., in total 3 ·∑t−1

`=1 6` =
9t2 − 9t,

• There are 6t− 3 users in layer-“t” BSs.
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Therefore, the number of users in a h-cluster, nh, is:

nh = 9t2 − 3t. (33)

Let K = {1, . . . , Kh}, with Kh ≤ K, be index set of h-clusters. We associate each h-cluster with
single BBUP and denote the associated BBUP with the same index k ∈ K of the h-cluster. Let Ik be the
index set of BSs whose users are elements of kth h-cluster. Each Ik BS sends an observation function to
kth BBUP, i.e., Uk = Ik.

Figure 3. Illustration of h-clusters for t = 3. Pink, red, and blue cells represent center, corner, and null
cells, respectively. Green-filled circles refer to deactivated users. All users and their sectors inside a
blue dashed hexagon are associated with the same BBUP.

To be able to find a BBUP-BS ratio, rh, we need to equally partition all BSs to BBUPs. Note
that each layer-t BS, except the one in the corner, belongs to two different index sets, i.e., Ik and Ik1 ,
k, k1 ∈ K. Each corner BS is an element of three different index sets, i.e., Ik, Ik1 and Ik2 , k, k1, k2 ∈ K.
In addition, note that each null BS around a h-cluster k is on the border of three different h-clusters.
To this end, of the Ik BSs and null BSs around h-cluster k, we partition all layer-“`”, ` = 1, . . . , t− 1,
BSs including center BS, half of the layer-t BSs except corner and null BSs, and one third of corner and
null BSs to the BBUP k, which leads to:

rh =
1

3t2 . (34)

Since we have a given ratio r, we can choose any t ∈ Z+ such that rh ≤ r, i.e.,

t ≥
⌈√

1
3r

⌉
. (35)
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5.2. Coding Scheme

Each mobile user u encodes its message Wu, which is uniformly distributed over the set
Wu =

{
1, . . . , 2nRu

}
, with a multi-antenna Gaussian codebook of power P. As in Section 4,

after observation at sector antennas, each BS j generates observation function for (active) Rxs through
independent quantization codebooks. To generate quantization codebooks, each BS j applies a
point-to-point Gaussian vector quantizer to a received signal of each Rx such that the following
noise-level quantization rate constraints are met. Let Jk denote the sector index set of h-cluster k.
We choose Dk = Jk. Each BS j ∈ Ik of layer-“`”, ` = 1, . . . , t− 1, transmits a message consisting of
three independent quantization messages of Rxs to BBUP k and each BS j ∈ Ik of layer-“t” transmits
only quantization message of sector u to BBUP k if u ∈ Jk. Depending on the prelogs µBBU and µF,
there are two different quantization rates: Each BS with three users quantize each receive signal at
the rate Rq1 = µq1

1
2 log(1 + P) and each BS with two users quantize each receive signal at the rate

Rq2 = µq2
1
2 log(1 + P). That is, in h-cluster k, the receive signals of all layer-“`” BSs, ` = 1, . . . , t− 1,

and the receive signals of every corner BS is quantized at rate Rq1, i.e., 9t2 − 9t + 6, and receive signals
of layer-“t” BSs other than corner BSs are quantized at Rq2, i.e., 6t− 6. After obtaining quantization

messages, BBUP k reconstructs all {Ŷ(n)
u }u∈Dk with quantization error. The input–output relationship

experienced at the BBUP k is multi-user Gaussian MIMO-MAC. Then, each BBUP k performs joint
decoding with vanishingly small probability of error since the channel matrix from users of Dk to Rxs
of Dk is known by BBUP k and is square and full rank with probability 1. This leads to achieving DoFs
µq1 and µq2 for respective mobile users.

To be able to find DoF for asymptotic case, i.e., N → ∞, we need to equally partition deactivated
users of the network to h-clusters. The number of deactivated users around h-cluster k is 6t. Since each
deactivated user is on the border of two h-clusters, to be able to find DoF of the scheme, we partition
half of them, i.e., 3t, to users of h-cluster k, which gives the DoF expression:

DoF (µF, µBBU, r) =
µq1

(
9t2 − 9t + 6

)
+ µq2 (6t− 6)

9t2 . (36)

In the following, we will give the policy for choosing quantization rates.

5.2.1. Case 1: µBBU ≥ nhM

In Section 4.2.1, µF is the only limiting factor since the quantization rate M · 1
2 log(1 + P) is

enough to describe messageWu of any user u in the asymptotic case. The policy is again to distribute
transmission resources equally among (active) Rxs of any given BS. To this end, we choose the
quantization rates regarding µF:

• If µF ≤ 2M, transmission resource of a fronthaul link is equally allocated between Rxs

Rq1 =
µF

3
· 1

2
log(1 + P), Rq2 =

µF

2
· 1

2
log(1 + P), (37)

and the achievable DoF is given as

DoF (µF, µBBU, r) =
µF
(
3t2 − 1

)
9t2 . (38)

• If 2M ≤ µF ≤ 3M, transmission resource of a fronthaul link is equally allocated among Rxs of a
BS with three users; however, any BS with two users quantizes its receive signals at the maximum
rate at each Rx since each fronthaul link has enough capacity to support that communication rate
(M ≤ µF

2 ):

Rq1 =
µF

3
· 1

2
log(1 + P), Rq2 = M · 1

2
log(1 + P), (39)
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and the achievable DoF is given as

DoF (µF, µBBU, r) =
µF
(
3t2 − 3t + 2

)
+ M (6t− 6)

9t2 . (40)

• If µF ≥ 3M, all BSs quantize their receive signals at the maximum quantization rate (M ≤ µF
3 ):

Rq1 = Rq2 = M · 1
2

log(1 + P), (41)

and the achievable DoF is given as

DoF (µBBU, µF, r) = M
3t− 1

3t
. (42)

5.2.2. Case 2: µBBU ≤ nhM

Under this condition, depending on µF, the achievable sum-DoF of a h-cluster can be restricted by
the processing capacity prelog µBBU. Achievable sum-DoF is given in the numerator of (36). Therefore,
if the processing capacity prelog µBBU is not smaller than the achievable sum-DoF of a h-cluster for the
given interval of µF:

• If µF
(
3t2 − 1

)
≤ µBBU ≤ nhM for µF ≤ 2M

• If µF
(
3t2 − 3t + 2

)
+ M (6t− 6) ≤ µBBU ≤ nhM for 2M ≤ µF ≤ 3M

• If µBBU = nhM for 3M ≤ µF

The process that has been implemented in Section 5.2.1 is applied and, hence, the DoF expressions
are given as in (38), (40) and (42), respectively. However, if the processing capacity prelog µBBU is
smaller than the sum-DoF for the given µF:

• If µBBU ≤ µF
(
3t2 − 1

)
for µF ≤ 2M,

• If µBBU ≤ µF
(
3t2 − 3t + 2

)
+ M (6t− 6) for 2M ≤ µF ≤ 3M,

• If µBBU ≤ nhM for µF ≥ 3M,

We distribute the processing resource of a BBUP equally among sectors of a cluster and the
quantization rate at each sector is chosen as

Rq1 = Rq2 =
µBBU

nh
· 1

2
log(1 + P),

which leads to:

DoF (µF, µBBU, r) =
µBBU

9t2 . (43)

To provide fairness among the achievable DoFs of users, instances of the proposed scheme are
time-shared so that each mobile user takes all relative positions in a h-cluster, which requires

1
rh

= 3t2, (44)

different instances.

6. DoF without Sectorization

In the two proposed achievability schemes (“p-clustering” and “h-clustering”), we considered
three non-interfering sectors in each cell. Now, if we consider cells without sectors, we can naively
adapt our clustering by deactivating all users in the border cells of clusters. That is, for p-clustering,
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it requires deactivation of all users in the cells with one or two active mobile users and, for h-clustering,
it requires deactivation of all users in the corner cells and the cells with two active users. This means
that the network consists of only cells with three active users and cells with no active users for both
schemes. This would again partition the network into non-interfering p-clusters and h-clusters without
changing the rp and rh for any given (t1, t2) pair or t, respectively.

By following the similar procedure introduced in Sections 4 and 5, one can easily state the
following result by simply distributing the available transmission resources equally among three Rxs
of a given BS as long as the BBUP capacity is enough or, otherwise, distributing BBUP processing
resources equally among the Rxs of a p-cluster/h-cluster. This leads to the following lemma:

Lemma 1 (DoF for naive scheme). For any µBBU > 0, µF > 0 and 0 < r ≤ 1, the achievable DoF in a multi
cloud based non-sectored cellular network is given by

DoFnaive (µBBU, µF, r) ≥ conv hull {DoFP,naive (µBBU, µF, r) ,DoFH,naive (µBBU, µF, r)} (45)

where

DoFP,naive (µBBU, µF, r) =


max
t1,t2

min
{

µF (t1t2 − t1 − t2 + 1)
3t1t2

,
µBBU

3t1t2

}
, if µF ≤ 3M

max
t1,t2

min
{

M
(

1− (t1 + t2 − 1)
t1t2

)
,

µBBU

3t1t2

}
, if µF ≥ 3M

(46)

and above maximizations are over all positive integers t1,t2 satisfying t1t2 ≥
⌈

1
r

⌉
, and

DoFH,naive (µBBU, µF, r) =


max

t
min

{
µF
(
3t2 − 3t + 2

)
9t2 ,

µBBU

9t2

}
, if µF ≤ 3M

max
t

min
{

M
(
3t2 − 3t + 2

)
3t2 ,

µBBU

9t2

}
, if µF ≥ 3M

(47)

where above maximizations are over all positive integers t satisfying t ≥ d
√

1
3r e.

Notice that the same cut-set bound, Theorem 2, applies for the naive schemes since the observation
functions, Definition 1, are defined not on the sector basis but on the BS basis.

7. Numerical Results and Discussion

In this section, we present simulation results to evaluate the proposed coding schemes for
p-clustering and h-clustering. In Figure 4a, we investigate effect of clustering size on the achievable
DoF for several fronthaul capacities µF = [3, 7, 11] and µBBU = 428. We define size of a p-cluster as
inverse of rp, i.e., 1

rp
= t1t2, and we denote it also with side length pair (t1, t2). We define size of a

h-cluster as inverse rh, i.e., 1
rh

= 3t2, and we denote it also with the parameter t. It is observed that,
for p-clustering, when the fronthaul capacity is small, i.e., µF ≤ M, clustering size has no effect on
DoF since µF becomes a bottleneck. In general, we see that, for both p-clustering and h-clustering,
the clustering size giving highest DoF decreases with µF. The figure verifies the Remark 1 since,
for all rp = rh, p-clustering outperforms h-clustering for µF = [3, 7]. It is also interesting to note that,
for p-clustering, the achievable DoF is not monotonically increasing(decreasing) until(after) reaching
the maximum for µF = 11 (i.e., 2M < µF ≤ 3M) since not only the clustering size but also the side
length of the p-cluster is important for exploiting interference. For any rp, choosing a (t1, t2) pair that
is the minimum in the sum gives the maximum DoF since it provides higher joint processing gain
for a p-cluster for the given size (i.e., 1

rp
), i.e., the more t1 and t2 becomes closer to each other the

more mutual information clusters have. Therefore, larger p-cluster sizes may not result in higher DoF
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owing to the side length effect. However, for µF ≤ 2M, the side lengths of p-cluster has no effect on
achievable DoF for a given cluster size.
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Figure 4. The impact of rp: (a) For various values of µF. (b) For various values of µBBU.

Figure 4b shows the effect of clustering size on DoF for various values of µBBU = [100, 300, 500]
and µF = 12. It is seen that, for each µBBU, achievable DoF increases with cluster size until it becomes
a bottleneck, i.e., until µBBU becomes active in the achievability expression. Accordingly, the results
clearly indicate that having more processing power makes possible larger cluster sizes and hence
larger DoF.

In Figure 5, we plot the achievable DoF and cut-set bound vs µF for M = 4, r = 0.025 and
µBBU = 428, which refers the case BBUP processing capacity is equal to the required processing
capacity when each receive signal in a p-cluster of size (t1, t2) = (5, 8) is quantized at the maximum
quantization rate Rq = M

2 log(1 + P). From the figure, we can deduce that almost upper bound for
µF ≤ 2M can be reached, which means that 2M

3 DoF is almost achievable at µF = 2M given that
processing capacity is high enough. In Figure 5, the operating points of clustering sizes is also depicted.
For µF ≤ 8, equivalently 2M, any p-clustering with 1

rp
= 40 gives the highest achievable DoF for

the given system parameters. However, for µF > 8, there are several different operating points.
For example, for 8 < µF ≤ 9.4, the h-clustering of size t = 4 is the optimal clustering size, which
means, for µF > 2M, dividing the network into h-clusters provides higher joint processing gain than
p-clustering for the same rh = rp if the BBUP processing capacity is enough. For the rest, the clustering
size rp is decreasing with µF due to the given BBUP capacity is not enough to handle the quantized
data for larger cluster sizes. At the operating point µF = 12, which allows maximum quantization rate
for each receive signal, the p-clustering of size (t1, t2) = (5, 8) achieves capacity. This proves that the
proposed scheme utilizes the system resources optimally at this operating point and almost 9M

10 DoF is
achievable. We plot also the lower bound on DoF achieved by the naive scheme vs µF for the same
parameters. We can clearly see that the performance of the proposed schemes is considerably better
than naive schemes due to the sectorization gain brought by nulling intra-cell interference.

In Figure 6, we plot the achievable DoF and cut-set bound as a function of processing capacity
prelog µBBU, for r = 0.025 and µF = 12, which means that the fronthaul capacity has no restrictive
effect on the achievable DoF. The operating points of clustering sizes regarding µBBU is also presented.
The plot clearly indicates that the cut set bound is achieved until µBBU = 428, i.e., the processing
resources is used efficiently even until achieving 9M

10 DoF. At the rest of the µBBU range, it is seen that
the optimal clustering sizes ( 1

rp
or 1

rh
) increase with µBBU, and for most of µBBU > 428, h-clustering

provides highest DoF. This indicates the advantage of employing h-clustering when the processing
capacity is high enough. For some range of µBBU, both h-clustering of size t = 4 and p-clustering of
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size (t1, t2) = (8, 8) provide the highest DoF, which shows that h-clustering with lower clustering size
provides higher joint processing gain than p-clustering with larger clustering sizes due to clustering
geometry. The figure also depicts the lower bound achieved by the naive approach vs. µBBU for the
same parameters and the gain of sectorization is clearly seen for higher values of processing capacity.
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Figure 5. The impact of µF at µBBU = 428.
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Figure 6. The impact of µBBU at µF = 12.

8. Finite SNR Analysis

In this section, we compare finite SNR performances of the proposed schemes with several other
schemes, which will be introduced later on. For the finite SNR case, the quantization rates for both
proposed clusterings are chosen as stated in Sections 4.2 and 5.2, but the conditions regarding a high
SNR regime are not applied, i.e., the prelog of any quantization rate is not reduced to the number of
antennas M. Then, each BBUP implements joint decoding for the users of the associated cluster after
reconstructing all sector receive signals of the cluster. For simplicity, we present the comparisons for
M = 1 throughout the section.

To evaluate the performance of the proposed schemes at finite SNR values, other than naive
schemes, we compare our schemes with three different schemes:

• Scheme 1 is a variation of the proposed p-clustering scheme. In p-clustering, each p-cluster is
surrounded by deactivated users located on the sides of (t1, t2)-hop parellelogram, where each
side has t1 and t2 deactivated users, respectively. For each p-cluster, we associate all deactivated
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users on the lower side and right side of a (t1, t2)-hop parellelogram to the p-cluster under
consideration. Subsequently, we activate all deactivated users and allow each BBUP to collect
quantization messages of reactivated user sectors associated with its own p-cluster. This process
partitions the network into non-overlapping but interfering paralleogram-like clusters, which we
call Ip-clusters later on; see Figure 7 for an example of (t1, t2) = (4, 3). Note that Ip-clustering
requires the same BBUP-BS ratio rp as for a p-clustering case. With reactivation of all deactivated
mobile users, there are 3t1t2 active users in each Ip-cluster and all cells consists of three active users.
Therefore, each BS equally partitions its fronthaul transmission resources to Rxs if BBU processing
resources is enough to implement the joint decoding; otherwise, the processing resources is evenly
distributed among all Rxs of the Ip-cluster, i.e., the quantization rate is chosen as

max
t1,t2

min
{µF

3
,

µBBU

3t1t2

}
· 1

2
log(1 + P) (48)

over all positive integer (t1, t2) pairs satisfying t1t2 ≥
⌈

1
r

⌉
. To be able to guess the user messages,

each BBUP implement joint decoding by treating out-of-cluster interference as noise.
• Scheme 2 is a variation of the proposed h-clustering scheme. In h-clustering, there are 6t

deactivated users around a cluster of size-t. For a specific h-cluster, we associate the deactivated
users on the borders of any three adjacent h-clusters, e.g., east, southeast, and southwest,
to the h-cluster under consideration. Then, we replicate this process for each h-cluster with
the same relative directions of adjacent h-clusters. Subsequently, we reactivate all deactivated
users and allow each BBUP k to collect the quantized received signals of sectors of reactivated
users associated with its own h-cluster. This process partitions the network into interfering but
non-overlapping clusters, which we call Ih-cluster in the following, see Figure 8 for t = 2. Note
that Ih-clustering requires the same BBUP-BS ratio as for the h-clustering case. With reactivation
of deactivated users, there are 9t2 active users in each Ih-cluster. Therefore, by applying similar
arguments as stated above, the quantization rate for Ih-clustering is chosen as

max
t

min
{µF

3
,

µBBU

9t2

}
· 1

2
log(1 + P) (49)

over positive integers t satisfying t ≥ d
√

1
3r e. To be able to guess the user messages, each BBUP

implement joint decoding by treating out-of-cluster interference as noise.
• Scheme 3 is a variation of the practical opportunistic schemes. The decoding depends on

the realization of the channel coefficients. With the help of neighbors of the considered BS,
the corresponding BBUP identifies for each user in the corresponding cell the three adjacent
sectors that give the best joint decoding performance for the corresponding message. To be able
to make a fair comparison between the proposed schemes and the 3-sector decoding scheme, we
impose the same fronthaul rate constraint on the 3-sector decoding scheme as in the non-interfering
clustering scheme (note that there is no silenced user in the 3-sector decoding case) by assuming
all processing resources are used. That is, the quantization rates are chosen as

Rq = min

{
µF

3
,

µBBU

3 · 1
r

}
· 1

2
log(1 + P). (50)

Then, the BBUP collects the quantization messages and decodes the corresponding message based
on them.

In our numerical comparison, we average the rate over 5000 independent channel realizations
of the channel matrices, where for each realization all channel gains are drawn independently of
each other according to a Gaussian distribution, by which we aim at modeling the random location
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of a mobile user. The direct channel gains of intra-sector links are drawn with variance 1 and the
cross channel gains of inter-sector links are drawn with variance α2 < 1 since any mobile user in
adjacent sectors can not be closer to a sector receiver than the user in the considered sector, where α

is the channel attenuation coefficient. Figure 9 presents the comparison of the performances of the
proposed schemes with naive schemes, Ip-clustering, Ih-clustering schemes and 3-sector decoding
scheme vs SNR when r = 1

10 . The simulations are performed for different cluster sizes such that
t1 ∗ t2 = 10, 11 and 12 and t = 2. However, in all the subfigures of Figure 9, we present only the ones
showing relatively better performance than others to make presentation better.

Figure 7. Ip-clustering for (t1, t2) = (4, 3). The red lines denote a paralleogram-like shape of the
clusters. The interference pattern highlighted with solid black lines depict the users in in the same
Ip-clusters. The interference pattern highlighted with dashed lines between circles denote the borders
between Ip-clusters.

Figure 8. Ih-clustering for t = 2. The interference pattern highlighted with solid black lines depict the
users in in the same Ih-clusters. The interference pattern highlighted with dashed lines between circles
denote the borders between Ih-clusters.
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(f) Parameters α = 0.9, µBBU = 120.

Figure 9. Comparison of the achieved rates for different channel attenuation parameters α and
processing capacities µBBU when r = 1

10 and µF = 15.

As seen from all the subfigures of Figure 9, the proposed schemes provides higher sum-rates than
naive schemes for all SNR range and, under all scenarios, e.g., strong interference regime at low BBUP
processing capacity as in Figure 9b, or low interference regime at high BBUP capacity as in Figure 9e.

By comparing the subfigures of Figure 9 for a given α, we conclude that the proposed schemes
become more efficient if the processing capacity of BBUPs increases, i.e., the allowed quantization rate
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increases. In addition, we can see that employing the smallest possible cluster for a given r is more
advantageous for small processing capacities. For example, for α = 0.9, while the p-clustering scheme
for (t1, t2) = (5, 2) shows better performance than other proposed schemes of larger cluster sizes at
all SNR range for µBBU = 30, it outperforms the h-clustering for t = 2 only at low SNR values for
µBBU = 60, and it does not outperform either h-clustering for t = 2 or p-clustering for (t1, t2) = (5, 2)
at any SNR value for µBBU = 120.

By comparing the subfigures of Figure 9 for a given µBBU, we can observe that, for each µBBU value,
the SNR range in which the performance of the 3-sector decoding scheme is superior to or close to the
proposed schemes decreases when the channel attenuation coefficient is higher. In addition, we see that,
for µBBU = 60 and 120, the SNR range in which the h-clustering for t = 2 outperforms the Ip-clustering
for (t1, t2) = (5, 2) and/or Ih-clustering for t = 2 increases with the channel attenuation coefficient.
We infer that the idea of isolated clustering is more advantageous at strong interference regime.

Another general conclusion that we can draw from simulation results presented in Figure 9 is that,
if the processing capacity is high enough, i.e., the quantization rate is high enough, decomposing the
network into hexagonal-type clusters achieves higher rates than paralellogram-type clusters especially
at moderate and high SNR range even if rh = rp. This is due to geometrical structure of hexagonal-type
clustering that includes more users for both h-cluster/Ih-cluster and less interfererers for Ih-cluster in
comparison with the parallelogram clusters for the same rh = rp.

An interesting conclusion from the finite SNR analysis is that interfering clusterings show close
performance to the proposed schemes in the finite SNR range; therefore, the interfering clusterings can
also be employed at finite SNR values, since it may be more convenient for practical systems.

9. Conclusions

In this paper, we analyze the uplink per-user DoF of M-CRAN based sectored cellular networks.
The main features of this paper are the following: it proposes efficient ways of decomposing the
network into non-interfering clusters for M-CRAN scenarios, and it characterizes per-user DoF as a
function of fronthaul and processing capacity prelogs, and BBUP-BS ratio. The lower bound is obtained
through two coding schemes based on decomposing the network into non-interfering parallelogram
and hexagonal clusters, respectively. In both schemes, BSs apply point-point quantization to
receive signals and send the quantization messages to the associated BBUPs over fronthaul links
for joint decoding.

Simulation results show that, for small and moderate fronthaul capacities, the achievability
gap between lower and cut-set bounds decreases with an inverse of the BBUP-BS ratio. Therefore,
the cut-set bound is almost achieved even for small cluster sizes at this range of fronthaul capacities.
For higher fronthaul capacity prelogs, the achievability gap is not always tight but decreases with
processing capacity prelog.

The finite SNR analysis shows that the proposed schemes outperform the naive schemes at all
SNR ranges and, under all scenarios, the interfering clustering cases at all SNR range under strong
interference regime when the BBUP processing capacity is scarce and moderate, and the 3-sector
decoding case at all SNR range under strong interference regime if the BBUP processing capacity
is moderate and high. In other scenarios for interfering clustering and 3-sector decoding cases,
the proposed schemes always achieve higher sum-rates except low SNR values.

In general, the results provide valuable insights into appropriate clustering ways for mobile
users/sectors, emphasizing the isolation of clusters, particularly if inter-cell interference is
highly detrimental.
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Appendix A. Proof of Remark 1

By (25), any
(
t∗1 , t∗2

)
pair that satisfies t∗1t∗2 =

⌈
1
r

⌉
provides the maximum number of BBUP

deployment for parallelogram clustering. By (35), t∗ =
⌈√

1
3r

⌉
is the minimum cluster size that can be

created for the given r, and hence provides the maximum possible number of BBUP deployment for
hexagon clustering. Note that t∗1t∗2 ≤ 3t∗2 for r ∈ (0, 1].

We now check the cases for µF ≤ M and M ≤ µF ≤ 2M.

Appendix A.1. Case 1: µF ≤ M

Proposition A1. From (14), the achievable DoF for Parallelogram Scheme can be written as:

DoFP (µBBU, µF, r) =


µBBU

3t∗1t∗2
if µBBU ≤ µF (t∗1t∗2)

µF

3
if µBBU ≥ µF (t∗1t∗2)

(A1)

and, from (15), the achievable DoF for Hexagon Scheme can be written as:

DoFH (µBBU, µF, r) =


µBBU

3
1

3t∗2 , if µBBU ≤ µF

(
3t∗2 − 1

)
max

{
µF

3t′2 − 1
9t′2

,
µBBU

9 (t′ + 1)2

}
, if µBBU ≥ µF

(
3t∗2 − 1

) (A2)

for t′ satisfying
µF

(
3t′2 − 1

)
≤ µBBU ≤ µF

(
3
(
t′ + 1

)2 − 1
)

. (A3)

Proof. The first part of the proposition, i.e., (A1), is straightforward. For (A2), note that, for a given
µBBU > 0, there is a unique t′ ∈ Z+ that satisfies (A3) and the maximization term in (A2) comes from
the fact that, to implement the hexagonal scheme, we choose the design parameter t that gives the

maximum DoF of among minimums found for satisfying t ≥
⌈√

1
3r

⌉
. From (15), we infer that the

term
µF(3t2−1)

9t2 is active in the minimization process for t′ ≥ t ≥
⌈√

1
3r

⌉
since µBBU ≥ µF

(
3t′2 − 1

)
,

and that the term µBBU
9t2 is active in lower bound for t > t′ since µBBU ≤ µF

(
3 (t′ + 1)2 − 1

)
. Therefore,

the achievable DoF by hexagon scheme is given by the second term of (A2) if µBBU ≥ µF
(
3t∗2− 1

)
.

We now check all possible intervals of µBBU regarding (A1) and (A2).

Appendix A.1.1. µBBU ≤ min
{

µF
(
3t∗1t∗2

)
, µF

(
3t∗2 − 1

) }
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µBBU

3t∗1t∗2
,

µBBU

3
1

3t∗2

}
,

=
µBBU

3t∗1t∗2
, (A4)

since t∗1t∗2 ≤ 3t∗2 for any r ∈ (0, 1].
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Appendix A.1.2. µF

(
3t∗2 − 1

)
≤ µBBU ≤ µF

(
3t∗1t∗2

)
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µBBU

3t∗1t∗2
, max

{
µF

3t′2 − 1
9t′2

,
µBBU

9 (t′ + 1)2

}}

=
µBBU

3t∗1t∗2
(A5)

Proof. Notice that the given condition on µBBU implies t′ = t∗ and t∗1t∗2 = 3t∗2; otherwise, the imposed
condition on µBBU is not possible. In addition, notice that, even for the max µBBU = µF 3t∗1t∗2 = µF 3t∗2,
the following inequality holds:

µF

(
3t∗2 − 1

)
9t∗2 ≥ µBBU

9 (t∗ + 1)2 ∀t∗ ∈ Z+, (A6)

and therefore

max
{

µF
3t∗2 − 1

9t∗2 ,
µBBU

9 (t∗ + 1)2

}
= µF

3t∗2 − 1
9t∗2 . (A7)

Then, we end up with:

max

µBBU

3t∗1t∗2
, µF

(
3t∗2 − 1

)
9t∗2

 =
µBBU

3t∗1t∗2
, (A8)

since min µBBU = µF

(
3t∗2 − 1

)
and t∗1t∗2 = 3t∗2.

Appendix A.1.3. µF
(
3t∗1t∗2

)
≤ µBBU ≤ µF

(
3t∗2 − 1

)
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µBBU

3
1

3t∗2 ,
µF

3

}
=

µF

3
(A9)

Proof. The condition µBBU ≤ µF

(
3t∗2 − 1

)
implies µBBU < µF

(
3t∗2

)
, then

µF

3
≥ µBBU

3
1

3t∗2 . (A10)

Appendix A.1.4. µBBU ≥ max
{

µF
(
3t∗1t∗2

)
, µF

(
3t∗2 − 1

) }
Thel DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µF

3
, max

{
µF

3t′2 − 1
9t′2

,
µBBU

9 (t′ + 1)2

}}
=

µF

3
. (A11)
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Proof. If µF
3t′2−1

9t′2
is active in the inner maximization, then

µF

3
> µF

3t′2 − 1
9t′2

∀t′ ∈ Z+. (A12)

If µBBU

9(t′+1)2 is active in the inner maximization, we infer that the term µBBU

9(t′+1)2 is active in hexagon

bound when the design parameter is chosen as (t′ + 1), which means

µBBU

9 (t′ + 1)2 ≤ µF
3 (t′ + 1)2 − 1

9 (t′ + 1)2 . (A13)

Therefore, the fact that

µF

3
> µF

3 (t′ + 1)2 − 1

9 (t′ + 1)2 ∀t′ ∈ Z+ (A14)

implies

µF

3
>

µBBU

9 (t′ + 1)2 . (A15)

Appendix A.2. Case 2: M ≤ µF ≤ 2M

Proposition A2. From (14), the achievable DoF for Parallelogram Scheme can be written as:

DoFP (µBBU, µF, r) =


µBBU

3t∗1t∗2
, if µBBU ≤ M + µF (t∗1t∗2 − 1)

max
{

M + µF
(
t′1t′2 − 1

)
3t′1t′2

,
µBBU

3
(
t′1t′2 + 1

)}, if µBBU ≥ M + µF (t∗1t∗2 − 1)
(A16)

for any pair
(
t′1, t′2

)
satisfying

M + µF
(
t′1t′2 − 1

)
≤ µBBU ≤ M + µF

(
t′1t′2
)

, (A17)

and, from (15), the achievable DoF for Hexagon Scheme can be written as:

DoFH (µBBU, µF, r) =


µBBU

9t∗2 , if µBBU ≤ µF

(
3t∗2 − 1

)
max

{
µF

3t′2 − 1
9t′2

,
µBBU

9 (t′ + 1)2

}
, if µBBU ≥ µF

(
3t∗2 − 1

) (A18)

for t′ satisfying
µF

(
3t′2 − 1

)
≤ µBBU ≤ µF

(
3
(
t′ + 1

)2 − 1
)

. (A19)

Proof. For any given µBBU > 0, there is a unique positive integer c = t′1t′2 that satisfies (A17).
The maximization in (A16) can be inferred from (14)) by a similar approach given for (A2) in
Appendix A.1. Note the DoF expression of hexagon case does not change for M ≤ µF ≤ 2M.

We now check all possible intervals for µBBU regarding Equations (A16) and (A18).
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Appendix A.2.1. µBBU ≤ min
{

M + µF
(
t∗1t∗2 − 1

)
, µF

(
3t∗2 − 1

) }
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µBBU

3t∗1t∗2
,

µBBU

9t∗2

}
=

µBBU

3t∗1t∗2
(A20)

since t∗1t∗2 ≤ 3t∗2 for any r ∈ (0, 1].

Appendix A.2.2. µF

(
3t∗2 − 1

)
≤ µBBU ≤ M + µF

(
t∗1t∗2 − 1

)
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

max
{

µF
3t′2 − 1

9t′2
,

µBBU

9 (t′ + 1)2

}
,

µBBU

3t∗1t∗2

}
=

µBBU

3t∗1t∗2
(A21)

for t′ satisfying (A19).

Proof. Notice that the imposed condition on µBBU implies t′ = t∗ since there is a unique t′ ∈ Z+

satisfying (A19) and µBBU ≥ µF

(
3t∗2 − 1

)
. The rest is trivial. Since max t∗1t∗2 = 3t∗2,

µBBU

3t∗1t∗2
>

µBBU

9 (t∗ + 1)2 (A22)

and since the condition requires µBBU ≥ µF

(
3t∗2 − 1

)
, then

µBBU

3t∗1t∗2
≥ µF

3t∗2 − 1
9t∗2 . (A23)

Appendix A.2.3. M + µF
(
t∗1t∗2 − 1

)
≤ µBBU ≤ µF

(
3t∗2 − 1

)
The DoF is given as:

DoF (µBBU, µF, r) ≥ max
{

µBBU

9t∗2 , max
{M + µF

(
t′1t′2 − 1

)
3t′1t′2

,
µBBU

3
(
t′1t′2 + 1

)}}
= max

{
M + µF

(
t′1t′2 − 1

)
3t′1t′2

,
µBBU

3
(
t′1t′2 + 1

)} (A24)

for
(
t′1, t′2

)
satisfying with (A17).

Proof. Notice that, for any given µBBU > 0, (A17) holds for a unique positive integer c = t′1t′2.
The imposed condition implies

t′1t′2 < 3t∗2, (A25)

because assuming t′1t′2 ≥ 3t∗2 implies

M + µF
(
t′1t′2
)
≥ µBBU ≥ M + µF

(
t′1t′2 − 1

)
,

≥ M + µF

(
3t∗2 − 1

)
, (A26)



Entropy 2020, 22, 668 27 of 32

which is in contradiction with the condition imposed on µBBU ≤ µF

(
3t∗2 − 1

)
. Hence,

• If µBBU
3(t′1t′2+1)

is active in the inner maximization of (A24),

µBBU

3
(
t′1t′2 + 1

) ≥ µBBU

9t∗2 . (A27)

• If
M+µF(t′1t′2−1)

3t′1t′2
is active in the inner maximization of (A24), then

M + µF
(
t′1t′2
)

3t′1t′2
≥ µBBU

3
(
t′1t′2 + 1

) (A28)

which implies

M + µF
(
t′1t′2
)

3t′1t′2
≥ µBBU

9t∗2 (A29)

by (A27).

Appendix A.2.4. µBBU ≥ max
{

M + µF
(
t∗1t∗2 − 1

)
, µF

(
3t∗2 − 1

) }
The DoF is given as:

DoF (µBBU, µF, r) ≥

max
{

max
{M + µF

(
t′1t′2 − 1

)
3t′1t′2

,
µBBU

3
(
t′1t′2 + 1

)}, max
{

µF
3t′2 − 1

9t′2
,

µBBU

9 (t′ + 1)2

}}
(A30)

= max
{M + µF

(
t′1t′2 − 1

)
3t′1t′2

,
µBBU

3
(
t′1t′2 + 1

)}
for
(
t′1, t′2

)
satisfying (A17) and t′ satisfying (A19).

Proof. Notice that, for any given µBBU > 0, Equations (A17) and (A19) hold for a unique positive
integer c = t′1t′2 and a unique t′. For any given µBBU, Equations (A17) and (A19) impose

M + µF
(
t′1t′2 − 1

)
≤ µF

(
3
(
t′ + 1

)2 − 1
)

, (A31)

which implies
t′1t′2 < 3

(
t′ + 1

)2 . (A32)

Equations (A17) and (A19) also impose

µF

(
3t′2 − 1

)
≤ M + µF

(
t′1t′2
)

, (A33)

which implies
t′1t′2 > 3t′2. (A34)

We now check the following cases:

• If
M+µF(t′1t′2−1)

3t′1t′2
≥ µBBU

3(t′1t′2+1)
in the first inner maximization of (A31), then

M + µF
(
t′1t′2 − 1

)
3t′1t′2

≥
µF

(
3t′2 − 1

)
9t′2

(A35)



Entropy 2020, 22, 668 28 of 32

for any triplet
(
t′, t′1, t′2

)
∈ Z+ satisfying (A34), and also

M + µF
(
t′1t′2 − 1

)
3t′1t′2

≥ µBBU

3
(
t′1t′2 + 1

) (A36)

≥ µBBU

9 (t′ + 1)2 (A37)

for any triplet
(
t′, t′1, t′2

)
∈ Z+ satisfying (A32).

• If µBBU
3(t′1t′2+1)

≥ M+µF(t′1t′2−1)
3t′1t′2

in the first maximization of (A31), then

µBBU

3
(
t′1t2′ + 1

) ≥ µBBU

9 (t′ + 1)2 (A38)

for any triplet
(
t′, t′1, t′2

)
∈ Z+ satisfying (A32), and

µBBU

3
(
t′1t′2 + 1

) ≥
M + µF

(
t′1t′2 − 1

)
3t′1t′2

(A39)

≥
µF

(
3t′2 − 1

)
9t′2

(A40)

for any triplet
(
t′, t′1, t′2

)
∈ Z+ satisfying (A34).

This completes the proof for Remark 1.

Appendix B. Proof of Theorem 2

For the sake of simplicity, define YBBUk as the received signal of BBUP k:

YBBUk =
{

φ
(n)
j,k

(
Y(3n)

Bj

)
: j ∈ Uk

}
. (A41)

We obtain the first two terms of the upper bound by choosing the cut set

S = {all base stations, j = 1, . . . , N}
S c = {all BBUPs, k = 1, . . . , K}

and defining

XS =
{

Xj : j ∈ S
}

YS c =
{

YBBUk : k ∈ S c} .

In that case, for any fixed BBUP to BS association for any given network, the total rate of all users
is upper bounded by:

3 · N · Ru ≤ I (XS ; YS c)

= H (YS c)− H (YS c |XS ) (A42)

≤ min {K · µBBU, N · µF} ·
1
2

log(1 + P)

where second inequality comes from applying (6) and (9) to received signals of BBUPs, which gives
the first two terms by Definition 2. The third term comes from the fact that, by [35], the DoF a M×M
MIMO system is upper bounded by M.
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Appendix C. Proof of Corollary 1

For the first item, the matching occurs when the term with µF is active in both lower and upper
bounds. For the rest, the matching occurs with the term µBBU and is active in both lower and upper
bounds. Due to Remark 1, if µF ≤ 2M, showing the matching cases between parallelogram lower
bound and cut-set upper bound is enough. For µF ≥ 2M, we show the matching cases between both
lower bounds and cut-set bound.

For µF ≤ M, the term with µF is active in upper and lower bounds if µF ≤ µBBU · r and µF ≤
µBBU

t1t2
,

respectively. Since t1t2 ≥
⌈

1
r

⌉
, choosing µF ≤

µBBU

t1t2
implies µF ≤ µBBU · r. The term with µBBU is

active in upper and lower bound if µBBU · r ≤ µF and
µBBU

t1t2
≤ µF, respectively, where the matching

requires t1t2 =
1
r

.
For M ≤ µF ≤ 2M, the term with µBBU is active in both upper and lower bounds if µBBU · r ≤ µF

and µBBU ≤ M + µF (t1t2 − 1), respectively, where the matching requires t1t2 =
1
r

.
For 2M ≤ µF ≤ 3M, the term with µBBU is active in upper and parallelogram lower bound if

µBBU · r ≤ µF and µBBU ≤ M (2t1 + 2t2 − 3) + µF (t1t2 − t1 − t2 − 1), respectively, where matching

requires t1t2 =
1
r

. If
1
r
∈ Z+, there is at least one (t1, t2) pair that results in t1t2 =

1
r

. However,

unless µBBU ≤ max
t1,t2

M (2t1 + 2t2 − 3) + µF (t1t2 − t1 − t2 − 1), the term with µBBU can not be active in

lower bound. This imposes choosing the pair (t1, t2) that minimizes t1 + t2. The term with µBBU is
active in upper and hexagon lower bound if µBBU · r ≤ µF and µBBU ≤ M (6t− 6) + µF

(
3t2 − 3t− 2

)
,

where matching requires t =

√
1
3r

.

For 3M ≤ µF, the matching cases can be found by applying similar procedures as in the 2M ≤
µF ≤ 3M case.

Appendix D. Proof of Theorem 3

Due to Remark 1, we do the achievability gap analysis only for paralleogram clustering. We do the
analysis for one of the cases which leads to the maximum achievability gap. For other cases, a similar
procedure can be applied.

• If µF ≤ M, the maximum gap occurs when
µF

3
and

µBBU

3t1t2
is active in upper and lower bounds,

respectively. Note that this assumption imposes
µF

r
≤ µBBU ≤ µF · t1 · t2.

∆ (µBBU, µF, r) =
µF

3
− µBBU

3 · t1 · t2

a
≤ µF

3
−

µF · 1
r

3 · t1 · t2

b
≤ µF

3
−

µF · 1
r

3 ·
⌈

1
r

⌉ (A43)

=
µF

3

⌈
1
r

⌉
− 1

r⌈
1
r

⌉
<

µF

3 ·
⌈

1
r

⌉
where (a) is due to max µBBU = µF ·

1
r

and (b) is due to min t1 · t2 =

⌈
1
r

⌉
by (25).
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• If M ≤ µF ≤ 2M, the maximum gap occurs when
µBBU

3
· r and

µBBU

3 · t1 · t2
is active in upper

and lower bound, respectively. Notice that this assumption imposes µBBU ≤ min
{

µF ·
1
r

, M +

µF (t1t2 − 1)
}

.

∆ (µBBU, µF, r) =
µBBU · r

3
− µBBU

3 · t1 · t2
a
≤ µBBU

3

(
r− 1⌈

1
r

⌉)

≤
min

{
µF · 1

r , M + µF

(⌈
1
r

⌉
− 1
)}

3

(
r− 1⌈

1
r

⌉) (A44)

b
≤ µF

3
· 1

r

(
r− 1⌈

1
r

⌉)
<

µF

3 ·
⌈

1
r

⌉
where (a) is due to min t1 · t2 =

⌈
1
r

⌉
by (25), and (b) is due the fact that, if µF ·

1
r
≤ M +

µF

(⌈
1
r

⌉
− 1
)

, there is equality, if M + µF

(⌈
1
r

⌉
− 1
)
≤ µF ·

1
r

, there is strict inequality.
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