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Abstract: Based on advantages of integer and fractional chaotic systems, hybrid chaotic systems
and their definitions and some fundamental concepts are proposed, such as hybrid degree (HD),
the lowest order (LO) and the total dimension order (TDO). The preliminary properties of hybrid
Lorenz systems and hybrid forms of some classic chaotic systems are studied. Then, the relations
between HD, LO and TDO with different parameters is investigated in chaotic systems. To be specific,
HD is associated with fractional order. It is a directional method to search LO and TDO in chaotic
systems. Finally, based on the incommensurate fractional stability theory, we accomplish combination
synchronization for three different hybrid order chaotic systems. The simulation results verify the
effectiveness of the synchronization controller.

Keywords: hybrid order chaotic systems; fractional order; hybrid degree; combination synchronization

1. Introduction

Since Lorenz proposed the first concrete chaotic system in the modeling of weather forecasts in
1963 [1], chaos, as a significant branch of nonlinearity communities, has been a very hot topic until now.
It is known that the evolutions of chaotic systems sensitively rely on the special initial conditions and
parameters, as two identical chaotic systems start from slightly different initial conditions or parameters
can separate exponentially with time. It is the interesting features and its potential applications in
image encryptions, pseudo random number generators and secure communications [2–6] that enable
numerous researchers to devote in finding the new chaotic models, for instance, enhanced integer
chaotic maps, hidden attractors [7–9] and integer conservative chaotic systems. Chen chaotic system
is applied to produce random sequences. Using these sequences, some arrays were created for image
permutation and key stream production in Reference [10]. A generalized multilevel-hybrid chaotic
oscillator (GM-HCO) was created by combining a multilevel discrete function generated from user
data with a continuous function having a damping factor greater than ln(2) to achieve variable rates
and adaptive carrier frequencies [11]. By means of different hybrid chaotic sequences and systems, an
image segmentation encryption was presented in Reference [12]. However, as the anti-cryptography
technology develops, a host of chaotic communications by means of integer chaotic system were not
safe, especially in the narrow keyspace and simple chaotic dynamics.

The fractional-order differential equations can date back to Leibniz’s note in 1695 at the earliest.
Due to the weakness in engineering background, fractional-order differential equations always existed
in pure mathematic fields. The importance of fractional-order differential equations were valued
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by many scholars untill the last decades, since the fractional-order differential equations have more
accurate descriptions in some real systems and it can give a clear insight into the physical processes
underlying a long range memory, such as the fractional-order differential equations in the model of
human immunodeficiency virus [13], fractional market dynamics [14] and viscoelastically damped
structures [15]. In 1995, Hartley combined the fractional-order differential equations and Chua
system and got the fractional Chua chaotic system [16]. Subsequently, Grigorenko [17] introduced the
fractional Lorenz system and found that the dimension order of fractional system is lower than integer
systems in the domain of chaotic behaviors. Fractional Chen [18] and Lü [19] were also presented
successively. Luo extended the complex Lorenz system into the fractional complex Lorenz system and
analyzed its complicated dynamic characteristics [20]. Based on the Chen system, the generation of a
class of hyperchaotic systems are studied using both integer order and fractional-order differential
equation systems in Reference [21], which provide a new method to create chaotic attractors by means
of switching control.

The mentioned articles made some great innovations in generalization of chaotic systems and
secure communications based on fractional chaos [2]. Compared with integer chaotic system,
the fractional chaotic system with fractional order can regard the fractional order as another type of the
secret key in the process of image, video encryptions and secure communications [22–24]. Therefore,
fractional order chaotic systems have advantages over integer chaotic system in complicated keyspace
and dynamic behaviors. However, it is the existence of fractional order that make some extra difficulties
in the hardware implementation [25–28], such as FPGA . Especially, the fractional-order differential
is more complicated than integer-order differential in circuit design. Therefore, an interesting
question appears. Can the chaotic system own both merits of integer and fractional chaotic system?
Specifically, the hybrid order chaotic system is the balance of fractional and integer order chaotic
system. It means part of state variables are integer order differential, and the other state variables are
fractional-order differential. Not only does it own the complex keyspace and dynamic behaviors in
secure communications, but also it can be easily implemented in realization.

Besides, in the process of exploring chaos, the parameters of chaotic systems are vital for
discovering chaotic domain. To be specific, some intrinsic relations between state variables and
chaotic parameters illustrate the existence of chaotic attractors, such as the positive Lyapunov indexs,
the Feigenbaum contant and the bifurcation diagrams. However, when nonlinear systems exist chaotic
dynamics, the potential relations among different parameters are seldom studied, which is a new field
to deeply understand chaos.

In addition, the phenomenon of synchronization universally exists in nature, such as frogs croak
together and fireflies glow together. Chaos synchronization, as a part of chaos control, has arisen
numerous attention in the last 30 years. Some significant synchronization forms were successively
proposed, such as complete synchronization [29], projective synchronization [30], function projective
synchronization [31] and complex modification projective synchronization [32]. Mohadeszadeh
achieved hybrid chaos synchronization between two identical complex and two identical real
fractional-order chaotic systems employing fractional-order sliding mode control approach [33].
In light of the interaction among several financial factors, Reference [34] use integer order and
fractional-order differential equation systems to model a financial system and based on proposed
fractional financial chaotic systems, the fractional chaos synchronization was achieved by relevant
controller. Note that in the process of fractional chaos synchronization, all the fractional order is
identical in the numerical simulations. However, in practical chaotic systems, the fractional orders are
not always equal to each other. Thus, it is meaningful to focus on incommensurate fractional chaotic
multi-system synchronization.

Motivated by the above discussions, some innovations are obtained in this paper. (1) Firstly,
to combine the advantages of integer and fractional chaotic systems, the definitions of hybrid order
chaotic systems are proposed. Hybrid order chaotic system is as easy to implement as the integer order
chaotic system. It also has the intricate chaotic dynamic behaviors and complicated parameters, which
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is good to secure communications in sense of chaotic systems. (2) Then, by means of numerous analyses
in hybrid order systems, such as hybrid order Lorenz systems, hybrid order Chen system, hybrid order
Lü system and hybrid order complex Lorenz, a universal relation between hybrid degree (HD) and
fractional order is presented, and bifurcation diagrams reinforce the belief. (3) Lastly, hybrid order
chaotic systems belong to inhomogeneous fractional order system in essence. We design the controller
for combination synchronization. Relevant simulations verify the effectiveness of proposed controllers.

The rest structure of this paper is organized as follows. In Section 2, we present some basic
mathematical background and definitions of hybrid order chaotic systems. The property analyses and
common relations in hybrid order chaotic systems are studied in Section 3. We focus on the combination
synchronization on different hybrid order chaotic systems in Section 4. Finally, the conclusion is drew
in Section 5.

2. Mathematical Background

Fractional-order differential equations mainly have three definitions, such as the Riemann–
Liouville definition, the Grunwald–Letnikov definition and the Caputo definition. As traditional initial
conditions and expressions of constants are included in Caputo definition, we use it in this paper.

Definition 1 ([35]). The Caputo fractional derivative is shown as follows,

Dq f (t) =
1

Γ(p− q)

∫ t

q
(t− τ)p−1−q f p(τ)dτ, (1)

where p = [q] + 1, [q] is the integer part of q, Γ(∗) is the gamma function and Dq is called q-order
differential operator.

Then, we give the definition and some concepts of hybrid order chaotic system.

Definition 2. For a m-dimension chaotic system

Dqγ xγ = Ax + f (x), (2)

where qγ is the order of state variables xγ, γ = 1, 2, . . . , m, x is state vairables matrix, A is linear matrix of
chaotic system and f (x) is the nonliner part.

If it exists at least one γ that qγ = 1 and at least one γ that qγ is fractional order, then the m-dimension
chaotic system is called hybrid order chaotic system. The number of equations whose order is qγ = 1 is Hybrid
Degree (HD). The lowest order (LO) indicates the lowest fractional order in all fractional state variables, and the
total dimension order (TDO) means the sum of order for m equations.

Definition 3. For a m-dimension integer chaotic system.

ẋ1 = g1(x1, x2, . . . , xm),

ẋ2 = g2(x1, x2, . . . , xm),
...

ẋm = gm(x1, x2, . . . , xm),

(3)

where g1(∗), g2(∗), . . . , gm(∗) are corresponding continuous functions and Rm → Rm. The value of hybrid
forms of Equation (3) is Hybrid Number HN = C1

m + C2
m + · · ·+ Cm−1

m , where Cd
c = c!

(c−d)d! and c, d are two
constants (c ≥ d).
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Lemma 1. Consider a n-dimension autonomous fractional system

Dqx(t) = Wx(t), x(0) = x0, (4)

where x ∈ Rn, 0 < q ≤ 1, W ∈ Rn×n. Dq = [Dq1 , Dq2 , . . . , Dqn ] demonstrates the fractional derivatives order
q. And let q = a

b , where a, b ∈ N, gcd(a, b) = 1, M is the lowest common multiples of all denominators b.
(1) [36] If q1 = q2 = · · · = qn, system Equation (4) is a commensurate fractional order system.

Equation (4) is asymptotically stable if and only if

arg(λ) ≥ qπ

2
, (5)

where λ are all eigenvalues of Jacobian matrix J of Equation (4).
(2) [37] If q are not identically equal to each other, system Equation (4) is a incommensurate fractional

order system. Equation (4) is asymptotically stable if and only if

arg(λ) ≥ π

2M
, (6)

where all λ meet following equation

det(diag([λq1 M, λq2 M, . . . , λqn M])− J) = 0. (7)

3. Characteristics Analysis of Hybrid Order Chaotic Systems

3.1. Hybrid Order Lorenz Systems

In this part, we present the hybrid order Lorenz systems and study its chaotic characteristics
by means of bifurcation diagrams and other numerical analysis and computer simulation methods.
An interesting finding that the relation between fractional order q and HD is preliminarily obtained.

Based on the classic integer Lorenz chaotic system, we choose hybrid order Lorenz systems with
HD = 1, which is shown as follows, 

Dq1 x = w1(y− x),

Dq2 y = w3x− xz− y,

ż = xy− w2z,

(8)


Dq1 x = w1(y− x),

ẏ = w3x− xz− y,

Dq3 z = xy− w2z,

(9)


ẋ = w1(y− x),

Dq2 y = w3x− xz− y,

Dq3 z = xy− w2z.

(10)

where w1 = 10, w2 = 8/3, w3 = 28.
When HD = 2, then 

Dq1 x = w1(y− x),

ẏ = w3x− xz− y,

ż = xy− w2z,

(11)
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ẋ = w1(y− x),

Dq2 y = w3x− xz− y,

ż = xy− w2z,

(12)


ẋ = w1(y− x),

ẏ = w3x− xz− y,

Dq3 z = xy− w2z.

(13)

Therefore, the possible forms HN = C1
3 + C2

3 = 6. It is in accord with Definition 3.

3.1.1. Dissipativeness and the Existence of Equilibriums

Owning to the consistency of right side of hybrid Lorenz systems, we consider their
dissipativeness as follows,

5V = −w1 − 1− w2

= −10− 1− 8/3 < 0.
(14)

It demonstrates that hybrid Lorenz systems are dissipative systems and is similar with integer
Lorenz system.

3.1.2. Equilibriums and Stability

Note that the calculation of equilibriums depends on the right side of chaotic systems, six forms
of hybrid Lorenz systems have the same equilibriums. Then we set

w1(y− x) = 0,

w3x− xz− y = 0,

xy− w2z = 0,

(15)

where w1 = 10, w2 = 8
3 , w3 = 28. There are three equilibriums (0, 0, 0), (6

√
2, 6
√

2, 27) and
(−6
√

2,−6
√

2, 27). In order to predict stability of equilibriums, we give the Jacobian matrix of
Equation (15) as follows,  −10 10 0

28− z −1 −x
y x − 8

3


Substitute equilibriums into Jacobian matrix respectively, then eigenvalues are

−22.8277, 11.8277,−2.6667 with equilibrium (0, 0, 0), and eigenvalues are −13.8546, 0.0940 +

10.1945i, 0.0940− 10.1945i when equilibriums are (±6
√

2,±6
√

2, 27). Thus, these three equilibriums
are unstable.

3.1.3. Bifurcations of Hybrid Order Lorenz Systems

Diagrams of bifurcation is significant label in chaotic behavior, which can present the relation
between state variables and parameters. In this section, we aim at studying the potential law in
different parameters by means of bifurcation diagrams.

(1) HD = 1

We set that all the initial condition as (0.1, 0.5, 0.5) and step-size as 0.0195. For Equation (8),
the bifurcation diagram is shown in Figure 1. From the diagram one can know that the chaotic domain
appears in q1 = q2 = 0.91. And the 0-1 test diagram and phase pictures of q1 = q2 = 0.91 are shown in
Figure 2.
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Figure 1. Bifurcation diagram of hybrid order Equation (8) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.
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Figure 2. States diagram of hybrid order Equation (8), where the initial condition is (0.1, 0.5, 0.5),
q1 = q2 = 0.91, q3 = 1, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.

The brownian motion and chaotic attractors demonstrate the existence of chaotic dynamics.
Therefore, the lowest order (LO) is q = 0.91 and total dimension order TDO is 1 + 0.91 + 0.91 = 2.82,
approximately.

For Equation (9), the bifurcation diagram is shown in Figure 3. From the diagram we can get
that the chaotic domain appears in q1 = q3 = 0.93. And the 0-1 test diagram and phase pictures of
q1 = q2 = 0.93, q3 = 1 are shown in Figure 4, which indicate the existence of chaotic area. In this case,
the LO is q = 0.93 and TDO is 1 + 0.93 + 0.93 = 2.86, approximately.

When it comes to Equation (10), the bifurcation diagram is shown in Figure 5. Chaotic domain
appears in q2 = q3 = 0.95. And the 0-1 test diagram and phase pictures of q2 = q3 = 0.95 are shown
in Figure 6. Chaotic dynamics encounter in the Equation (10) with q2 = q3 = 0.95. Thus, the LO is
q = 0.95 and TDO is 1 + 0.95 + 0.95 = 2.9 in this case, approximately.

Based on the above results of three types of chaotic systems, it is not difficult to find that the
lowest LO is q = 0.91 and the lowest TDO is 1 + 0.91 + 0.91 = 2.82 in hybrid order Lorenz system
with HD = 1.
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Figure 3. Bifurcation diagram of hybrid order Equation (9) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.
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Figure 4. States diagram of hybrid order Equation (9), where the initial condition is (0.1, 0.5, 0.5),
q1 = q3 = 0.93, q2 = 1, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.

Figure 5. Bifurcation diagram of hybrid order Equation (10) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.



Entropy 2020, 22, 664 8 of 19

-20 0 20 40

x

0

20

40

60

z

(a)

-20 0 20 40

x

-40

-20

0

20

40

y

(b)

-40 -20 0 20 40

y

0

20

40

60
z

(c)

-1000 -500 0 500

p

-800

-600

-400

-200

0

200

s

(d)

Figure 6. States diagram of hybrid order Equation (10), where the initial condition is (0.1, 0.5, 0.5),
q1 = 1, q2 = q3 = 0.95, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.

(2) HD = 2

As for Equation (11), the bifurcation diagram is shown in Figure 7. From the diagram, chaotic
domain appears in q1 = 0.7. And the 0-1 test diagram and phase pictures of q1 = 0.7 are shown in
Figure 8. The brownian motion and chaotic attractors demonstrate the existence of chaotic dynamics.
Therefore, the LO is q = 0.7 and TDO is 1 + 1 + 0.7 = 2.7, approximately.

Figure 7. Bifurcation diagram of hybrid order Equation (11) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.

For Equation (12), the diagram of bifurcation is shown in Figure 9. Chaotic domain appears in
q2 = 0.89. And the 0-1 test diagram and phase picture of q2 = 0.89 are shown in Figure 10, which
indicate the existence of chaotic area. In a nutshell, the LO is q = 0.89 and TDO is 1 + 0.89 + 1 = 2.89
in this case, approximately.



Entropy 2020, 22, 664 9 of 19

-20 0 20 40
x

0

20

40

60

z

(a)

-20 0 20 40
x

-40

-20

0

20

40

y

(b)

-40 -20 0 20 40
y

0

20

40

60

z

(c)

-1000 -500 0 500

p

-1000

-500

0

500

s

(d)

Figure 8. States diagram of hybrid order Equation (11), where the initial condition is (0.1, 0.5, 0.5),
q1 = 0.7, q2 = q3 = 1, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.

Figure 9. Bifurcation diagram of hybrid order Equation (12) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.
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Figure 10. States diagram of hybrid order Equation (12), where the initial condition is (0.1, 0.5, 0.5),
q2 = 0.7, q1 = q3 = 1, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.
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When it comes to Equation (13), the diagram of bifurcation is shown in Figure 11. One can see that
the chaotic domain appears when q3 = 0.89. And the 0-1 test diagram and phase pictures of q3 = 0.89
are shown in Figure 12. The brownian motion and chaotic attractors demonstrate the existence of
chaotic dynamics. Therefore, the LO is q = 0.89 and TDO is ∑ = 1 + 1 + 0.89 = 2.89 in this case,
approximately.

Based on bifurcation analyses of Equations (11)–(13), the lowest LO is q = 0.7 and the lowest
TDO is 1 + 1 + 0.7 = 2.7.

Figure 11. Bifurcation diagram of hybrid order Equation (13) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.
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Figure 12. States diagram of hybrid order Equation (13), where the initial condition is (0.1, 0.5, 0.5),
q1 = q2 = 1, q3 = 0.89, step-size is 0.0195, the number of iterations is 3000 and (a) is x− z, (b) is x− y,
(c) is y− z and (d) is 0-1 test diagram.

(3) HD = 0

The basic form of complete fractional Lorenz system is shown in Equation (16). To compare with
hybrid Lorenz systems, bifurcation diagram of complete fractional Lorenz system (q1 = q2 = q3) is
also obtained in Figure 13. If it exists 0 < q1, q2, q3 < 1, the chaotic domain is appeared in q1 = q2 =

q3 = 0.97. It is in accordance with Reference [17]. Namely, the lowest TDO is 0.97 + 0.97 + 0.97 = 2.91
and the lowest LO is q = 0.97.
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Figure 13. Bifurcation diagram of hybrid order Equation (16) with the initial condition is (0.1, 0.5, 0.5),
step-size is 0.0195 and the number of iterations is 1000.

Dq1 x = w1(y− x),

Dq2 y = w3x− xz− y,

Dq3 z = xy− w2z,

(16)

3.1.4. Relations of Different Chaotic Parameters in Hybrid Lorenz Systems

In order to get a clear comparison result of HD, LO and TDO, each of indexes of hybrid order
Lorenz systems and complete fractional order Lorenz system are shown in Table 1.

Table 1. The LO and sum of different hybrid order Lorenz systems.

System HD LO TDO

Integer order 3 1 3
Equation (16) 0 0.97 2.91
Equation (8) 1 0.91 2.82
Equation (9) 1 0.93 2.86
Equation (10) 1 0.95 2.9
Equation (11) 2 0.7 2.7
Equation (12) 2 0.89 2.89
Equation (13) 2 0.89 2.89

Inspired by the above simulation results, one can recognize some interesting findings. When
HD = 0, the lowest TDO = 2.91 and the lowest LO = 0.97; When HD = 1, the lowest TDO is 2.82
and the lowest LO is 0.91; When HD = 2, the lowest TDO is 2.7 and the lowest LO is 0.7. It can be seen
that when 0 ≤ HD < m, as the increase of HD, the lowest LO and the lowest TDO reduce gradually.
Specifically, in hybrid Lorenz systems, there always exists inverse ratio relations between HD with LO
and TDO. As we increase the value of HD, we always find the lower TDO than complete fractional
chaotic system in hybrid Lorenz systems. Detailedly, complete fractional Lorenz system’s TDO is
2.91, while the lowest TDO is 2.82 for hybrid Lorenz systems with HD = 1 and the lowest TDO is
2.7 for HD = 2. These two cases have smaller TDO than complete fractional Lorenz system’s HD = 0.
Therefore, we can find much lower order hybrid chaotic system. It demonstrates that some intrinsic
relations between integer order and fractional order chaotic systems are discovered. This finding shock
us greatly and another question appears. Generally, do all hybrid chaotic systems meet this rule?
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3.2. Other Classic Hybrid Order Chaotic ystems

In this part, numerous hybrid forms of some classic chaotic systems are obtained to testify the
relation between HD, LO and TDO. In order to get an explicit result, we do not present detailed
chaotic dynamic analyses of every hybrid order systems and give the values of HD, LO and TDO in
some tables.

3.2.1. Hybrid Order Chen Systems

Hybrid order Chen systems are shown in Table 2. When HD = 0, the fractional order is the
same and the lowest order is q = 0.78, TDO = 0.78 + 0.78 + 0.78 = 2.34. With the increase of HD,
the lowest LO is 0.68 and the lowest TDO is 2.36. Then, we continue to add the value of HD. Excitedly,
when HD = 2, the lowest LO is 0.275, and the lowest TDO is 1 + 1 + 0.275 = 2.275.

To be specific,
HD = 0, the lowest LO is 0.78, the lowest TDO is 2.34;
HD = 1, the lowest LO is 0.68, the lowest TDO is 2.36;
HD = 2, the lowest LO is 0.275, the lowest TDO is 2.275.
When we increase the value of HD, the lowest LO gradually decline. Compared with HD = 0,

we can find a lower TDO = 2.275 when HD = 2.

Table 2. Hybrid order Chen systems.

Type Model HD LO TDO

Complete Dqx = 35(y− x)
fractional Dqy = −7x− xz + 28y 0 0.78 2.34

Chen Dqz = xy− 3z

Hybrid Dqx = 35(y− x)
order Dqy = −7x− xz + 28y 1 0.68 2.36
Chen ż = xy− 3z

Dqx = 35(y− x)
ẏ = −7x− xz + 28y 1 0.79 2.58

Dqz = xy− 3z

ẋ = 35(y− x)
Dqy = −7x− xz + 28y 1 0.995 2.99

Dqz = xy− 3z

Dqx = 35(y− x)
ẏ = −7x− xz + 28y 2 0.68 2.68
ż = xy− 3z

ẋ = 35(y− x)
Dqy = −7x− xz + 28y 2 0.96 2.96

ż = xy− 3z

ẋ = 35(y− x)
ẏ = −7x− xz + 28y 2 0.275 2.275

Dqz = xy− 3z

3.2.2. Hybrid Order Lü Systems

Hybrid order Lü systems are shown in Table 3, and we have
HD = 0, the lowest LO is 0.78, the lowest TDO is 2.34.
HD = 1, the lowest LO is 0.653, the lowest TDO is 2.306.
HD = 2, the lowest LO is 0.277, the lowest TDO is 2.277.
When we increase the value of HD, the lowest LO and TDO gradually decline. In hybrid order

Lü systems, HD has inverse ratio relation with the lowest LO and the lowest TDO. In other words,
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compared with HD = 0, there are two lower TDO in HD = 1 and HD = 2. It is the same to hybrid
order Lorenz systems.

Table 3. Hybrid order Lü systems.

Type Model HD LO TDO

Complete Dqx = 36(y− x)
fractional Dqy = −xz + 28.7y 0 0.78 2.34

Lü Dqz = xy− 3z

Hybrid Dqx = 36(y− x)
order Dqy = −xz + 28.7y 1 0.653 2.306

Lü ż = xy− 3z

Dqx = 36(y− x)
ẏ = −xz + 28.7y 1 0.77 2.54

Dqz = xy− 3z

ẋ = 36(y− x)
Dqy = −xz + 28.7y 1 0.994 2.988
Dqz = xy− 3z

Dqx = 36(y− x)
ẏ = −xz + 28.7y 2 0.66 2.66
ż = xy− 3z

ẋ = 36(y− x)
Dqy = −xz + 28.7y 2 0.995 2.995

ż = xy− 3z

ẋ = 36(y− x)
ẏ = −xz + 28.7y 2 0.277 2.277

Dqz = xy− 3z

3.2.3. Hybrid Order Complex Lorenz Systems

When it comes to complex fields of chaos, hybrid order complex Lorenz systems are shown in
Table 4, and we get

HD = 0, the lowest LO is 0.959, the lowest TDO is 2.877.
HD = 1, the lowest LO is 0.908, the lowest TDO is 2.816.
HD = 2, the lowest LO is 0.531, the lowest TDO is 2.531.
We can see as the value of HD increases, the lowest LO and the lowest TDO gradually decline.

It means both the lowest LO and the lowest TDO have inverse ratio relation with HD in hybrid order
complex Lorenz systems, which is the same as hybrid Lü systems and hybrid Lorenz systems.

Table 4. Hybrid order complex Lorenz systems.

Type Model HD LO TDO

Fractional Dqx = 10(y− x)
complex Dqy = 28x− y− xz 0 0.959 2.877
Lorenz Dqz = 1

2 (x̄y + xȳ)− 8
3 z

Hybrid Dqx = 10(y− x)
order Dqy = 28x− y− xz 1 0.908 2.816

Lorenz ż = 1
2 (x̄y + xȳ)− 8

3 z

Dqx = 10(y− x)
ẏ = 28x− y− xz 1 0.94 2.88

Dqz = 1
2 (x̄y + xȳ)− 8

3 z

ẋ = 10(y− x)
Dqy = 28x− y− xz 1 0.955 2.91
Dqz = 1

2 (x̄y + xȳ)− 8
3 z
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Table 4. Cont.

Type Model HD LO TDO

Dqx = 10(y− x)
ẏ = 28x− y− xz 2 0.531 2.531
ż = 1

2 (x̄y + xȳ)− 8
3 z

ẋ = 10(y− x)
Dqy = 28x− y− xz 2 0.823 2.823

ż = 1
2 (x̄y + xȳ)− 8

3 z

ẋ = 10(y− x)
ẏ = 28x− y− xz 2 0.925 2.925

Dqz = 1
2 (x̄y + xȳ)− 8

3 z

3.3. A Relation between Chaotic Parameters for Different Hybrid Order Chaotic Systems

By means of the above bifurcation analyses in different hybrid order chaotic systems, some
common relations are found. In hybrid order Lorenz, hybrid order Lü and hybrid order complex
Lorenz systems, as increase the value of HD, the lowest LO and the lowest TDO are gradually
decreasing. In hybrid Chen systems, the HD has inverse ratio relation with LO and we can also find a
lower TDO when 0 ≤ HD < m. Therefore, we get

Conjecture 1. In hybrid order Lorenz, Chen, Lü and complex Lorenz chaotic systems, there exist common
relations in hybrid degree (HD), the lowest LO and the lowest TDO. Specifically,
(1) HD always has inverse ratio relation with the lowest LO when 0 ≤ HD < m.
(2) Compared with complete fractional chaotic systems (HD = 0), we can always find lower TDO in hybrid
order systems.

Due to limitation of whole paper, other hybrid order forms of classic chaotic systems, such as Liu,
Rossler, Hyperlorenz, Sprott and others, are not detailedly depicted. And same results are obtained in
the relations between two parameters of hybrid order systems. By so many simulation experiments,
we statistically and preliminarily demonstrate the conjecture. It is advisable for us to increase the HD
of hybrid forms to seek lower total dimension order and lowest order without complete simulation
experiments. It is greatly meaningful to build models in describing some real systems, such as elastic
systems, economy systems, model of human immunodeficiency virus and so on.

4. Combination Synchronization of Hybrid Order Chaotic Systems

4.1. Combination Synchronization

As the special structure features of hybrid order chaotic systems, we can naturally understand that
it is associated with incommensurate fractional systems. Some frequently-used theorems, for instance
Equation (4) is not adapted to hybrid order chaotic systems. Therefore, it is essential for us to use
different theorems to guarantee the achievement of chaos synchronization.

Then, we recall the basic form of combination synchronization [38]. Consider two drive systems
and one response system.

The first drive system is
x = g1(x),

the second drive system is
y = g2(y),

and the response system is
z = g3(z),

where x = [x1, x2, . . . , xn]T, y = [y1, y2, . . . , yn]T, z = [z1, z2, . . . , zn]T. All state variables are observable.
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They are said to be combination synchronization if it exists three constant matrixes Q1, Q2, Q3 ∈
Rn and Q3 6= 0 such that

lim
t→+∞

||Q3z−Q1x−Q2y|| = 0, (17)

where || ∗ || is the matrix norm.
Case 1. When Q3 = 1, Q2 = 0, Q1 = 1, combination synchronization will be complete

synchronization.
Case 2. When Q3 = 1, Q2 = 0, combination synchronization will be projective synchronization.
Case 3. When Q3 = 1, Q2 = 0, Q1 = 0, combination synchronization will be chaos control.
We respectively choose one of hybrid Chen and hybrid Lü systems as a group of drive systems,

which are shown as follows. The first drive system (hybrid Chen) is
Dqr x2 = 35(y2 − x2),

ẏ2 = −7x2 − x2z2 + 28y2,

ż2 = x2y2 − 3z2,

(18)

the second drive system (hybrid Lü) is
Dqr x3 = 36(y3 − x3),

ẏ3 = −x3z3 + 28.7y3,

ż3 = x3y3 − 3z3.

(19)

And the response system (hybrid Lorenz) is
Dqr x1 = 10(y1 − x1) + u1,

ẏ1 = 28x1 − x1z1 − y1 + u2,

ż1 = x1y1 −
8
3

z1 + u3,

(20)

where u1, u1, u3 are the corresponding controllers.
Setting Q1 = Q2 = Q3 = I (I is an unit matrix), e1 = x1 − x2 − x3, e2 = y1 − y2 − y3, e3 =

z1 − z2 − z3, we can get the error system, which is shown as follows,

Dqr e1 = −25y2 − 26y3 + 35x2 + 36x3 + 10e2 + u1,

ė2 = 35x2 + 28x3 + 28e1 − x2z3 − x2e3 − x3z2−
x3e3 − e1z2 − e1z3 − e1e3 − 29y2 − 29.7y3−
e2 + u2,

ė3 = x2y3 + x2e2 + x3y2 + x3e2 + e1y2 + e1y3+

e1e2 +
1
3

z2 +
1
3

z3 −
8
3

e3 + u3.

(21)

Transform Equation (21) to matrix form, then

Dqe = g(x, y, z) + u, (22)

where q = [qr, 1, 1]T, e = [e1, e2, e3]
T, x = [x1, x2, x3]

T, y = [y1, y2, y3]
T, z = [z1, z2, z3]

T, u = [u1, u2, u3]
T

in this part.
Our purpose is to find an appropriate controller u, which can make

lim
t→+∞

||e(t)|| = 0.
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Based on active control method, we get the following Theorem.

Theorem 1. Consider the combination synchronization controller of hybrid chaotic systems

u = −g(x, y, z) + ke, (23)

where arg(λ) ≥ π

2M
, all the λ meet following det(diag([λq1 M, λq2 M, . . . , λqn M]) − J) = 0, and λ is all

eigenvalue of error system with controller, k is the control strength.

Proof. Substituting controller (23) into error system (22), we get

Dqe = g(x, y, z)− g(x, y, z) + ke

= ke.
(24)

Since det(diag([λq1 M
k , λ

q2 M
k , . . . , λ

qn M
k ])− J) = 0 and arg(λk) ≥

π

2M
, it meets Lemma 1. Thus, the error

system (22) can be asymptotically stable with the controller (23).

4.2. Simulations

According to the proposed controller in combination synchronization of hybrid chaotic systems,
we can give the detailed form of controller, which is shown as follows,

u1 = −10y1 + 10x1 + 35y2 − 35x2 + 36y3 − 36x3−
k1(x1 − x2 − x3),

u2 = −28x1 + x1z1 + y1 − 7x2 − x2z2 + 28y2−
x3z3 + 28.7y3 − k2(y1 − y2 − y3),

u3 = −x1y1 +
8
3

z1 + x2y2 − 3z2 + x3y3 − 3z3−

k3(z1 − z2 − z3).

(25)

The predictor-corrector method is used to numerical simulation. The initial condition is

[x1, y1, z1, x2, y2, z2, x3, y3, z3] = [1, 2, 10, 1.1, 2.25, 11, 0.9, 2.1, 10.5],

qr = 0.9, and control strength k1 = 0.695, k2 = 0.5, k3 = 0.3. The number of iterations is 3000 and the
step size is 0.0055.

The diagram of state errors are shown in Figure 14. It shows the states evolutions of two drive
systems and one response system. From these three pictures we can know that e1 tends to zero in
about 300th, e2 = 0 in about 600th and e3 tends to zero in about 2000th . It demonstrates that three
incommensurate fractional chaotic systems quickly achieve combination synchronization with the
proposed controller (25).
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Figure 14. Diagram of state errors with k1 = 0.695, k2 = 0.5, k3 = 0.3, step-size is 0.0055 and the
number of iterations is 3000 and (a) e1 = x1 − x2 − x3, (b) e2 = y1 − y2 − y3, (c) e3 = z1 − z2 − z3.

5. Conclusions

Inspired by integer order and fractional order chaotic systems, there must exist hybrid
order chaotic systems. Therefore, we propose some definitions of hybrid order chaotic systems,
and investigate dynamic characteristics of hybrid Lorenz, hybrid Chen, hybrid Lü, hybrid complex
Lorenz systems. We find hybrid order chaotic systems have the advantages of integer order and
fractional order chaotic systems, such as complicated dynamic behaviors, complex key-space and easy
implementation in secure communications. By analyses of four hybrid order chaotic systems, a special
relation between hybrid degree (HD), the lowest LO and the lowest TDO are discovered, which
provides a simple and direct method to find the lowest fractional order chaotic system. However,
the proposed conjecture is only limited in these four classic hybrid order chaotic systems and just in
simulations. Generalization of this conjecture and strict mathematical proofs in other hybrid order
systems deserve to be extensively study. Then, due to the special structure of hybrid order systems,
incommensurate fractional combination synchronization between hybrid Chen, Lü and Lorenz systems
are realized with the proposed controller by means of active control method. Numerical simulations
illustrate the effectiveness and availability of the proposed control method.

In addition, there are numerous interesting things in hybrid order systems. We prove the existence
of relation between hybrid degree (HD), the lowest LO and the lowest TDO in hybrid order chaotic
systems. It demonstrates that the field of chaos do have some common patterns and characters. It is
a completely new branch of chaos. Besides, few researchers focus on the method of searching low
fractional dimension order and state variables order in chaotic systems, and the proposed conjecture
can develop a directional method to seek lower order in chaotic systems. Lastly, the hybrid order
complex chaotic system has more diverse dynamic behaviors, and it will increase security effect when
applied to secure communication. Especially, the ergodicity and pseudorandom of hybrid order
complex chaotic system can increase the diffusion of stream cipher and improve its insensitivity and
avoid the defects of traditional stream cipher. Therefore, a host of works surrounding hybrid order
chaotic systems are waiting to be investigated in the future.
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