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Abstract: Hydrothermal processes modify the chemical and mineralogical composition of rock.
We studied and quantified the effects of hydrothermal processes on the composition of volcanic rocks
by a novel application of the Shannon entropy, which is a measure of uncertainty and commonly
applied in information theory. We show here that the Shannon entropies calculated on major elemental
chemical composition data and short-wave infrared (SWIR) reflectance spectra of hydrothermally
altered rocks are lower than unaltered rocks with a comparable primary composition. The lowering of
the Shannon entropy indicates chemical and spectral sorting during hydrothermal alteration of rocks.
The hydrothermal processes described in this study present a natural mechanism for transforming
energy from heat to increased order in rock. The increased order is manifest as the increased sorting
of chemical elements and SWIR absorption features of the rock, and can be measured and quantified
by the Shannon entropy. The results are useful for the study of hydrothermal mineral deposits, early
life environments and the effects of hydrothermal processes on rocks.
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1. Introduction

Hydrothermal processes affect the chemical and mineralogical composition of rock by destabilizing
and breaking down the primary rock mineralogy and by forming new secondary minerals [1,2].
The types of newly formed alteration assemblages and their chemical compositions are determined
by the hydrothermal fluid chemistry and physical parameters such as temperature and pressure.
The hydrothermal processes cause depletion and enrichment of selected elements that change the
relative proportions of chemical elements and minerals in the altered rock [3] and result in sorting of
elements and minerals in rocks.

Enrichment and depletion of elements and minerals play an important role in the formation of
hydrothermal ore deposits. Enrichment of elements and minerals may lead to the formation of economic
accumulations of metals and minerals [4]. Changes in the elemental and mineralogical composition of
rock by the interaction of hydrothermal fluids also occur in association with environments that are
considered to be favorable for the creating and sustaining early life forms [5,6].

The effects of hydrothermal processes on the composition of rocks are commonly studied by
measuring the absolute or relative concentrations of chemical elements [7,8] and by identifying and
quantifying mineral assemblages, in particular, those of the newly formed alteration minerals, e.g., [9].
The resulting descriptions and measurements of both the chemical and mineralogical composition
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provide information on the type and intensity of the hydrothermal alteration processes [10]. None of the
commonly used methods, however, provide single quantitative measures of the degree of depletion and
enrichment of chemical elements, or the breakdown and formation of alteration minerals. For objective
comparisons between observations within and between areas, and in order to quantify the effect of
hydrothermal processes on composition we require single quantitative measures.

In this study, we use a novel application of the Shannon entropy to study and measure the effects of
hydrothermal processes on the composition of the rock. The Shannon entropy was originally developed
in the context of digital transmission of information [11,12]. In information theory, the Shannon entropy
is used as a measure of uncertainty in probability density distributions. In this study, Shannon entropy
is used to measure the effects of hydrothermal processes on rock by comparing the Shannon entropies
calculated on measurements of hydrothermally altered rocks with those of their unaltered precursors.
We present and discuss the Shannon entropies that were calculated from major element compositional
data and the short-wave infrared (SWIR) reflectance spectra of the rock samples, the chemical Shannon
entropy (HCHEM) and the spectral Shannon entropy (HSPEC), respectively. We will show that the
Shannon entropy provides single quantitative measures of the effects of hydrothermal processes
on the composition of rocks, and we will explain that the lowering of the Shannon entropy in the
hydrothermally altered rocks is the result of sorting processes.

2. Materials and Methods

Three different rock sample sets were used in this study. One set represents the rocks that were
altered by hydrothermal processes. The composition of the unaltered precursors could not be measured
directly from these rocks because of the intense alteration. Therefore, two sample sets were used as
analogs of the unaltered precursors to estimate the chemical and spectral mineralogical composition.
The three sample sets are described below. The method of calculating the Shannon entropy of these
rocks sets is also explained.

2.1. Rock Sample Sets

The hydrothermally altered rocks are represented by a suite of 10 samples from volcanic
lithologies of the Soansville greenstone belt of the East Pilbara Granite-Greenstone (EPGG) terrane in
Western Australia [13]. The samples were collected from the hydrothermally altered footwall of the
Kangaroo Caves Volcanogenic Massive sulfide mineralization [14]. The samples are chlorite-quartz and
quartz-sericite altered volcanic rocks of originally dacite-rhyodacitic and andesite-basaltic composition.
The Soansville greenstone belt was intensely altered by hydrothermal processes at around 3.24 Ga,
i.e., during the MesoArchean [15]. The rock samples were described by petrographic methods. SWIR
reflectance spectra were obtained from cut rock surfaces using an ASD FieldSpec Pro spectrometer
in the range from 350 to 2500 nm. Whole-rock chemical compositions were measured by a lithium
metaborate/tetraborate fusion ICP-OES after crushing, splitting and pulverizing using mild steel.
The chemical analyses were performed by Activation Laboratory Inc. Eight international reference
materials were included in the analysis for data quality purposes.

The chemical composition of precursor analogs is represented by the analyses of a suite of
176 volcanic rocks from several Archean greenstone belts of the EPGG terrane in Western Australia [16].
The selection of 176 samples consists of greenschist metamorphic volcanic rocks of basaltic to rhyolitic
composition, and with ages ranging from approximately 3.51 to 3.31 Ga [17]. Care was taken to only
select samples whose chemical composition was not affected by alteration processes (Appendix A).
Due to the relative similarity in age, and the absence of chemical modification, these rock samples
are considered to be useful analogs to the precursors of the hydrothermally altered rocks mentioned
above. The chemical composition of the rocks was analyzed by X-ray Fluorescence spectrometry on
fused disks. The trace element Zr was measured on a pressed pellet [16].

The SWIR reflectance spectra of analogs of the unaltered precursor rocks are represented by
spectra of a suite of 61 unaltered volcanics from the ASTER spectral library [18], ranging in composition
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from basaltic to rhyolitic. The spectra were measured by a Perkin-Elmer Lambda 900 UV/VIS/NIR
Spectrophotometer from 0.4 to 2.5 µm on fine powders. ASTER spectral library samples were chosen
since no spectrally unaltered volcanic precursors of the hydrothermally altered rocks were available
from the EPGG terrain in Western Australia.

2.2. Shannon Entropy

The Shannon entropy (H) of a probability distribution (P) is defined as [11,12]:

H(P) = −
m∑

i=1

pi × log2pi (1)

where m is the number of possible outcomes and pi is the probability of outcome i. The units of Shannon
entropy are bits, because of the log2 term in the equation.

The Shannon entropy is used as a measure of uncertainty in probability distributions. Maximum
uncertainty, or maximum Shannon entropy, occurs in a distribution where all possible outcomes have
equal probabilities. Such a distribution resembles maximum heterogeneity or randomness. Minimum
uncertainty is reached when one of the possible outcomes has a probability of one. In that case, there is
no uncertainty and the Shannon entropy becomes zero. Such a situation can be regarded as a form
of minimum randomness. Shannon entropies were calculated on distributions of the major element
chemical compositions, HCHEM, and on SWIR reflectance spectra, HSPEC, of hydrothermally altered
rocks and their assumed precursors.

2.2.1. Chemical Shannon Entropy (HCHEM)

Shannon entropies of the elemental chemical composition distribution (HCHEM) were calculated
from the whole-rock chemical compositions of the hydrothermally altered and metamorphic volcanic
rocks from the EPGG terrane. This type of entropy was named the chemical Shannon entropy (HCHEM).
The following 10 major elements, expressed in weight percentages of their oxides, were included in
the calculations and normalized to 100%: Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K and P. Less than detection
values were replaced by half of the detection limit values following common practice. The element
concentrations were first converted to molar percentages of the oxides and subsequently into molar
percentages of the single elements. The chemical composition of each sample was then converted to a
probability distribution by rescaling of the concentrations from a sum of 100% to 1. The HCHEM of the
composition of each sample was calculated using Equation (1). Trace and volatile elements were not
included in the calculation.

The precise chemical composition of the actual precursors of the hydrothermally altered rocks
cannot readily be determined because of the high degree of alteration that had changed the primary
mineralogy. Therefore, the precursor composition was inferred using the Zr/TiO2 ratio, which is a good
indicator of the precursor composition of volcanic rocks even when the rock is intensely altered [19].
A comparison of the Zr/TiO2 ratios of the hydrothermally altered rocks to the Zr/TiO2 ratios (and
related HCHEM values) of the metamorphic volcanic rocks from the EPGG, was used to infer HCHEM of
the actual precursor of the altered rock. The relationship between the HCHEM and the Zr/TiO2 ratio
of the metamorphic volcanic rocks was calculated by linear regression of the means of the Zr/TiO2

ratios (predictor) on the HCHEM (predicted) of the different volcanic lithologies. Since the number of
rock samples across the lithological groups is highly unbalanced, the means of each lithological group
were used for this regression instead of the samples themselves. The resulting model was applied to
estimate the HCHEM from the Zr/TiO2 ratios of the hydrothermally altered volcanic rocks (Appendix B).

2.2.2. Spectral Shannon Entropy (HSPEC)

Shannon entropies were calculated from the SWIR spectra of the hydrothermally altered rocks
and the unaltered rocks from the ASTER spectral library. This type of entropy was named the spectral
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Shannon entropy (HSPEC). The reflectance spectra of the two sample sets were first resampled to a 1 nm
spectral sampling and equal wavelength ranges. The resulting spectra covered the 1300–2500 nm range
in 1201 discrete bands. This wavelength range contains diagnostic vibrational absorption features of
many hydrothermal alteration minerals [20]. The reflectance spectra were converted to absorption by
subtraction of all reflectance values from 1, because the entropy was measured on absorption spectra.
The resulting absorption spectra were normalized to 1 and subsequently used to calculate HSPEC

following Equation (1) for each rock sample.
Similar to the HCHEM, the spectral entropy HSPEC of the precursor of the hydrothermally altered

rock could not readily be determined from the altered rock. Therefore, the HSPEC was inferred from
representative rock spectra of the ASTER spectral library of the different types of unaltered rocks.
The relationship between spectra and volcanic rock composition is more straightforward than in the
case of the chemical composition since the different precursor rocks have almost identical spectra.
Therefore, a statistical approach to assess HSPEC of the inferred precursors was not applied.

2.2.3. Change in Shannon Entropy

The difference between the entropy of the hydrothermally altered rock and its precursor was
calculated for each rock by:

∆H = HHydrothermally altered rock −HUnaltered precursor rock (2)

The difference ∆H was calculated for both HCHEM and HSPEC, resulting in ∆HCHEM and ∆HSPEC.

3. Results

3.1. Chemical Shannon Entropy

The Shannon entropies calculated from major element chemical data (HCHEM) of hydrothermally
altered rocks are lower than those of the unaltered precursor rocks (Figure 1). Within the groups of
altered rocks there is a difference between the two types of alteration facies; quartz-sericite altered
rocks have lower HCHEM values than chlorite-quartz altered rocks. The difference in entropy is largely
related to higher contents of Si, a slight increase in K in the hydrothermally altered rocks, and lower
contents of Ca and Na (see Figure 2a,b for the mean compositions of the two groups of altered rock).
Also, the quartz-sericite altered rocks contain low contents of Fe, Mn and Mg compared to their
precursor rocks. The mean HCHEM values of the groups of unaltered precursor rocks decrease with
a more felsic composition, which is caused by an increase in Si, Na and K and a decrease in Ti, Fe,
Mn, Mg and Ca (Figure 2c–f). The decreasing HCHEM of the unaltered rocks (Figure 1) is the result
of progressive magma fractionation from basaltic to rhyolitic rock. All calculated HCHEM values of
the two rock sample sets are significantly lower than the maximum Shannon entropy of 3.32 bits of a
distribution of 10 possible outcomes with equal probabilities. A one-way analysis of variance (ANOVA)
test confirmed that the mean HCHEM values of the four lithological and two alteration groups are not
similar (f -value = 498.7, p-value < 0.001). A pairwise comparison using the Tukey’s range test showed
that the differences between the six group are statistically significant for all pairs (p-value < 0.001)
except for the rhyolite and chlorite-quartz pair (p-value = 0.052).

3.2. Spectral Shannon Entropy

The Shannon entropies calculated on SWIR reflectance spectra (HSPEC) of the hydrothermally
altered rocks are lower than those of the unaltered precursor rocks (Figure 1). The quartz-sericite
altered rocks have significantly lower HSPEC values than the unaltered rock, while the HSPEC values of
the chlorite-quartz altered rocks are slightly lower compared to the unaltered rocks. The HSPEC values
of the unaltered rocks are close to the maximum Shannon entropy of 10.23 bits of distributions with 1201
spectral samples. The high HSPEC values indicate that the reflectance spectra of these rocks approximate



Entropy 2020, 22, 656 5 of 13

distributions of near-equal probabilities. This can be observed in Figure 3 where reflectance spectra of
the unaltered rocks are devoid of absorption features and have an almost horizontal line. An exception
is the spectrum of rhyolite_H1 that contains a shallow absorption feature around 1900 nm due to
water molecules in the rock. The presence of the absorption features produces a decrease of the
Shannon entropy.
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Figure 1. Spectral and chemical Shannon entropy of hydrothermally altered and unaltered rocks.
Plot shows Shannon entropies calculated from short-wave infrared (SWIR) spectra (HSPEC) and from
chemical compositions (HCHEM) of hydrothermally altered rocks. The type of alteration is shown in
greyscale. The type of volcanic rock is shown using different symbols. Labels show sample numbers
of the hydrothermally altered rocks. Dashed lines show mean entropies of unaltered precursor rocks
of different composition. Mean entropy, number of samples (n) and the standard error of the mean
(se = standard deviation/(

√
n) are shown for each group of precursor rocks. Chemical and spectral

data of unaltered rocks were taken from Smithies, Champion, van Kranendonk and Hickman [16] and
Baldridge, Hook, Grove and Rivera [18], respectively.

The SWIR spectra of quartz-sericite altered rocks show relatively high reflectance values and deep
absorption features. This is caused by the abundances of sericite, which produces deep absorption
features and high reflectance values of the spectral hull (Figure 3). The absorption features are produced
by O-H bonds near 1400 nm, bonds in H2O and/or O-H near 1900 nm, and Al-OH bonds near 2200,
2350 and 2440 nm. The variation of HSPEC values within the group of quartz-sericite altered rocks is
due to differences in absorption feature depths and the overall values of the spectra. The SWIR spectra
of the chlorite-quartz altered rocks are dominated by chlorite. Chlorite causes absorption features by
O-H bonds near 1400 nm, bonds in H2O and/or O-H near 1900 and 2000 nm, and Fe-OH and Mg-OH
bonds near 2350 nm and 2450 nm. The spectra also show absorption by Al-OH bonds near 2200 nm
caused by minor sericite. The shallower absorption features and the overall lower values of the spectra
in chlorite-quartz altered rocks result in higher HSPEC values compared to those of the quartz-sericite
altered rocks and slightly lower values than those of the unaltered rocks. The HSPEC values decrease
by increasing depth of absorption features, higher reflectance values of the hull, and deviations from
horizontal and flat spectral shapes. The mean HSPEC values of the groups of unaltered precursor rocks
do not vary systematically and are not significantly different.
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n) are shown for each group

of rocks. Error bars show the mean + standard error of the mean element concentrations. Chemical
data of unaltered rocks were taken from Smithies, Champion, van Kranendonk and Hickman [16].
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Figure 3. SWIR reflectance spectra of altered and unaltered rocks. Mean reflectance spectra of
hydrothermally altered rocks (quartz-sericite and chlorite-quartz) and unaltered precursors (basalt,
andesite, dacite and rhyolite). Mean entropy, number of samples (n) and the standard error) are
(se = standard deviation) shown for each group of rocks. Spectra of unaltered rocks were taken from
Baldridge, Hook, Grove and Rivera [18].
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3.3. Changes in the Shannon Entropies

The differences in chemical and spectral Shannon entropy between the hydrothermally altered
rocks and the unaltered precursor rocks (∆HCHEM and ∆HSPEC, Equation (2)) are shown in Figure 4.
For an explanation of the estimation of the chemical Shannon entropy of the unaltered precursors of the
altered rocks see Appendix B. The quartz-sericite and chlorite-quartz altered rocks cluster in different
parts of Figure 4, which means that the degree of sorting differs between the two groups of altered
rocks. The quartz-sericite altered rocks show the highest degree of chemical and spectral sorting, which
is obvious from the relatively high ∆HCHEM and ∆HSPEC values that range between 0.969 and 1.232 bits
and between 0.034 and 0.074 bits, respectively. The chlorite-quartz altered rocks show less elevated
values of ∆HCHEM and ∆HSPEC values, which range between 0.363 and 0.612 bits and between 0.001 to
0.002 bits, respectively. The decrease in Shannon entropy of the hydrothermally altered rocks represents
a lowering of the uncertainty in the probability distributions of the major element composition and the
SWIR reflectance spectra from which the Shannon entropy was calculated. We interpret this decrease in
uncertainty as a form of information that was measured using the distributions of rock measurements,
and imposed on the rock itself, by the hydrothermal processes and which can be measured using the
Shannon entropy.
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Figure 4. Quantification of the sorting effects. Plot of differences in Shannon entropies calculated from
SWIR reflectance spectra (∆HSPEC) and chemical compositions (∆HCHEM) between hydrothermally
altered rocks and their precursors. These differences in Shannon entropy represent the measurements
of the sorting effects on the altered rocks. The type of rock alteration is shown in greyscale. The type
of volcanic rock is shown using different symbols. Unaltered rocks plot near the origin because their
compositions have not changed. Labels show sample numbers of the hydrothermally altered rocks.
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4. Discussion

4.1. Interpretation of the Shannon Entropy

The chemical Shannon entropy HCHEM represents the uncertainty in the type of chemical element
measured when one atom of the rock is sampled. The uncertainty with respect to the type of
selected atom is larger when the distribution has equal probabilities than in the situation when the
distribution has more varying probabilities. The latter occurs in the suite of hydrothermally altered
rocks where selective enrichment and depletion resulted in distributions of high probabilities of Si and
low probabilities of most of the other elements. A low chemical Shannon entropy is interpreted as the
result of increased sorting of chemical elements in the altered volcanic rock.

The spectral Shannon entropy HSPEC is interpreted as the uncertainty in wavelength of absorbed IR
radiation when one IR-ray that has been absorbed by the rock is sampled and measured. The uncertainty
in the wavelengths at which absorption occurs, decreases in SWIR spectra with deep absorption
features in a few narrow wavelength ranges in bright rock. In these rocks, there is a dominance of
absorption at a few narrow wavelength ranges. Flat horizontal spectra approach equal probabilities
and produce high entropy values, indicating the absence of deep absorption features. The low spectral
Shannon entropy is interpreted as the result of increased sorting of absorption features in the altered
rock. From other studies [21], it is known that deeper absorption features are caused by increased
abundances, smaller grain-sizes and better surface exposure of the SWIR active minerals as is the case
for the quartz-sericite altered rocks.

The Shannon entropy provides quantitative estimates of the effects of sorting processes on the
composition of rocks. It is important to note that the Shannon entropy is somewhat subjective since
the values depend on the type and number of the measured variables. We do not normalize the
Shannon entropy and therefore there is no maximum bound. For quantitative comparisons between
rocks analyzed in different batches or from different areas, the measurement parameters have to be
standardized. This means that parameters, such as the number and type of chemical elements or
spectral bands and the units in which they are measured, must be equal. Different measurement
parameters will give different Shannon entropy values of the same rock.

4.2. Relationship between Heat, Hydrothermal Alteration and Shannon Entropy

By placing our results in a wider geological context of the study area, we found a relationship
between the change in Shannon entropy of the hydrothermally altered rock and the heat of a cooling
magma that drove the hydrothermal system in which the rocks were altered. The altered rocks in this
study were originally deposited in a submarine seafloor environment where heat provided by a coeval
sub-volcanic intrusion drove hydrothermal fluids through the volcanic sequence [15]. Temperatures of
up to about 450 ◦C occurred in the basal parts of the sequence [22].

Circulation of predominantly seawater-derived fluids caused large-scale alteration of the volcanic
rocks, where the type and composition of the altered rock depend on the fluid composition and
physicochemical conditions. The hydrothermal fluids destabilized the primary volcanic minerals, such
as volcanic glass and ferromagnesian minerals, and produced quartz-sericite and chlorite-quartz as
alteration minerals. Alteration reactions caused the liberation of Na and Ca, which were subsequently
removed by hydrothermal fluids, and the accumulation of Si. Further depletion of Fe and Mg occurred
in zones of sericite-quartz alteration. Fe and/or Mg in chlorite-quartz altered rock were retained
in chlorite. The breakdown of precursor minerals and the formation of new minerals changed the
chemical composition and increased the sorting of elements in the volcanic rock.

Due to similarity between the Shannon entropy and the statistical thermodynamic entropy of
Boltzmann [23,24], i.e., both measure the number of possible configurations of components in a system,
the Shannon entropy may potentially be used as an indication for parts of the thermodynamic entropies
of hydrothermal environments. However, it has to be kept in mind that the two types of entropy are
conceptually different. The Shannon entropy is based on the uncertainty in probability distributions,
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while the thermodynamic entropy is a state definition of a physical system. Exploring relationships
between the Shannon and thermodynamic entropies in hydrothermal systems is a direction for further
study. Shannon entropies can also be employed to quantify the degree of order in the shape and spatial
arrangement of minerals and aggregates in rock by calculations on microstructural parameters [25].
Calculating such spatial entropies is also a direction for further research.

4.3. Mineralized and Early Life Environments

Sorting processes play an important role in the formation of mineral deposits, where selective
enrichment and depletion may lead to the accumulation of elements or minerals. The Shannon entropy
is a measure of the degree of sorting of chemical elements in rock and can, therefore, be used to detect
these accumulations. The Shannon entropy is insensitive to the types of elements that are enriched and
depleted. The method is complementary to conventional methods of rock composition analysis and
does not replace them. Many mineralized environments are formed by hydrothermal processes, where
hydrothermally altered rocks are associated with economic accumulations of elements or minerals.
The Shannon entropy can act as a proxy for mineralization by enabling the identification of zones of
intense wall-rock alteration, independent of the type of alteration.

Hydrothermal environments are considered favorable for developing and sustaining early
life [5,26]. Hydrothermal alteration in these environments produces rocks of low spectral Shannon
entropies. These rocks may influence the radiative environment by absorption of radiation at specific
wavelengths and by providing uniformity in the vibration frequencies of molecular bonds within
crystal lattices in the rock [27]. Since the radiative environment plays an important role for early life
in harvesting energy for metabolic processes, there may be a relationship between the low Shannon
entropy of rocks and the maintenance of low entropic states that are typical for living organisms [28].

5. Conclusions

We conclude that the hydrothermal processes described in this study present a natural mechanism
for transforming energy from heat to increased order in rock. The relationship between heat and
Shannon entropy is indirect and based on changes in the probability distributions of rock measurements.
The increased order is manifest as increased sorting of chemical elements and SWIR absorption features
of the rock and can be measured and quantified by the Shannon entropy. The results are useful for
the study of hydrothermal mineral deposits, early life environments and the effects of hydrothermal
processes on rock.
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rocks plot in or near the least altered field, which indicates that these rocks were not or only weakly 
chemically modified. The quartz-sericite and chlorite-quartz hydrothermally altered rocks plot to the 
right, which means their chemical composition was significantly altered compared to unaltered 
volcanic rocks. The AI (alteration index) is a measure of the breakdown of sodic plagioclase and 
volcanic glass, through depletion of Na and Ca and enrichment in K and Mg, and its replacement by 
sericite and chlorite. CCPI (chlorite-carbonate-pyrite index) is a measure of the formation of chlorite 
that replaces albite, K-feldspar, and sericite, through depletion of Na and Ca. Chemical data of 
unaltered rocks were taken from Smithies, Champion, van Kranendonk and Hickman [16]. 

  

Figure A1. Intensity of chemical alteration of rock samples used in this study. Plot of

AI (
100×(K2O+MgO)

K2O+MgO+Na2O+CaO ) versus CCPI (
100×(MgO+FeO)

MgO+FeO+Na2O+K2O ) of hydrothermally altered rocks
(quartz-sericite and chlorite-quartz altered) and unaltered precursor rocks (basalt, andesite, dacite and
rhyolite). The dashed rectangle shows the position of least altered rocks [7]. The unaltered precursor
rocks plot in or near the least altered field, which indicates that these rocks were not or only weakly
chemically modified. The quartz-sericite and chlorite-quartz hydrothermally altered rocks plot to the
right, which means their chemical composition was significantly altered compared to unaltered volcanic
rocks. The AI (alteration index) is a measure of the breakdown of sodic plagioclase and volcanic glass,
through depletion of Na and Ca and enrichment in K and Mg, and its replacement by sericite and
chlorite. CCPI (chlorite-carbonate-pyrite index) is a measure of the formation of chlorite that replaces
albite, K-feldspar, and sericite, through depletion of Na and Ca. Chemical data of unaltered rocks were
taken from Smithies, Champion, van Kranendonk and Hickman [16].
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