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Abstract: In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical
Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical
mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic
manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of
the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density
(of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s
group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after
Souriau by R.E. Streater in the framework of Quantum Physics by Information Geometry for some
Lie algebras, but only in the case of null cohomology. Souriau method could then be applied
on Lie groups to define a covariant maximum entropy density by Kirillov representation theory.
We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré
unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map.
For this case, the coadjoint action on moment map is equivariant. For non-null cohomology, we give
the case of Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that
could be built as a generalized Casimir invariant function in coadjoint representation, and Massieu
characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant
function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of
the moment mapping.

Keywords: Lie groups thermodynamics; Lie group machine learning; Kirillov representation theory;
coadjoint orbits; moment map; covariant Gibbs density; maximum entropy density; Souriau-Fisher
metric; generalized Casimir invariant function

La theése de Kirillov, parue en 1962, a suscité immédiatement beaucoup d’intérét ... En outre,
quantité de notions naturelles concernant les représentations s'interprétent géométriquement en terme
d’orbites coadjointes: restriction a un sous-groupe, induction unitaire, produit tensoriel, mesure de
Plancherel, la topologie de I’ensemble représentations unitaires irréductibles ... Kirillov s’est vite
convaincu, et il a convaincu la communauté mathématique que cette « méthode des orbites » devait
étre applicable a des groupes bien plus généraux que les groupes nilpotents. Il n’a pas hésité a aborder
le cas des groupes de Lie connexes quelconques. Evidemment, des difficultés considérables ont surgi
immeédiatement. Néanmoins, Kirillov a indiqué une voie d’accés, qui ensuite a été largement utilisée. -
Jacques Dixmier, Breves remarques sur ’ceuvre de A.A. Kirillov
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On comprend ainsi comment Lagrange a pu développer les lois de la Mécanique des systémes
formés de solides sans s’occuper des variations de la température de ces corps et Fourier traiter des
variations de la température de ces mémes corps solides sans s’occuper de leur mouvement; comment on
peut étudier le mouvement de la Terre, assimilée a un solide rigide, sans se préoccuper de la tempeérature
de cet astre et étudier le refroidissement du globe terrestre sans se préoccuper de son mouvement.
Une telle indépendance entre les problémes qui ressortissent a la Mécanique et les problemes qui
ressortissent a la Théorie de la chaleur n’existe plus lorsque les systémes auxquels on a affaire ne sont
plus des systémes classiques; si, par exemple, au lieu de regarder la Terre comme un solide rigide, d’état
invariable, on tient compte des changements de volume, de forme, d’état physique et chimique qui
accompagnent son refroidissement, on ne peut plus séparer le probleme du mouvement de la Terre et le
probléme du refroidissement terrestre. . .. On sait que cette forme de relations supplémentaires avait été
introduite par Newton et les géomeétres du XVIlléme siécle dans la théorie du son. Ces considérations
montrent que les questions qui ressortissent a la Thermodynamique ont dii solliciter I'attention des
physiciens dés qu’on a voulu aborder I’étude des systémes autres que des systemes classiques; et, en fait,
c’est la théorie de la propagation du son dans I'air qui a provoqué Laplace a créer la Thermodynamique.
- P. Duhem, L'intégrale des forces vives en thermodynamique, JMPA 4:5-19, 1898 [1-4]

Sous cette aspiration, la physique qui était d’abord une science des “agents” doit devenir une
science des “milieux”. C’est en s’adressant a des milieux nouveaux que I'on peut espérer pousser la
diversification et I'analyse des phénomenes jusqu’a en provoquer la géométrisation fine et complexe,
vraiment intrinséque ... Sans doute, la réalité ne nous a pas encore livré tous ses modeles, mais nous
savons deja qu’elle ne peut en posséder un plus grand nombre que celui qui lui est assigné par la
théorie mathématique des groupes - Gaston Bachelard, Etude sur I’Evolution d’un probleme
de Physique —La propagation thermique dans les solides, 1928

1. Introduction

The previous French quotes by the Mathematician Jacques Dixmier, the Physicist Pierre Duhem,
and the Philosopher Gaston Bachelard are important to introduce the epistemological context of models
that will be developed in the paper. Jacques Diximer refers to Alexander Kirillov seminal idea of
coadjoint orbits method to consider Lie group representation model. Pierre Duhem makes comments
to the origin of the gap between the theory of heat and the theory of Mechanics. Finally, Gaston
Bachelard make prediction that new Thermodynamics foundations will be given by groups. We will
try in this paper, to prove that these ideas could be reconciled by the Souriau model of Lie groups
Thermodynamics through the mathematical structure of Lie algebra cohomology.

After a the state of the art and trends in Machine Learning based on Information Geometry, we will
present, in this introduction, the main objective of this paper to jointly apply models from geometric
statistical mechanics and tools from Information geometry to solve “Gauss density” definition problem
for statistics on Lie groups and homogeneous manifolds. We will also present use-cases motivation for
Lie group machine learning illustrating for Doppler statistics analysis with SU(1,1) statistics, and for
kinematics data analysis with SE(2) statistics.

1.1. State of the Art and Trends in Machine Learning Based on Information Geometry

The classical simple gradient descent used in Deep Learning has two drawbacks: the use of the
same non-adaptive learning rate for all parameter components, and a non-invariance with respect
to parameter re-encoding inducing different learning rates. As the parameter space of multilayer
networks forms a Riemannian space equipped with Fisher information metric, instead of the usual
gradient descent method, the natural gradient or Riemannian gradient method, which takes account of
the geometric structure of the Riemannian space, is more effective for learning. The natural gradient
preserves this invariance to be insensitive to the characteristic scale of each parameter direction. The
Fisher metric defines a Riemannian metric as the Hessian of two dual potential functions (the Entropy
and the log-partition function). Yann Ollivier and Gaétan Marceau-Caron provided in 2016 [5] the first
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experimental results on non-synthetic data sets for the quasi-diagonal Riemannian Natural gradient
descents for neural networks introduced previously by Yann Ollivier in [6] (MNIST, SVHN, and
FACE data sets). The quasi-diagonal Riemannian algorithms consistently beat simple stochastic
gradient gradient descents by a varying margin. The computational overhead with respect to simple
backpropagation is around a factor 2, and reach their final performance quickly, thus requiring
fewer training epochs and a smaller total computation time. The main goal of natural gradient is to
obtain invariance properties, such as, for a neural network, insensitivity of the training algorithm to
whether a logistic or tanh activation function is used, or insensitivity to simple changes of variables
in the parameters, such as scaling some parameters. In 2017, same authors have introduced the
resulting natural Langevin dynamics [7] combining the advantages of natural gradient descent and
Fisher-preconditioned Langevin dynamics for large neural networks, validated on MNIST with Fisher
matrix preconditioning. With all invariance properties of natural gradient, this Langevin Dynamics
avoids overfitting as a regularization method, and replaces classical methods based on a controlled
amount of noise to stochastic gradient descents, that ensures convergence to the Bayesian posterior
on model parameters. The theoretically optimal covariance of the noise is the inverse Fisher metric,
and Y. Ollivier and G. Marceau-Caron have shown how to implement this in practice with neural
networks using efficient Fisher metric approximations. In 2017, Yann Ollivier has also introduced
TANGO algorithm (True Asymptotic Natural Gradient Optimization) [8], which converges to a true
natural gradient descent in the limit of small learning rates, without explicit Fisher matrix estimation,
and where in large dimension, small learning rates will be required to approximate the natural gradient
well. Y. Ollivier has also shown that it is possible to get arbitrarily close to exact natural gradient
descent with a lightweight algorithm. About natural gradient for Deep Learning, we can refer to [9,10].
This year, Shun-ichi Amari [11] has given an elementary geometrical proof that any target function is
realized in a sufficiently small neighborhood of any randomly connected deep network, provided the
width (the number of neurons in a layer) is sufficiently large.

In this paper, we will introduce how to extend these approaches for data as elements of Lie
groups or data lying on a homogeneous manifold where a Lie group acts transitively. This extension
is considered in the framework and interconnexion of Souriau “Lie groups Thermodynamics”,
Information Geometry and Kirillov representation theory [12] to define probability densities for Lie
groups, as Souriau covariant Gibbs densities (density of Maximum of Entropy). We will develop
this case for the matrix Lie group SU(1,1) (case with null cohomology) through the computation of
Souriau’s moment map, and Kirillov’s orbit method. We will also develop the method for SE(2) Lie
group (case with non-null cohomology) where a Souriau cocycle should be taken into account due to
the defect of equivariance of the coadjoint action on the moment map.

Supervised learning approaches are based on neural networks whose parameters are estimated
by natural gradient algorithms. Non-supervised algorithm are based on clustering by using technics
called “k-means” or “Mean-shift” using distance between elements of the dataset. In both cases, if we
want to extend these approaches for Lie groups dataset, we have to extend the notion of Gaussian
densities and distance between elements. We propose to use Geometric Statistical Model coming from
Geometric Statistical Mechanics to introduce “Gauss density” of Lie group elements. Jointly, we can
associate a natural distance between these Lie group elements on the Symplectic manifold by means of
KKS 2-form, introducing a natural Riemannian metric associated to Fisher Metric from Information
Geometry. The objective of this paper is to explain how to use Geometric Statistical Mechanics tools in
this context.

1.2. Objectives of this Paper

The purpose of this article is multiple. The work of Professor Jean-Marie Souriau is well known
in the field of “Geometric Mechanics” of which he is one of the founders with his book “structure
of dynamic systems” published in 1969, and in which he introduced the foundations of Symplectic
Geometry. Inside this book, chapter IV dealing with the extension of Geometric Mechanics to Statistical
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Mechanics, has been little read or misunderstood by this community. We have discovered that this
model was part of and generalized another discipline, which is called Information Geometry. We have
demonstrated in other previous articles that one could generalize Fisher metric (invariant metric used
in Information Geometry) for Lie groups, with this model. It is therefore a question of rehabilitating the
work of Jean-Marie Souriau in a broader framework, which concerns statistics and machine learning
extended to objects considered as elements of a Lie group or a homogeneous manifold.

The second goal is to solve with these new tools problems that were still unsolved in statistics and
machine learning. These unresolved problems concern the definition and calculation of the expression
of probability densities, playing the role of Gaussian density, for elements of a Lie group or elements of
homogeneous manifolds. In this article, we completely solve the problem for 2 Lie groups very useful
in machine learning but also in physics, the Lie groups SU(1,1) and SE(2). The calculation is not a simple
application of the Souriau model, because it is necessary to establish the “moment map” associated
with these groups and define a Laplace transform on their coadjoint orbits of these groups (action of the
group on the dual space of Lie algebra). In a second step, we must use Information Geometry to write
these covariant Gibbs densities in the correct parametrization which parametrizes the generalized
Gaussian law from statistical moments on the homogeneous symplectic manifold associated with
coadjoint orbits. In the case SU(1,1), which corresponds to a case of null cohomology (equivariance of
the coadjoint operator on the moment application), as the homogeneous symplectic manifold to the
coadjoint orbit is the Poincaré unit disk, we solve jointly, an open problem to define mathematically
the notion of Gaussian density in this disk in hyperbolic geometry. With the property that this density
is by construction invariant under the action of the group SU(1,1), which is the condition sine qua none
to preserve the symmetries and the invariance of the associated Fisher metric. We show that this model
achieves a breakthrough in machine learning, because we have a Gibbs density and a Fisher metric
invariant by change of parametrization and invariant under the action of symmetries. Gibbs density
allows us to extend the classical supervised statistical machine learning algorithms, and Fisher metric
allows us to adress unsupervised learning problem as k-means problems in metric space. The model
opens the way to machine learning for Lie groups with multiple applications in robotics, sensor signal
processing, image processing.

In the last part of the article, based on this model, we give a new “geometric” definition of Entropy
by showing that Entropy is an invariant Casimir function in coadjoint representation. The Casimir
functions have been widely studied within the framework of Poisson structures and manifolds [13-16].
This characterization of Entropy is new, because previously Entropy was defined axiomatically. Using
this Casimir function property, we show that it is possible to use full geometric approaches to construct
the Entropy function only from the structure coefficients of the Lie group associated with the symmetries
involved. We show that we can also introduce an Euler-Poincaré equation and its stochastic variant
to study other open problems in statistics and thermodynamics. The application of this Casimir
characterization, which is demonstrated in this article, are developed in another twin article published
in the same special issue with Francois Gay-Balmaz [17].

1.3. Motivation of Lie Group Machine Learning with Use-Cases

Machine learning is a field of study of artificial intelligence, which is based on statistical approaches
to give computers the ability to “learn” from data, that is, to classify data from observations in a
supervised or non-supervised way. Machine learning generally has two phases. The first consists in
estimating a model from data, called observations. This so-called “training” phase is generally carried
out before the practical use of the model. The second phase corresponds to the start of production:
the model being determined, new data can then be classified. According to the information available
during the learning phase, learning is qualified in different ways. If the data is labeled (that is, the task
response is known for that data), it is supervised learning. We speak of classification if the labels are
discrete, or of regression if they are continuous. In the most general case, without a label, we seek
to determine the underlying structure of the data (which can be a probability density) and it is then
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unsupervised learning. Machine learning can be applied to different types of data, such as graphs,
trees, curves, or more simply feature vectors, which can be continuous or discrete. We propose to
extend the approach, when datasets are element of matrix lie groups.

Learning algorithms can be categorized according to their learning mode. For supervised learning,
the classes are predetermined and the examples known, and then the system learns to classify according
to a classification model. An expert must label examples beforehand. The process takes place in two
phases. For unsupervised learning, when the system or operator has only examples, but no label,
and the number of classes and their nature have not been predetermined, we speak of unsupervised
learning or clustering. No expert is required. The algorithm must discover for itself the more or less
hidden structure of the data, by data partitioning and data clustering. The system must cluster the
data according to their available attributes, to classify them into homogeneous groups of examples.
Similarity is generally calculated according to a distance function between pairs of examples.

We will illustrate two problems of Machine Learning on Lie groups coming from Radar Industry.
Target recognition on Radar micro-Doppler data could be modeled by a problem of classification of
dataset considered as elements of SU(1,1) Lie group (see Figure 1). Radar complex time series of
micro-Doppler observation of data are classically processed on sliding time window to estimate their
associated covariance matrices that are characterized by a Toeplitz Hermitian Positive-definitiveness
structure. Using a well-known Verblunsky/Trench Theorem, we can parametrize all Toeplitz Hermitian
Positive Definite Covariance matrices of stationary Radar Time series in a product space with a real
positive axis (for signal power) and a Poincaré polydisk (for Doppler Spectrum shape). If we consider
the Poincaré Unit Disk as an homogeneous space where SU(1,1) Lie group acts transitively. Each data in
Poincaré unit disk of this polydisk could be then coded by SU(1,1) matrix Lie group element. We have
transformed the problem into a statistical learning challenge processing data of SU(1,1) matrix Lie
group. Another exemple considers flying object recognition on their kinematics coded in SE(2) or SE(3)
Lie Groups. 3D (or 2D) trajectories could be coded by SE(3) (or SE(2)) Lie group time series provided
through Invariant Extended Kalman Filter (IEKF) Radar Tracker, that locally estimates displacement of
Frenet-Seret frame. Object kinematics will be then coded by time series of SE(3) (or SE(2)) matrix Lie
groups characterizing local rotation/translation of Frenet frame along the drone 3D (or 2D) trajectory.
Statistics of this SE(3) (or SE(2)) Lie group elements will characterize flight mechanics of different kinds
of object (birds, drones, ... ).

SU(1,1) or SE(2) are also fundamental tools in Image Processing (Sub-Riemannian Geometry
of vision with SE(2)), in robotics (rigid bodies statistical analysis with SE(2)), in Natural Langage
Processing (methods of graph-embedding in Poincaré disk with SU(1,1)), ... . For instance, SU(1,1)
Lie group which acts on Poincaré unit Disk is highly studied to embed isometrically a graph in an
hyperbolic space. It is used by GAFAM (Google, Facebook, ... ) for Natural Language Processing by
reducing graph analysis to a Machine Learning problem in Hyperbolic Poincaré Unit Disk. Hyperbolic
Neural network [18] have been developed in this framework. SU(1,1) Lie group is also fundamental in
Quantum physics to describe Coherent states of an electron in a magnetic field for instance [19] and
Coherent states in Quantum Optics [20] (some statistical photon-counting aspects of SU(1,1) coherent
states are emphasized). SE(2) Lie group is especially fundamental for Geometry of Vision considering
sub-Riemannian approaches of the Citti-Petitot-Sarti Model [21] but also also in neuroimagery [22].

1.3.1. SU(1,1) Lie Group Machine Learning for Doppler Data Statistics Analysis

Lie group structure appears naturally on Doppler data, if we consider time series of locally
stationary signal and their associated covariance matrix. Covariance matrix is Toeplitz Hermitian
Positive Definite. Based on Theorem due to Verblunsky [23,24] and Trench [25], we can parametrize
Hermitian Positive Definite Matrix in product space involving the Poincaré unit Polydisk:

¢ : THDP(n) — R', x D"~!

1
RHH(PO,H],...,Hn_l) ()
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where D is the Poincaré Unit Disk:
D={z=x+iyeC/lz| <1} 2)

The Poincaré unit disk is an homogeneous bounded domain where the Lie group SU(1,1) act
transitively. This Matrix Group is given by:

Su(1,1) = {[ zf f ]/|a|2 —bP=1,abe c} 3)

where SU(1,1) acts on the Poincaré Unit Disk by:

az+b

with Cartan Decomposition of SU(1,1)

a b\ _ 1 z a/lal 0
b oa =l z¢ 1 0 a/la 5)

with z = b(a*) ™, la| = (1-zP)

-1/2

N . " 1 =
“ 0 v N [ 1 1 0 1

Figure 1. Illustration of Statistics of Doppler Spectrum as densities of points in Poincaré polydisc where
SU(1,1) Lie group act transitively. Top is a time-doppler frequency spectrum of a drone. Bottom is a
Doppler spectrum fluctuation coded as densities in Poincaré Polydisk.

We can observe that z = b(a’*)_1 could be considered as action of ¢ € SU(1,1) on the centre on

the unit disk z = g.0 = b(a*)"". The principal idea is that we can code any point z = b(a*) " in the
unit disk by an element of the Lie group SU(1,1). Main advantage is that the point position is no
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longer coded by coordinates but intrinsically by transformation from the orogin 0 to this point. Finally,
a covariance matrix of a stationary signal could be coded by (n—1) Matrix SU(1,1) Lie group elements:

THPD — R*, x D" — R, x SU(1,1)""
ap b Ap-1 by 6
Rn'_)(PO/[vllw--r[Jn—l)'_)(POr[b} 1 ]/'~~/|: bfl fl ]) ()
1 @ n-1

1 )
1.3.2. SE(2) and SE(3) Lie Groups Machine Learning for Kinematics Data Statistics Analysis

When we consider a 3D trajectory of a mobile target, we can describe this curve by a time evolution
of the local Frenet-Serret frame (local frame with tangent vector, normal vector and binormal vector) as
illustrated in Figure 2. This frame evolution is described by the Frenet-Serret formula that gives the
kinematic properties of the target moving along the continuous, differentiable curve in 3D Euclidean
space R®. More specifically, the formulas describe the derivatives of the so-called tangent, normal,
and binormal unit vectors in terms of each other.

— —
t 0 x 0 t
dl - > . K : curvature
—| n |=]-x 0 vy n |wit i (7)
dt| S 0 ol = y : torsion
b -y b
3
: T 93
2O ]\‘?‘
Ao e -._ 92 ’j

Inertial frame,

Z:={X,Y, 2}

a
Body-fixed frame,

B := {a,,a2,a3}

——tvector
——n vector

b vector
06
05

\

03 ~ \\/]

° WA) 03

0
01
92 03 o4 0

Figure 2. Illustration of times series of local Frenet-Serret Frame where SE(3) Lie group act between
two successive frames.

We will consider motions determined by exponentials of paths in the Lie algebra. Such a motion
is determined by a unit speed space-curve 7(t). Now in a Frenet-Serret motion a point in the moving
body moves along the curve and the coordinate frame in the moving body remains aligned with the
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- —
tangent t, normal Z, and binormal b, of the curve. Using the 4-dimensional representation of the Lie
group SE(3), the motion can be specified as:

G(t) _( Rét) T(lt) )e SE(3) ®)

- g
where 1(t) is the curve and the rotation matrix R(t) has the unit vectors f, 7,and b as columns:

RO=(T % b )esoE) ©)

— -
If we introduce the Darboux vector @ = y t + xb that we can rewritte from Frenet-Serret Formulas:

E—th,T—wxn,E—wxb (10)

Then, we can write with () is the 3 X 3 anti-symmetric matrix corresponding to w:

dR

= =OR (11)

d’[(t) B — d—> B dy—) d —
We note that pr —tandd—?_ﬁt+d—’;b,

The instantaneous twist of the motion G(t) is given by:

d v
Sq= %G‘lm = ( P ) (12)

This is the Lie algebra element corresponding to the tangent vector to the curve G(t). It is well
known that elements of the Lie algebra se(3) can be described as lines with a pitch. The fixed axode of
a motion G(t) € SE(3) is given by the axis of S; as t varies. The instantaneous twist in the moving
reference frame is given by S, = G™1(t)S;G(t), that is, by the adjoint action on the twist in the fixed
frame. The instantaneous twist S;, can also be found from the relation:

aG(t)

Sp = G—l(t)T (13)

Sy =G" (14)

4G _(RT —RTt\( R t )_{ RTOR RY
it o 1 0 0 0 0

We can observe that we could describe a 3D trajectory by a time series of SE(3) Lie group elements:

SE(3) = {[ Ig ; ]/R €SO(3),7 € R3} (15)
with
SO(3) = {R/R"R = RR" = I,det’R = 1} (16)

Then, the trajectory will be given by the following time series of SE(3) elements:

Ri 7 Ry 1 Ry 7Tn n
(% ) ] 7 esns "
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2. New Results Introduced in the Paper

The paper is structured in two parts:

- 1st Part on “Gauss Density on Lie groups”: This part is totally new in Machine learning with an
extension of “Gauss densities” (defined as Maximum Entropy model) for Lie groups coupling
both Souriau model (introduced in statistical physics domain), with Information Geometry in
Geometric Machine Learning domain. We illustrate with two use-cases SU(1,1) and SE(2) that are
the most useful Lie groups in Image Processing (Sub-Riemannian Geometry of vision with SE(2)),
in robotics (rigid bodies statistical analysis with SE(2)), in Natural Langage Processing (SU(1,1)
with methods of graph-embedding in Poincaré disk), ... . Some tentatives have been developed
to define noise on Lie groups by adding additional Gaussian components on elements of the Lie
algebra [26-29], but these models are not mathematically correct because they do not preserve the
symmetries and the moment map associated to these symmetries by the Noether Theorem.

- 2nd part on “Entropy definition extension as Casimir Function”: This part gives a new geometric
definition of Entropy as invariant Casimir function in coadjoint representation, explaining the
invariance of entropy under the affine coadjoint action on moment map in the dual space of
Lie algebra. This definition was not in the paper of Souriau. With this new definition, we can
compute Entropy only by structure constraints given by the Lie group. It opens the door to new
generalization of Maximum Entropy method and first of all computation of “Gaussian densities”
for any Lie group. Applications of this new property is not developed in this paper but in a twin
paper in the same special issue [17]. We refert to M. Gromov papers to consider more geometric
structures of Entropy [30,31].

The main new results of this paper are the introduction of “Gauss density” for Lie groups
or data on homogeneous space where a Lie groups acts transitively, and the full computation for
SU(1,1) Lie group. This group acts transitively on the Poincaré unit disk, and so we have also
solved an open problem related to Gauss density on this homogeneous space. For this purpose,
the main approach has considered an extended definition of classical “Gauss density”, as introduced
by Jaynes, in term of density of Maximum Entropy. In this way, the initial problem was transfert
to a new one related to the good definition of Entropy for Lie groups. To address this problem,
first, we have recalled the classical Euclidean case, where the Entropy S(n) could be defined as
the Legendre transform of minus the log-partition function ®(0) = —log f e~ dy (defined by

R
Laplace transform) by the following equation S(17) = (6,1) — ®(0) withn; = q)( ) and 0; = (97({”.

The next step was to explain how to extend the log-partition function for Lie groups We have then
considered the Laplace transform in the framework of Lie group representation theory as introduced
by Alexander Kirillov and Geometric Statical Mechanics as modeled by Jean-Marie Souriau. We
have preserved the same Legendre structure, and have defined the Entropy S(Q), parametrized on
the dual space of the Lie algebra Q € g" (called geometric heat), as Legendre transform of minus
of the log-partition function ®(8) = —log [e~U(&)Fd),, parametrized on the Lie algebraby g € g

(called geometric Planck Temperature), fﬁf)m a Laplace transform defined on the homogeneous

symplectic manifold (associated to the Lie group by the Kirrilov-Kostant-Souriau 2-form called

KKS 2-form in the litterature). By introducing the moment map | : M — g*, fundamental tool of

representation theory introduced by Souriau, we were able to define the log-partition function on the

coadjoint orbit of the Lie group, ®(B) = —log f e~J(&)BdA,,. The entropy is then given by the Legendre
g

transform S(Q) = (Q,f) — P(p) withQ = 220) ¢ g'and f = ) € g. We have then defined the

9P
Gauss density for Lie groups as the density that maximizes this Entropy S(Q) under the constraint of

its associated first moment Q = f J(E)paivps (£)dA,. The Gauss density is then established by
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analogy with thermodynamics as the Gibbs density pgiys (&) = eP#) =) F = fee<l<]<—>ﬁm/\ But this

is not enough, because this density is not given in the good parametrization. We have proposed to
express the Gibbs density with respect to the 1st statistical moment Q (statistical mean of moment map)

by inverting the relation Q = % = O(B). The Gibbs density PGibbs,Q(é) — ¢®(B)-U(©).071Q) with
B = ©@1(Q) will provide the extended definition of Gauss density in final good parametrization.

For the time being, no “Gaussian density” was defined on Poincaré unit disk with the mandatory
property to be covariant under the action of SU(1,1) Lie group that acts transitively on this homogeneous
bounded domain. We have applied the previous model via computation of moment map and
developed the full computation of this extended Gauss density for SU(1,1) Lie group, SU(1,1) =
{( ; ; )/ a,beC, |a|2 - |b|2 = 1} and then deduced as consequence the gauss density for the Poincaré
unit disk considered as the homogeneous symplectic manifold associated to the coadjoint orbit of the
SU(1,1) Lie group via KKS 2 form. Considering the Lie algebra su(1,1) = {( ”; —Zr ) /reR,ne C}

z X +1iy
-x+iy -z
the moment map J : D — su*(1,1) defined by J(z).u; = Ji(z,2z*), that maps D the Poincaré unit disk into

LR 5 2
2 - 2
12| 1R | ¢ g

and the dual space of the Lie algebra su(1,1)" = {( )/ X, Y,z € R}, we have computed

a coadjoint orbit in su*(1,1), J(z) = J1(z,2")u] + J2(z,2°)u5 + J3(z,2" )uy = p : 1
1P 1P

The moment map ] is a diffeomorphism of D onto one sheet of the two-sheeted hyperboloid in su*(1,1),
determined by the following equation ]% — ]% - ]; = p?,J1 > pwith Jiuy + Jous + Jauy € su(1,1).
But the full SU(1,1) Lie group is not related to any equilibrium Gibbs state (the open subset of

the Lie algebra, associated to this Gibbs state is empty). We have then considered one-parameter

subgroups of the Lie group SU(1,1) such that the open subset Ag = {ﬂ € g/fe‘g(z)fﬁ)d/\(z) < oo
D

is not empty. In the neighborhood of the identity element, the elements of ¢ € SU(1,1) can be
written as the exponential of an element § of its Lie algebra. If we make the remark that we have

nt —ir \ n°* —ir
map by a Taylor expansion of the exponential function, which is given by the following relation
% (ep)t COSh(SR) +ir smh(sR) nsinhR(eR) . , 2
8= exp(gﬁ) = L KT T]* sinh(&R) . sinh(eR) with R® = |77| -
R R

the following relation g = ( v )( o ) = (|17)2 - rZ)I, we can developed the exponential

= cosh(eR) —ir

i . 2 . L
We can observe that one condition is that |17| — 72 > 0 then the subset to consider is given

nt o —ir
Finally, we have computed the covariant Gibbs density in the unit disk given by f € Ag and
by the moment map of the Lie group SU(1,1), that could be expressed in the following equation:
1+ -2z

by the subset Ag = {[3 = ( v ),r €ERne C/|17|2 -2 > O} such that fe_<](z)'5>dA(z) < +oo.
D

R R e
4 2z ~ - 1+|Z|§ i nt —ir )>
‘ @, (1-1z17) (1-[%) . dzndz* :
PGivys(2) = E{ﬁ](z)'ﬁ)‘”(z)__ fo’q(”/ﬁ)d?\(z) with dA(z) = 21p( ol To write
the final Gibbs density with respect to its statistical moment, we rewrite the density with Q = E[](z)],
1w —2w*

_ oD . 1-|wl? 1—[w)?

byp=0"(Q) egwhere Q= % — ©(p) e g and Q = E[j(z)] = E|p| ) (1)

(1-wP)  (1-kf)

To extend this approach for covariant Gibbs density on Siegel Unit Disk
SD = {Z € Myy(C)/I, - ZZ* > 0}, that is a «classical matrix extension of Poincaré
unit Disk, we have proposed to consider G = SU(p,q) unitary group and the
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homogeneous space G/K = SU(p,q)/S(U(p), U(q)) withK = S(U(p)xU(g)) =

{(13 g)/AEU(p),DeU(q),det(A)det(D)—1} and the moment map given by J(Z) =

-1 -1
0 (1, - zz*) (-pzz* - a,)  (p+a)Z(l; -2+ Z) N
~p+)y-22) 2+ (ply+q2"Z)(1,- 2" 2)
After SU(1,1) Lie group (case with null cohomology), we have considered the same model

for SE(2) Lie group with non-null cohomology that needs the use of symplectic one-cocycle to
manage the defect of cohomology. We have considered the special Euclidean group SE(2) =

Ry 7t ol B | cosp —sing .
{[ 0 ]/R(p €S50(2),T€R }w1th S50(2) = {R(P = | sng cosg /@ € R, and the Lie algebra
&9 u 0 1

2 = 2

se(2) of SE(2) (& u)€se(2) =RxR =>[ 0 0 1 0
moment map J(g,)(x) : R* — se*(2) that is given by the expression J¢,)(x) = J(x).(& u) with
J(x) = —2<%|Ix||2, —Sx), x € R?. Then, the Gibbs density is deduced for generalized temperature § € Q =
{(b,B) € 5¢(2)/b < 0,B € R?} by peips(x) =

]e se(2) with § = [ ], to define the

()6 o3I -B.9x
—X) 2
Rge J(x) B>d/\(x) fezbl\xl\ -B.9x 5, Alx )

, with the log-partition

function given by the following expression ®(8) = log f ezb”xnz “BIxGA (x)= log( e zb”BHZ) with

Q = a?;—;@ = (% g”z,iB) = O(B) and where Q € Q" = {(m,M)Ese*(Z)/m+M<O}.

To obtain the good parametrization related to statical moments, we have inverted the relation § =
-1 -1

o1 (Q) = ((m + %IIM||2) , (m + %IIMIIz) M), to provide the covariant Gibbs density parametrized by

(m,M) =E(J(x)) = E[—Z(%lellz, —Sx)] = [—E(||x||2),2SE(x)]. The final Gauss density for SE(2) is then

3P -M.9x
(m+L1M12)
e 2
- X)) = ——m———
PGibbs () TiP—M.5x

e (- 3IMIZ) 4 (x)
R2
We conclude the paper by a deeper study of Souriau model structure. We observe that Souriau
Entropy S(Q) defined on coadjoint orbit of the group has a property of invariance S(Adg( Q)) =5(Q)
with respect to Souriau affine definition of coadjoint action Adﬁ(Q) = Ady(Q) + 0(g) where 0(g) is
called the Souriau cocyle. In the framework of Souriau Lie groups Thermodynamics, we can then

characterize the Entropy as a generalized Casimir invariant function in coadjoint representation, and
Massieu characteristic function (or log-partition function), dual of Entropy by Legendre transform,
as a generalized Casimir function in adjoint representation. When M is a Poisson manifold, a
function on M is a Casimir function if and only if this function is constant on each symplectic leaf
(the non-empty open subsets of the symplectic leaves are the smallest embedded manifolds of M
which are Poisson submanifolds) [15]. Classically, the Entropy is defined axiomatically as Shannon or
von Neumann Entropies without any geometric structures constraints. In this paper, the Entropy is

also presented as solution of the Casimir equation [ad*,_ Q| +©(ZL) = Ck ad*  Qr+ 0; = 0 with
p q 5%, aQ); ]

]
O(X,Y) = (0(X),Y) = Jixy) — Ux Jy} = —(dO0(X), Y), X, Y € g, where ©(X) = TEQ(X( )) appears in
case of non-null cohomology (non equivariance of coadjoint operator on the moment map), with 6(g) the
Souriau Symplectic cocycle. The dual space of the Lie algebra foliates into coadjoint orbits that are also
the level sets on the entropy. The KKS (Kostant-Kirillov Souriau) 2-form, and the Souriau-Koszul-Fisher
metric transform each orbit into a homogeneous Symplectic manifold. The information manifold

351

foliates into level sets of the entropy that could be interpreted in the framework of Thermodynamics by
the fact that motion remaining on this complex surfaces is non-dissipative, whereas motion transversal
to these surfaces is dissipative, where the dynamic is given by % ={Q Hlg = ad* Q + G)( et ) with
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stable equilibrium when H = S = 49 ={Q,Slg = ad* Q + @(‘9—) = 0. We have finally also observed

9Q
that dS = @5(QQ,ﬁ)dt where @5((9(2,5) = ®(8Q’ ) <Q [()Q, ] > showing that Entropy production is
linked with Souriau tensor related to Fisher metric.

The Casimir equations that we have introduced in non-zero cohomology case are consequences
of the constancy of the entropy on adjoint orbits of the Lie algebra and of the equivariance of the
map between the set of generalized temperatures and the dual space of the Lie algebra, as introduced
by Jean-Marie in his 1974 paper. We explained this fact in the paper by starting elaboration of
Casimir equations from the Souriau equation. Casimir equations are then presented in this context,
as a fully equivalent form written in a new way, especially in the framework of Souriau Lie groups
Thermodynamics. Souriau has not observed that the Entropy is an invariant Casimir function in
coadjoint representation, but we can assume that he was fully aware of this invariant structure.

From Souriau equation (Q, [8, Z]) + ©(8,Z) =0 published in 1974, we have rewritten as direct
consequence this equation on a Casimir form ad Q + ®( ) = 0. This equation preserves the

geometric structures included in Souriau equation but allow us to consider the Entropy from the point
of view of Casimir invariant function. The concept of Entropy and the concept of Casimir function were,
for the time being, two disjoint concepts that have been developed independently in the past. There is
a large literature on Casimir function, especially the russian one that have characterized properties of
Casimir function. We refer to Igor V. Shirokov who has proposed a method for constructing invariants
of the coadjoint representation of Lie groups with an arbitrary dimension and structure based on local
symplectic coordinates on the coadjoint orbits. With Oleg L. Kurnyavko, Igor V. Shirokov has also
proposed a general method for constructing invariant Casimir functions. The second reference is
about A.T. Fomenko and V.V. Trofimov who have also deeply studied Casimir functions (but in case of
null cohomology) and have developed the following equation that we can write for Entropy in null

cohomology case S(Ad;(g Q) S(Q) + Z (Q) t" with ¢ : g — Vec(T') a representation of Lie
algebras defined on basis (e1, ey, ..., en) in g. We refer to a twin paper [17] developing consequences

of this new definition of Entropy as an invariant Casimir function. In this twin paper, we study the
associated Euler-Poincaré equation {l;lt = ad* Q + @( ) and the stochastic extension based on a

new Stratonovich differential equation for the stochastic process given by the following relation by

9Q
These kind of stochastic equations have been also studied by Alex1s Arnaudon and Daryl Holm but
only in the restricted case of null-cohomology [32].

We give references from classical textbooks (as Souriau book and papers) to preprints because

mean of Souriau’s symplectic cocycle dQ + [ad* Q-+ @( )]dt + Z [ud* Q+ ®( )] odW;(t) = 0.

different approaches have been developed in parallel to address Lie groups statistics, as soon as mid of
last century, but without bridges between these disciplines which have developed specific tools to
address this problem. We have limited these references to main and important documents, which are
characterized as seminal and as tutorial of their domains. We have preserved references in French,
because some works as Souriau Lie groups Thermodynamics model have not been yet largely spread
towards the different communities.

3. Learning Inference Lie Groups Thermodynamics and Covariant Gibbs Density

We identify the Riemanian metric introduced by Souriau based on cohomology, in the framework
of “Lie groups thermodynamics” as an extension of classical Fisher metric introduced in information
geometry. We have observed that Souriau metric preserves Fisher metric structure as the Hessian of the
minus logarithm of a partition function, where the partition function is defined as a generalized Laplace
transform on a sharp convex cone. Souriau’s definition of Fisher metric extends the classical one in case
of Lie groups or homogeneous manifolds. Souriau has developed this “Lie groups thermodynamics”
theory in the framework of homogeneous symplectic manifolds in geometric statistical mechanics for
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dynamical systems, but as observed by Souriau, these model equations are no longer linked to the
symplectic manifold but equations only depend on the Lie group and the associated cocycle [33,34].
This analogy with Fisher metric opens potential applications in machine learning, where the Fisher
metric is used in the framework of information geometry, to define the “natural gradient” tool
for improving ordinary stochastic gradient descent sensitivity to rescaling or changes of variable in
parameter space. In machine learning revised by natural gradient of information geometry, the ordinary
gradient is designed to integrate the Fisher matrix. Amari has theoretically proved the asymptotic
optimality of the natural gradient compared to classical gradient. With the Souriau approach, the
Fisher metric could be extended, by Souriau-Fisher metric, to design natural gradients for data on
homogeneous manifolds. Information geometry has been derived from invariant geometrical structure
involved in statistical inference. The Fisher metric defines a Riemannian metric as the Hessian of
two dual potential functions, linked to dually coupled affine connections in a manifold of probability
distributions. With the Souriau model, this structure is extended preserving the Legendre transform
between two dual potential function parametrized in Lie algebra of the group acting transentively on
the homogeneous manifold.

3.1. Inference by Natutal Gradient and Legendre Structure

Classically, to optimize the parameter 0 of a probabilistic model, based on a sequence of
observations y, is an online gradient descent:

()"
Or < Op1— 1t t((;yet) (18)
with learning rate 1, and the loss function I; = —logp(y:/§:). This simple gradient descent has a

first drawback of using the same non-adaptive learning rate for all parameter components, and a
second drawback of non invariance with respect to parameter re-encoding inducing different learning
rates. Amari has introduced the natural gradient to preserve this invariance to be insensitive to the
characteristic scale of each parameter direction. The gradient descent could be corrected by I (9)_1

where [ is the Fisher information matrix with respect to parameter 0, given by:

. 9*logp(y/0)
1(9) = [gl]] with gl] = |:_E]/~P(]//9)|: &9186] ” (19)
ij
with natural gradient:
-1 alt(]/t)T
0 « Qt—l - mI(@) o0 (20)

Amari has proved that the Riemannian metric in an exponential family is the Fisher information
matrix defined by:

2
Sii=-— i with ®(0) = —logfe_<9'y>dy (21)
g 9000 i
R

and the dual potential, the Shannon entropy, is given by the Legendre transform:

B L 9P(0) _95(n)
S(n) =(6,n7)—®(0) withn; = 70, and 6; = o (22)
We can observe that ®(0) = —log [¢@%dy = —logy(6) is linked with the cumulant
R

generating function.



Entropy 2020, 22, 642 14 of 58

J.L. Koszul and E. Vinberg have introduced an affinely invariant Hessian metric on a sharp convex
cone through its characteristic function:

@ (0) = —log [ e ¥dy = —logyn(0) with 0 € Q) sharp convex cone
&

(23)
Y (0) = f e~ @Y dy with Koszul-Vinberg Characteristic function
o
Jean-Louis Koszul has introduced the following forms
1st Koszul form:
a=ddn(0) = —dlogn(6) (24)
2nd Koszul form:
y = Da = Ddlog 1 (0) (25)
with the following property of positive definitiveness:
2
(Ddlogpa(x)) () = ——| [ F(&)dE. [ G(&)ds - Lf F<a>.c<a>da] >0
Yo ()| o ] (26)
with F(&) = e 2% and G(&) = e 2%E(y, &)
Koszul has defined the following Diffeomorphism:
dl dE with et
1= = ~dlog (@) = [ épalehe withpale) = T @)
(o) o
with preservation of Legendre transform:
Sa(n) =(6,n) — Pq(0) with n = dP(6) and 0 = dSq(1n) (28)

3.2. Souriau Lie Groups Thermodynamique and Souriau-Koszul-Fisher Metric

This relations have been extended by Jean-Marie Souriau in geometric statistical mechanics, where
he developed a “Lie groups thermodynamics” of dynamical systems where the (maximum entropy)
Gibbs density is covariant with respect to the action of the Lie group. In the Souriau model, previous
structures of information geometry are preserved:

I(B) = -‘%’ with ®(8) = —log Mf e UEOPGA, and U : M — g* (29)
0P ds
50) = @) - 0@ with 0= TP e granap - B ey 60

In the Souriau Lie groups thermodynamics model,  is a “geometric” (Planck) temperature,
element of Lie algebra g of the group, and Q is a “geometric” heat, element of the dual space of the
Lie algebra g* of the group. Souriau has proposed a Riemannian metric that we have identified as a
generalization of the Fisher metric:

1() = [g5] with gs([8, Z1], [, Z2]) = @p(Z1, [B, Z2]) (31)

with @g(Z1, Z2) = ©(Z1, Z2) +(Q, adz, (Z2) ) where adz, (Z) = [Z1, Z,] (32)

Souriau has proved that all co-adjoint orbit of a Lie group given by O =
{Ad(’éF =g Fg g€ G}subset of g",F € g carries a natural homogeneous symplectic structure by
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a closed G-invariant 2-form. If we define K = Ad, = (Adgq)* and K.(X) = —(adx)" with
<Adz,F, Y> = <F,Adgf1Y>, Vg€ G,YegFeg whereif X € g, Ado(X) = ng_l € g, the G-invariant
2-form is given by the following expression oq(adxF,adyF) = Bp(X,Y) = (F,[X,Y]),X,Y € g.
Souriau Foundamental Theorem is that « Every symplectic manifold on which a Lie group acts
transitively by a Hamiltonian action is a covering space of a coadjoint orbit ». We can observe
that for Souriau model, Fisher metric is an extension of this 2-form in non-equivariant case
$p([B, Z1], 1B, Z2]) = ©(Z1, (B, Z2]) +4Q, [Z1, (B, Z2]] )-

The Souriau additional term ©(Z1, [8, Zs]) is generated by non-equivariance through Symplectic
cocycle. The tensor © used to define this extended Fisher metric is defined by the moment map
J(x), application from M (homogeneous symplectic manifold) to the dual space of the Lie algebra g*,
given by: N

O(X,Y) = Jx,y] — x, Jy} (33)
with J(x) : M — g" such that Jx(x) = (J(x),X), X € g (34)

This tensor © is also defined in tangent space of the cocycle 6(g) € g* (this cocycle appears due to
the non-equivariance of the coadjoint operator Ady, action of the group on the dual space of the lie
algebra; the action of the group on the dual space of the Lie algebra is modified with a cocycle so that
the momentu map becomes equivariant relative to this new affine action):

Q(Adg(B)) = Ady(Q) + 0(g) (35)

0(g) € g* is called nonequivariance one-cocycle, and it is a measure of the lack of equivariance of the
moment map.

O(X,Y) gxg— R with ©(X) = T.0(X(e))

XY - (0(X),Y) (36)
The cocycle should verify:
6(st) = J((st).x) — Ady, ] (x )
0(st) = [J(s.(tx)) — Ad:J(t.x)] + [Ad3] (t.x) - AdAd] (x) )
0(st) = 0(s) + Ad3[] (.x) Ad*]( )]
O(st) = O(s) + Adz0(t)
We can also compute tangent of one-cocycle 0 at neutral element, to compute 2-cocycle ®:
Ce,0(s) = (0(s), ) = (J(5:x), 0) = (Ad] (x), €) = (J(5:x),0) = (J (x), Ady1 )
T.0c(&) = (Tu] &p(x), C) + (J(x), ad:C) with & = Xy 5) )
Te0c(&) = X(j2),0 [ (x), O] + (J(x), [€,C])
Te0c (&) = =], &), O+ {J(x), [¢,C]) = ©(¢)
We can also write: Tx](ép(x)) = —ad;](x) + O(&, )
By differentiating the equation on afflne action, we have:
d](Xx) = adx](x) +dO(X) ,xe M, X € g (39)
d](Xx),Y) = (adx](x),Y)+(dO(X),Y),xe M,X,Y e g
(d](Xx),Y) = (J(x), [X, Y]) +(d6(X),Y) = {{J, X), <], V)}(*) (40)

(), [X,Y]) = (], X0, (J, V) (x) = ~(dO(X), Y)
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It can be then deduced that the tensor could be also written:

O(X,Y) =Jixy —Ux. Jy} = =(d0(X),Y) , X, Y e g (41)
with the cocycle property:
O([X,Y],Z2) +0O(X,Y],Z2) +O([X,Y],Z) =0,X,Y,Zeg (42)
By noting the action of the group on the dual space of the Lie algebra:
Gxg — g (s,&) - s& =AdE+6(s) (43)
Associativity is also derived:

(5182)& = Ady 5, & + O(s182) = Adg, Ad;, & + 0(s1) + Ad, O(s2)

5182

44
(s152)& = Adz, (Ad3,& + 0(s7)) + O(s1) = 51(528) , V51,52 € G, £ € g #

This study of the moment map | equivariance, and the existence of an affine action of G on g7,
whose linear part is the coadjoint action, for which the moment | is equivariant, is at the cornerstone of
Souriau theory of geometric mechanics and Lie groups thermodynamics.

3.3. Souriau Entropy and Souriau-Fisher-Koszul Metric Invariance under the Action of the Group and
Covariant Souriau Gibbs Density

In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in information
geometry has been replaced by invariance with respect to the action of the group. When an element of
the group g acts on the element 8 € g of the Lie algebra, given by adjoint operator Ad. Under the
action of the group Adg(f), the entropy S(Q) and the Fisher metric I(f) are invariant:

s|Q(Adg(B))] = S(Q)
1Ady ()] = 1(6)
In the framework of Lie group action on a symplectic manifold, equivariance of moment map

could be studied to prove that there is a unique action a(.,.) of the Lie group G on the dual g" of its Lie
algebra for which the moment map J is equivariant, that means for each x € M:

peg— Adg(ﬁ) = { (45)

J(@(x)) = a(g, J(x)) = Ady(J(x)) + 6(3) (46)

When coadjoint action is not equivariant, the symmetry is broken, and new “cohomological”
relations should be verified in Lie algebra of the group. A natural equilibrium state will thus
be characterized by an element of the Lie algebra of the Lie group, determining the equilibrium
temperature . The entropy s(Q), parametrized by Q the geometric heat (mean of energy U, element of
the dual space of the Lie algebra) is defined by the Legendre transform of the Massieu potential ®(g)
parametrized by B (®(p) is the minus logarithm of the partition function ¥ (B)).

A Gibbs state, in the usual sense, is a statistical state at which the entropy is stationary with respect
to all infinitesimal variations of the statistical state for which the mean value of the energy remains
constant. In the sense of Souriau, a generalized Gibbs state is a statistical state at which the entropy is
stationary with respect to all infinitesimal variations of the statistical state for which the mean value
of the moment map remains constant. This generalization is very natural, since the energy can be
considered as the moment map of the Hamiltonian action of the one-dimensional Lie group of time
translations. Furthermore, each generalized Gibbs state is associated to an element of the Lie algebra
of the group, called by Souriau a generalized temperature, and that the set of possible generalized
temperature is not, in general the whole Lie algeba, but an open convex subset of the Lie algebra,
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which may be empty, for which some integrals encountered in the expression of the generalized Gibbs
state are normally convergent. So, for some Lie groups, generalized Gibbs states do not exist, and there
is no Souriau Lie groups thermodynamics.

Souriau has then defined a Gibbs density that is covariant under the action of the group:

Pt (€) = e*PI-UOD = i with () = ~log [ UOPdx,,
¢ M
M

so g lOT P 47)
Q=" ="Truwpm, = Ju©p(e)daq
M M
We can express the Gibbs density with respect to Q by inverting the relation Q = _aq;éﬁ) —

O(B). Then peipps,0(&) = P B)~UE.07Q) with B = ®71(Q). All Souriau equations of Lie groups
Thermodynamics are illustrated in Figures 3 and 4.

G

Lie Group Lie Algebra

IB : (Planck) température
element of Lie algebra

Q :Hel slement of ducl O 0 =04d,(B))= 4d:(0)+6(g)

Figure 3. Fondamental Equation of Souriau Lie groups Thermodynamics. Q is the geometric heat in
dual Lie algebra, § is the geometric temperature in Lie algebra.

TEMPERATURE HEAT
In Lie Algebra G In Dual Lie Algebra

1 Q Gibbs canonical Q* g*
ensemble .
Ad (B) 4d;(0)+6(g)

o

s(0)=(B.0)-@(B)

Logarithm of Partition Function Entropy
(Massieu Characteristic Function)

Figure 4. Souriau Model of Lie Groups Thermodynamics.
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Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie algebra, thatis a
Riemannian metric tensor in the values of adjoint orbit of B, [, Z] with Z an element of the Lie algebra.
This metric is given for (8, Q):

8s([B,Z1], [B, Z2]) = (O(Z1), [B, Z2]) +4Q, [Z1, [B, Z2]]) (48)

where © is a cocycle of the Lie algebra, defined by ® = T.0 with 0 a cocycle of the Lie group defined
by (M) = Q(Adum(B)) — Ady,Q.

We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a generalization
of the Fisher metric, that we call the Souriau-Fisher metric, that preserves the property to be defined as
PP _ 22 log Y
B T T ot
We will establish the equality of two terms, between Souriau definition based on Lie group cocycle ®
and parameterized by “geometric heat” Q (element of the dual space of the Lie algebra) and “geometric
temperature” f (element of Lie algebra) and hessian of characteristic function ®(8) = —log i (B) with

respect to the variable f§ (as illustrated in Figure 5):

a Hessian of the partition function logarithm g5 = — as in classical information geometry.

1
1B, 241 [8.22) = (©(21), [ 22y +(Q (21, [p 2]}y = 550 )
If we differentiate this relation of Souriau theorem Q(Adg(ﬂ)) = Ady(Q) + 0(g), this

relation occurs:

T Z18) = 601,15, + (Q Ad 2, ([5,D) = B2, ) (50)
- i—%({zbm,zz» = 0(21,[8,22)) +(Q Ad 7, (I8, Z2))) = Op(Z1, [p, Z2)) (51)
=52 = sn(lp. 21, 5. 22) (52)

Souriau-Fisher Metric [ ( 3) =[gﬂ] with g, ([ﬂ YARV:NA ]) s
w1thG)(ZZ) 6(2,,Z,)+{0.] 2)

Non-null cohomology: adlhonal ferm from Souriau Cocycle Equwarlan’r KKS 2 form

O(X.,Y)= Jxy —{Jy.Jy} with J(x):M —>g suchthatJ, (x)=(J(x),X), X eq

(z.[5.2.))

O(X,Y):axg >R with ©(X)=T,0(X(e)) O(8.2)+(0.[8.2] )=
X,Y|—><®(X),Y> p € Ker @ﬁ
Equation i?tir:lg;r?t:f?::::;ynqmics Q(Adg ('B)) - Ad; (9 Q(g)

Figure 5. Souriau-Fisher metric as extension of KKS 2-form in case of non-null Cohomogy.

As the entropy is defined by the Legendre transform of the characteristic function, a dual metric
of the Fisher metric is also given by the hessian of “geometric entropy” S(Q) with respect to the dual

variable given by Q: an)‘
2
For the maximum entropy density (Gibbs density), the following three terms coincide: 2 lggzwn

9% log pg (&)
B LAt

describes the covariance of the log-likelihood gradient, whereas I(8) = E [(é -Q)(&- Q)T] = Var(&)

that describes the convexity of the log-likelihood function, I(f) = ] the Fisher metric that
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that describes the covariance of the observables. We can also observe that the Fisher metric I(8) = —%—%
is exactly the Souriau metric defined through symplectic cocycle:
[(B) = ©p(Z1,[B, Z2]) = 8p([B, Z1], [B, Z2]) (53)
. . () o) . . o
The Fisher metric I(8) = e has been considered by Souriau as a generalization of

“heat capacity”. Souriau called it K the “geometric capacity”.

3.4. Covariant Souriau Gibbs Density and Information Manifold Foliation

R.F. Streater has studied in 1999, Information Geometry for some Lie algebra where for certain
unitary representation of a Lie algebra, he has defined the statistical manifold of states as convex cone for
which the partition function is finite, making reference to Bogoliubov-Kubo-Mori metric. But Streater
has only developed the case with null cohomology for so (3) and sl (2,R) Lie alebras. Nevertheless, as
observed by R.F. Streater in his paper “Information Geometry for some Lie algebras” [35], referring
to Kirillov work and Roger Balian paper, “We can expect further natural structures to arise in this case.
Indeed, it is known () that the dual to the Lie algebra, which parametrizes the state-space in this case,
foliates into coadjoint orbits; there are also the level sets on the entropy; Kirillov form, and the BKM
(Bogoliubov-Kubo-Mori) metric, together make each orbit into kihler space, along the lines proposed by
Kostant. Motion along these holomorphic directions is nondissipative. The transversal to the orbits
is a real half-line, which represents the dissipative direction ... We study the case of sl (2,R) in the discrete
series of representations. We show the information manifold foliates into level sets of the entropy, each
being isometric to H, the Poincaré upper half-plane . .. The states of constant entropy are the hyperboloids and  is
the dissipative coordinate . .. For an integrable system described by a Lie algebra in a traceable representation, we
find that the information manifold foliates into complex spaces; the level sets of entropy can be given
a complex structure by the method of Kostant. Motion remaining on the complex surfaces is nondissipative,
whereas motion transversal to these surfaces is dissipative. In information geometry, the state is parametrized by
the canonical coordinates. Which function of them is measured by a thermometer? In our models, it is reasonable
to designate 1/ to be the temperature; it is a dissipative coordinate, and it increases with time, showing that the
system is thermalizing” .

4. Mathematical Definition of Souriau Moment Map

Previously, we have introduced the concept of Souriau’s moment map. In this chapter, we will
introduce a mathematical definition of this tool, as defined in Souriau’s book [36] with modern
notations [37-41]. Other details on moment map are also given in Jean-Louis Koszul’s Book [42].

4.1. Operations on Vector Fields

Consideramap F: X C RM 5 y c RN, y = F(x), the derivative of Fatx € X, DF : X — RNXM jg
given by:

Iy Iy’
Syl 9% ... 2y Sxl
o I I | Fl+ 162 < F(2
1= e : | = DF(x)(ox) = Lim ; (54)
oyN Iy N oxM -
ol T M
Second derivative is given by the linear map D?F : X — RN*MxM;
o| 2] = ¥ (55) = D2F(x) 5 55
) = 22 (ox) = DE(x) (0%) 65)
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Consider a vector Field V on X ¢ RM defined by: V : X ¢ RM — RM, operations on vector fields
are given by adjoint action and Lie bracket:

AdpV(y) = %[p 0/ oF1(y)| = DF()(V()) withx = F(y) (56)
U V1) = FAdeu V()| = DUG(V() =DV () () 67

O-form is a scalar, 1-form are row w = (wj---wp) in dual space. 2-forms can be regarded as
w1 o WIM
antisymmetric matrices (a)ij) with w(u,0) =ufl . . |v. m-forms are all scalar multiples

wmpm1 . WMM
of the standard volume form vol, defined by Vol(vy,--- ,vy,) = det(matrix with columns vy, ..., v).

4.2. Derivative Rules by Sophus Lie, Elie Cartan and Henri Cartan

With the following classical definitions:

e  Pull back: F'w is a p-form on X
Fa(oy,+ ,0p) = wp(x)(DF(x)(01), -+ , DF(x) (1)) (58)
e Interior product: iyw is the (p—1)form on M obtained by inserting V(x) as the first argument of w
ivw(vz, . vp) = w(V(x),vz, e ,vp) (59)

e  Exterior product: 0 A w is the (p + 1)-form on X where w is a p-form and 6 is a 1-form on M
(where the hat indicates a term to be omitted):

p
6 ANw UO/ ,0 2 UOI /’ai/ e lvp) (60)
i=0

e Lie derivative: Lyw is a p-form on M, and Lyw = 0 if the flow of V consists of symmetries of w:

Lva)(vl,m ,vp) = %etv*w(zjll . ,vp) (61)

t=0

dw is the (p+1)-form on M defined by taking the ordinary derivative of w and
then antisymmetrizing:
e  Exterior derivative:

|4
d UO/ / Z UO/ ’ 61/ Tty Up) (62)

=

o

p=0,[do); =diw;p =1,ldw];; = diwj - djw; ; p = 2, [dw);j = diwj + djwk + dkwij  (63)

From these definitions, the properties of the exterior and Lie Derivative were established by
Sophus Lie, Elie Cartan, and Henri Cartan:

Lyw = diyw + iydw (64)

(Elie Cartan equation)
ijyvj@ = ivLyw — Luivw (65)
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(Henri Cartan equation)
L[U,V]w = LvLua) - LuLva) (66)

(Sophus Lie equation)
4.3. Souriau Moment Map
Considering Manifolds and Lie groups, We define the tangent bundle TX of X as the disjoint

0
union of the Ty X, or the set of all pairs ( ; ) with x € X and ox € T, X. If F : X — Y is a smooth map

between manifolds, its tangent map is the map:

o)

A Lie group is a group G with a manifold structure such that the product (g, /) — gh and the
inversion ¢ > ¢! are smooth maps from G x G (resp. G) to G. Its Lie algebra is the tangent space
g = T,G at the identity element. A smooth action of G on a manifold X is a group morphism:

®:GxX - Diff(X)

68
(8,%) > g (©8)
The orbit of x € X is G(x) = {g.x: g € G}.
The tangent space to an orbit at x:
T.G(x) ={Z(x): Ze g} = g/g, with Z(x) = %etz(x)L:O and where
g =1Z€g:Z(x) =0} (69)

Let (M,0) be a connected symplectic manifold. A vector field 7 on M is called symplectic
if its flow preserves the 2-form: L,o = 0. If we use Elie Cartan’s formula, we can deduce that
Lyo = diyo + ipdo = 0 but as do = 0 then dio = 0. We observe that the 1-form i,0 is closed. When this
1-form is exact, there is a smooth function x —» H on M with:

ino = —dH (70)

This vector field 7 is called Hamiltonian and could be defined as symplectic gradient 1 = Vi, ,,, H.
Let a Lie group G that acts on M and that also preserve 0. A moment map exists if these
infinitesimal generators are actually hamiltonian, so that a map | : M — g* exists with:
izy0 = —dHz where
Hz =(](x),Z) (71)

The Poisson bracket of two functions H, H' is defined by:

{HH}=0(nn)= G(VsympH/, VsympH) with i,0 = —dH and

(72)
iyo = —dH’

If G is connected, then the moment map is G-equivariant if and only if it satisfies {Hz, Hz'} = H Z,2/]-

Souriau has proved thet every coadjoint orbit of a Lie group is a homogeneous symplectic manifold
when endowed with the KKS 2-form o(Z(x), Z’' (x)) = (x,[Z’, Z]), and conversely, every homogeneous
symplectic manifold of a connected Lie group G is, up to a possible covering, a coadjoint orbit of some
central extension of G. ¢ is G-invariant.
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5. Poincaré Unit Disk, SU(1,1) Lie Group and Souriau Moment Map

We will introduce Souriau moment map for SU(1,1)/K group that acts transitively on Poincaré
Unit Disk, based on moment map. More details on computation of moment map for SU(1,1)/K Lie
group is given in Appendix A of this document.

5.1. Poincaré Unit Disk and SU(1,1) Lie Group

The group of complex unimodular pseudo-unitary matrices SU(1,1), is the set of elements u
such that [43-52]:

UMut = M with M = ( +01 _01 ) 73)
We can show that the most general matrix u belongs to the Lie group given by:
a b 2 2
G=sU(1,1) = b /lal==1bl*=1,4abeC (74)
Its Cartan decomposition is given by:
a b 1 z a/lal 0 . 1 n\-1/2
= hz = =(1- 7
( boat ) Iﬂl( zt 1 )( 0 a/lal )Wlt z2=b) ( |Z|) 75
a b 1 z\ (41 7 a'/la’| 0 . a =bz"+a
(W fxﬁ'ﬂpwf 1X 0 wvm)mm{z=£% 76)

SU(1,1) is associated to group of holomorphic automorphisms of the Poincaré unit disk D =
{z=x+4iyeC/lzl <1} in the complex plane, by considering its action on the disk as g(z) =
(az+b)/(b*z+ a*). The following measure on Unit disk:

. 1 dzAdz
duo(z,z") = i o2 (77)
(1-1eP)
is invariant under the action of SU(1, 1) captured by the fractional holomorphic transformation:
dz’' A dz’”2 _ dzA dz"2 78)
/12 2
(1-eP)" (1-12F)
The complex unit disk admits a Kéhler structure determined by potential function:
d(7',z") = —log(1-2'z") (79)
The invariant 2-form is: )
10°P(z,z" 1 dzndz
Q= 10PET) e L dznds (80)
i Jzdz i 2\2
(1-12P)

which is closed dQ) = 0. This group SU(1, 1) is isomorphic to the group SL(2, R) as a real Lie group,
and the Lie algebra g = su(1,1) is given by:

_Jf-iron
g_{( wir )/reR,neC} (81)

with the bases (u1,up, u3) € g: uy = %( (1) E)l ),u2 = %( (1) (1) ),u3: %( ! 0 )
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with the commutation relation:
[us, up] = uy, [uz, u1] = —u, [up, 1] = —u3 (82)

Dual base on the dual space of the Lie algebra is named (u’i, u;, ug) € g*. The dual vector space
g" =su’*(1,1) can be identified with the subspace of sl(2, C) of the form:

. z x+iy | 0 1 0 i 1 0
ol A AT ) S

Coadjoint action of g € G on dual space of the Lie algebra & € g* is written g.&.

5.2. Coadjoint Orbit of SU(1,1) and Souriau Moment Map

We will use results of C. Cishahayo and S. de Bievre [53] and B. Cahen [54,55] for computation
of moment map of SU(1,1). Let r € R*", orbit O(rug) of ruj for the coadjoint action of ¢ € G
could be identified with the upper half sheet x3 > 0 of {5 = xqu} + xou + x3u5/ — x% - x% + xé = rz},
the two-sheet hyperboloid. The stabilizer of ruj for the coadjoint action of G is torus K =

i0 0
{( eo o0 ), 0 e R}. K induces rotations of the unit disk, and leaves 0 invariant. The stabilizer

for the origin 0 of unit disk is maximal compact subgroup K of SU(1,1). We can observe [54] that
O(rug) = G/K. On the other hand O(ru’;) = G/K s diffeomorphic to the unit disk D = {z € C/|z|] < 1},
then by composition, the Souriau moment map is given by:

J:D— O(rug)

_ z+z" z—z" * 142> » (84)
z J(z) = r((1—|z|2)u1 + i(1—|z|2)u2 + (1_|Z|2)u3)
J is linked to the natural action of G on D (by fractional linear transforms) but also the coadjoint action
of G on O(rug) = G/K. J7! could be interpreted as the stereographic projection from the two-sphere S
onto CU o [56]. In case r = § where n € N, n > 2 then the coadjoint orbit is given by O, = O((;)
i0

p E_Ois ) 0 R} with
Lie algebra Rus. O, = O(C,) is associated with a holomorphic discrete series representation 7, of G by
the KKS (Kirillov-Kostant-Souriau) method of orbits.

with &, = gug € g, with stabilizer of &, for coadjoint action the torus K = {(

J:D— O,
1+ |«

nf_z+z" = z=z" * (85)
2=z = f(@iﬁ)”l RN <1—|z|2>”‘3)

Group G act on D by homography g.z = ( ;l* ; ).z = % This action corresponds with

coadjoint action of G on O,,. The Kirillov-Kostant-Souriau 2-form of Oy, is given by:
Q. (0 (X(0),Y(Q) =<(C[X,Y]),X,Yegand L€ O, (86)

and is associated in the frame by | with:

wn = ——dz NdZ" (87)
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with the corresponding Poisson Bracket:

df dg  df 3g) (88)

, 2
gl =i1-ep) (L 55 - £ F

It has been also observed that there are 3 basic observables generating the SU(1,1) symmetry on
classical level:

D—-R D—R D—R
2o k(z) = B | e k() =1 ) ze k() = 25 (89)

1|22 1|z 1z
with the Poisson commutation rule:
{ks, k1} = kp, {k3, ko} = —kq,{k1, ko} = —k3 (90)

(kq, k2, k3) vector points to the upper sheet of the two-sheeted hyperboloid in R3 given by kg - k% - k% =1,
whose the stereographic projection onto the open unit disk is:

(k],kz,k3) S H+ — D

_ kot k-1 jargz
2= 9% T V11t

©1)

Under the action of g € G = SU(1,1) = {( ;* ab* )/Ial2 —bP=1abe C}:

(k_ k3)_(k2+ik1 k3 ) 1( 2z 1+zf

=—= i f in:
ks ki ks ky — iky 2R\ 14 2 27t ) is transform in

(k’_ K, ):[ k(g7'z) k(g2 ]:g_l( ko ks )(g_l)t ©2)

K, K, kg(g_l.z) k+(g_1.z) ks ki

This transform can be viewed as the co-adjoint action of SU(1,1) on the coadjoint orbit identified
with k% —k? — k3 = 1. We can also observe that the quotient SU(1, 1) /K is isomorphic to the upper sheet
of the hyperboloid described by kg - k% - k% = 1, by the following parametrization (7, ¢), given by

7 = (cosh 1, sinht cos @, sinht sin @), and its stereographic projection onto the inside of the unit disk,
parametrized by ¢ = tanhZe .

6. Covariant Gibbs Density by Souriau Thermodynamics for Poincaré Unit Disk

6.1. Fourier Transform, Laplace Transform and Lie Group Representation Theory

In Souriau Lie Group Thermododynamic, we have to consider Laplace Transform defined on
coadjoint orbits to define Massieu Potential Function and Gibbs density. This problem has been solved
in the domain of Kirillov Representation Theory. Representation theory studies abstract algebraic
structures by representing their elements as linear transformations of vector spaces, and algebraic
objects (Lie groups, Lie algebras) by describing its elements by matrices and the algebraic operations
in terms of matrix addition and matrix multiplication, reducing problems of abstract algebra to
problems in linear algebra. Representation theory generalizes Fourier analysis via harmonic analysis.
The modern development of Fourier analysis during XXth century has explored the generalization of
Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally
compact non-Abelian groups. This has been solved by geometric approaches based on “orbits methods”
(Fourier-Plancherel formula for G is given by coadjoint representation of G in dual vector space of
its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin, Kostant, Souriau,
Duflo, Guichardet, Torasso, Vergne, Paradan, etc.) [57-68].
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For classical commutative harmonic analysis, we consider the following groups:

G = T" = R""/Z" for Fourier series, G = R" for Fourier Transform
G group character (linked to ) : xy : G —» Uwith U = {z € C/|z| = 1}

G = {x/x1-x2(8) = x1(8)x2(g)} and Fourier transform is given by : (93)
p:G—>C p:6-C
g e(@) = [o0ox(@7ldx  x = 9) = [e(g)x(g)dg
G G

For non-commutative harmonic analysis, Group unitary irreductible representationis U : G —
U(H) with H Hilbert space and character by xy(g) = trUy. Fourier transform for non-commutative
group is U, = f ¢(g)Ugdg with character xy(g) = trU,. If we describe group element with

G

exponential map Uy, = f P(X)Uexp(x)dX, we have:
g

A . . *
Uy = dimT-HG.f(lP-f_l) HG.f: L/1\0uv1lle meas. on (?\ =G.f,feg
ith 94
A wi HGAf(lP-]'_l)i Integral of ¢.j wrt e &)
¢.j!: g — g, Four. Transf.
where -
, 2. 1 x 2" x\,(x
i(X) = (det s(adx))"/? with s(x) = —(—) = sh(—)/(—) (95)
nz;) (2n+1)1\2 2)°\2
Kirillov Character formula is:
Xu(exp(X) = Uiy = X [ € ¥duo ) %)
(@]
, , o odx /2 _ pmadx/2\\1/2
f I ¥dpo (f) = j(X)trUep(x) with j(X) = (det(W)) 97)

We will use Kirillov representation theory and his character formula to compute Souriau covariant
Gibbs density in the unit Poincaré disk. For any Lie group G, a coadjoint orbit O C g has a canonical
symplectic form wg given by KKS 2-form. As seen, if G is finite dimensional, the corresponding
volume element defines a G-invariant measure supported on O, which can be interpreted as a tempered
distribution. The Fourier transform (where d is the half of the dimension of the orbit O):

I(x) = f e*i</"x>%dwod withAeg'andxeg (98)
Ocg*

is Ad G-invariant. When O C g" is an integral coadjoint orbit, Kirillov formula, given previously,
expresses Fourier transform J(x) by Kirillov character xo:

(99)

I(x) = j(x)xo(e*) where j(x) = detl/z(w)

ad(x/2)
Xo is, as defined previously, the “Kirillov character” of a unitary representation associated to the orbit.

6.2. Souriau Covariant Gibbs Density in Poincaré Unit Disk for SU(1,1) Lie Group

In the following, we will give the full development to compute the Souriau covariant Gibbs
density. As the Gibbs density is not defined for all geometric temperature, as observed by Souriau,



Entropy 2020, 22, 642 26 of 58

we have used his approach by considering a one-parameter subgroup of the Lie group generated
by exponential map from a one element of Lie algebra given by geometric temperature. The subset
of Lie algebra where the Gibbs density is deduced from the contraints related to this one-parameter
subgroup generation.

a

Considering the Lie group SU(1,1) = {( b

b
. )/a,b eC, la?-bP? = 1} and its Lie algebra given

by elements su(1,1) = {( Tl; —TZ'r )/r €ERne C}. A basis for this Lie algebra su(1,1) is (11, up, u3) €

) (1 0 0 1 0 —i .
g with u; = é( 0 -1 ),uz = —%( 10 )andu3 = %( N )w1th [u1,u3] = —up, [uq,uz] =

us, [MZI 1/[3] = —Uup.
The compact subgroup is generated by u;, while u; and u3 generate a hyperbolic subgroup.

z X+ )/x,y,zeR} with the

The dual space of the Lie algebra is given by su(1,1)" = {( Cxtiy -z

1 j 1
basis(uj,u;,u’é)eg*withu; :( 0 _01 )’”E =( (1) (l) )andu§=( _01 0 )

Let consider D = {z € C/|z| < 1} be the open unit disk of Poincaré. For each p > 0, the pair (D, a)p)
dzndz
(1-kP)

is a symplectic homogeneous manifold with w, = 2ip where w), is invariant under the action:

SU(1,1)xD - D
(8,2) > gz = i -
This action is transitive and is globally and strongly Hamiltonian. Its generators are the hamiltonian

vector fields associated to the functions:

. 1+ 2 w_ Pz—2
z,72%) = L o(z,7) = 5 ——
hee) = T (e x) = 25

z+z*
1-zf2

J3(z,2°) = =p (100)

The associated moment map J : D — su*(1,1) defined by J(z).u; = Ji(z,z*), maps D into a
coadjoint orbit in su*(1,1). Then, we can write the moment map as a matrix element of su*(1,1):

pHEL  pz= o pzi
J(2) = Iz 20, + oz, 2)uy + Ja(z,2)uy = | TR TR
PigE TPiE TP
(101)
1422 5 2
112 112 "
J(z) = (220 + (2,2 )u + Ja(z, 2 )uy = p| 1 HD e
1-EF 1P

The moment map ] is a diffeomorphism of D onto one sheet of the two-sheeted hyperboloid in
su*(1,1), determined by ]% —]% —]% = p?,J1 = p with Jiuy + Jous + Jauy € su(1,1). We note O;“ the
coadjoint orbit Adg (1) of SU(1, 1), given by the upper sheet of the two-sheeted hyperboloid given by
previous equation. The orbit method of Kostant-Kirillov-Souriau associates to each of these coadjoint
orbits a representation of the discrete series of SU(1,1), provided that p is a half integer greater or
equal than 1 (p = %,k € N and p > 1). When explicitly executing the Kostant-Kirillov construction,
the representation Hilbert spaces H,, are realized as closed reproducing kernel subspaces of LZ(D, wp).
The Kostant-Kirillov-Souriau orbit method shows that to each coadjoint orbit of a connected Lie group
is associated a unitary irreducible representation of G acting in a Hilbert space H.

Souriau has oberved that action of the full Galilean group on the space of motions of an isolated
mechanical system is not related to any equilibrium Gibbs state (the open subset of the Lie algebra,
associated to this Gibbs state is empty). The main Souriau idea was to define the Gibbs states for
one-parameter subgroups of the Galilean group. We will use the same approach, in this case We
will consider action of the Lie group SU(1,1) on the symplectic manifold (M,w) (Poincaré unit disk)
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and its momentum map | are such that the open subset Ag = {ﬁ €g/ f e IEPEN(2) < +oo} is not
D

empty. This condition is not always satisfied when (M, w) is a cotangent bundle, but of course it is
satisfied when it is a compact manifold. The idea of Souriau is to consider a one parameter subgroup
of SU(1,1). To parametrize elements of SU(1, 1) is through its Lie algebra. In the neighborhood of the
identity element, the elements of g € SU(1,1) can be written as the exponential of an element f3 of its
Lie algebra:

g =exp(ef) withpeg (102)

1

The condition g*Mg = M for M = ( 0

_01 ) can be expanded for ¢ << 1 and is equivalent to

BTM + Mp = 0 which then implies = ( 11; _IZ,r ), r € R,n € C. We can observe that rand n = ng +in;

contain 3 degrees of freedom, as required. Also because detg = 1, we get Tr(B) = 0. We can then
exponentiate § with exponential map to get:

00 k
g=exp(ep) = ) : ,f!)
k=0

(3 in) "

If we make the remark that g2 = ( lt —TZ'r )( g n’r ) = (‘r}|2 —rz)l, we can developed the

no—i
exponential map:

COSh(SR) + irsinhR(eR) nsinhlgsR)

— exp(eB) — |+ 1 | withR2 = P =2 104
§ = OPlep) ( g S cosh(eR)—z‘r—““hé‘R)] 1 i o

L. . 2 . .
We can observe that one condition is that )17| —12 > 0 then the subset to consider is Ag =

*

n

states of the full SU(1,1) group do not exist. However, generalized Gibbs states for the one-parameter
subgroups exp(af), p € Ag, of the SU(1,1) group do exist. The generalized Gibbs state associated
to f remains invariant under the restriction of the action to the one-parameter subgroup of SU(1,1)
generated by exp(¢ep).

To go futher, we will develop the Souriau Gibbs density from the Souriau moment map J(z) and

{ﬁ = ( ’ TZ'r ),r €ERne C/|r]|2 -2 > O} such that fe_U(Z)'ﬁ)d/\(z) < +o0. The generalized Gibbs
B D

the Souriau temperature € Ag . If we note b = L

1
[ . ], we can write the moment map:

1-Jz?
e 1 0
_ 1-zf? -2 | +_ + ' =
J(z) =p %2 _Hll% = p(2Mbb™ - Tr(Mbb")I) w1thM—[ 0 -1 ] (105)
1-|z 1-|z

We can the write the covariant Gibbs density in the unit disk given by moment map of the Lie group
SU(1,1) and geometric temperature in its Lie algebra f € Ag:

I8 dz Adz*
ihs(2) = =————— where dA(z) = 2ip———— 106
PGivbs (2) [eIEPdA(z) (2) p(l—|z|2)2 (106)
D
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1+|z|§ =22 .
_ _ r
_<p( (1-EF) (=P ’7r )>

2z A4 n* —i
o~ (p(2IbT=Tr(IbbN)).B) (-1 (1P
. - - 107
PGints (2) [eI@PaA(z) [eI@PaA(z) (107)
D D

To write the Gibbs density with respect to its statistical moments, we have to express the density
with respect to Q = E[J(z)]. Then, we have to invert the relation between Q and g, to replace

* (9ﬁ

this last variable g = ( 11; —TZ'r ) € Agby p = ©@1(Q) € g where Q = 226 _ ©(p) € g" with

P(p) = —log [e™V (2))d)(z), deduce from Legendre tranform. The mean moment map is given by:
D

1+|w|22 —2w*2
Q=E[J(z)] = E|p (1‘2':5' ) (111“"1'0'2 where w € D (108)

(1-fwl?) (1-wP?)

This mean moment map can be obtained by Karcher mean computation on the one-sheet hyperboloid
corresponding to the coadjoint orbit. For the dual pairing, we can observed that J(z) = J1(z,z")u] +
2 . .
]2(212*)1/[;_ + ]3(212*)1’[; € £c§F with ]1 (Z/Z*) = P%/ ]2(Z/Z*> = glz__élz/ ]3(212*) = _pﬁ and ﬁ =
Pru + pauz + Paul € g* with p = 2(r, —nr, —n1) , n = nr + iy
The integral of normalization in Gibbs density could be computed through Kirillov character

X ir
TR
formula by Xm(exp(( * —‘x ))) = j(x)7" f e S o @+ where
. O+ m—

m—1

X

j(x) = detl/z[sinh(ad( x/2 o ))/ad( x/2 o )] _ sinh(x)

max (m—l)xlﬂw|2
with following relation ;= j(x) = [e 1-fuf?
D

1 "
(1_|w‘2)2dw Adw*.

Recently, Enrico De Micheli [69] has introduced a Laplace-type transform (the so-called Spherical
Laplace Transform) with a connection to the Non-Euclidean Fourier Transform in the sense of Helgason,
and the principal series of the unitary representation of SU(1,1).

6.3. Extension to SU (p,q) Unitary Group for Siegel Unit Disk

Mode details are given in Appendix B, on parameterization of SU(1,1) and extension to SU (p,q).
To address computation of covariant Gibbs density for Siegel Unit Disk, we will consider in this section
SU(p, q) Unitary Group:

A 0

G = SU(p,q) and K = S(U(p) x U(q)) = {( 0 D

)/A e U(p),D € U(q),det(A)det(D) = 1} (109)

We can use the following decomposition for g € G:

(A B c (I, BDV\A-BD!C 0 I, 0
g_(c D)EG’g_(o I, )( 0 p \ plc 1, (110)
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and consider the action of ¢ € G€ on Siegel Unit Disk SD = {Z € M,,(C) /I, — ZZ* > 0! given by:
8 g Pq P g y

(A B c (I, BDV\A-BD!C 0 I, O
g_(c D)EG’g_(o I, )( 0 p \ plc 1, (1)

Benjamin Cahen has study this case and introduced the moment map by identifing G-equivariantly g*
with g by means of the Killing form f on g*:

g" G — equivariant with gby Killing form (X, Y) = 2(p + q)Tr(XY)

The set of all elements of g fixed by K is h:

h = {element of G fixed by K} , & € h, & = i A( —ql, 0 )

0 pl (112)

= (&,12,Z7]) = =2iA(p +q)*Tr(ZZ*),VZ € D
Then, we the equivatiant moment map is given by:

VX egt, ZeD,¥(Z) = Ad*(exp(-Z1)C(exp Zt exp Z))&o
Vg€ G,ZeDtheny(g.2) = Adyp(2) (113)
Y is a diffeomorphism from SD onto orbit O(&p)

with:
w(z) - ia| =7 1(_”ZZ+_I ) ozl -2+2) 1_1 (114)
~p+),-2t2) 2+ (ply+9z"Z)(1;- 2" 2Z)
zrepz) = | 1 Al-272)" 115
C(exp exp )_ : y (115)

7. Lie Groups Thermodynamics for SE(2) Lie Group

After SU(1,1) Lie group with null cohomology and then without Souriau one-cocycle, we will
consider Souriau model for SE(2) Lie group with non-null cohomology and then with introduction of
Souriau one-cocycle [70].

We will consider first SO(2) Lie group:

. | cosp  —sing
SO(2) = {R(p = | sing  cosg ]/(p € R} (116)

A vector at the identity to SO(2) is given by:

dRy
dt

0 1

——nﬁwithﬁ—[ 10

],ST =9 1=_93 (117)

t=0

We consider the special Euclidean group SE(2) = SO(2) x R?.

SE(2) = {[ RO"’ ; ]/R(p €S0(2),7 € RZ} (118)
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the group operation is given by:

[ Rpy T ][ Rp, T ]:[ RpiRp, RpyT2+m1 ]:[ Roi+p, RpyT2+ 11 ]

o 11 o 1 0 1 0 1 (119)
= (er Tl)'(R(PZI TZ) = (R(P]-'F(PZIR({)l T2 + Tl)
-1
R T R_ —-R_y, T -1
[ (3{71 11 ] — [ O‘Pl 1<P1 1 ] = (R(Pl, 7:1) = (R_(Pl, _R—<P1T1) (120)
The Lie algebra se(2) of SE(2) has underlying vector space R® and Lie bracket:
(&u) €se(2) =RxR>= [ —38 g ] € se(2) (121)
Lie bracket is given by:
(1), (n,0)] = (0,50 + nSu) (122)
Adjoint action of SE(2) is given by:
R, 7T &9 u || R.y, —-R_,7 &3 E9t4+Ryu
— % P ¢ — P
Ad(ry 1) (/1) "[ 0 1 ][ 0 0 ][ 0o 1 ]“ [ 0 0 (123)
Ad(R(p,T) (5r u) = (EI R(pu + ésT)
Coadjoint action of SE(2) is given by:
AdzR(p,T) (m,p) = (m + IRyp.1, R(pp) (124)
The moment map J : R> — se*(2) of SE(2) is defined by:
Jiguy () = J(x)-(&,u) (125)
with the right action of SE(2) on R?:
x.(Rp,7) = R_(x—1) (126)
the infinitesimal generator of (&, u) € se(2) has the expression:
dlx.(Reg, t A[R_te(x —t
(& u)ge(x) = a2 dtf i A téf; il E8x—u (127)
t=0 t=0

Let g (%) : R? — se*(2) be the moment map of this action relative to the symplectic form, we can
compute it from its definition:

A] () (%)-y = “20((&, ) g2, y)

with w((&u)ge,y) = w(ESx—u,y) = (EIx—u).Jy = (Ex+ Ju).y

= d (g ) (x).y = —2(Ex + Ju).y (128)
= Jieuy () = =2(3IP + Tux) = =2(L 1P, -Ix).(, 1)

Jeay(x) = J(x).(&u) = J(x) = =2(3II?, -Jx) , x € R?
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We then compute the one-cocycle of SE(2) from the moment map:

0((Rp.c)) = (0Rp, 7)) = Adi 11(0) = J(=R-y7)

(129)
6((Rp.c)) = =2(3l1tl, IR-p7) = ~2(3l1el*, R_yy57)
Coadjoint orbit of SE(2) are generated by:
Omp) = {A’ERW)(m, p) + 0((Rp, 7))/ (Ry,7) € SE(z)} 130
O(m,p) = {(x Rzpt— IIzI%, R_pp - ZR_(p_%T)/(R(p,T) € SE(Z)}
The Souriau Symplectic form in this case of non-null cohomology is given by:
w(mrp)(m’,rﬂ’)(”dzg,u) (m’,p") - (0’28”)’”211,0) (m’,p") - (0,250)) = p'.(=&3v+nBu) 4+ 2u.Jv 151)

with (m’,p") = (x = R_gp.T = ltl>, R_pp = 2R_,_57) € Oy ) € R®

With the expression of moment map, we can compute Souriau covariant Gibbs density of
Maximum Entropy.

1
Considering the symplectic form w({,v) = C.Iv with 3 = [ _01 0 } on R?, we have seen that
the action of SE(2) is symplectic and admits the momentum map, J(x) = —(%lellz, —Sx) ,x €R2.

Souriau Gibbs density is defined for generalized temperature f € (2 = {(b, B) €se(2)/b<0,Be RZ}
and given by:

e ()P 3 blixIP-B.9x
, — 132
PGibbs (X) [ 0@PaA(x ) f B S5 ) (132)
R2
The Massieu Potential could be computed:
o(p) = log f HT D% ()= log(~ e 51PF ) (133)
R2
By derivation of Massieu potential, we can deduce expression of Heat:
- : V15
Qe = {(m,M) €se’(2)/m+ 5= < 0}
‘9‘1> ﬁ) LIBI] (134)
Q=250 = (1- 1L, 15) = 0(p)
We can the inverse this relation to express generalized temperature with respect to the heat:
-1 1) 1)
p=07Q) = ((m+FIMP) ,(m+ SIME) M (135)

We can the express the Gibbs density with respect to the Heat Q which is the mean of moment map:

L2 -M.9x
m+ 3 IMI2)

e (
LI -M.3x
fe (m+1M112) dA(x)
RZ

Peisss(x) = with (m, M) = E(7(x)) = |25, ~3x)| = [E(IxIR), 23E(v)]

(136)
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So we can rewrite the Gibbs density:

%Hxl\2+25(x)41x
e (~E(IKI)+20E()1?)

PGibbs (X) = R (137)
f e (ZE(IKI2) +21E)I?) ) dA(x)
We can also provide a Fisher metric in dual Lie algebra as hessian of the Entropy:
_ _ M1
5(Q) =(Q B) ~ (p) = 1 +log(2n) + log| —m ~ — (138)
1 oI MT
Triter (Q) = (m+ 1MIF) [ M AP ] (139)

and as (m,M) = E(J(x)) = E[ ( lIxI1%, —Sx)] = [ (|x|| ) ZSE(x)], Fisher metric in dual space of Lie
Algebra parameterization could be written:

T
I (29E(x)) ] (140)

Irigher (Q) = (2E)I - E(”x“z))_l[ 29E(x) 20EQ)IP + E(lP)

8. New Entropy Definition as Generalized Casimir Invariant Functions for Coadjoint and
Adjoint Representation

In his paper written in 1974, Jean-Marie Souriau has observed that if we consider the heat
expression Q = dﬁ , that we can write 6® —(Q,9B) = 0. For each 6f tangent to the orbit, and so
generated by an element Z of the Lie algebra, if we consider the relation CIJ(Adg (ﬁ)) =P(B) - <6( g‘l), ﬁ)

and we differentiate it at ¢ = e using the property that O(X,Y) = —(d0(X),Y), X,Y € g, we obtain
(Q,[8. 2]y +©(B,Z) = 0. Souriau has stopped by this last equation, the characterization of Group
action on Q = ‘9%. Souriau has also observed that S[Q(Adg(ﬁ))] = S[Ad(*g(Q) + G(g)] = 5(Q). We
propose to characterize more explicitly this invariance, by characterizing Entropy as an invariant
Casimir function in coadjoint representation.

From last Souriau equation, if we use the identities § = $3, adgZ = [B, Z] and (:5(5, Z) =(0(p),Z),

= 3 Q’
then we can deduce that <ad* Q+ @( ) Z> = 0,YZ. So, Entropy S(Q) should verify ad Q +

@(%) = 0, characterizes an invariant Casimir function in case of non-null cohomology, that we propose

. . . . N _ 95 oH S 9H\ _
to write with Poisson brackets, {S,H}é(Q) = 0 where {S, H}®(Q) = <Q, [E’ % >—|— ®(8Q' aQ) =0,
VH:g" >R, Qeg.

In a Poisson manifold, Casimir functions S € C*(g"), in case of null cohomology, are functions
whose Poisson brackets will all functions vanish, {S, H}(Q) = 0,¥S € C®(g*),Q € g*. In the dual of the
Lie algebra of a connected Lie group G, the Casimir functions are the Ad*-invariant functions, because if
S,H e C®(g')and Q € g*, then {S,H}(Q) = <Q, [3753' %D <Q Ildas 8Q> < a5 Q, aQ> vanishes for

all H € C*(g") if and only if ad*,; Q = 0. A function is S on g* is Ad*-invariant if g S =S, Vg € G where
)

Lie group G acts on functions on g* by (¢.5)(Q) = S(Ad* Q) Qeg,SeC®(g) g€ G, and where

= (140, 58) =

infinitesimal characterizations of Ad*-invariant functions on g, dt (Ad* Q)

exp(tx) =0

<ad* Q, x> The symplectic leaves of a Poisson manifold are contained in the connected components

of the level sets of the Casimir functions and Casimir function is constant on a symplectic leaf. Coadjoint
orbits lie on level sets of the Casimir functions, which are conserved quantities. Casimir functions
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Level sets are symplectic manifolds. Coadjoint motion of the moment map Q(t) = Ad; ( t)Q(O) for a

solution curve g(t) € C(G) take place on the intersections of levels sets of the Hamiltonian and the
Casimir functions. Alexis Arnaudon has studied stochastic coadjoint processes whose solutions lie on
coadjoint orbits.

We have observed that {S, H}@(Q) = <Q, [3—5, % > + é(g—é, %) =0,VH : g" - R Q € g,
that shows that Souriau Entropy is a Casimir function in case with non-null cohomology when an
additional cocycle should be taken into account. Indeed, infinitesimal variation is characterized

by the following differentiation: %S(Q(Adexp(tx)ﬁ))’t_o = %S(Adzxp(tx)Q—l—G(exp(tx)))‘ =

—<ad"85Q + ®<g_é), x>. We recover extended Casimir equation in case of non-null cohomology
9Q

verified by Entropy, ad”,; Q + @(S%) = 0, and then the generalized Casimir condition {S, H}5(Q) = 0.
Q

Hamiltonian motion on these affine coadjoint orbits is given by the solutions of the Lie-Poisson
equations with cocycle.

The identification of Entropy as an Invariant Casimir Function in Coadjoint representation is also
important in Information Theory, because classically Entropy is introduced axiomatically. With this
new approach, we can build Entropy by constructing the Casimir Function associated to the Lie
group and also in case of non-null cohomology. Igor V. Shirokov [71-75] has proposed a method for
constructing invariants of the coadjoint representation of Lie groups with an arbitrary dimension and
structure based on local symplectic coordinates on the coadjoint orbits. The idea of the method of
constructing coadjoint invariants is to construct the canonical transition to the Darboux coordinates on
the orbits of the dual Lie algebra g* of maximal dimension dual to the Lie algebra g of the Lie group G.
These relations provide invariants of the coadjoint representation of the Lie group G.

This geometric framework unifies several earlier works on the subject, including Souriau’s
symplectic model of statistical mechanics, and approaches developed in Information Geometry and
Quantum Information Geometry. This approach helps to identify the common geometric structures
appearing in various domains from statistical mechanics to statistical learning. The emphasis is put on
the role of the affine equivariance with respect to Lie group actions, as extension of the Fisher metric in
presence of equivariance and the associated Lie-Poisson equations with cocycle (affine Lie-Poisson
equations). The entropy of the Souriau model as a Casimir function can be used to apply a geometric
model for energy preserving entropy production on Lie algebras. We can exploit the geometric
framework of this new equation to build geometric numerical integrator schemes for some of the
equations associated to Souriau’s model and its polysymplectic extension. This new equation is
important because it introduce new structure of differential equations in case of non-null cohomology
and for an arbitrary Hamiltonian H : g* — R: ‘Z—? = ad*% Q+ @(%)

The equation % = adéﬂ Q+ @(%) is important because it allows extending stochastic
perturbation of the Lie—Poissor? equation with cocycle within the setting of stochastic Hamiltonian
dynamics, which preserves the affine coadjoint orbits. We can extend model for stochastic geometric
modeling in fluid dynamics via variational principles described in [32,76]. This extension results

in the new Stratonovich differential equation for the stochastic process dQ + [ad}HQ + @(%)]dt +
aQ

gl {ad*{mi Q-+ @(‘;—g)] o dWj(t) = 0.
Pl L

TﬁiQs new equation is also very usefull for geometric symplectic Lie group integrator for Lie-Poisson
equations with cocycle that preserves the affine coadjoint orbits for general Hamiltonian. This equation
is also very relevant in the framework of dynamics with Casimir dissipation/production, to formulate
a dynamical geometric model for dissipation/production of this Casimir. This allows to extend the
general Lie algebraic approach developed in [77,78] for Casimir dissipation, to take into account of a



Entropy 2020, 22, 642 34 of 58

cocycle, and to a wider class of dissipation. Paper [17] will exploit this new Casimir equation in case of
non-null cohomology.
This equation d—? =ad, Q+ @((‘%) could be used also to make the link with 2nd principle of
a9

Thermodynamique, that will be deduced from positivity of Souriau-Fisher metric:
aQZ%gm—MmWM&%:m%Q+®@5
(0 8)+ (ot 0+ O(3) )~ 2 = (0 %)+ (a1, @)+ +(0(2) 1)~
&= <Qfd_€>+ Q.[%5.8]) +©(%5.8) - % = <Q’d_€>+®ﬁ(8Q’ﬁ) <%§Z_f>
% — (0 %) +8y(35.5) - (32, %) witn 22 = 0

a8 — 6ﬁ<‘9H [-3) 0, VH (link to positivity of Fisher metric)

/\/\

(141)

=
uy
I
W
U

2%

= @g (B,B) = O because B € Ker®ﬁ

Entropy production is then linked with Souriau-Fisher structure, dS = @5( ﬁ)dt with @5( 20 ﬁ) =
é(%, ﬁ) + <Q, [%, ﬁ] > Souriau tensor related to Fisher metric.

8.1. Casimir Invariant and Generalized Casimir Invariant

Hendrik Brugt Gerhard Casimir, a Dutch physicist, studied what is called Casimir operators
and Casimir invariants (H. Casimir and Van der Waerden studied the SU(2) group, the group of
isospin/angular momentum, as the model of the algebraic approach to the study of the unitary
representations of semi-simple compact Lie groups). Kirillov has explained that Casimir operators
are in one-to-one correspondence with polynomial invariants characterizing orbits of the coadjoint
representation. Solutions are not necessarily polynomials and the nonpolynomial solutions are called
generalized Casimir invariants. For certain classes of Lie algebras, all invariants of the coadjoint
representation are functions of polynomial ones. In physics, Hamiltonians and integrals of motion of
classical integrable Hamiltonian systems are not polynomials in the momenta [71-75,79-92].

8.2. Souriau Entropy as Generalized Casimir Invariant in Coadjoint Representation

In Souriau Lie groups Thermodynamics, we will see that coadjoint orbits lie on level sets of the
Entropy that could be considered as a Casimir invariant function:

S:g"—>R

Q' 5(Q) (142

We will consider first the case of null-cohomology, Entropy as Casimir invariant function is a conserved
quantity, because Casimir function has null Lie Poisson brackets functions [93,94]:

(S, HNQ) = (Q[45, 98]) = 0,¥H : g* > R, Q € 8", (A, B) = B(A, B) Cartan-Killing form

(143)
with 95(Q) = £5(Q+6Q)|,_, = (6Q. )

We can observe that § = gg, then:

oH oH . .
<Q, [ﬁ, @D = <Q, adﬁ@> =0,YH:g" > R,Qeg",ad,b= [a,b] (144)
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We can also write:

S oH OH .
<Q,[E,E]> <Q ad g5 9Q> <d35Q aQ>:0,VH:g - R (145)

It means thatad”,. Q = ad,Q =0,8 = Q=0
95 B ﬁ Q- 20 (LS)

a0 %
with Ci.‘]. the structure tensor, we observe that this equation is in fact the Casimir condition for invariant
function in coadjoint representation as we will see hereafter. The restriction of the Lie-Poisson bracket
to an orbit generates a symplectic structure on the orbit, called the KKS (Kirillov-Kostant-Souriau)
structure, or the canonical symplectic structure. Casimir function is characterized as a quantity which
commutes with each linear functional on the Poisson manifold, and then it is conserved by dynamics
of any Hamiltonian.
Given a Hamiltonian H : g* — R, the equation of motion for Q € g* is:

dQ dQ
dar dar

95 'We can remark that if we note (ad* Q) = Cé‘jad*
j

= [{Q H} = ad’;HQ withH=5= =% =(Q,S) =ad’,Q =0 (146)
aQ

In case of non-null cohomology, the Lie Poisson brackets functions are given by:

(5, Hi5(Q) = (Q,[5, %))+ 0(L, &) =0,vH: g > R,Qe g’

90’ 90 90’ 90
with ©(X,Y) = Jix,y) — {Ix, Jy} where Jx(x) = (J(x), X) (147)
O(X,Y):gxg— R with @(X) = T.0(X(e))

XY - (O(X),Y)
That we can develop in the following:
— aSs 2 JdS\ 9H\ _
15 Hig(Q) = (Q [ % 5 ) + (o(5) 3) =0
—(0) = oH 95 oH\ _
(5, Hlg(Q) = <Q'“dg% aQ> +(e(%) %) =0
. (148)
(S, Hig(Q) = <ad95Q, ;%> +(0(%). 58) =0
9Q
VH,{S,Hl5(Q) = <ad’;5Q +0(%5)+, 3%> —0=ad, Q+0(55) =0
Q «9Q

We have found the generalized Casimir equation for Entropy in the non-null cohomology case:

(S, Hig(Q) =0 (149)

That could be also written:

a5
ad’}s Q+ ®( 8Q) 0 (150)

This equation was observed by Souriau in his paper of 1974, where he has written that geometric
temperature f3 is a kernel of O, that is written:

B € Ker®; = (Q,[8,Z]) + ©(8,Z) = 0 (151)
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That we can develop to recover the Casimir equation:
= (QadsZ) + 6(8,Z) = 0= <ad*Q, z> +0(8,2) =0
p=125= <ad* Q,z>+®(gg,z) <ad* Q+0(%5) >_ 0,vYZ (152)
= ad* Q +6(53)=0

Then the generalized Casimir Equation in non-null cohomogy is given by:

i A o
(adgéQ)gr@(aQ) Cl.].ad(g%)iQk+®]—0 (153)

Given a Hamiltonian H : g* — R, the equation of motion for Q € g* is:

dQ
dt

o JH aQ . as
dHQ+®(aQ)w1thH S:)E ad’, Q+®(8Q) 0 (154)

Level sets of the Casimir Entropy function, on which the coadjoint orbits lie, are symplectic manifolds.

8.3. Souriau Entropy Invariance in Coadjoint Representation

If we note An(g*) the space of analytic function on the dual space of the Lie agebra g*, a function
F* € An(g") is a Casimir invariant if for any g € G, X € g*, we have F*(AdZ,X) = F*(X). We have
observed previously that Souriau’s Entropy analytic function S(Q) defined on dual space of the Lie
algebra g* by Legendre transform of Massieu Characteric analytic function ®(B) (minus logarithm
of Laplace transform) defined on Lie algebra g was an invariant function under the affine coadjoint
action S [Q(Adg(ﬁ))] = S[Adz,(Q) +6( g)] = 5(Q). In case of null-cohomology, Souriau cocycle cancels

0(g) = 0, and we recover Casimir invariant function in coadjoint representation S [Ad;(Q)] = 5(Q).

We can then observe that Souriau Entropy is an extended Casimir invariant function in case
of non-null cohomogy. This characteristic of Souriau Entropy could be a new characterization of
Entropy. In Souriau Lie groups Thermodynamics, Entropy S(Q) is a generalized Casimir invariant
function for coadjoint representation in case of non-null cohomology, and Massieu Characteristic
function by Legendre duality is a generalized Casimir function for adjoint representation.

We will explain how to prove that Souriau Entropy is invariant under the action of the group,
starting from its definition:

50 = @) - 0@ with 0= TP e granap - B ey (155)
with
P(B) = —log fe_<u(‘f)’ﬁ>dAm andU:M - g* (156)

M

Considering Souriau Entropy S(Q) where the heat Q = (5 )
Lie algebra is parameterized by € g an element of the Lie algebra, the Lie group G acts through g € G
by adjoint operator Adg, the entropy is given by S[Q(Adg(ﬁ ))] with Q(Adg(ﬁ )) given by fundamental
Souriau equation:

€ g" an element of the dual space of the

Q(Adg(B)) = Ady(Q) + 6(g) (157)
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The invariance of Souriau Entropy is deduced from the following developments:

peg— Adg(p) = T(Adg< p) = [ Ay,

M
w(adg(p) = [ AP, = [ UAAP-0DD

M
¥(Adg(p)) o W(ﬁ) (158)
9(8 ! —Ad* ) = Y(Adg(B)) = €‘<Ad8719(g),ﬁ>q,(ﬁ)

(p) = - IOgT(ﬁ) = @(Adg(§)) = @(8) - (0(s7).8) = () + (4d:_,013). )

Based on this expression of Massieu Characteristic function transform by action of the group, we can
use Legendre transform to study how Souriau Entropy is changed:

S(Q) = (Q.B) - (p) = S(Q(AdgB)) = (Q(AdyB), AdgB) — D(Adgp)

)
{ Q(Adg(B)) = Ady(Q) +0(g)
(A ) —log‘F(Ad )) d< (g 1) >

L S0l ~ a0 ot Aag) - o ) -0 5
= 5(Q(Adg)) = (Ad5(Q) + 6(2), Adp) - (Ad_,0(2), ) - ()
s(Q(Adgp) = (d:_, Ady(Q) + Ad:_ ()ﬁ>—<Ad;_19(g),ﬁ>—<I>(ﬁ)

AT AL (Q) = Q= 5(Q (Adgﬁ))—«z B —@(B) = S(B)

We finally prove that Souriau Entropy is invariant in coadjoint representation S (Adz, Q) +6( g)) =S(B)
in general case of non-null cohomology, that we could write S(Adg(Q)) = S(B), if we note affine
coadjoint action Adg,(Q) = Ady(Q) + 0(g). This is also true in case of null-cohomology when the
Souriau cocycle cancels 0(g) = 0, and we recover classical generalized Casimir invariant function
definition on coadjoint representation for Entropy S(Ad;(Q)) = S(B) generalized Casimir invariant

function definition on adjoint representation for Massieu Characteristic function q)(Adg(ﬁ )) = O(p).

8.4. Souriau Entropy Given by Casimir Invariant Functions Equations

Based on development given in the following we can state that:
As the Entropy S is a generalized Casimir invariant function in the coadjoint representation,
S(Acl;‘5 h) = S(h), then S should be solution of the following differential equation:

ClQx éQ) =0,i,j,k = dimg, with{

CZQk = Cij(Q) = Bjj

o 160
Bo(x, ) = Byl = (Q,[x, 1) (160

where Ci.‘]. is the structure tensor of the Lie algebra g in the basis (e, ey, ...,e,), while X; are the
coordinates in g* in the basis (el,ez, . ,e”) defined by <ef,el-> = 6;j. The structure tensor s given by
[@(er), P ler)] = Clipler) with ¢ (er) = ijXkaiX], Ji=1,...,n

8.5. Characterization of Generalized Casimir Invariant Functions in Coadjoint Representation

We will describe recent characterization of generalized Casimir invariant functions by Oleg L.
Kurnyavko and Igor V. Shirokov [72,73,75] who have proposed Algebraic method for construction of
Casimir invariants of Lie groups coadjoint representations (see Appendix C). Modern invariant theory
based on geometric methods, which was credited classically as non-constructive, has some exception
admitting a constructive solution related to the constructing invariants of Lie groups representations.
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Let T be a connected Lie group, T(G) a representation of the group G in the linear space V, T the
operators associated to the representation of the group G on the linear space V, then the invariants are
given by the following equation:

F(Tyx) = F(x) ,x € V,g € G, Tg € T(G), F(x) € C*(V) (161)

With the properties that:
-1
Te=1,Tgg, = Tg Ty, Tet = (Tg) (162)
Solution is given by the following differential equation:
i

i J A7 i i. = ] = i
a tk].x E 0 with tk] o5 andk=1,...,dimG (163)
L]

g=e

t;{j are elements of the matrices of the Lie algebra representation basis of G.

That we can write {;, = —tl]x] - and #.F(x) = 0.
If we consider the dual space V* the co-tangent representation is given by:

(T"(8)X, T(g)x) = (X, x) (164)

And co-represnetation invariants are given by:

d

HF(X) = 0with t; = tk] laX

(165)
They have underlined the relationship between invariants of representations and conjugate
representations, where the algebraic construction of Lie groups representations invariants are given by
invariants of the conjugate representation with respect to the invariants of the original representation.

Shirokov Theorem 1. Let F(x) be a non-degenerate invariant of the representation T(G), then conjugate
representation invariant can be found by Legrendre tranform:

; JF JF
F'(X) =x'X; — F(x) = {x, X) — F(x) with X = B(xx) such that X; = % (166)
x
and also the converse problem:
; JF*(X . JF'(X
F(x) =x'X; —F(X) = (x, X) - F(X) withx = 85( ) such that x' = 8)((‘ ) (167)
1

Shirokov has considered F(x) the representation invariant T(G), and F*(X) the representation
invariant T*(G) conjugate to T(G), with the conditions:

. 9F(x) . IF(X)
_ ] 7 — l, - e
g = 0and X =0 (168)
JoF* X, dF k
HX T = B X [¥ (X0 Xi — F((X)) | = X, Xi 4 £ X G — . X 0 2
,9F() 92k IF(x) IE(X) vksi _ ()BF()Q_
t;]XI an tl Xza;{ oxk _'_t;/ o 6 t;] oxi oxk a;((] (169)
|y, OF(X) _ 9F(x) _
t;]'Xl IX; t;] J7ond =0
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Invariant Casimir Functions of the coadjoint representation has been studied for completely
integrable Hamiltonian systems, as classical systems on the orbits of the coadjoint representation.
Oleg L. Kurnyavko and Igor V. Shirokov have considered the relationship between invariants of
representations of Lie groups and their conjugate dual representations.

Considering the coadjoint action given by:

(AdyX,x) = (X,Adg1x), g€ G X eg'xeg (170)
Invariants of a coadjoint representation are called Casimir functions, with the property:
F(AdyX) = F/(X) (171)
the infinitesimal invariance is given by the equations:

IF* (X
cij(x)% = 0 with C;j(X) = cfjxk, i,j,k = dimg (172)
]

The number of functionally independent invariants is given by the rank of the matrix C;;(X),

called the index of the Lie algebra g: indg = dimg" — suprankC;;(X).
Xeg*
From these adjoint and coadjoint representation, Shirokov has introduced the following theorem:

Shirokov Theorem 2. Let P(Adgx) = F(x) be a non-degenerate invariant of the adjoint representation Adg,
then conjugate representation invariant, invariant of coadjoint representation Adg, can be found by formula:

, oF oF
F'(X) =x'X; — F(x) = {x, X) - F(x) with X = % such that X; = # (173)
xl

and also the converse problem, let F*(Ad}X) = F*(X), invariant of coadjoint representation Adg is given by:

: oF* (X . OF(X
F(x) =xX;—F(X) = (x,X) - F(X) withx = 8§( ) such that x' = 8)((- ) (174)
1
Nota:
OF* (X Ck Xy = Cii(X) = B;j
kX, %) _o,;, jk = dimg, with{ % (X) = By (175)
X Bx(x,y) = Bijx'y! = (X, [x, y])

8.6. Constructing Generalized Casimir Invariant Functions in Coadjoint Representation

L. V. Shirokov has proposed a method for constructing invariants of the coadjoint representation
of Lie groups with an arbitrary dimension and structure based on local symplectic coordinates on the
coadjoint orbits. Oleg L. Kurnyavko and Igor V. Shirokov have also proposed a general method for
constructing Casimir invariants.

We will give some other developments of Casimir Invariant Functions by A.T. Fomenko
and V.V. Trofimov, related to Orbits of the coadjoint representation and the associated canonical
symplectic structure.

The coadjoint orbit Oy, passing through the point / € g* is given by

Oy, = {Adyh/g € G where h € g° (176)
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T,0y = {ad;h/p € g} cgheg

dlac: i (177)
V= ——g €TOy,peg
t=0

Let (eq,...,en) basis of g, (el, . ,e”) basis of g*, with <ei, e]-> =0,

flrwar ||l e

ar = ar
-0 t=0 (178)

_ <h _"[Adexp—we_"] >
t=0

’ ar
t—
=<(h,—[p,eil) = —()ad;h, ei> = (v,e;) = v = —adyh

h=he =>v =

o d[(h,Adexp_tpeiﬂ

v = ar

Kirillov, Kostant and Souriau have introduced a KKS 2-form on co-adjoint co-orbits that then inherit a
structure of homogeneous symplectic manifold:

EneTOp = {ud}h/p € g} cg heg

179
(&) = w(ady b ady h) = (I, [E1,m]) with & = ad; land 1 = adj (179)

This KKS 2-form w is invariant with respect to the coadjoint action a)g(Ad}é, Ad}n) = wp(&,n):

wglAdse, Adyn) = g Adyad; b Adsads, )

with g = Ad*h , &= udzlh ,n=adyhand f€G,g heg
Adjad; b= oy, , (Adih)and Adyadyh = ad, | (Ad7h)
woladie, adn) = wgfat,, . (Adin)ady, | (adh))

weladse, adn) = wgfaty, . gady, ) = (g [Adsr, Adgn])

a)g(A 5,Ad;q) — (g, Adyle1,m]) = <Ad}_1 2, [51,q1]> with i = Ad"_,g
wglAdie, Adyn) = (€1, m))

wg(Ade, Ad;n) = (&)

(180)

The symplectic structure is given due to the property that dw = 0, that could be proved making link
with Jacobi identity.

Let gradgye,m such that w (v, gradge,m) = v(m) = Z ?Jl am smooth vector field on M

{m,n} = w(gradskewm/ gradskew”) by Wij (gradskewm) (gradskewn)] (181)
i<j
with ( gmdskewm) Z a)l/ am (m,n) =Y, &' g;’f :99:1

i<j
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Jacobi identity can be computed:

{m, {n,p}} = —(gradsiem){n, p} = —Lgradg,,min, p} with L¢: Lie derivative
If & = gradgye,,m

Le(n,p} = Ls(wij a—”a—p) = Le(w)T 22 22 4 i 25 20y ij an 2Lep) (182)

ox! JxI Ixt gx/ ox oxl ox
iion 0 iion 9
Le{n, p} = Le(w)" 25 25 4 {&n, p} + {n, Ep} = Le(w) " 2% <5 — {m, n), p} — {n, {m, p}}

= [, {n,pl} -+ Lo, ), p) -+ o, fm, pl) = Le ()22 22

Using Elie Cartan formula Lzw = i(&)dw + di(&)w. If & is a Hamiltonian vector field, di(&)w = 0 and
then Lrw = i(&)dw. If dw = 0, then the Jacobi identity is satisfied {m, {n, p}} + {{m, n}, p} + {n, {m,p}} = 0
and conversely.

Let consider the Berezin Bracket:

17K oxt 9

{m,n} = —ijxk gm In vtk [el-, ej] = Cé‘jek
where (ey, e, ...,e,) basis of Lie algebra g, (el, ..., e”)basis of dual Lie algebra g* (183)

of corresponding coordinates XL, ..., x" for g x1,...,x, for g*
This Berezin Bracket is given by:

{m,n}, = dmx(ad;n(x) (x)) = (ad;n(x) (x))(dmx)

_ _ k. Jno : _ 0 _ 0
{m,n}, = (x, [dny,dm,]) = Cz’jxka_;TZ with dn, = a—;’iei ,dmy, = a_gef

(184)

om dn
oxt gx
verify jacoby identy {m, {n, p}} + {{m, n}, p} + {n, {m, p}} = 0 and then dw = 0.

We will see that differential equation for (semi-)invariants of the coadjoint representations could
be established. We will note An(g*) the space of analytic function on the dual space of the Lie agebra

g*. A function F* € An(g") is an invariant if for any g € G, X € g*, we have F*(Ad(’éX) = F*(X), and is

By developping Berezin Bracket {m, n} = —Ci.‘].xk with [ei, e j] = Ci.‘].ek, we can prove that the bracket

semi-invariant if F*(Adz,X) = x(g)F*(X) where x(g) is a character of the Lie group G.
We have a representation of Lie algebras ¢ : g — Vec(T') defined on basis (ey, ¢, ..., e,) in g where
Vec(T) is the space of vector fields on I an open subset in g*, given by:

9
dle) = CiXpmm i=1,...,n (185)
Fre

where Ci.‘]. is the structure tensor of the Lie algebra g in the basis (e, ey, ...,e,), while X; are the

coordinates in g* in the basis (61, e, ..., e”) defined by <ef , el-> = 0;j. The representation is not dependent

of the choice of the basis, with the property: [¢(e;), p(e;)] = Ci.‘jq‘)(ek).
We have the property, that:

d"F(Ad*,.h
% = [(=o(&)"F](h) (186)

t=0
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This result is obtained by the following development:

dF*(Ad;gh) o d<Adzt(h X,) g a(nAd_iee;)
ar =X at =ox; T
t=0 t=0 t=0
d(hAd _se: . , . ,
< d; t.{e> — <h,—[5, ei]) = —<h, CZ£]€k> with [(S, ei] = [576]', ei] = C];iéjek
d(nAd,yzei) = (187)
’d—;—ff’ — <hkek, —C§i516k> — _cljﬁithk
t=0
dP*(Ad*, 1 -
Tt o gz 6 = oo
t=0
We use then Taylor expansion of F*(Ad;(S h) given by:
F(Ad’,ch) Z (h).+" (188)

We can observe that F* is invariant if F*(Ad;éh) = F*(h) and then (—¢(&))"F* = 0 or ¢(&)F* = 0 that

could be written Ck thk oF (5) =0.
If F*is sem1—1nvar1ant of the coadjoint representation of group if and only if:

¢(e))F* = —A;F with A; = dx(e;) (dx : derivative of yx at the group G identity element

F(Ad:,. 1) = x(ef)F () with x(ef€) = ()
[(=p(&))"F](h) = x-()F"(h) (159)
= F'(Ad', ) = [1+ y —["*,f”"tn].?(h)

n=1

9. Conclusion: Lie Groups Thermodynamics for Machine Learning

With Lie groups Thermodynamics, we have presented Souriau tools to extend Gibbs density
for Lie groups [95-107]. We can make reference to other explorations of Lie Group Representation
theory to built exponential families [108-111] or Information Geometry in Quantum Physics [112-123].
Gibbs density estimation is a basic tool in statistical macine learning. Classically, we can associate
to any posterior distribution an effective generalized geometric temperature, given by an element
of the dual space of the Lie algebra, relating it to the Gibbs prior distribution. Classification rules
could be introduced by Gibbs measures defined on parameter sets and depending on the observed
sample value. A Gibbs measure is a special kind of probability measure used in statistical mechanics
to describe the state of a particle system driven by a given energy function at some given temperature.
Gibbs measures will be realized as minimizers of the average loss value under entropy constraints.
In this extension for Lie groups, an important tool is the log-Laplace transform related to the Massieu
Characteristic Function in Thermodynamics (a re-parameterization of the free energy by Planck
temperature preserving Legendre transform with respect to Entropy). As we want to deal with Lie
group data for Machine Learning, we will consider tools very similar to those used in statistical
mechanics to describe particle systems with many degrees of freedom. Classification rules could be
described by Gibbs measures defined on parameter sets and depending on the observed sample value.
Comparing any posterior distribution with a Gibbs prior distribution make it possible to provide a
way to build an estimator which can be proved to reach adaptively at the best possible asymptotic
error rate (by temperature selection of a Gibbs posterior distribution built within a single parametric
model). Estimators derived from Gibbs posteriors show excellent performance in diverse tasks, such as
classification, regression and ranking. The usual recommendation is to sample from a Gibbs posterior
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using MCMC (Markov chain Monte Carlo). With covariant Souriau Gibbs density, it is possible to
extend MCMC and Gibbs sampler approach for Lie Groups Machine Learning.

More recently, the use of perturbation techniques has been proposed as an alternative to MCMC
techniques for sampling. These results have been extended in conditional random fields loss, proving
that the maximum in expectation with low-rank perturbations, provides an upperbound on the log
partition (what we call Massieu characteristic function). New lower bounds on the partition function
and new unbiased sequential sampler for the Gibbs distribution based on low-rank perturbations have
been introduced. All these methods are based on sampling from the Gibbs distribution, upper-bounding
the log partition function. All these results are synthetized in [124], where they also propose a new
general method, with connections to the recently-proposed Fenchel-Young losses [125], using doubly
stochastic scheme for minimization of these losses, for unsupervised and supervised learning. This is a
generalization to the Gibbs distribution. Methods for learning parameters of a Gibbs distribution on
data (y;);—,_, are based on maximization of the likelihood:

~
: >

= _Zlogpczbbse (vi) = Z<y“ 0) —logy(0) (190)
i=1

that is optimized by gradients methods using the empirical log-likelihood, given by:

Volu(0) = §1n — Egipps,0[Y] (191)

For this method of moment-matching, the expectation of the Gibbs distribution is a challenge in some
cases. This approach has been replaced by computing pg, with a method called “perturb-and-MAP” to
learn the parameters in this model as a proxy for log-likelihood. This minimization is equivalent to
maximizing previous equation by substituting the log-partition log (6) with:

F.(0) =E[F(0+¢€V)] = E[max(y, 0 + ¢V)| with a random noise vector

yeC

(192)
eV,e>0

This approach could be linked with the use of Fenchel-Young losses [125]. In the perturbed model, the
Fenchel-Young loss is given by:

Le(6;y) = Fe(0) + eQ(y) = (0,y) = Dea(y, §:(0)) (193)
with loss gradient VL:(6;y) = VF:(0) -y = y:(0) —y where y;(0) = E, ,ly] =

E argmacx(y, 0+ €V>] and D, (y, 7;(0)) Bregman divergence associated to (). As F, generalizes the
ye

log-sum-exp function on the simplex, its dual () is a generalization of the negative entropy (which is
the Fenchel dual of log-sum-exp).These connections have been studied in [126].

To conclude, we have seen that Lie group tools based on Representation Theory and Orbits
Methods could be used with Souriau-Fisher Metric on Coadjoint Orbits as an extension of Fisher Metric
for Lie group through homogeneous Symplectic Manifolds on Lie group Co-Adjoint Orbits.

We can then beneficiate of different tools based on Souriau Lie groups Thermodynamics and
Kirillov Representation Theory, as illustrated in Figure 6, for:

e  Supervised Machine Learning

o  Geodesic Natural Gradient on Lie Algebra: Extension of Neural Network Natural Gradient from
Information Geometry on Lie Algebra for Lie Groups Machine Learning.
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o Souriau Maximum 2164Entropy Density on Co-Adjoint Orbits: Covariant Maximum Entropy
Probability Density for Lie groups defined with Souriau Moment Map, Co-Adjoint Orbits Method
& Kirillov Representation Theory

o Symplectic Integrator preserving Moment Map: Extension of Neural Network Natural Gradient
to Geometric Integrators as Symplectic integrators that preserve moment map

e Non-Supervised Machine Learning

o Souriau Exponential Map on Lie Algebra: Exponential Map for Geodesic Natural Gradient on Lie
Algebra based on Souriau Algorithm for Matrix Characteristic Polynomial

o  Fréchet Geodesic Barycenter by Hermann Karcher Flow: Extension of Mean/Median on Lie
group by Fréchet Definition of Geodesic Barycenter on Souriau-Fisher Metric Space, solved by
Karcher Flow.

o Mean-Shift on Lie groups with Souriau-Fisher Distance: Extension of Mean-Shift for Homogeneous
Symplectic Manifold and Souriau-Fisher Metric Space.

© Geodesic Natural
Gradient on Lie Algebra

Extension of Neural Network
Natural Gradient from Information
Geometry on Lie Algebra for Lie
Groups Machine Learning

& Souriau Maximum Entropy
Density on Co-Adjoint Orbits

Covariant Maximum Entropy
Probability Density for Lie Groups
defined with Souriau Moment
Map, Co-Adjoint Orbits Method &
Kirlov Representation Theory

Symplectic Integrator
preserving Moment Map

Extension of Neural Network
Natural Gradient to Geometric
Integrators as Symplectic
integrators that preserve moment
map

Souriau-Fisher Metric
on Coadjoint Orbits

Extension of Fisher Metric for Lie
Group through homogeneous
Symplectic Manifolds on Lie
Group Co-Adjoint Orbits

Lie
Group

Machine
Learning

S

Souriau Exponential Map
on Lie Algebra

Exponential Map for Geodesic
Natural Gradient on Lie Algebra
based on Souriau Algorithm for

Matrix Characteristic Polynomial

Fréchet Geodesic Barycenter @
by Hermann Karcher Flow

Extension of Mean/Median on Lie
Group by Fréchet Definition of
Geodesic Barycenter on Souriau-
Fisher Metric Space, solved by
Karcher Flow

Mean-Shift on Lie Groups

with Souriau-Fisher Distance

Extension of Mean-Shift for
Homogeneous Symplectic
Manifold and Souriau-Fisher Metric
Space

Figure 6. Supervised/Non-Supervised Machine Learning based on Lie Groups Thermodynamics.

[There is nothing more in physical theories than symmetry groups except the mathematical
construction which allows precisely to show that there is nothing more] « Il n’y a rien de plus dans les
théories physiques que les groupes de symétrie si ce n’est la construction mathématique qui permet
précisément de montrer qu’il n’y a rien de plus ». Jean-Marie Souriau (see Figure 7)

La notion classique d’ensemble canonique de Gibbs est étendue au cas d'une variété symplectique
sur laquelle un groupe de Lie posséde une action symplectique (“groupe dynamique”). La définition
rigoureuse donnée ici permet d’étendre un certain nombre de propriétés thermodynamiques classiques
(la température est ici un élément de I'algébre de Lie du groupe, la chaleur un élément de son
dual), notamment des inégalités de convexité. Dans le cas de groupes non commutatifs, des
propriétés particuliéres apparaissent: la symétrie est spontanément brisée, certaines relations de
type cohomologique sont verifiées dans I'algebre de Lie du groupe [The classical notion of Gibbs’
canonical ensemble is extended to the case of a symplectic manifold on which a Lie group has a
symplectic action (“dynamic group”). The rigorous definition given here makes it possible to extend
a certain number of classical thermodynamic properties (the temperature here is an element of the
Lie group algebra, heat an element of its dual), notably inequalities of convexity. In the case of
non-commutative groups, particular properties appear: the symmetry is spontaneously broken, certain
relations of cohomological type are verified in the Lie algebra of the group]. Jean-Marie Souriau,
Mécanique Statistique, Groupes de Lie et Cosmologie, colloque CNRS n°237 — Géométrie
Symplectique et physique mathématique
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o frenie Raw Yaic

Figure 7. Jean-Marie Souriau, student at ENS Paris 1942.
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Appendix A. Coadjoint orbits and Moment Map for SU(1,1)

We give more details developpements to obtain SU(1,1)/K coadjoint orbit and moment map
from [127]. SU(1,1) has been intensitively studied for Coherent states in Quantum Physics [128].
If we consider hyperbolic Group SL(2, R)

SL(2,R) = {( ’Z Z ) € GL(2,R)/mn —pq = 1} (A1)

Elements of SL(2, R) could be written with Iwasawa decomposition:

g =kg.az.ny withkg € K,ar € A,npy €N (A2)
cosO —sin@ ‘ —i

_ _ < . -ig _ __m-ig

K {k@ (sin@ 030 )/0_9<2n}w1the —\/m2_+q2
t

A—{“t—(; €9t )/ifeR}witheZt—mz+q2 (A3)

N=lm=(1 " )perl witnp= oo

1P lo 1 T

K is a maximal compact sub-group of Ggy.

Appendix A.1. Group of Unit Disk Automorphisms
Consider SU(1,1) sub-group of SL(2,R) given by

SU(1,1) = {A = ( ;‘ ; )/det(A) —P-pP=1,4abe R} (Ad)

The following interior automorphism that transforms SL(2, R) to SU(1, 1), inducing an isomorphism
between them:

SL(2,R) — SU(1,1)
1 —i ) (A5)

1 . . _ 1
g+ CgC w1thC—\/§(1 ;
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SU(1,1) acts on the Poincaré unit disk D = {z € C/|z| < 1}:

4. _az+b . 4 [a b
.szw_a*wnhg (b* e eSU(1l,1)andze D (A6)

Valentine Bargmann has parameterized SU(1,1):

bl <1 s
_ b ; 2\~
V=a a= e“"(l —ly
{ w = arg(a) mod 27 4 | | 172 (A7)
b= e’“’y(l - |y| )
Then SU(1,1) = {(y,a))/b/| <l,we]-m, —i—n]} with Group composition law given by:
(y,@) =) :
V" [V + )/6_2““ ][1 + )/7/* p2ia’ ]
1 —2iw’ * ,—2iw’ -1 (A8)
W =w+ +zllog([l+y ye ][1+yy ] )mod27'c
g= _ (—7/621“’, _w)
SU(1,1) is topological product of unit disk and circle.
Appendix A.2. Universal covering of SL(2,R)
If we consider G = {()/, w)/ |y| <lwe R}, the following mapping:
©:G - SU(L1) with Ker® = {(0,2kn) /k € Z) (A9)

O(y,w) = (y,w mod 2m)

Topological product of unit Disk D dans C and real straight line R is the universal covering of SU(1,1).

—i0
e?e ) /0 € R} and the subgroup

A maximal compact subgroup of SU(1,1) is CKC™! = {( EO

for G is ©'(CKC™) = {(0,6)/6 € R.
Pukanszky and Sally have defined irreductible unitary representation of SL(2,R), classified in

principal serie, discrete serie and complemantary serie.
The Lie algebra g of G and SU(1,1) is given by:

1{1 0 1/0 1 1{0 -1
11_5(0—1)12 (1 o)l 5(1 0) (A10)
with the commutation relation: [ly,[1] = I, [, b] = =1y, [, L] = L.
The dual space of the Lie algebra g* of g to g thanks to Killing form:

B{ Z xil;, Z yiliJ = 2(x1y1 + X212 — XoY0) (A11)
=120 =120
Appendix A.3. Coadjointes Orbits of SU(1,1)

Considering adjoint representation Ad : g — g, and coadjointe representation as transpose linear
mapping of Ad,-1, written by Ad, = (Adg—l)*, Ady:g'— g
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Let f = (1,0,0) in base {I1, I, lp} with 7 > 0 coadjoint orbit of f is:

B 4, [a c
Oﬂ_{gfg /g_( b d)GSL(Z’R)} (A12)
O, = {n(1 +2bc),n(bd — ac), n(bd + ac)/a,b,c,d € R with ad — bc = 1}
Stabilizer of f is
t
Gi(f) = {geG/g.f:f}:AU{—A}withA:{at:( % e(jt )/teR} (A13)
SL(2,R) = K'NA’withA” = AU{-A} where N = {nb—((l) ?)/beR} and K =

cos —sin0 . N . -
{kg = ( sinb  cosO )/0 <0< n} and as SL(2,R)/G(f) is a bijection with O, then O is in

bijection with K’N, diffeomorph to K/{I;}xN. Then all element x € O, can be written through this
bijection x = kgny, kg € K’, 11, € N. Oy, issetof points | = (x1,x2,%0) € g*such that: x% —|—x§ —xé = 172 >0
a one sheet hyperboloid in g*.

We will study discrete sequence.

Appendix A.4. Quantization of Kiahler Manifold

Let (M, w) a Kalherian manifold of dimension 2n (complex manifold with complex structure J)
with 2-form ¢(X,Y) = w(X, JY), a Riemannian structure on M.
We have seen that SU(1, 1) is conjugate of SL,(R) in SL(2,R)

( /? f )esu(1,1),( ch Z )ESLZ(R)

: o (A14)
a B\ _ 41 —ia b i i
SR P H)
e +i-0] _ | aew—ite) _ | = Blcer -]
a=s5|(a+d)+ilb-c a—-a =ilb-c b=5lla-a)-(B-p
{ Ala-d-ib+0] ") prp=a-d ) c=Ha-a)+@-py A
d ]

p-f = -ib+c)

0 -1
h > % (respectively f = (O, 0,h+ %) with i < —%), the coadjoint orbit of f is:

Let f = (0,0, 1) i base (i, o, o} where I; = %( 10 ),12 _ %( 01 ),10 _ %( o ) with

O = {gfg‘l/g = ( Z 2 ) € SL(Z,R)}
(1n|-3 )signh (1h|-3 )signh (A16)
Oy = {(|h| - %)signh(ac +bd); —5—— & (d2 +c% - (az + bz)),‘ — & (dz + 2 4a?+ bz)}
O, appears as points | = (x1,x2,xp) € g* such that:
x2+x2—x2——(|h|2—1)2<0 jtn [ 0> 0if >3 (A17)
1" = 2 Y 2 <0ifh< -1
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Oy, is one of hyperboloid sheets of g*, associated to representation 7;, of discrete serie of G.

x1 = W (ac+ bd) .
n=B(@ -2+ 1) withi = (|h| - E)signh (A18)
xo =4 (#+a2+2+1?)

Then, we obtain:
=il (ap —a*B*)
xp = -l (af+ a*B*) (A19)
xo = I (aa* + BBY)

If we set:
. Yy — il (z—z*)
a=—£ 1= 1P
5 VipP o) m = _1(_7;5 ) (A20)
- ’ 2
|-

We use the parametrization of Oy, by unit disk D:

D={zeC/lzZl<1} - O,

z > (x1,X2,X0) (A2
X1 (Ihl - —)51gnh (23
x1 = =2( - § )signh e |(|§ (A22)
1
(lhl )51gnh 1+||Z||z

This parametrisation provides a kahlerian structure for Oy, inherit from D.
We have O, = G/K = SL(2,R)/K, and as SL(2,R) is isomorph to SU(1,1), Oy, is identified

with SU(1,1)/Ky = D. Stabilizer of the origin is Ky = {( ((); 0* )/Iac| = 1}. Then Oy, is globally
diffeomorph to D for all /.

’

. . . . w
We can compute Liouville measure on O,. This measure is wy, = ﬁ where w/

, is the canonical
2-form on orbit. Parameterization on Oy, gives:

@, —i(2/h - 1)
a_)h = — =

—— Zsignh|dz|? (A23)
2 2m(1- |2 &

We can observe that:

[(z z2) (1 —zz")dW + h’( z*z)dz - h’(l - zz)dz*]
dx; = (1__;‘2) [(z +2z)(1 —zz*)dl + h’(l + z*z)dz h’(l +z )dz ] (A24)
[

dxg = = IZ\Z) (1+2zz")(1 —zz*)dl + 221 dz — 2zl dz*]
_ih/Z(l _ |Z|2) z—z" 1- |Z|2 _<1 - Zz)
dxidxadxg = —26det z4+z¢ 1422 1422 (A25)
(1-12P) 14P 22 22
2i* L
dxldXdeO dh |d | = h dh Wy, (A26)

N

This the measure defined on open set of g* given by l% + l% - ZS <0.
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Appendix B. Bargman Parameterization of SU(1,1)

SU(1,1) is isomorphic to SL(2,R) = Sp(2, R) through the complex unitary matrix W:

SL(2,R) = {g — ( ‘Cl Z )/detg — ad - be = 1} (A27)
Sp(2,R) = {gz( Z Z )/gIgT :I,I=( _01 451 )} (A28)
- %( “_’Z ‘”: ) = (w+)‘1 with w = /4 = %(1 + 1) (A29)
If we observe that W™ JW = —iM, the isomorphism is given explicitely by:
e i D
( P ): u(g) = WgW = %( EZT;))—_ ii((: ;3 Eilifﬁiféfii ) (A3D

We can also make also a link with SO(2,1) of “1 + 2” pseudo-orthogonal matrices:

+1 0 0
SO(2,1) = {r € GL(3,3)/det(T) = ,TKIT =T,K=| 0 -1 0 } (A32)
0 0 -1

—_

%(az—l-bz—i-cz—l—dz) j(az—bz—i-cz—dZ) —cd —ab
Ig)=| Y2 +*-2-d?) Ye2-1*-2+d?) cd-ab (A33)
—bd —ac bd —ac ad + bc

with T(g1)T(g2) = T(g182), (1) = L,T(g7) = T(g) ™"
The SO(2,1) matrix corresponds to any SU(1,1):

N—

| + ),8|2 2Reap* 2Imap”
T(u)=| 2Reap  Re(a?+p?) Im(a?-p?) (A34)
—2Imap —Irn(oz2 + [‘32) Re(oz2 - ﬁz)

anda =+ \/%(Tll +T1p) +i(T12 = T21), B = 55 (T10 — iT'20)
The properties of connectivity of Sp(2,R) is described by its isomorphy with SU(1,1). Using
unimodular condition:

2 . . .
la? - |B| =1=a% +a? -5 =1+ 7 > 1 witha = ag +iaj and f = g + i

If B is fixed, (ar, a1, Br) are constrained to define a one-sheeted revolution hyperboloid, with its
circular waist in the a plane.

To SU(1,1), we can associate the simply-connected universal covering group, using the maximal
compact subgroup U(1) and corresponding to the Iwasawa decomposition (factorization of a
noncompact semisimple group into its maximal compact subgroup times a solvable subgroup).

w = arga = %iln(a*a‘l)

(“ ﬁ):(eiw 0 )(: ﬁ)with A=lal>0 (A35)

0 eim ] -
p=eiop= \[p
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B=e“u,laf - |ﬁ|2 =A2- |y)2 =1so |[J) <A (A36)

Bargmann has generalized this parameterization for Sp(2N,R), more convenient but difficult to
generalize to N dimensions. For SU(1,1):, Bargmann has used (w, y):

= 1 , = y
NN

For SL(2,R) = Sp(2, R), the Bargman, parameterization is given by this decomposition of a non-singular
matrix into the product of an orthogonal and a positive definite symmetric matrix:

a b\ [cosw -—sinw \[ A+Rey Impu
(C d)(sina) cos w )( Imy /\—Rey) (A38)

N
V—X—a(b/|<1)/)\

(A37)

Conversely: w = arg[(a +d) —i(b—c)],u = e @[(a—d) +i(b+c)]
w is counted modulo 271, w = w(mod2m).
SU(1,1) and SL(2,R) = Sp(2,R) are described when w is counted modulo 27, @ = w(mod2n).
Valentine Bargmann has proposed the covering of the general symplectic group Sp(2N, R):

Sp(2N,R) = {g = ( Ié 1]_'3) )/g]zNgT = Jon, oy = —Jons Jan = ( _(IJN IS] )} (A39)
with relations:
ABT = BAT, ACT = cAT,BDT = DBT,cD” = DCT,ADT - BCT =1y (A40)
DT _gT
g € Sp(2N,R) = g7! = Mang Moy = ( T AT ) (A41)

Bargmann has observed that although Sp(2N, R) is not isomorphic to any pseudo-unitary group,
its inclusion in U(N, N) will display the connectivity properties through its unitary U(N) maximal

compact subgroup, generalizing the role of U(1) = SO(2) in Sp(2,R).
-1 -1
Wy = W®Iy a 2N X 2N matrix where W = W; = L\f( s Yy )with w = e/t =
2\ —wWn/y Wryy

-L(1 4 1), which gives the N x N block coefficients.

V2
o1 _1{ [A+D]-iB-C] [A-D|+iB+Cl\_(a B
u(g) = Wy gWn = z( [A~D]-i[B+C] [A+D]+i[B-C| ) N ( g ) (a42)
with + + + T
aa’ =P =IN,aTa-B'B =1y
{ ap’ —pa’ =0,a’B —pra=0 (%)
and N .
u™ = Monut My} :( _“ﬁ N _aﬁT ) (A44)
The symplecticity property of ¢ becomes:
uMonu™ = Moy, Moy = iWR anW = ( Ig _?N ) (A45)
A B\ B 1 _ [ Re(a+p) —Im(a-p)
(& o )=sw =g =(T0T la s ) -
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Valentine Bargmann has extended the well-know theorem that any real matrix R may be decomposed
into the product of an orthogonal Q and a symmetric positive definite matrix S, uniquely as R = QS.
Bargmann has shown that if R € Sp(2N, R), then R = QS with Q,S € Sp(2N, R) where Q maps onto
unitary matrix and S maps onto Hermitian positive definite matrix:

u(Q) :( (g 0(3* ), aat =Iy,a € U(N) and u(S) = exp( ; é ),cf =¢r (A47)

We can generalize Bargmann parameterization of SU(1,1) to Sp(2N, R):

ia)I
u{w, A, u} :( ¢ ON e‘iSIN )( :* )‘L\i )ea,det/\ >0 (A48)

Then the Bargmann parameters are:

deta
|deta|”

1 , o
w = Nargdeta,/\ =W, = e VB, NV = detA = |detal > 0 (A49)

The Sp(2N, R) matrices in terms of the Bargmann parameters are:

coswly —sinwly )( Re(A +pu) ~Im(A—p) ) (A50)

glw, A p} :( sinwly  coswly Im(A+u)  Re(A-p)

V. Bargmann has proposed the covering of the general symplectic group Sp(2N, R):

A B 0 I
Sp(2N,R) = {g = ( c D )/gIZNgT = Jon, Jixy = =Jan, Jan = ( Iy 8] )} (A51)
ABT = BAT, ACT = cAT,BDT = DBT,cD” = DCT, ADT - BCT = Iy (A52)

Bargmann has observed that although Sp(2N, R) is not isomorphic to any pseudo-unitary group,
its inclusion in U(N, N) will display the connectivity properties through its unitary U(N) maximal
compact subgroup, generalizing the role of U(1) = SO(2) in Sp(2,R):

-1 -1
w @ ‘
Wy = W®Iy,2N x 2N matrix where W = W; = L( n/4 n/4 ) with 0 = €m/4 =

V2 —Wr/4 WDp/4
\%(1%).
o _1({ [A+D]-iB-C] [A-D]+i[B+C]\ (a B
u(g)—legWN—g |[A-D]-i[B+C] [A+D]+i{B—C})_(ﬁ* a*) (A39)
with

aat —ppT =Iy,ata-pTp = Iyand ap’ —pal = 0,87 -pra=0 (A54)

The symplecticity property of g becomes:

uMonu™t = Man, Moy = iWG Jaon Wy = ( ISI _(I)N ) (A55)
A B\ B 1 _ [ Re(a+p) -Im(a-p)
(& 5 )=st0 =t = (070 ) ) (A%6)

Appendix C. Shirokov Method to build Casimir function

I. V. Shirokov [71-75] has proposed a method for constructing invariants of the coadjoint
representation of Lie groups with an arbitrary dimension and structure based on local symplectic
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coordinates on the coadjoint orbits. They also have made link with construction of the Lie
algebra polarization
B\ (X, Y) be the skewsymmetric form on g defined by:

BA(X,Y)=(A[X,Y]),X,Yeg, Aeg

. in . . A57
with By (X, Y) = ByX'Y], Bjj = CEA, = Cyj(4) , i, j.k = dimg (A57)
KerB, = {X € g/B;(X,g) = 0} = g" annihilator of A € g* (A58)
The polarization h = P(g) of the the covector A is given by:
Bi(h,h) =0, dimh = %(dimg +dimg") (A59)

The polarization of a semisimple Lie algebra is the construction of polarization of the reductive Lie
algebra g, where g = C @ B, where C is the center in g, and B is a semisimple subalgebra, given by:

h=P(C)®P(B) = CoP(B) (A60)

Let g be an arbitrary Lie algebra, R its radical and Rt = {X € g/B,(X,R) = 0} the orthogonal
complement of R in g with respect to the form B, (X, Y), then the polarization is given by:

P(g) = P(R) ®P(R*) = R(R) ® P(RY) (A61)

Oleg L. Kurnyavko and Igor V. Shirokov idea of the method of constructing coadjoint invariants
is to construct the canonical transition to the Darboux coordinates on the orbits of the dual Lie algebra
g" of maximal dimension dual to the Lie algebra g of the Lie group G.

If we consider a Lie group G, its Lie algebra g and its dua Lie algebra g*, and let each element
f € g corresponds to the coordinates (fi, f2, ..., fu) where n = dimg*. The action of the group G on
g" splits the dual Lie algebra into orbits O, where A € g* is some element of the given orbit. As with
Souriau Theorem, these orbits is a symplectic manifold, with Darboux theorem, there is a special
coordinates (p,q) on them such that the corresponding symplectic form can be written:

wA:dpiAdqi,izL...,%dimoA (A62)
The transition to canonical coordinates is determined by the functions:
fi= f]'(q,p,/\) ,j=12,...,dimg", withfj(0,0,/\) =4 (A63)
Eliminating the variables q and p in these transition functions, we deduce the equation of the orbit:
Ue(f) =wy , k=1,...,n—dimO, (A64)
We obtain n — dimO, functions such that:
Pe(Adyf) = (f) (A65)

Each nondegenerate orbit is determined by the set of numbers w = {wl, wy, ..., wmdg}, that is fixed by
the choice of the covector A such that rank C;;(1) is maximal, and then:

Wy = l,Dk()\l) = l,bk()\z) , if /\1,/\2 € O,\ (A66)
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We can then consider A(j) orbits O, with j = ( JJ2reee, jmdg), with the constraint:

. . dw
Yr(A()) = wr()) ,deta—]." #0 (A67)
If we set A;(j) = aé j;and X;{ the components of the vectors that form the basis of the annihilator of the
covector A(f) such that:

aer?l) _ 4 2 60)

a]k afi a]‘k F=A(j)

= detxfg—@ = detX} (A(j))ak # 0 (A68)

Finally, we obtain the parametrization, considering with Darboux coordiantes:

fi=filqp,j), i=1,... indg" (A69)

By eliminating the Darboux coordinate (g, p) in previous equation, we have new relations:

§0k<f,j): 0and jk = ]k(f) , k= 1,. ..,i?’ldg (A70)

These relations provide invariants of the coadjoint representation of the Lie group G.
Igor V. Shirokov has proved that the desired linear transition to the Darboux coordinates on
a nondegenerate orbit O, is defined by

filp,q) = EH(q)pa + £2(0,9)A 4 where g = {l4, 5} with 14 polarization basis of g (A71)
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