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Abstract: The problem is a two-dimensional area-restricted search for a target using a
coordinated team of autonomous mobile sensing platforms (agents). Sensing is characterised by a
range-dependent probability of detection, with a non-zero probability of false alarms. The context is
underwater surveillance using a swarm of amphibious drones equipped with active sonars. The paper
develops an intermittent information-driven search strategy, which alternates between two phases:
the fast and non-receptive displacement phase (called the ballistic phase) with a slow displacement
and sensing phase (called the diffusive phase). The proposed multi-agent search strategy is carried
out in a decentralised manner, which means that all computations (estimation and motion control)
are done locally. Coordination of agents is achieved by exchanging the data with the neighbours only,
in a manner which does not require global knowledge of the communication network topology.

Keywords: autonomous search; infotaxis; multi-agent system; decentralised control

1. Introduction

Searching strategies for finding targets using appropriate sensing modalities are of great
importance in many aspects of life, from national security [1,2], rescue and recovery missions [3,4],
to biological applications [5–7]. A taxonomy of search problems is proposed in [8]. We focus on
probabilistic search, where the objective is to localise the target in the shortest time (on average), for a
given search volume.

The earliest theoretical studies of search strategies [9,10] were based on systematic search along
a predetermined (deterministic) path, such as the parallel sweep or the Archimedean spiral [3,11].
The search patterns of animals, on the contrary, are random rather than deterministic. An explanation
for this phenomenon is that an event, such as a detection (false or true), changes the strategy and hence
the behaviour of the searcher. Subsequent changes of strategy manifest themselves as a random-like
motion pattern. Most of the current research into search strategies is towards the mathematical
modelling and explanation of random search patterns [2,12,13].

By studying the GPS data of albatrosses, it was discovered that search patterns of these birds
consist of the segments whose lengths are random draws from the Pareto–Lévy distribution [6].
This discovery led to several papers demonstrating that the so-called Lévy walks/flight are the
optimal search strategy for foraging animals (deer, bees, etc), resulting in fractal geometries of
search paths. An alternative to Lévy strategies is the intermittent search: a combination of a fast
and non-receptive displacement phase (long jumps within the search domain, with no sensing) with
a slow search phase characterised by sensing and reaction [14]. Bénichou et al. provided both a
theoretical study and experimental data verification of intermittent search [13,15]. In their terminology,
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the fast relocation phase is referred to as the ballistic flight with constant velocity and random direction.
The slow sensing/detection phase is modelled as either a motionless wait or a diffusive displacement.
Bénichou et al. studied intermittent search without taking into account the information gathered by
sensing during the search, so the searcher could revisit a same location multiple times; this leads to
apparent redundancy in the search process. To overcome this shortcoming, Vergassola et al. [16]
proposed an information driven search strategy (referred as infotaxis), which selects the motion option
that maximises the expected rate of the information gain. Information driven search by infotaxis made
a profound impact on the research community (for a recent review, see [2]). Vergassola et al. considered
information driven search only in the slow sensing/detection phase and for a single searching agent.
Multi-agent infotaxis have subsequently been proposed in [17–21].

In this paper, we propose a fully decentralised intermittent information-driven search by a
coordinated team of autonomous agents. Each searching agent is equipped with a sensor, characterised
by unreliable detection, in the sense that the probability of correct detection depends on the distance to
the target, while the probability of false detection is non-zero. Displacement decisions for each agent
(i.e., where to move next), both in the ballistic phase and in the diffusive displacement phase, are based
on maximisation of the expected information gain. Each searching agent performs the computations
(estimation and motion control) locally and independently of other agents. Group coordination, for the
sake of achieving the (common) task mission, is carried out via consensus [22], by exchanging the data
only with neighbours, in a manner which does not require global knowledge of the communication
network topology. The proposed approach is therefore scalable, in the sense that the complexities
for sensing, communication and computing per agent are independent of the network and agent
formation size. In addition, because all sensor platforms are treated equally (no leader–follower
hierarchy), this approach is robust to the failure of any of the searching agents. The only requirement
for avoiding the break-up of the multi-agent formation is that the graph of its communication network,
during the search, is connected at all times.

2. Problem Formulation

For convenience, and without loss of generality, let us consider a search area A in the shape of a
square with sides of length b. The area is discretised into an upright square lattice of the unit mesh
size, thus consisting of N = b2 � 1 cells. The grid is specified as G = {(xn, yn); n = 1, . . . , N}, where
(xn, yn) are the Cartesian coordinates of a centre of nth cell.

The team of searching agents consists of S ≥ 1 members. Let the searching agent s ∈ {1, 2, . . . , S}
at discrete-time k be located in the cell ls

k ∈ G. If the agent is in the sensing mode, it collects at time k a
set of detections Zs

k = {z
s
k,1, . . . , zs

k,|Zs
k |
}. Each detection can originate from the true target or be a false

alarm. A vector z ∈ Zs
k consists of a range and azimuth measurement of the perceived target, relative

to agent position ls
k. Thus, if the true target is in the grid cell x ∈ G, its corresponding measurement is

a Gaussian random vector z|x ∼ N (h(x), R), where

h(x) =

[
‖ls

k − x‖
∠(ls

k, x)

]
, (1)

‖ · ‖ is Euclidean distance, ∠(u) is the angle between u and the y-axis of the references coordinate
system and R is the measurement covariance matrix. The probability of detection Pd is a function of
the distance between the agent and the target. The probability of false alarm Pf a is constant within the
sensing area around the agent (and zero otherwise). For example, let the probability of detection be
adopted as Pd = exp(−r/a), where r is the distance between the target and the agent and a = const is
a sensor characteristic. Assuming 360◦ sensor coverage, the sensing area can be defined as the circular
area around the sensor position, with a radius 3a (in this area Pd > 0.05).

Searching agents move in formation. Each agent knows its relative coordinates within the
formation (for example, the offset from the centroid), however, it does not have to know the topology
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of the formation or its size. Communication between two agents in the formation can be established
only if their mutual distance is smaller than some Rmax. Motion is subjected to small perturbation
errors, meaning that an agent whose destination during the displacement is a cell l ∈ G, may end
up in a cell adjacent to it. These motion errors will cause the network topology to vary with time.
For simplicity, we assume that communication links, when established, are error-free. Figure 1 shows
a formation of 13 searching agents with two different communication graphs for two values of Rmax.
Green lines indicate the existence of a communication link between two nodes (agents) in the graph.

Figure 1. A team of 13 searching agents connected with different communication networks:
(a) Rmax = 1.1d; and (b) Rmax = 2d. d is the smallest distance between the agents. Both communication
graphs are connected.

The problem for the team of agents is to coordinate the search and find the target in the shortest
possible time, using the information-driven intermittent search strategy. The described problem can be
applied in the context of a search for a submarine, using a swarm of amphibious drones, each equipped
with an active sonar system and a wireless communication device. When a drone floats on the sea
surface, it turns on its sonar to collect detections of underwater targets.

3. Decentralised Estimation: The Probability of Occupancy Map

Let us denote the complete set of measurement data from all S agents at time k as Dk ≡
{(Zs

k, ls
k)}s=1,...,S, where Zs

k and ls
k represent the measurement set and the location of sth agent,

respectively, at time k.
The current knowledge about the target location within the search area A is represented by the

probability of occupancy map (POM). This is a map in which each pixel corresponds to a cell of the grid G
and represents the posterior probability of target presence in the cell. For cell n and agent s ∈ {1, . . . , S},
this posterior probability at time k is expressed as ps

k,n = Pr{δn = 1|D1:k}, whereD1:k ≡ D1,D2, . . . ,Dk,
and δn ∈ {0, 1} is a Bernoulli random variable representing the event that target is located in cell n.
The POM is then a collection Ps

k = {ps
k,n; n = 1, . . . , N}.

The POM is updated sequentially using the Bayes rule. Given the POM at the previous time, that is
Ps

k−1, and the measurement data at time k from agent t ∈ {1, . . . , S}, that is (Zt
k, lt

k), the probability of
occupancy in the nth cell is updated as [23]

ps
k,n =

(1− Pt,n
d )ps

k−1,m

(1− Pt,n
d )pk−1,n + (1− Pt,n

f a )(1− ps
k−1,n)

(2)

if none of the detections in Zt
k falls into the nth cell. The term Pt,n

d in Equation (2) represents the
probability of detection in the nth cell given that the tth agent is located at lt

k ∈ G. A similar
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explanation applies to the probability of false alarm Pt,n
f a . If a detection from Zt

k falls in the nth cell,
the update equation for the POM of agent s is:

ps
k,n =

Pt,n
d ps

k−1,n

Pt,n
d ps

k−1,n + Pt,n
f a (1− ps

k−1,n)
. (3)

Initially, before any sensing information is received, that is at k = 0, the POM of each agent
is set to ps

0,n = 1
2 , for all n = 1, . . . , N and s = 1, . . . , S. This POM corresponds to the state of

complete ignorance.
Each agent in the team updates sequentially its local POM using its local measurements and those

measurements it receives from other agents in the team (ideally, using the complete set of data Dk). We
adopt the dissemination based decentralised architecture [24] for this purpose, where the entire Dk
is exchanged via an iterative scheme over the communication network. In the first iteration, agent s
broadcasts its data-pair (Zs

k, ls
k) to its neighbours and receives from them their respective data-pairs.

In the second, third and all subsequent iterations, agent s broadcasts its newly acquired data-pairs to
its neighbours and accepts from them only the data-pairs that agent s has not seen before (i.e., newly
acquired). Providing that the communication graph is connected, after a sufficient number of iterations
(which depends on the topology and the size of the graph), a complete list of measurement data pairs
from all agents in the formation (i.e., Dk), will be available to each agent for updating its local POM.

An illustration of the evolution of a POM and the effect of sequential Bayes update is shown in
Figure 2. A group of 13 agents, in the formation shown in Figure 1a, is placed in the lower left corner
of the search area of size 100× 100 arbitrary units (a.u.). The target is far from all agents and cannot
be detected. The sensors are characterised with parameter a = 3 a.u., while the distance between
the agents is 6 a.u. The probability of false alarm within the detection (sensing) volume was set to
0.005 per cell. At k = 0, see Figure 2a, all pixels of the POM are set to 1/2. At k = 10 (Figure 2b) and
k = 38 (Figure 2c), the regions of the maps in vicinity of agent locations become white, indicating a
low probability of target occupancy in them. Occasional false detections increase the probability of
occupancy in affected pixels; however, with time, they all tend to zero (see Figure 2c).

By staying longer in the same position, the white areas around the agent formation grow only
up to a certain saturation level, determined by the probability of detection as a function of distance.
The measurements received after reaching this saturation level increasingly become uninformative.
For this reason, the formation at some point in time should move to another location (as discussed in
the next section).

The search is terminated when the probability of occupancy in one of the cells of the POM is
higher than a given threshold, i.e., when maxs,n{ps

k,n} > 1− ε, with ε � 1. The cell which satisfies
this condition is declared to contain the target.

(a)

Figure 2. Cont.
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(b) (c)

Figure 2. Illustration of the evolution of the POM over time: (a) k = 0; (b) k = 10; and (c) k = 38.
The multi-agent formation graph is shown in Figure 1a.

4. Formation Motion Control

The search objective is driven by two conflicting demands: exploration and exploitation [25].
Exploration is driving the agents to new locations in order to investigate as much of the search volume
as possible. The exploitation demand is urging the agents to stay longer in one place, because
this helps determine with certainty if a detection is false or true and improves the localisation
accuracy. The balance between exploration and exploitation exposes two questions: how long to
stay in one position and where to move next. Intermittent search strategy [13,15] was proposed as a
balance between exploration and exploitation. Exploration corresponds to the ballistic flight phase,
while exploitation is carried out in diffusion phase.

In decentralised multi-agent search, each agent autonomously makes a decision about its next
action. However, some form of coordination between the agents is essential, in order to collectively
maintain the prescribed geometric shape of the formation and thus avoid its break-up. Section 4.1
discusses the individual decisions by agents, while the team coordination is explained in Section 4.2.

4.1. Individual Decisions

During the diffusion phase, the formation is static and agents repeatedly collect measurements.
If the sensing interval (i.e., the time required to acquire a snapshot of measurements) is τ0, then
the duration of the diffusion phase is τd = m0τ0, where m0 ≥ 1 is the number of sensing intervals,
computed as follows. Recall that, after a single sensing interval, the probability that an agent detects a
target within a circle centered at its location and with radius L0 > a, is exp(−L0/a). After an arbitrary
number of sensing intervals m, the probability that the agent does not detect the target within a circle of
radius L0, is then:

Pm = [1− exp(−L0/a)]m (4)

Pm is monotonically decreasing with m. The agent should stay in one location as long as Pm > p∗,
where p∗ is a user defined (small) probability value. Let m = m0 be the minimal number of snapshots
which satisfies Pm ≤ p∗. After m0 snapshots, the agent is certain with probability 1− p∗, that the target
is not within the radius L0. Then from Equation (4) we can write:

m0 = ceil
[

ln(p∗)
ln(1− exp(−L0/a))

]
, (5)

where ceil[·] is the ceiling function (defined as the smallest integer greater than or equal to its argument).
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After the diffusion phase, the agent wants to jump outside the explored area, that is, the length
of its subsequent ballistic flight should be at least L0. Let the speed of the ballistic flight be V0. The
ballistic time τb, according to Bénichou et al. [13], is:

τb = γ
a

V0
(6)

where a was introduced earlier (the sensing parameter) and γ is a numerical factor dependent on the
search area geometry [13]:

γ = [ln(b/a)− 1/2]1/2. (7)

Note that the value of γ slowly increases with the ratio b/a. Typically, b � a and then γ > 1.
The minimum length of a ballistic flight, from Equation (6) and using τbV0 = L0, equals to L0 = γa.
In summary, for given a, b and p∗, the count m0 can be computed from Equation (5) as

m0 = ceil
[

ln(p∗)
ln(1− exp(−γ))

]
. (8)

The search starts with a diffusion phase. After collecting and exchanging all m0 snapshot of
measurements by agents in the formation, each agent compares the highest value of its local POM
with a threshold, set just above 1/2, in order to test if a target have been detected. If the comparison
with the threshold is positive, further investigation is required, and hence the agent moves by one step
on the grid G towards the cell containing the suspected target position and repeats the diffusion phase.
There are four options for this one-step move: left, right, up and down.

If the comparison is negative, the agent would consider a ballistic flight, as follows. First, it would
create a set of “move” actions Uk, which consists of |Uk| − 1 potential destinations for a ballistic
displacement, as well as the option to remain static (no move). Let action α ∈ Uk represent the
destination of the centroid of the formation (after the hypothetical ballistic flight). For each action
α ∈ Uk, a reward is computed.

The reward function is defined as the information gain rate, i.e.,

R(α) = Hk −E{Hα}
τb + τd

(9)

where

• Hk is the current entropy of the POM, defined as:

Hk = −
1
N

N

∑
n=1

[pk,n log2 pk,n + (1− pk,n) log2(1− pk,n)] (10)

• Hα is the entropy of the POM after the hypothetical move of the agent (and the entire formation)
to a new destination (commanded by action α), followed by sensing and updating its local POM
during the subsequent diffusion phase.

• E is the expectation operator with respect to all possible realisations of random measurements.
To simplify computations, we assume that during the diffusion (sensing) phase, following an
action α, sensing resulted in no detections (being the most likely scenario). In this way, we can
ignore E in Equation (9).

• τb + τd is the time required to carry out the hypothetical move and perform sensing (the ballistic
time τb is the time required for the agent to travel to the new location, while τd is the sensing
time in the subsequent diffusion phase). The ballistic time τb is computed as the quotient of the
distance to be travelled (according to action α) and the velocity of ballistic flight V0. Recall that
one of the actions in Uk is not to move. For this action, τb is zero.
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Note that the rewards for all hypothetical actions are computed before the agent actually moves.
The action which results in the maximum reward is selected and subsequently involved in the
processing described in Section 4.2. Let us denote this action–reward pair for agent s as (α∗s ,R∗s ).

It remains to explain how the “move” actions of Uk are created. Their number is a parameter
of the algorithm. For each “move” action, the length of the ballistic flight `b is a random draw from
the exponential distribution with the mean ¯̀ = κL0, where κ ≥ 1 is the multiplying factor and L0

was introduced as the minimal length of the ballistic flight. The direction of the ballistic flight is also
random: it is drawn from the uniform distribution over the interval of [0, 2π] rad.

4.2. Coordination through Consensus

In a decentralised fusion architecture, each agent, independently of the other agents in the
formation, makes a decision on its future action. This can result in a disagreement between the
agents, unless the decided actions α∗s , s = 1, . . . , S, are all equal. The disagreement is undesirable,
because it leads to a break-up of the searching formation. The consequence of the break-up is the
loss of connectivity in the communication network and, ultimately, reduced effectiveness of search.
Initially, at the start of the search mission, the formation is created to ensure its communication graph
is connected. The goal of cooperative control is to maintain (approximately) the shape of the formation
during the mission and thereby keep the communication graph connected. In addition, it prevents a
collision of agents in motion. For this reason, whenever an action decision is made by an agent, it needs
to engage in a protocol which will ensure that all members of the formation reach the agreement on
the common action to be applied by all of them.

The decentralised cooperative control is based on the consensus protocol [22,26]. Consensus
algorithms are a family of iterative schemes which enable autonomous agents to achieve an agreement
based on local information in a decentralised fusion architecture. Among the consensus protocols,
the most widespread are the average consensus and the max-consensus [27]. Because we use both
protocols in the proposed intermittent multi-agent search, they are briefly reviewed next.

Consider a graph representing the communication network used by the agents to share the data
(such as those in Figure 1). Let S = {1, 2, . . . , S} be the set of vertices of the graph (representing the
agents) and E ⊆ S × S the set of its edges, where an edge (s, t) ∈ E exists only if agents s and t can
communicate directly. The set of neighbours of agent s ∈ S is then N (s) = {t ∈ S : (s, t) ∈ E}.
Suppose all vertices (agents) in the network have calculated locally a certain scalar value or “state”
(such as the action reward). The goal of the max-consensus is, for each agent, to determine the globally
maximum state, by communicating only with its neighbours. Let the original (initial) state of agent
s ∈ S be denoted as xs(0). At each iteration τ = 1, 2, . . . , agent s communicates and updates its state
according to [27]:

xs(τ + 1) = max

{
xs(τ), max

j∈N (s)
{xj(τ)}

}
. (11)

After a sufficient number of iterations (which depends on the topology of the network), all agents
will reach an agreement on the global maximum.

Average consensus is an iterative algorithm by which agent s ∈ S computes the mean value of
the collection of initial states {xt(0); t = 1, . . . , S}, by communicating only with its neighbours. At each
iteration τ, agent s updates its state according to [22]

xs(τ + 1) = qss xs(τ) + ∑
j∈N (s)

qsj xj(τ) (12)
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where Q = [qij] is referred to as the averaging matrix. Q must be symmetric and doubly stochastic [28],
and satisfies qij = 0 if (i, j) /∈ E . We adopt the averaging matrix as the Metropolis weight matrix [29]:

qij =


1

1+max{|N (i)|,|N (j)|} if (i, j) ∈ E
1− ∑

(i,t)∈E
qit if i = j

0 otherwise

(13)

The consensus algorithm is iterative and hence its convergence properties are very important.
Although the network topology may change with time (as the agents move), during the short interval,
when the exchange of information takes place, the topology can be considered as time-invariant.
The convergence of the consensus algorithm in the adopted framework (time-invariant, undirected
communication topology) is guaranteed, if the graph is connected [22,29,30]. While this is a theoretical
result, valid for an infinite number of iterations, in practice, due to the finite number of iterations,
the consensus may not be reached and, as a consequence, one or more agents may be lost during
the search (a lost agent has lost the connection with the formation). This event, however, does not
mean that the search mission has failed: the target can be found eventually by the remaining (smaller)
formation, albeit in a (possibly) longer interval of time.

The max-consensus is used by agents to agree on: (1) the destination of the ballistic flight with the
overall highest reward; and (2) the termination of search. The average consensus is used to agree with
the simple majority in which direction (left, right, up or down) to carry out the one-step move towards
the closest potential target.

5. Numerical Results

5.1. An Illustrative Run

The simulation setup is shown in Figure 3a. The search area is a square of size b = 100 a.u.
A target is placed at coordinates (19, 75) a.u. The searching formation consists of five agents, which
initially have a shape of a square of size d = 5, with Rmax = 1.5 d. Figure 3a shows the paths of
the five searching agents from k = 1 to k = 375. The cyan-coloured lines connecting the agents at
k = 375 indicate the established communication links (i.e., the edges of the communication graph).
The parameters used in this illustrative run were a = 1 and p∗ = 0.005, which results in m0 = 37.
Furthermore, κ = 3, V0 = 1 and ε = 0.0025. Each agent suggests nine ballistic flight destinations (i.e.,
the cardinality |Uk| = 10). The number of iterations of the consensus algorithm, both for decentralised
estimation and decentralised control, was fixed to 30.

Figure 3b displays the estimated POM of agent number 1 at k = 375. The white areas (traversed
and examined by the formation) indicate a low probability of target presence. Occasional black dots in
the white regions are due to false detections. The entropy Hk of the POM as a function if time is shown
in Figure 3c. Finally, the number of established communication links in the network, as a function
of time, is displayed in Figure 3d. The gaps in this figure correspond to the ballistic flight intervals.
A video of a single run of the algorithm can be found in the Supplementary Materials.
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Figure 3. An illustrative run with S = 5 agents: (a) a top-down view of the search area and agents’
paths up to k = 375; (b) the estimated POM of agent number 1 at k = 375 (the shades of gray indicate
the value of probability); (c) entropy Hk as a function of time; and (d) cardinality of the set Ek as a
function of time.

5.2. Monte Carlo Runs

Monte Carlo runs were performed to compare the performance of four different searching
formations: a single agent (S = 1) and formations with S = 5, 9 and 13 agents. The initial
communication graph of multi-agent formations are shown in Figure 4. The minimum distance
between the agents is d = 5, with Rmax = 1.4 d. The search area is a square of size b = 100 a.u.
The parameters were: a = 1, p∗ = 0.005, κ = 3, V0 = 1 and ε = 0.0025. Each agent suggests nine
ballistic flight destinations.

The number of Monte Carlo runs was set to 100. The obtained average search duration is shown
in Figure 5, including the 5th and 95th percentile limits. The average search duration is also given in
the second row of Table 1. In accordance with our expectations, the larger is the formation, the shorter
is the search time. The law of diminishing returns is also evident: the benefit (i.e., the search time
reduction) is slowly reducing with S. Other average statistics recorded from Monte Carlo runs are
shown in Table 1, in particular: (i) the average (over time and Monte Carlo runs) number of edges in
the communication graph (third row); (ii) the average (over time and Monte Carlo runs) number of
lost agents (fourth row); and (iii) the fraction of Monte Carlo runs in which the target was successfully
located. The only surprising statistic is that the mean number of lost agents is smaller for the formation
with S = 9 than for the other two. This is probably due to the shape of this formation, in which each
agent is connected to at least two other nodes (see Figure 4).
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S = 5 S = 9 S = 13
Figure 4. Multi-agent formations (and their initial communication graphs) used in Monte Carlo
simulations. The minimum distance d = 5, Rmax = 1.4 d.

Figure 5. Search time duration as a function of the size of formation S: the mean (red squares) and the
[5,95] percentile limits.

Table 1. Multi-agent search statistics.

S 1 5 9 13

Means search duration (a.u.) 5134 2250 1329 857
Mean |E | - 4.37 12.79 17.88
Mean Lost - 0.36 0.13 0.30
Success 0.93 0.95 0.95 0.95

Next, we discuss the alternative search strategies. One option is a pure diffusion phase of
search, where the agents move at most by one step on the grid and sense. This type of search would
naturally take much longer to find the target, possibly an infinite length of time. Another option is
the intermittent search, where the choice of the ballistic flight is purely random (instead of using the
ballistic flight with a maximum reward (Equation (9))). The mean search time with S = 5 agents (all
other parameters the same as above) was 4389 a.u using a random choice versus 2250 a.u. using the
information reward. The benefit of the information reward is evident.

6. Conclusions

This report presents an intermittent information-driven search strategy by a team of coordinated
agents. Both the estimation of the target occupancy map and the motion control for the entire
formation were carried out in a decentralised manner, meaning that all computations were done
locally. Coordination of agents was achieved using the consensus algorithm, which is an iterative
scheme in which the data are exchanged with neighbours only, in a manner which does not require
the global knowledge of the communication network size and topology. Numerical results indicate a
high success rate in finding the target with search duration inversely proportional to the size of the
multi-agent formation.
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Future work could incorporate more complex motion of the searching formation, including its
rotation and scaling (growing and contracting). This has a potential to further reduce the search time,
especially for larger formations.

Supplementary Materials: The following are available online at https://zenodo.org/record/1248482#
.XvmbmOcRVPZ.
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