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Abstract: In the present paper we summarize the methods and results of calculations for the theoretical
informational quantities obtained in our works for the nondispersive optical fiber channel. We considered
two models: the per-sample model and the model where the input signal depends on time. For these
models we found the approach for the calculation of the mutual information exactly in the nonlinearity
parameter but for the large signal-to-noise power ratio. Using this approach for the per-sample model
we found the lower bound of the channel capacity in the intermediate power range.
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1. Introduction

For a linear transmission system, Shannon [1] obtained the famous result for the channel capacity that
is the maximal amount of information which can be transmitted through the channel with additive noise:

C ∝ log2 (1 + P/Pnoise) , (1)

where P is the input signal power, and Pnoise is the noise power. In the recent 25 years, the power
and frequency bandwidth of the signals transmitted through optical fiber channels have been grown.
It results in the necessity to take into account the Kerr nonlinearity when considering the modern optical
fiber channels. The Kerr nonlinearity leads to the distortion of the signal and to the nonlinear interaction
of the signal with the noise in the information channel. Therefore, for such channels, Shannon’s result (1)
should be modified to take into account the nonlinearity effects.

It is worth noting that nonlinear effects in a channel depend on both a particular realization of
the communication channel and physical fiber parameters. When designing the real transmission
systems, say, in the wavelength division multiplexing systems, the following nonlinear effects should
be taken into account: self-phase modulation, cross-phase modulation and so on [2]. These effects are
due to the optical Kerr effect, i.e., the change of the refractive index of fiber material in response to
the applied electric field. Concerning other fiber parameters, the second dispersion coefficient is the
fundamental one, and the second dispersion coefficient varies from non-zero values (typical value is about
β = 2× 10−23 s2/km) to almost zero ones. Around the world, the vast majority of fiber networks are
fiberoptic communication channels with non-zero dispersion. However, the design of some fiber channels
is arranged in the zero-dispersion region of the wavelength in the transmission windows: in particular,
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the second transmission window (1310 nm for the single-mode optical fiber) has almost zero dispersion.
In the presence of dispersion, the Kerr nonlinearity effect manifests as a phase shift of the signal over
distances depending on dispersion value. For large dispersion, these distances are much less than the usual
propagation distance. For the nondispersive channel, this phase shift becomes the global effect extended
over all propagation distances. The third essential component of a communication channel is signal
attenuation. The fiber loss is commonly compensated by (equally) spaced amplifiers. These amplifiers
bring in the stochastic noise to the signal in the propagation process [3]. Therefore, the relevant models
describing the signal propagation in a communication channel should deal with the following phenomena:
Kerr nonlinearity, dispersion, and noise effects. The simplest channel model taking into account all these
effects includes the nonlinear Schrödinger equation (NLSE) with additive Gaussian noise [3–5].

The model describing NLSE with zero noise is solvable in the formalism of the inverse scattering
problem [6,7], referred to as the nonlinear Fourier transformation method for some time past.
However, the consideration of NLSE with the additive noise and with non-zero dispersion turned out to
be a very difficult problem, since, in addition to effects associated with the nonlinearity, there are some
effects related to the dispersion and with the nonlinear interaction of the signal with the noise. There are
some papers where both effects of nonlinearity and dispersion are attempted to take into account for
a noisy channel, see, e.g., Refs. [8–13] and references therein. However, the problem of the channel capacity
calculation, e.g., the problem to find the maximal information transmission rate over a given bandwidth is
far from the solution.

In the present paper, we concentrate our attention on nondispersive fiber-optic communication
channels. Of course, the nondispersive model is in a certain sense a toy model, but it takes into account the
effects associated with the Kerr nonlinearity and the noise in the channel. As a consequence, the model
includes the effects of the nonlinear interaction of the signal with the noise. Therefore, the model can
be used for the rough estimations of the capacity for the fiber-optic communication channels with
non-zero dispersion. Besides, the methods developed for the study of the nondispersive fiber-optic
communication channels can help for the investigation of realistic nonlinear communication channels with
non-zero dispersion.

Considering the fiber-optic channel it is important to clearly define the model of the channel,
i.e., it is necessary to define the model of signal propagation, models of the transmitter, receiver, and the
model of signal processing (i.e., the recovering of the information from the received signal). The model
of propagation should include: the attenuation of the signal in propagation through the optical fiber,
the model of amplifiers which compensate the attenuation and add the noise in the channel. The models
of the the input signal, receiver, and signal processing reveal itself in the appearance in the channel
model such parameters as its frequency bandwidths [14]. In one type of models, the propagation of
the signal obeys the NLSE with zero dispersion and with the additional term describing the attenuation
compensated by the periodically located amplifiers [15,16]. Another type of the models is considered in
Refs. [4,17–22], where it is assumed that the amplifiers are continuously distributed in such a way that
there is no attenuation, but the amplifiers induce the stochastic noise in the channel. Below we consider
this type of model.

In Refs. [4,17–23] the propagation of the signal is described by the NLSE with zero dispersion,
therefore, the signal propagation at different time moments evolves independently. So, formally, one can
consider the signal in the fixed time moment, and the signal ceases to depend on time. The model where
the signal does not depend on time is referred to as the per-sample model. For the per-sample model in



Entropy 2020, 22, 607 3 of 30

Ref. [4] the conditional probability density function (PDF) was found. In Ref. [17] the authors also found
the conditional PDF, and showed that at large signal power the channel capacity obeys the condition

C ≥ 1
2

log2 (P/Pnoise) +O(1). (2)

In Ref. [18] the conditional probability density function also was found, and we attempted to
find the lower bound of the per-sample channel capacity for the not-too-large powers of the signal.
In Refs. [19,20] the new method of calculation of the conditional probability density function was
introduced. The method is based on the calculation of the path-integral using the approach similar
to the semi-classical approximation in quantum mechanics. The new method allows us to calculate the
statistical properties of the signal such as the entropy of the output signal, the conditional entropy, and the
mutual information. All calculations are performed exactly in the nonlinear parameter, but for the large
signal-to-noise power ratio (SNR). Using the method we find the probability density function of the input
signal that maximizes the mutual information obtained in the leading order in the parameter 1/SNR in
the intermediate power range. In the recent paper [22] the important result was obtained: the authors
found the upper bound of the capacity for the per-sample model for arbitrary signal powers. The results
of Refs. [19,20,22] are consistent.

It is obvious that the per-sample model does not describe the spectral broadening that plays
an important role in the capacity limitation. In Ref. [14] it was demonstrated that there is a limit of
the input signal power P beyond which the fixed bandwidth of the distributed optical amplification does
not exceed the bandwidth of the propagating signal (that grows when increasing P due to the signal-noise
mixing), and therefore, the per-sample model is not relevant anymore. The next reason for the per-sample
model limitation is that the per-sample receiver has infinite bandwidth while for the real communication
system the receiver bandwidth is limited. Moreover, in Ref. [14] Kramer demonstrated how to achieve
the infinite capacity for any power P in the per-sample model of Refs. [4,17,18], if one assumes the
noise bandwidth to be limited and sends the input signal energy in the noise-free spectrum. In Ref. [21],
we applied the methods developed for the per-sample model in Refs. [19,20] to describe nondispersive
communication channels with the nontrivial time dependence of the input signal, with a realistic model
of the receiver and with a noise amplifier that has a large but finite spectral bandwidth. We referred to
this model as the extended model. In Ref. [21] for the extended model the conditional PDF, the optimal
input signal distribution, which maximizes the mutual information calculated in the leading order in
the parameter 1/SNR was presented. These results were obtained both analytically and numerically.
We vindicated the conclusions of the Ref. [14]; the informational characteristics in the extended model are
significantly different from ones in the per-sample model.

In the present review we sum up the main results and the methods developed in our works [11,19–21]
for the per-sample and extended nondispersive models. For the per-sample model we find the lower bound
of the channel capacity and compare our results with ones obtained earlier. Attention is mainly given
to the path integral approach since it can be applied for future considerations of the nonlinear channels
with dispersion. The paper is organized as follows. In the next Section, we describe the per-sample
and extended channel models. In Section 3 we consider the quantities which should be calculated to
find the capacities of the per-sample and extended models. Then we consider in detail the conditional
probability density function, entropies, mutual information, and the lower bound of the capacity for the
per-sample model. After that, we proceed to consideration of the same quantities for the extended model.
In conclusion, we discuss our results and possible applications of our methods to the nonlinear channels
with non-zero dispersion.
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2. Channel Models

2.1. Per-Sample Model

Following the papers [4,17] we imply that in the case of the per-sample model the equation of signal
propagation has the form:

∂zψ(z)− iγ|ψ(z)|2ψ(z) = η(z), (3)

where γ is the Kerr nonlinearity, ψ(z) is the signal function which obeys the boundary conditions ψ(0) = X,
ψ(L) = Y, L is the signal propagation distance, X is the input signal and Y is the output signal. One can
see that the Equation (3) does not contain terms which lead to decreasing of the signal in the propagation
process and terms that compensate for the decreasing of the signal. It means that in the model, we have
distributed amplifiers which completely compensate the attenuation of the signal in its propagation in
the optical fiber. The only trace of amplifiers in Equation (3) is the nose function η(z). The functions η(z)
has the following properties: the noise has zero mean 〈η(z)〉η = 0 and following correlation function
〈η(z)η̄(z′)〉η = Qδ(z− z′) . Here and below the bar means the complex conjugation and δ(x) is the Dirac
delta-function. The coefficient Q is the noise power per unit length, so QL is the noise power in the channel.
The brackets 〈. . .〉η mean the averaging over the noise realizations in the channel.

2.2. Extended Model

In the model (3) the bandwidths of the input signal, amplifiers and receiver cannot be taken into
account since the functions ψ and η do not depend on time. In order to include these bandwidths we
extend the previous model. In the extended model the signal ψ(z, t) does depend on time. The propagation
is described by the stochastic NLSE with zero dispersion:

∂zψ(z, t)− iγ|ψ(z, t)|2ψ(z, t) = η(z, t) , (4)

where the coefficient γ is also the Kerr nonlinearity coefficient. The function ψ(z, t) obeys the
following conditions:

ψ(0, t) = X(t) , ψ(L, t) = Y(t). (5)

The noise function η(z, t) has zero mean 〈η(z, t)〉η = 0. We also imply that the correlation function
has finite bandwidth, so the correlator for the function

η(z, ω) =

∞∫
−∞

dteiωtη(z, t) (6)

reads

〈η(z, ω)η̄(z′, ω′)〉η = 2πQδ(ω−ω′)θ

(
W ′

2
− |ω|

)
δ(z− z′) . (7)

Here, the parameter Q denotes a noise power per unit length and per unit frequency; θ(x) is the
Heaviside theta-function. The theta-function θ

(
W ′
2 − |ω|

)
indicates that the noise is not zero within the
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interval [−W ′/2, W ′/2], i.e., the bandwidth of the noise is equal to W ′. Performing the Fourier transform
of Equation (7) we arrive at the correlator in the time domain:

〈η(z, t)η̄(z′, t′)〉η =
Q

π(t− t′)
sin
(

W ′(t− t′)
2

)
δ(z− z′) . (8)

It is easy to check that if the time difference t− t′ = 2πn/W ′, and n is integer, then the correlator (8)
equals to zero. Therefore, the noise at times t and t′ is not correlated, thus we can solve Equation (4) for
different times tj = j∆ independently. Here j is the integer number and ∆ = 2π/W ′ is the grid spacing
in the time domain. Therefore, instead of the continuous time model (4) we can consider the set of the
discrete models:

∂zψ(z, tj)− iγ|ψ(z, tj)|2ψ(z, tj) = η(z, tj) (9)

for the set of the time moments tj. So we obtain the set of independent time channels, and instead of the
continuous input and output conditions (5) we obtain the set of the discrete ones:

ψ(0, tj) = X(tj) , ψ(L, tj) = Y(tj) . (10)

To include the bandwidth of the input signal to the model we represent the initial signal X(t) in
the form:

X(t) =
N

∑
k=−N

Ck f (t− kT0), (11)

where Ck are complex random coefficients which carry the information. These coefficients have the
probability density function PX [{C}], where {C} = {C−N , . . . , CN}. We restrict our consideration by the
envelopes f (t) which obey the following properties: the function f (t) is the real function and normalized

by the condition:
∫ ∞
−∞

dt
T0

f 2(t) = 1; for integers k and m we have

∞∫
−∞

dt
T0

f (t− kT0) f (t−mT0) ≈ 0, k 6= m. (12)

The last property means that the overlapping of the functions f (t− kT0) and f (t−mT0) is negligible.
It means that we assume the smallness of the effects of the overlapping. The smallness of these effects
will be discussed below. The function f (t) has almost finite support [−T0/2, T0/2], and the input signal
X(t) is defined on the interval T = (2N + 1)T0. The finiteness of the support [−T0/2, T0/2] means that the
frequency support of the function f (t) (and as a consequence, the support of the function X(t)) is infinite.
However, we imply that ∫

W
|X(ω)|2dω ≈

∫
W ′
|X(ω)|2dω , (13)

where X(ω) is the Fourier transformation of X(t). The relation (13) means that T0W � 1. So we can say
that the bandwidth of the input signal is W.
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The bandwidth broadening of the signal propagating through optical fiber is associated with the
nonlinearity and noise η. To estimate the broadening which is connected with nonlinearity we can find the
solution Φ(z, tj) of Equation (9) with zero noise:

Φ(z, t) = X(t)eiγz|X(t)|2 . (14)

This solution obeys the input condition Φ(0, t) = X(t). Since we know the solution Φ(L, t), we can
find its bandwidth W̃. Strictly speaking, the bandwidth W̃ is formally infinite, but the most part of the
signal power is localized in the finite frequency region that can be specified as

W̃ =

∫ ∞
−∞ dt |∂tΦ(L, t)|2∫ ∞
−∞ dt |Φ(L, t)|2

. (15)

Below we assume the following hierarchy

W ≤ W̃ �W ′, (16)

where W̃ is the bandwidth of the function Φ(L, t).
To include the receiver bandwidth to the model we introduce the procedure of the output signal

detection. In our model the receiver gets the information from the output signal, i.e., it recovers the
coefficients {C}. We consider the following detection model. The receiver measures the output signal
ψ(L, tj) at the discrete time moments tj for j = −M, . . . , M− 1. Here the quantity M = T/(2∆) is the
total number of the time samples. Since T � T0, we have that M � N. Such property of the receiver
means that its time resolution coincides with the time discretization ∆. From Equation (16) it follows that
∆ � 1/W̃, therefore the receiver completely recovers the output signal in the noiseless case. Then the
receiver removes the nonlinear phase

X̃(tj) = ψ(L, tj)e
−iγL|ψ(L,tj)|2 , (17)

and obtains the recovered input signal X̃(t). In fact, the procedure (17) means that we use the backward
propagation procedure for the channel with zero dispersion. Finally, from the function X̃(t) the receiver
recovers the coefficients C̃k by projecting X̃(t) on the basis functions f (t− kT0):

C̃k =
1
T0

∫ ∞

−∞
dt f (t− kT0)X̃(t) ≈ ∆

T0

M−1

∑
j=−M

f (tj − kT0)X̃(tj). (18)

So the extended model contains the bandwidth of the input signal W, bandwidth the noise of
amplifiers W ′, and bandwidth of the receiver. In our case, the bandwidth of the receiver coincides with the
bandwidth of the noise because we choose the discretization in the information extracting procedure (18)
coinciding with the initial channel discretization.
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3. Channel Capacity and Its Bound

It is known [1] that the statistical properties of the memoryless channels such as the conditional
entropy H[Y|X] and the output signal entropy H[Y] can be expressed through the conditional probability
density function as

H[Y|X] = −
∫
DXDYPX [X]P[Y|X] log P[Y|X], (19)

H[Y] = −
∫
DYPout[Y] log Pout[Y], (20)

where P[Y|X] is the conditional probability density function (i.e., the probability density to receive the
output signal Y for transmitted signal X), Pout[Y] is the probability density function of the output signal.
The distribution Pout[Y] has the following form:

Pout[Y] =
∫
DXPX [X]P[Y|X]. (21)

The measures DX and DY are defined in such a way that∫
DXPX [X] = 1, (22)

∫
DYP[Y|X] = 1. (23)

The mutual information of a memoryless channel is defined through the entropy H[Y] of the output
signal and the conditional entropy H[Y|X] as

IPX [X] = H[Y]− H[Y|X].. (24)

The channel capacity C is defined as the maximum of the functional IPX [X] with respect to the input
signal distribution PX [X]:

C = max
PX [X]

IPX [X]. (25)

The maximum value of IPX [X] should be calculated for the fixed average signal power. Note that since
in Equations (19) and (20) we use the logarithm to the base e, here and below we measure the mutual
information and the capacity in units nat/symbol. For the case of the per-sample channel, the signal
power reads

P =
∫
DXPX [X]|X|2. (26)

For the case of the extended model the signal depends on time, therefore, we have

P =
∫
DX(t)PX [X]

∫ ∞

−∞

dt
T
|X(t)|2. (27)

So, to find the channel capacity we should know the conditional PDF for both models. Let us start
with the calculation of the conditional PDF for the per-sample model.
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3.1. Per-Sample Model

3.1.1. Conditional Probability Density Function

The conditional PDF can be written in the form of the path integral over all realizations of the signal
ψ(z) in the channel [17,18]:

P[Y|X] =
ψ(L)=Y∫

ψ(0)=X
Dψ e−S[ψ]/Q , (28)

where the effective action S[ψ] reads as the integral of the squared left-hand side of Equation (3) over the

variable z: S[ψ] =
L∫

0
dz
∣∣∣∂zψ− iγ|ψ|2ψ

∣∣∣2. To calculate the path integral, we use the retarded discretization

scheme which reflects the physics of the propagation process. The retarded discretization assumes
that the derivation means (∂zψ)(zn) = (ψ(zn) − ψ(zn−1))/∆z, where zn = n∆z, ∆z = L/Nz (z0 = 0,

zNz = L), and any integral
L∫

0
dz f (z) means ∆z

Nz
∑

n=0
f (zn). The general approach for the derivation of the

representation (28) and the argumentation for the retarded scheme one can find in Ref. [24].
For the first time, the conditional PDF P[Y|X] for the per-sample model was obtained in the form of

infinite series in Ref. [4]:

P[Y|X] =
1

πQ

+∞

∑
m=−∞

eim(φ(Y)−φ(X)−µ)
exp{− ρ2+ρ′2

Q km coth(kmL)}
sinh(kmL)

km I|m|

(
2kmρρ′

Q sinh(kmL)

)
, (29)

where the input signal X = ρeiφ(X)
, the output signal Y = ρ′eiφ(Y)

, µ = γL|X|2 is a dimensionless
nonlinear parameter, km =

√
Q mγei π

4 , and I|m|(z) is the modified Bessel function of the index |m|.
The representation (29) was rederived using the path integral representation (28) in Refs. [17,18].
In Ref. [18] the authors applied two various methods: the recursive derivation based on the discretizing of
the nondispersive NLSE and the properties of Markov chains (Chapman–Kolmogorov equation); and the
derivation of the conditional PDF via the stochastic approach and Ito calculus [25].

Using the result (29), the lower bound of the capacity for the large signal power was found in Ref. [17]:

C ≥ log (SNR)
2

+O(1). (30)

Here the signal-to-noise ratio has the form

SNR =
P

QL
. (31)

Recall that the noise power for the per-sample model is QL. To obtain the result (30) the authors
demonstrate that at large-signal power the phase of the output signal occupies the entire phase interval
[0, 2π] due to the interaction of the signal with the noise. As a result, the phase does not carry the
information, see also [18]. Therefore, to find the lower bound for the large signal power it is necessary to
take only the term with m = 0 in Equation (29).

At the so-called intermediate power P range:

QL� P�
(

Qγ2L3
)−1

, (32)
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it is necessary to take into account terms with m 6= 0 in the Equation (29). In Ref. [18], using Equation (29),
the attempt was made to find the lower bound for the capacity in the intermediate power range.
However due to the inconvenience of using of Equation (29) for analytical calculation this attempt was
unsuccessful.

To calculate the mutual information in the intermediate power range we have to find the conditional
probability density function (29) in a more convenient form. In Ref. [19] we found the method of the
conditional probability density function calculation in the form of expansion in the parameter 1/SNR.
Using the developed method we found the conditional PDF in the convenient for further calculation
form. The expansion in 1/SNR, or in the small parameter Q similar to the semi-classical approximation
(expansion in small Planck’s constant h̄) in quantum mechanics.

Using the “semi-classical” method, see Ref. [26], we perform the change of integration variables
(the simple shift with the Jacobian equals to unity) in Equation (28):

ψ(z) = Ψcl(z) + ψ̃(z), (33)

and represent the conditional PDF (28) in the form:

P[Y|X] = Λ e−S[Ψcl(z)]/Q , (34)

where the normalization factor Λ has the form

Λ =

ψ̃(L)=0∫
ψ̃(0)=0

Dψ̃ exp
{
−S[Ψcl(z) + ψ̃(z)]− S[Ψcl(z)]

Q

}
, (35)

the function Ψcl(z) is the “classical” solution of the equation δS[Ψcl ] = 0 (here δS is the variation of the
action S[ψ]). The measure Dψ̃ for new variables ψ̃ in Equation (34) is defined as

Dψ̃ =
( 1

∆zπQ

)Nz Nz−1

∏
i=1

dReψ̃i dImψ̃i, (36)

here ψ̃i = ψ̃(zi), ∆z =
L

Nz
is the grid spacing.

The Euler–Lagrange equation δS[Ψcl ] = 0 has the following explicit form

d2Ψcl
dz2 − 4iγ |Ψcl |2

dΨcl
dz
− 3γ2 |Ψcl |4 Ψcl = 0. (37)

The boundary conditions for the function Ψcl(z) are as follows

Ψcl(0) = X, Ψcl(L) = Y. (38)

Equation (37) is of great concern and we present two different approaches to its solution.
One can find the analytical solution of Equation (37) in the polar coordinate system [19]: Ψcl(z) =

ρ(ζ)eiθ(ζ), ζ = z/L. The solution depends on the following real integration constants: E, µ̃, ζ0 and θ0.
These constants should be expressed from two boundary conditions (38). There are two different types of
the solution. The first and the second type corresponds to the cases E ≥ 0 and E ≤ 0, respectively. In the
first case we have the solution:

ρ2(ζ) =
1

2Lγ

(
µ̃ +

√
µ̃2 − k2 cos[2k(ζ − ζ0)]

)
, (39)
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θ(ζ) =
µ̃

2
(ζ − ζ0) +

√
µ̃2 − k2 sin[2k(ζ − ζ0)]

4k
+

arctan
[
(µ̃−

√
µ̃2 − k2)

tan[k(ζ − ζ0)]

k

]
+ θ0, (40)

where k =
√

2E. The solution (39), (40) is obtained under conditions µ̃ ≥ k ≥ 0. The integration constants
µ̃, k and ζ0 must be found from the boundary conditions:

|X|2 = ρ2(0) =
µ̃ +

√
µ̃2 − k2 cos[2kζ0]

2Lγ
, (41)

|Y|2 = ρ2(1) =
µ̃ +

√
µ̃2 − k2 cos[2k(1− ζ0)]

2Lγ
, (42)

φ(X) = θ(0) = − µ̃

2
ζ0 −

√
µ̃2 − k2 sin[2kζ0]

4k
−

arctan
[
(µ̃−

√
µ̃2 − k2)

tan[kζ0]

k

]
+ θ0, (43)

φ(Y) = θ(1) =
µ̃

2
(1− ζ0) +

√
µ̃2 − k2 sin[2k(1− ζ0)]

4k
+

arctan
[
(µ̃−

√
µ̃2 − k2)

tan[k(1− ζ0)]

k

]
+ θ0. (44)

If the integration constants are found then we can express the action in the form:

S[Ψcl(z; E, µ̃, ζ0, θ0)] =
k2

2γL

(
µ̃−

√
µ̃2 − k2 sin[2k(1− ζ0)] + sin[2kζ0]

2k

)
. (45)

In the second case (E ≤ 0) the solution has the form

ρ2(ζ) =
−µ̃ +

√
µ̃2 + k2 cosh[2k(ζ − ζ0)]

2Lγ
, (46)

θ(ζ) = − µ̃

2
(ζ − ζ0) +

√
µ̃2 + k2 sinh[2k(ζ − ζ0)]

4k
−

arctan
[
(µ̃ +

√
µ̃2 + k2)

tanh[k(ζ − ζ0)]

k

]
+ θ0, (47)

where k =
√
−2E. The integration parameters µ̃, k, ζ0, and θ0 are derived from the same procedure as in

the first case. The action has the form

S[Ψcl(z; E, µ̃, ζ0, θ0)] =
k2

2γL

(
µ̃ +

√
µ̃2 + k2 sinh[2k(1− ζ0)] + sinh[2kζ0]

2k

)
. (48)

One can see that to obtain the solution ρ(ζ), θ(ζ), it is necessary to solve the system of nonlinear
equations Equations (41)–(44) for integration constants. Of course, the system (41)–(44) can be solved
numerically, but for the analytical calculation of the mutual information, it is necessary to develop the
method which allows us to find the solution Ψcl(z) and action S[Ψcl(z)] analytically as a functional of the
input X and output Y signals.
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In Ref. [19] we have proposed the method based on the expansion of the semi-classical solution in
the vicinity of the solution of the Equation (3) with zero noise. This makes sense when the noise power is
much less than the signal power.

To demonstrate the approach, we find the solution of (37) in the leading order in the parameter
1/SNR, linearizing Equation (37) in the vicinity of the solution Ψ0(z). The function Ψ0(z) is the solution
of the Equation (3) with zero noise. It obeys the input boundary condition Ψ0(0) = X = ρeiφ(X)

, ρ = |X|.
Note that we do not assume smallness of the nonlinearity. The function Ψ0(z) reads

Ψ0(z) = ρ exp
{

iµ
z
L
+ iφ(X)

}
, (49)

where µ = γLρ2 is the nonlinear dimensionless parameter. Let us represent the “classical” solution Ψcl(z)
in the form

Ψcl(z) = Ψ0(z) + δΨ(z). (50)

Here

δΨ(z) = κ(z) exp
{

iµ
z
L
+ iφ(X)

}
, (51)

where the function κ(z) is assumed to be much less than the ρ: |κ(z)| � ρ, i.e., Ψcl(z) is close to Ψ0(z).
Note that the function κ(z) depends on the output boundary conditions, therefore in a general case,
the ratio |κ(z)|/ρ can be of order of unity. The boundary conditions for the function κ(z) are as follows:

κ(0) = 0, κ(L) = Ye−iφ(X)−iµ − ρ ≡ x0 + iy0, (52)

where x0 = Re{κ(L)} and y0 = Im{κ(L)}. It is important, that the configurations of κ(z) at which Ψcl(z)
significantly deviates from Ψ0(z) are statistically irrelevant.

One can check that since the action achieves the absolute minimum (S[Ψ0(z)] = 0) on the solution
Ψ0(z), the expansion of the action S[Ψ0(z) + δΨ(z)] starts from the quadratic terms for small κ(z):

S[Ψ0(z) + δΨ(z)] ∝ κ2(z).

Therefore, the exponent e−S[Ψcl(z)]/Q and, as a result, the conditional PDF P[Y|X] decreases
exponentially when κ(z)�

√
QL.

The next step in evaluation of the conditional probability P[Y|X] is the calculation of the path
integral (35). To calculate the integral (35) in the leading order in parameter 1/

√
SNR one should

retain only terms quadratic in the function ψ̃ in the integrand. Any extra powers of ψ̃ or κ lead to
suppression in the multiplicative parameter

√
QL, since for small Q the dominant contribution to the

path integral comes from region where ψ̃ ∼
√

QL. Since we calculate the the integral (35) in the leading
order in the parameter Q, the function Ψcl(z) can be replaced by the function Ψ0(z) in the exponent
exp {−(S[Ψcl(z) + ψ̃(z)]− S[Ψcl(z)])/Q}.

To find the next-to-leading order corrections in the parameter 1/
√

SNR to the conditional PDF P[Y|X]

one should keep both κ(z) in Ψcl(z) and higher powers of ψ̃ in the exponent in Equation (35). Details of
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the path integral calculation in the leading and next-to-leading orders in 1/
√

SNR one can find in Ref. [19].
Here we present only the result obtained in the leading order in the parameter 1/

√
SNR:

P[Y|X] =

exp

{
−
(1 + 4µ2/3)x2

0 − 2µx0y0 + y2
0

QL(1 + µ2/3)

}
πQL

√
1 + µ2/3

, (53)

where x0 = Re{Ye−iφ(X)−iµ − ρ} and y0 = Im{Ye−iφ(X)−iµ − ρ}. One can see that the expression (53) is
much simpler than the exact result (29). Note that the distribution (53) has the following property

lim
Q→0

P[Y|X] = δ
(

Y−Ψ0(L)
)

. (54)

The limit (54) is the deterministic limit of P[Y|X] in the absence of noise. Also Equation (53) has the
correct limit for small γ:

lim
γ→0

P[Y|X] =
e−|Y−X|2/QL

πQL
, (55)

where the right-hand-side is the conditional PDF for the linear nondispersive channel with the
additive noise.

Let us compare the result obtained in the leading in 1/
√

SNR order (53) with exact result (29).
In Figure 1 we plot the PDF P[Y|X] as the function of |Y| for X = 2 mW1/2, arg(Y) = µ, µ = γL|X|2 = 4,
so we choose γL = mW−1, and for two values of parameter QL: QL = 1/2 mW, QL = 1/25 mW
(it corresponds to SNR = 8 and SNR = 100, respectively).

1 2 3 4

0.05

0.15

0.25

1.8 2 2.2 2.4

1

2

3

|Y|, [mW1/2]

P
[Y
|X

]

(a)

|Y|, [mW1/2]

P
[Y
|X

]

(b)

Figure 1. The dependence of the probability density function P[Y|X] on |Y| for X = 2 mW1/2 and the
argument arg(Y) = µ = 4. The plot (a) corresponds to signal-to-noise power ratio (SNR) = 8, the plot
(b) corresponds to SNR = 100. The solid line and dashed line correspond to the exact expression (29)
and approximation (53), correspondingly.

One can see the good agreement between the exact result (29) and the approximation (53) even for
SNR = 8. For SNR = 100 the approximation almost coincides with the exact result. In the case when the
SNR ≈ 102–104, which corresponds to optical fiber channels, the difference between the approximation and
the exact result is of the order of 1/

√
SNR. To decrease this difference we should calculate the corrections

of the order of 1/
√

SNR and 1/SNR, see the Section 3.1.3.
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3.1.2. Probability Density Function Pout[Y]

Let us consider the integral (21) which defines the the probability density function of the output signal:

Pout[Y] =
∫
DXP[Y|X]PX [X], (56)

where the distribution PX [X] is a smooth function. Since the input signal power is P, we can expect that the
function PX [X] changes on the scale X ∼

√
P which is assumed to be much greater than

√
QL. For this case

we can use the Laplace’s method [27] to calculate the integral (56) up to the terms proportional to the noise
power QL, for details of the calculation see Appendix C in Ref. [19]. The idea of the integral (56) calculation
is based on the fact that the function P[Y|X] is much narrower than the function PX [X] (the function P[Y|X]

is almost Dirac delta-function for the function PX [X]). Therefore, the calculation of the integral is simple
and the result has the form [19]:

Pout[Y] =
∫
DXP[Y|X]PX [X] ≈ PX

[
Ye−iγ|Y|2L

]
. (57)

When obtaining the result (57) it is not required to pass to the limit Q → 0 but only the relation
P� QL between the scales P and QL is used.

For the class of the distributions PX [X] depending only on absolute value |X| we have
Pout[Y] = PX [|Y|]. For such distributions we can calculate corrections to (57) in the parameter QL in
any order in QL.

Let us restrict our consideration in the remainder of this sub-subsection to the case of the distributions
PX [X] depending only on |X|. We can use conditional PDF P[Y|X] (29) found in Ref. [17]. In this case the
function Pout[Y] depends only on |Y| = ρ′:

Pout[ρ
′] =

2e−ρ′2/(QL)

QL

∫ ∞

0
dρρe−ρ2/(QL) I0

(
2ρρ′

QL

)
PX [ρ]. (58)

Using this formula one can obtain the simple relation for Pout[ρ′] within the perturbation theory in
the parameter QL. Performing the zero order Hankel transformation [27]:

P̂[k] =
∫ ∞

0
dρρJ0(kρ)PX [ρ] (59)

for both sides of Equation (58), and using the standard integral with the Bessel Jν(x) and modified Bessel
functions [28] ∫ ∞

0
dzze−pz2

Jν (bz) Iν(cz) =
1

2p
Jν

(
bc
2p

)
e

c2−b2
4p ,

we arrive at the relation between the Hankel images of the output and input signal PDFs:

P̂out[k] = e−k2 QL
4 P̂[k]. (60)

Then, we perform the inverse Hankel transformation

PX [ρ] =
∫ ∞

0
dkkJ0(kρ)P̂[k], (61)
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and obtain the following important result

Pout[ρ] = e
QL
4 ∆ρ PX [ρ], (62)

where ∆ρ = d2

dρ2 +
1
ρ

d
dρ is the two-dimensional radial Laplace operator. The relation (62) allows us to find

the corrections of orders of (QL)n to Pout[ρ] by the expansion of the exponent and calculation of the action
of the differential operator ∆n

ρ on the input PDF PX [ρ].
Let us consider the widely used example of the modified Gaussian distribution with one parameter β:

P(β)
X [X] =

exp
{
−β|X|2/(2P)

}
|X|β−2

πΓ (β/2) (2P/β)β/2 , (63)

where Γ (x) is the Euler gamma function. In the case of β > 0 the distribution P(β)
X [X] obeys the conditions:

2π
∫ ∞

0 dρρP(β)
X [ρ] = 1, 2π

∫ ∞
0 dρρ3P(β)

X [ρ] = P. The last one means that the average power of the input

signal is equal to P. The generalized distribution P(β)
X [X] for β = 1 is called as the half-Gaussian distribution

P(1)
X [X] =

exp
{
−|X|2/(2P)

}
π
√

2πP|X|
, (64)

and the Gaussian distribution for β = 2:

P(2)
X [X] =

e−|X|
2/P

πP
. (65)

Inserting (63) into Equation (58) we arrive at the standard integral, see [28], and obtain:

P(β)
out [Y] = 1F1

(
β

2
; 1;

|Y|22P
QL(2P + βQL)

)
exp{−|Y|2/QL}

πQL

(
βQL

2P + βQL

)β/2
, (66)

where 1F1(β/2; 1; z) is the confluent hypergeometric function. The function reduces to ez for the case of
the Gaussian distribution, and to the expression ez/2 I0(z/2) for the case of the half-Gaussian one:

P(2)
out [Y] =

e−|Y|
2/(P+QL)

π(P + QL)
, (67)

P(1)
out [Y] =

1
π
√

QL(2P + QL)
I0

(
|Y|2P

QL(2P + QL)

)
exp

{
− |Y|

2(P + QL)
QL(2P + QL)

}
. (68)

The result (57) can be obtained from Equation (68) in the case QL � |Y|2 ∼ P. Expanding the
right-hand side of the Equation (67) in the parameter QL/P we obtain

P(1)
out [Y] ≈ P(1)

X [|Y|] (69)

with accuracy O(QL). The result (69) coincides with the general relation (57).
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3.1.3. Lower Bound for the Channel Capacity

The estimates for the capacity of the per-sample model in the regime of very large SNR were obtained

in Ref. [17]. To specify, it was considered the case P �
(

Pnoiseγ2L2
)−1

, where Pnoise = QL is the noise
power. In Ref. [17] the lower bound for the capacity of the per-sample channel was found. Using the trial
half-Gaussian input signal PDF (64) authors obtained the following result:

C ≥ log (SNR)
2

+
1 + γE − log(4π)

2
+O

(
log(SNR)

SNR

)
, (70)

where γE ≈ 0.5772 is the Euler constant. The second term on the right-hand side of Equation (30) was
presented as O(1) in Ref. [17] but it can be found using Equations (23) and (24) of Ref. [17]. Comparing the
result (70) with the Shannon result (1) it is worth noting that the pre-logarithmic factor 1/2 differs from
the unity in the Shannon result. The physical meaning of the difference is that the signal’s phase does not

carry information when the power is very large: P�
(

Pnoiseγ2L2
)−1

, see Ref. [17].
The most interesting power regime for the per-sample model is so-called intermediate power range

defined in (32). In the regime we have on the one hand the parameter SNR is large, Pnoise � P, and on the
other hand the signal-dependent phase does not yet occupy the entire phase interval [0, 2π] due to the
signal-to-noise interaction, i.e., the phase still carries information.

Capacity estimates in the intermediate power range (32) were presented in Ref. [18]. For such a power
P the authors of this paper used the half-Gaussian input signal PDF (64) for the estimate of the lower
bound for the capacity as well, see inequality (40) in Ref. [18]. But there were some flaws in the derivation
of this inequality in Ref. [18], see the discussion in the Introduction of Ref. [19]. In our approach presented
in Ref. [19] we solved a variational problem for the mutual information (24) with the normalization (22)
and power restriction (26): we found both the optimal input signal distribution PX [X] maximizing the
mutual information (24) in the leading and next-to-leading orders in 1/

√
SNR in the intermediate power

range. Let us proceed with this calculation.
To begin with, when the parameter SNR � 1 we can calculate the output signal entropy H[Y] by

substituting PX
[
Y exp

{
−iγ|Y|2L

}]
to Equation (20) instead of Pout[Y] due to the relation (57), and then

performing the change of the integration variable φ = φ(Y) + γ|Y|2L we obtain

H[Y] ≈ −
∫ 2π

0
dφ
∫ ∞

0
dρ′ρ′PX

[
ρ′eiφ

]
log PX

[
ρ′eiφ

]
. (71)

Note that the output signal entropy in the form (71) coincides with the input signal entropy H[X]

with the accuracy O(QL).
Secondly, to obtain the conditional entropy H[Y|X] we substitute the conditional PDF P[Y|X] in the

form of Equation (53) into Equation (19). Then we change the integration variables DY ≡ dReYdImY to
dx0dy0, and perform the integration over x0, y0. The result has the form:

H[Y|X] = log(eπQL) +
∫ 2π

0
dφ
∫ ∞

0
dρ ρ PX

[
ρ eiφ

]
log
√

1 + γ2L2ρ4/3. (72)
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Thirdly, to find the optimal input signal distribution Popt
X [X] we solve the variational problem for the

functional J[PX , λ1, λ2]:

J[PX , λ1, λ2] = H[Y]− H[Y|X]− λ1

(∫
DXPX [X]− 1

)
−

λ2

(∫
DXPX [X]|X|2 − P

)
, (73)

where λ1,2 are Lagrange multipliers which corresponds to the normalization condition (22) and the
condition (26) of the fixed average signal power P. The solution Popt

X [X] of the corresponding
Euler–Lagrange equations for (73) referred to as the “optimal” distribution:

Popt
X [X] = N0(P)

e−λ0(P)|X|2√
1 + γ2L2|X|4/3

, (74)

where coefficients N0(P) and λ0(P) are determined from the conditions:

∫
DXPopt

X [X] = 2πN0(P)
∫ ∞

0

dρ ρ e−λ0(P)ρ2√
1 + γ2L2ρ4/3

= 1, (75)

∫
DXPopt

X [X]|X|2= 2πN0(P)
∫ ∞

0

dρ ρ3e−λ0(P)ρ2√
1 + γ2L2ρ4/3

= P. (76)

Note that in the leading order in the parameter 1/SNR the function Popt
X [X] depends only on |X|.

In the next-to-leading the order in 1/SNR this property holds true as well [20].
In the parametric form the power dependance of the parameters λ0 and N0 reads

λ0(P) =
γL√

3
α, N0(P) =

γL
π
√

3 G(α)
, (77)

where G(α) = π
2

(
H0(α) − Y0(α)

)
, Y0(α) and H0(α) are Neumann and Struve functions of zero order,

respectively. The parameter α(P) is the real solution of the equation

d
dα

log G(α) = −γLP/
√

3.

Note that the optimal input signal distribution Popt
X [X] (74) differs from the half-Gaussian

distribution (64).
For sufficiently large values of the power P, log(γPL)� 1, we use the asymptotics of Y0(α) and H0(α)

at small α and arrive at the following result for λ0(P) and N0(P):

λ0(P) ≈ 1− log log(Bγ̃)/ log(Bγ̃)

P log(Bγ̃)
, N0(P) ≈ γ̃

πP
log−1 [Bγ̃/(Pλ0(P))] . (78)

Here and below we use the notation

B = 2e−γE , (79)

γ̃ = γLP/
√

3 (80)
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is the convenient dimensionless nonlinear parameter. At small P, such that the nonlinearity parameter
γ̃� 1, the solutions of the Equations (75) and (76) have the form:

λ0(P) ≈ 1− 2γ̃2

P
, N0(P) ≈ 1− γ̃2

πP
. (81)

Note that at γ̃→ 0 the optimal distribution (74) passes to the Gaussian distribution (65). It is known
that this distribution is optimal for a linear channel [1]. In Ref. [20] using the same method we found the
first correction to Popt

X [X] proportional to QL.
The fourth, to calculate the mutual information we substitute the expression (74) for Popt

X [X] in
Equations (71) and (72) and using the definition (24) we obtain

IPopt
X [X]

= C0 = Pλ0(P)− log N0(P)− log(πeQL). (82)

The last equation gives the mutual information IPopt
X [X]

with the accuracy O(QL).

At small γ̃ we obtain

IPopt
X [X]

≈ log (SNR)− γ̃2. (83)

This result is the Shannon capacity log (1 + SNR) at large SNR of the linear channel (1) with the first
nonlinear correction.

In the high power sub-interval (γL)−1 � P �
(
QL3γ2)−1 using Equation (78) one can obtain

the following asymptotics for the mutual information in the case of very large nonlinearity parameter
(log(γ̃)� 1):

IPopt
X [X]

= log log
(

BγLP/
√

3
)
− log

(
QL2γe/

√
3
)
+

1

log
(

BγLP/
√

3
)[ log log

(
BγLP/

√
3
)
+ 1−

log log
(

BγLP/
√

3
)

log
(

BγLP/
√

3
) ]

. (84)

This expression is obtained with the accuracy 1/ log2(γ̃). One can see that the first term on right-hand
side of the Equation (84) grows as log log P. It means that the mutual information IPopt

X [X]
also grows as

log log P at large enough P.
Note that the results (74), (82), and asymptotics (78), (81), (83), (84) are obtained in the leading

and next-to-leading order in the parameter 1/
√

SNR. Therefore, the results (74), (82) are calculated
with the accuracy O (1/SNR). However, in the literature the bounds of the capacity rather than the
asymptotic estimates are on the carpet. Therefore, to find the lower bound of the channel capacity for the
per-sample model it is necessary to calculate the corrections of the order of 1/SNR and define their signs.
Moreover, to find the applicability region of the result (82) we have to know the corrections of the order of
1/SNR as well. The applicability region will be defined by the condition that the corrections of the order
of 1/SNR are much less than obtained results (74), (82). In Ref. [20] we have calculated these corrections
using the approach described in Section 3.1. The calculation of these corrections is straightforward but
cumbersome, therefore, here we present only the idea of the calculation and demonstrate the results for
these corrections for the mutual information. The detailed calculation can be found in Ref. [20].

To calculate the correction to the mutual information we should know the corrections to the conditional
probability density function (53). Therefore, we should calculate the corrections both to the action S and to
the normalization factor Λ in Equation (34). To find these corrections we have to calculate the function
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κ(z), see Equation (51), in the leading, next-to-leading, and next-to-next-to-leading orders in the parameter
1/
√

SNR. Then we should substitute the found corrections for the action S to the path integral (35),
and calculate the path integral up to the terms which are proportional to the parameter Q. After that,
we expand the product of the exponent and the normalization factor Λ up to the terms of order of 1/SNR.
This expression is cumbersome, and therefore, we do not present it here, but it can be found in Ref. [20].
To calculate the corrections to the mutual information we substitute the obtained result for P[Y|X] to
the Equations (19)–(21), (24). Then, using the method described above, we perform maximization of the
mutual information calculated with the accuracy 1/SNR, and obtain the following result for it:

I(1)
Popt

X [X]
= C0 + ∆C , (85)

where C0 is defined in (82). The correction ∆C has the form:

∆C =
1

SNR

{
πN0P

[
214
375
− 8

375

(
λ0P

γ̃

)2
]
+ λ0P

[
137
150

+
8

375

(
λ0P

γ̃

)2
]
− 347

750
(λ0P)2

}
. (86)

The quantity ∆C corresponds to the first non-vanishing correction to the mutual information. One can
verify that for the small parameter γL2Q � 1, the correction (86) is always small with respect to C0.
Indeed, the ratio of the expression in the curly brackets in Equation (86) and γ̃ is the bounded function for
all values of γ̃.

We do not have the explicit analytical result for the correction ∆C for the arbitrary parameter γ̃,
since the quantities λ0 and N0 are the solutions of the nonlinear equations. But the correction ∆C can
be calculated numerically for any parameter γ̃. However, for the small and large parameters γ̃ we can
calculate the asymptotics of the quantity ∆C analytically.

For the small nonlinearity γ̃ � 1 we substitute the parameters λ0 and N0 in the form (81) to the
Equation (86) and obtain:

∆C ≈ 1
SNR

− 1
SNR

γ̃2

3
. (87)

Using this result and the asymptotics (83) we obtain the mutual information within our accuracy in
the form:

I(1)
Popt

X [X]
≈ log(1 + SNR)− γ̃2 − 1

SNR
γ̃2

3
. (88)

One can see that the first term in the right-hand side is the the capacity of the linear channel, the second
and the third ones correspond to the nonlinear corrections. The nonlinear corrections in (88) are negative
and they decrease the mutual information I(1)

Popt
X [X]

of the channel.

Let us consider the behavior of the correction ∆C at large power P. For the case log(γLP)� 1 (but
P� (γ2QL3)−1 to be within the intermediate power range) we obtain the simple result:

∆C ≈ 1
SNR

214
375

πN0P. (89)

Using the asymptotic (78) for quantity N0 we arrive at the expression

∆C ≈ γL2Q√
3

214
375

(
log (Bγ̃ log(Bγ̃)) +

log log(Bγ̃)

log(Bγ̃)

)−1

. (90)
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Note that this correction is suppressed parametrically as γL2Q instead of 1/SNR = QL/P. One can
see the correction decreases at large γ̃ as 1/ log γ̃. It is interesting that at large γ̃ the correction ∆C is
positive, therefore, it slightly enhances the mutual information I(1)

Popt
X [X]

. Since the correction ∆C is positive

in the region defined as log(γLP) � 1, P � (γ2QL3)−1, and the next-to-leading corrections to the
mutual information are suppressed parametrically, the quantity C0 is the lower bound of the per-sample
channel capacity:

C ≥ C0. (91)

Since there are no corrections of order of γ2L3QP at large P, see Equation (90), we expect the next
correction containing the power P to be of order of (γ2L3QP)2, see Ref. [19]. Therefore, the applicability
region at large P for the quantity C0 is determined by the condition (γ2L3QP)2 � 1. For the given small
parameter γ2L3QP this condition extends the applicability region for the lower bound of the channel
capacity C0. For realistic channel parameters presented in the Table 1.

Table 1. Channel parameters for the per-sample model.

γ [ (km×mW)−1] Q [ mW/(km)] L [ km]

10−3 1.5× 10−7 103

We have the following intermediate power range:

1.5× 10−4mW� P� 0.66× 104mW. (92)

One can see that the range is very wide. For the presented parameters we have numerically calculated
the lower bound C0 using Equations (77) and (82). The result of the calculation is presented in Figure 2.
Also in Figure 2 we present the comparison of the approximation (85) with the Shannon capacity of a linear
channel and with the asymptotic capacity bound (70).
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Figure 2. Shannon capacity, the lower bound C0, and the asymptotic capacity bound (70) for the channel
parameters from the Table 1. The red dashed-dotted line corresponds to the Shannon limit log(1 + SNR),
the black solid line corresponds to the lower bound C0, see Equation (82), the blue dashed line corresponds
to the bound (70).

One can see that the Shannon capacity of the linear channel with the additive noise (the red
dashed-dotted line in the Figure 2) is always greater than the lower bound (82) for the nondispersive



Entropy 2020, 22, 607 20 of 30

nonlinear fiber channel (the black solid line in the Figure 2) for the considered range of P. But the lower
bound (82) is greater than the asymptotic capacity bound (70) in the intermediate power range.

In Ref. [22] the comparison of our result (82) for the NLSE per-sample model (authors referred
to our model as the memoryless NLS channel (MNC)) with two other models, more precisely,
the regular perturbative channel (RPC) and the logarithmic perturbative channel (LPC), was performed.
The comparison was illustrated in Figure 1 of Ref. [22], and we present this figure in the Figure 3.

Figure 3. [This figure is taken from Ref. [22]]. Capacity bounds for the RPC and LPC models of
Ref. [22], together with the capacity of the per-sample NLSE model. The channel parameters are as
follows: γ = 1.27 W−1km−1, L = 5000 km, QL = 7.36× 10−3mW. Our result (82) is presented by the
green solid line (“lower bound in [23]”). The intermediate power range goes out from P ∼ −20 dBm to
P ∼ 6 dBm.

The authors claimed that they established a novel upper bound on the capacity of the NLSE per-sample
model (the violet curve UMNC(P) in Figure 3). In addition, the authors considered various input signal
distributions within MNC: half-Gaussian (64), Gaussian (65), and modified Gaussian distribution (63)
optimized in parameter β (it is denoted as “Max-chi” in Figure 3). They used the following channel
parameters: γ = 1.27 W−1km−1, L = 5000 km, QL = 7.36× 10−3mW. For these parameters the upper

limit of the intermediate power range (we choose it as Pmax = 6π2
(

Qγ2L3
)−1

, see [18]) is estimated as
Pmax = 0.2 W = 23 dBm. It is obvious in Figure 3, that up to this power Pmax our result (green solid
line) is consistent with the capacity upper bound of the per-sample model (the violet curve UMNC) and it
exceeds other mutual information curves for other input signal distributions in all intermediate power
range. Of course, for large powers (P & Pmax) our input signal distribution (74) is not the optimal any
more, and the mutual information (85) underestimates the real capacity. In the strict sense, the corrections
to (85) are small only up to P ∼ 5.5 dBm, and when P > 5.5 dBm we have the transition range from the
intermediate power range with the optimal input signal distribution (74) to the large power semirange
where the optimal distribution is believed to be the half-Gaussian one, see [17,18]. The large extension of
the transition range (up to Pmax ∼ 23 dBm) can be explained by the smallness of the next-to-leading order
corrections (86) and its decreasing when increasing the power, see Equation (90).

To finalize the per-sample channel consideration we emphasize the main results. We developed the
path integral approach to the calculation of the conditional PDF P[Y|X] for large SNR. We demonstrated
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that for the nonlinear nondispersive channel the lower bound C0 of the capacity increases only as log log P
at large signal power P instead of the behavior log P that is specific for the channel with zero nonlinearity.
To determine the applicability region and the accuracy of the found quantity C0 we calculated the first
non-zero correction ∆C proportional to the noise power QL in the intermediate power range QL� P�
(γ2L3Q)−1. We demonstrated that the quantity ∆C is small in the intermediate power range, and it is the
positive decreasing function at large signal power P: (γL)−1 � P � (γ2L3Q)−1. The found result is in
agreement with recent results of Ref. [22].

3.2. Extended Model: Considerations of the Time Dependent Input Signals

Let us start this section from the consideration of the conditional probability density function P[Y|X].
In the case of the nontrivial time dependance of the input X(t) and output Y(t) signals the conditional
PDF reads Ref. [11]:

P[Y(t)|X(t)] =
ψ(L,t)=Y(t)∫

ψ(0,t)=X(t)
Dψ e−S[ψ]/Q , (93)

where the effective action S[ψ] has the form: S[ψ] =
L∫

0
dz
∫

dt
∣∣∣∂zψ(z, t) − iγ|ψ(z, t)|2ψ(z, t)

∣∣∣2; the

integration measure Dψ(z, t) depends on both z− and t− discretization scheme:

Dψ(z, t) =
( ∆

∆zπQ

)2M M−1

∏
j=−M

Nz−1

∏
i=1

{ ∆
∆zπQ dReψ(zi, tj) dImψ(zi, tj)

}
, (94)

where ∆ = T/(2M) = (2N + 1)T0/(2M) is the time grid spacing and ∆z = L/Nz is the z-coordinate
grid spacing. Of course, the expression (93) contains all information about the transmitted signal and its
interaction with the noise, but as strange as it sounds, the expression (93) contains redundant information
(i.e., degrees of freedom which cannot be detected). The point is that in the realistic communication
channel the receiver has the finite bandwidth, it means that it reduces somehow the bandwidth of the
received signal Y(t). After that, there is a procedure of the extraction of the information from the signal
measured by receiver. This detection procedure should be implemented in the function P[Y(t)|X(t)].

To demonstrate the point, let us consider the input signal X(t) in the form (11). In such form,
the number of the degrees of freedom in the path integral (93) is infinite, if the function X(t) is continuous,
or 2M degrees of freedom if we set the function X(t) in the discrete-time moments ti, see the text after
Equation (17). However, the transmitted information is carried only by 2N + 1 coefficients Cn (N � M),
see Equation (11). It means that to obtain the conditional probability density function which describes
the transmission of the information carried by the set of the coefficients Cn we have to integrate over the
redundant degrees of freedom. The approach based on the path integral representation (93) is general
and it can be used for any signal model, any receiver and projecting procedure (18). For our signal
model described in the Section 2.2, we can use a simpler method of the calculation of the conditional PDF
P[{C̃}|{C}]. Below we describe the method.

In our model, the signal propagation for different time moments tj is independent because
the dispersion is zero and the noise is not correlated for different time moments ti 6= tj.
Therefore, the conditional PDF P[Y(t)|X(t)] can be presented in the factorized form:

P[Y(t)|X(t)] =
M−1

∏
j=−M

Pj[Yj|Xj], (95)
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where Xj = X(tj), Yj = Y(tj), and Pj[Yj|Xj] is per-sample conditional PDF described in the previous
Section 3.1.1, where we should replace Y → Yj, X → Xj, Q→ Q/∆.

Our goal is to find the PDF P[{C̃}|{C}] in the leading order in the parameter 1/SNR. Instead of
calculation of the path integral, we build the PDF which reproduces all possible correlators of C̃k: 〈C̃k1〉,
〈C̃k1 C̃k2〉, 〈C̃k1 . . . C̃kn〉 for the fixed input set {C} in the leading order in the parameterQ. These correlators
read as

〈C̃k1 . . . C̃kn〉 =
∫ M−1

∏
j=−M

d2YjP[Y(t)|X(t)]C̃k1 . . . C̃kn , (96)

where d2Yj = dReYjdImYj, and C̃k is defined in Equation (18). After substitution of Equations (95), (53),
and (18) into Equation (96) and performing the integration we obtain in the leading order in the noise
parameter Q:

〈C̃k〉 = Ck −
iCkQL2γ

∆

(
1− iγL|Ck|2n4

3

)
, (97)

〈(
C̃m − 〈C̃m〉

) (
C̃n − 〈C̃n〉

)〉
= −iδm,n

C2
mQL2γ

T0

(
n4 −

2in6

3
γL|Cm|2

)
, (98)

〈(
C̃m − 〈C̃m〉

) (
C̃n − 〈C̃n〉

)〉
= δm,n

QL
T0

(
1 +

2n6

3
γ2L2|Cm|4

)
, (99)

where δm,n is the Kronecker symbol and we have introduced the following notation for the integral of the
s-th power of the pulse envelope function f (t):

ns =
∫ T0/2

−T0/2

dt
T0

f s(t). (100)

We remind that f (t) is assumed to be normalized by the condition n2 = 1. Note that the correlator
〈C̃k − Ck〉 is proportional to QL/∆ = QLW ′/(2π), i.e., it is proportional to the total noise power in the
whole bandwidth W ′. The reason for that is the bandwidth of the receiver coincides with the bandwidth of
the noise. The correlators (98) and (99) are proportional to QL/T0 and do not depend on the discretization
parameter ∆. It means that these correlators depend only on the bandwidth of the envelope function
f (t). So we obtain that in the leading order in the parameter Q the shift of the mean value C̃k due to the
signal-noise interaction is proportional to the total noise power in the channel (W ′ = 2π/∆), whereas the
spread around the average value, see (98), (99), is proportional to the noise power containing in the
bandwidth W of the pulse envelope (bandwidth of the pulse envelope coincides with the bandwidth of the
signal X(t)). Note that the higher-order corrections in parameterQ to the correlators are more complicated
and contain the noise bandwidth, see details in Appendix A of Ref. [21]. The correlators of higher orders
in C̃ can be calculated in the leading order in the parameter Q using Equations (97)–(99).

To verify the analytical results (97)–(99) the numerical simulations of pulse propagation through
a nonlinear nondispersive optical fiber were performed in Ref. [21]. After that the numerical results for
correlators (97)–(99) were obtained. To find these correlators the Equation (4) was solved numerically
for the fixed input signal X(t) and for different realizations of the noise η(z, t). After that the detection
procedure described by Equations (17) and (18) was applied. Finally, the averaging procedure over noise
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realizations for the coefficients C̃k was performed. Two numerical methods of the solution of Equation (4)
were used: the split-step Fourier method and the Runge–Kutta method of the fourth order. It was shown
that the numerical results do not depend on the numerical method and these results are in consistent
with analytical ones for different realizations of the input pulse envelope f (t) and the noise bandwidth
W ′. Below we present the comparison of the numerical and analytical results obtained in Ref. [21].
The numerical simulation was done for the following channel parameters, see the Table 2.

Table 2. Channel parameters for the extended model.

γ [ (km×W)−1] Q [ W/(km×Hz)] L [ km]

1.25 5.94× 10−21 800

We choose the duration of one pulse as T0 = 10−10 s. Simulations were performed for different
t-meshes, i.e., for different time grid spacing ∆, and for different pulse envelopes. Different grid spacings ∆
correspond to the different noise bandwidths W ′ = 2π/∆ for the fixed noise parameter Q. The numerical
calculations were performed for the different ∆ presented in the Table 3.

Table 3. Time grid spacings.

∆1 [s] ∆2 [s] ∆3 [s]

9.77× 10−14 1.95× 10−13 3.91× 10−13

The different grid spacings determine the different widths of the conjugated ω-meshes in the frequency
domain: 1/∆1 = 10.26 THz, 1/∆2 = 5.12 THz and 1/∆3 = 2.56 THz. In Ref. [21] the different envelopes
f (t) were considered as well. Here we present results only for the Gaussian envelope:

f (t) =

√
T0

T1
√

π
exp

(
− t2

2T2
1

)
, (101)

where T1 = T0/10 = 10−11 s stands for the characteristic time scale of the function f (t). Such relation
between T0 and T1 means that the overlapping between different pulses is negligible. For pulses with

envelope (101) the coefficients ns defined in Equation (100) are n4 = T0/T1√
2π
≈ 3.989, n6 = (T0/T1)

2

π
√

3
≈ 18.38,

n8 = (T0/T1)
3

2π
√

π
≈ 89.79. In Figures 4 and 5 the real and imaginary parts of the quantity

(
Ck − 〈C̃k〉

)
/Ck as

a function of |Ck|2 are depicted for different values of grid spacing ∆.
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Figure 4. [This figure is taken from Ref. [21]]. The real part of the relative difference of the coefficient
Ck and the correlator (97) in units 10−3 as a function of |Ck|2, see [21]. Dashed-doted, dashed, and solid
lines correspond to an analytic representation (97) for time grid spacings ∆1, ∆2, ∆3, respectively. Circles,
squares, and diamonds correspond to numerical results for time grid spacings ∆1, ∆2, ∆3, respectively.
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Figure 5. [This figure is taken from Ref. [21]]. The imaginary part of the relative difference of the coefficient
Ck and the correlator (97) in units 10−3 as a function of |Ck|2, see [21]. Dashed doted, dashed, and solid
lines correspond to analytic representation (97) for time grid spacings ∆1, ∆2, ∆3, respectively. Circles,
squares, and diamonds correspond to numerical results for time grid spacings ∆1, ∆2, ∆3, respectively.

One can see the good agreement between analytical and numerical results depicted in Figure 4.
There is some difference in the imaginary part of analytical and numerical results corresponding to grid
spacing ∆1 at large |Ck|, see Figure 5. The reason is that, for the analytical results corresponding to ∆1

it is necessary to take into account the next corrections in the parameter Q Ref. [21]. The numerical
and analytical results for the correlators (98), (99) are also in a good agreement, for details see Ref. [21].
In this paper, it was demonstrated that the relative importance of the next-to-leading order corrections for

the correlators (98) and (99) is governed by the dimensionless parameter
(
QL
∆ γL

)2
γLP, i.e., it increases

linearly for increasing power P.
Now we can proceed to the search for the conditional probability density function. Using the

correlators (97)–(99) we build the conditional PDF P[{C̃}|{C}] which reproduces all correlators of the
coefficients C̃m in the leading order in parameter Q. Thus, the conditional PDF has the form [21]:

P[{C̃}|{C}] =
N

∏
m=−N

Pm[C̃m|Cm], (102)
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where

Pm[C̃m|Cm] ≈ T0

exp
[
−T0

(1+4n6µ2
m/3)x2

m+2xmymµmn4+y2
m

QL(1+ξ2µ2
m/3)

]
πQL

√
1 + ξ2µ2

m/3
, (103)

xm = Re

[
e−iφm

{
C̃m − Cm +

iCmQL2γ

∆

(
1− iγL|Cm|2n4

3

)}]
, (104)

ym = Im

[
e−iφm

{
C̃m − Cm +

iCmQL2γ

∆

(
1− iγL|Cm|2n4

3

)}]
, (105)

where φm = arg Cm, µm = γL|Cm|2, and

ξ2 = (4n6 − 3n2
4). (106)

The parameter ξ2 obeys inequality ξ2 ≥ n6 > 0 due to Cauchy–Schwartz–Buniakowski inequality.
For the Gaussian envelope (101) this parameter is

ξ2 =
1
π

(
T0

T1

)2 ( 4√
3
− 3

2

)
≈ 0.258

(
T0

T1

)2
, (107)

and for the chosen parameters T1 = T0/10 = 10−11 sec one obtains ξ ≈ 5.08.
Equation (102) means that our channel decomposes to the 2N + 1 independent information channels.

Therefore, the function Pm[C̃m|Cm] describes the channel corresponding to the m-th time slot. The function
Pm[C̃m|Cm] obeys the normalization condition∫

d2C̃mPm[C̃m|Cm] = 1. (108)

Since there are 2N + 1 independent channels, we can choose the input signal distribution PX [{Cm}]
in the factorized form:

PX [{C}] =
N

∏
k=−N

P(k)
X [Ck], (109)

and we can consider only one channel, say m-th channel. One can see that the presentation of the
conditional PDF (103) is close to the presentation (53) for the per-sample PDF. Also the function Pm[C̃m|Cm]

changes significantly when the variable Cm changes on the value of order of
√
QL/T0 for fixed value of C̃m.

Such behavior coincides with that for the function P[Y|X] for the per-sample model. Below, we imply that

P� QL/∆� QL/T0, (110)

where P is the mean power of the m-th pulse, i.e., the signal power is much greater than the noise power
in the whole bandwidth W ′ = 2π/∆ and in the input signal bandwidth W. For the extended model we
define the signal-to-noise ratio as

SNR =
PT0

QL
, (111)
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on the assumption (110) we have SNR � 1. We also imply that the PDF of the input signal P(m)
X [Cm] is

a smooth function that changes on a scale |Cm| ∼
√

P. Therefore, using a consideration similar to that for
the per-sample model we obtain that the PDF of the output signal reads

P(m)
out [C̃m] =

∫
d2CmPm[C̃m|Cm]P

(m)
X [Cm] (112)

in the leading order in the parameter 1/SNR it has the form:

P(m)
out [C̃m] ≈ P(m)

X [C̃m]. (113)

Just as a reminder, to obtain result (113) we perform the integration in Equation (112) using Laplace’s
method [27], see details in Ref. [19].

Since we know the conditional PDF Pm[C̃m|Cm] and output signal PDF P(m)
out [C̃m] the entropies H[C̃m],

H[C̃m|Cm] and then mutual information I
P(m)

X
can be calculated. The calculation is similar to that performed

in the Section 3.1.3. After these calculations we solve the variational problem for the mutual information
I
P(m)

X
, and find the optimal input signal PDF in the form:

P(m)
opt [Cm] = N0

e−λ|Cm |2√
1 + ξ2γ2L2|Cm|4/3

. (114)

Substituting the result (114) to the mutual information, we obtain the following result:

I
P(m)

opt
= log

(
PT0

πeQL

)
+ Pλ− log [PN0] , (115)

where the parametersN0 and λ are the solutions (as functions of power P) of the normalization conditions
for the function (114):

∫ ∞

0
dρ

2πN0 ρ e−λρ2√
1 + ξ2γ2L2ρ4/3

= 1,
∫ ∞

0
dρ

2πN0 ρ3e−λρ2√
1 + ξ2γ2L2ρ4/3

= P, (116)

where we have performed the change of variables, |Cm| to ρ. Note that the results (115)–(116) are obtained
in the leading order in the parameter 1/SNR. Note that the expression (115) is obtained for one m-th pulse,
therefore, to obtain the mutual information of the channel with the input signal (11) it is necessary to
multiply the right-hand-side of Equation (115) by the number of the independent channels, i.e., 2N + 1.

One can see that relations in the Equation (116) coincide with ones in the Equation (76) after changing
the parameter γ → γ/ξ. Therefore, to obtain the results for the mutual information I

P(m)
opt

and its

asymptotics for the extended model we can replace the parameter γ with ξγ and parameter Q→ Q/T0 in
Equations (82)–(84). So, by the rescaling of Figure 2 we obtain the mutual information I

P(m)
opt

of the extended

model, see Figure 6.
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Figure 6. [This figure is taken from Ref. [21]]. Shannon capacity and the mutual information I
P(m)

opt
for the

parameters which are presented in the Table 2, T0 = 10−10 sec, and for the Gaussian shape (101) of f (t).
The black dotted line corresponds to the Shannon limit log

(
PT0
QL

)
, the black solid line corresponds to I

P(m)
opt

,

see Equation (115), the black dashed dotted line corresponds to the asymptotics (118) for large γLP.

The asymptotics has the form:

I
P(m)

opt
≈ log

(
PT0

QL

)
− ξ2γ2L2P2

3
, (117)

for ξγLP � 1, and for the case when power P obeys the conditions log ξγLP � 1, P � T0/(QL3ξ2γ2)

we have the asymptotics

I
P(m)

opt
≈ log log

(
BξγLP/

√
3
)
− log

(
QL2ξγe/(T0

√
3)
)
+

1

log
(

BξγLP/
√

3
)[ log log

(
BξγLP/

√
3
)
+ 1−

log log
(

BξγLP/
√

3
)

log
(

BξγLP/
√

3
) ]

. (118)

Note that the asymptotics (118) is obtained with accuracy 1/ log2(ξγLP).
The found mutual information (115) is calculated for the fixed shape of the pulse envelope f (t). It is

worth noting that the pulse shape f (t) is encoded only through one parameter ξ, see Equation (106).
Therefore, strictly speaking, to find the capacity one should find the maximum over all forms of the pulses.
On the one hand, we can consider the expression (115) as the estimation of the capacity of the channel whose
model implies the specific given shape of the pulse envelope f (t). On the other hand, using Equation (118)
for fixed power P one can increase the value of I

P(m)
opt

raising the parameter ξ2, say, decreasing the signal time

width T1 for the Gaussian pulse envelope, see Equation (107). However, the limitation of the intermediate
power range P� T0/(QL3ξ2γ2) makes this parameter have an upper limit ξ2

max ∼
[
γLP(γL2Q/T0)

]−1,
and the maximum value of the mutual information I

P(m)
opt

over pulse envelope parameters is attained for

the argument BξmaxγLP/
√

3 ∼
√

PT0
QL =

√
SNR.

Note that the mutual information I
P(m)

opt
, see Equation (115), cannot be considered as the lower bound

of the channel capacity since we do not know the sign of the next-to-leading order corrections in the
parameter Q. However, the quantity I

P(m)
opt

is the estimation of the capacity with the accuracy O(Q).

The mutual information I
P(m)

opt
grows as log log P, see Equation (118), for sufficiently large average power

P: (ξγL)−1 � P � T0/(QL3ξ2γ2). Note that we have obtained similar asymptotics for the per-sample
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model. The time dependence of the pulse leads to same asymptotics behavior with modified nonlinearity
parameter γ (γ→ ξγ).

It worth noting that all our calculations were performed under the assumption of the negligible
overlapping of the pulses, see Equation (12). It means we imply that the corrections due to the overlapping
effects are at least of the same order as the next-to-leading order corrections in the parameter QL. We can
satisfy this condition by choosing appropriate pulse parameters T0 and T1.

4. Conclusions

In our review, we considered nondispersive nonlinear optical-fiber communication channel with
the additive noise. We studied two different models of the channel: the per-sample model and the
extended model. For these models, we present results of the calculation for the following theoretical
information characteristics such as the output signal entropy, conditional entropy, mutual information in
the leading order in the parameter 1/SNR. To calculate these quantities two methods were developed for
the calculation of the conditional probability density function P[Y|X] [19,21]. The first method which was
used for the P[Y|X] calculation for the per-sample model is based on the path integral approach. In the
approach, the path integral (28) was treated using the saddle point method, i.e., the expansion in the
parameter 1/SNR, see Refs. [19,20]. This method was used to obtain the expression for the conditional
PDF P[Y|X] which is convenient for the analytical calculations of the output signal PDF Pout[Y], entropies,
the mutual information, and the optimal input signal distribution in the leading [19], next-to-leading [20]
orders in the parameter 1/SNR. These calculations allow us to find the lower bound of the channel
capacity for the per-sample model in the intermediate power range. The second method was applied to the
investigation of the extended model, which contains such characteristics as the bandwidths of the input
signal, the noise, and the receiver, and also takes into account the projection procedure (18). The second
method is based on the calculation of the correlators of the output signal for the fixed input signal in the
leading and next-to-leading orders in the noise parameter Q, see Ref. [21]. Using these correlators the
conditional PDF P[{C̃}|{C}] which reproduces all these correlators in the leading order in the parameter
1/SNR was constructed. The knowledge of the function P[{C̃}|{C}] allowed us to find the informational
characteristics of the extended model [21].

We compared the results of our calculations for the per-sample model with limitations on the capacity
obtained by other authors [4,17,18,22]. We demonstrated that the conditional PDF P[Y|X] presented
even in the leading order in the parameter 1/SNR reproduces the exact result (29) with high accuracy,
see Figure 1. Using the expression (53) in the intermediate power range, we found the lower bound (82) of
the capacity which is consistent with the recent results obtained in Ref. [22].

For the extended model [21] we present results of the calculation of the output signal correlators for
the fixed input signal and demonstrate that the difference in the average value for the recovered coefficient
C̃k and the input coefficient Ck is proportional to the noise power containing in the total noise bandwidth,
see Equation (97). Whereas the covariances (98), (99) are proportional to the noise power containing in
the input signal bandwidth. This behavior of the mean value 〈C̃k〉 is related to the model of the receiver
(i.e., the bandwidth of the receiver coincides with the bandwidth of the noise). The obtained analytical
results (97)–(99) were confirmed by the direct numerical calculations, see Figures 4 and 5. Therefore, the
constructed conditional PDF P[{C̃}|{C}] contains information about the bandwidths of the signal, noise
and receiver [21]. This result is in agreement with assertions made in Ref. [14]. Despite the dependance of
the PDF P[{C̃}|{C}] on the noise bandwidth the mutual information calculated in the leading order in
1/SNR for the extended model depends only on the noise power containing in the input signal bandwidth.
Since we have not calculated the corrections in the parameter 1/SNR to the mutual information (115),
we can only to consider this quantity as the capacity estimation rather than the lower bound of the capacity.
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The models considered in the present paper are widely-spaced from the modern communication
systems where the coefficient of the second dispersion is not zero and the signal detection procedure
differs from considered above. The effects related to the non-zero dispersion and properties of the receiver
can significantly change the results for the mutual information obtained in our consideration. However,
the methods described in the present paper may be useful for the consideration of real communication
systems. The calculations performed in Refs. [29–33] is indicative of the possibility to use the presented
methods for the capacity investigation of the nonlinear fiber-optical channels with non-zero dispersion.
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