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Abstract: Due to their growing number and increasing autonomy, drones and drone swarms are
equipped with sophisticated algorithms that help them achieve mission objectives. Such algorithms
vary in their quality such that their comparison requires a metric that would allow for their correct
assessment. The novelty of this paper lies in analysing, defining and applying the construct of
cross-entropy, known from thermodynamics and information theory, to swarms. It can be used as a
synthetic measure of the robustness of algorithms that can control swarms in the case of obstacles and
unforeseen problems. Based on this, robustness may be an important aspect of the overall quality.
This paper presents the necessary formalisation and applies it to a few examples, based on generalised
unexpected behaviour and the results of collision avoidance algorithms used to react to obstacles.
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1. Introduction

The development of drones and their swarms will eventually lead to crowded skies, particularly
in urban environments. The safety of such environments depends on the way the behaviour of swarms
is organised, including the need to keep them within allocated airspace. Furthermore, an appropriate
organisation of swarms may have a positive impact on the fulfilment of their missions while requiring
limited use of resources and minimising the impact on the environment.

However, the physicality of flight means that the swarm is always affected by some level of
disorganisation, whether it is caused by changeable weather or unanticipated objects crossing the flight
path. A certain level of disorganisation can be managed but excessive disorganisation may lead to
significant damage. It is possible to calculate an acceptable disorganisation profile as a part of mission
risk management.

This paper proposes the use of cross-entropy as a metric of the robustness of the swarm control
algorithm, where the swarm is treated as a Shannon stochastic information source that is optimised
for the acceptable level of disorganisation. Knowing the divergence from the acceptable, referential
entropy will help control missions to avoid unacceptable levels of disorganisation and to compare
mission control algorithms to identify those that prevent excessive disorganisation. This paper presents
research that provides a proposition and some cases to support it. Further work is planned to verify
and apply this theory to actual swarms of drones.

This paper starts with a brief note on terminology and goes on to introduce the model of the
swarm. Further, the necessary formalisation with brief examples and discussion is presented. Then,
an extended example is presented, as well as an overview of some related works with conclusions.
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2. Terminology

A drone is a general term related to unmanned vehicles of various kinds [1], whether they be
remotely operated or autonomous. For this paper, it is beneficial to primarily think of drones in terms
of popular multirotor unmanned aerial vehicles, such as quadcopters. A swarm is a collection of
drones under a single management system, occupying a certain space, interacting with each other,
and pursuing their collective objective while avoiding collisions (we intentionally exclude swarms
whose intention is to engage in a collision). A mission is any time during which drones in a swarm move
to a specific target while performing the desired trajectory. A mission should be realised optimally and
safely. A mission can be performed automatically, semi-automatically or autonomously, depending on
the management methods.

3. Model

Let us consider a swarm of drones D = {di; i = 1, . . . , k} that execute
mission M =

{
t j; j = 1, . . . , m; t j+1 > t j

}
, which is defined as an ordered, evenly spaced, sequence of

moments in time. To accomplish the mission, drones must progress through a series of respective
states, e.g., follow certain trajectories. As long as drones follow their planned trajectories, the swarm is
considered to be organised. Unexpected events, such as changes in the weather or the intrusion of
objects into flight paths, make the swarm diverge and introduce some degree of disorganisation to the
otherwise organised structure of a swarm.

The swarm can withstand disorganisation up to a certain level. While such a level can be defined
in different ways, here it is described by an overall disorganisation “mass”, where each divergence
contributes to such a mass. Events of low-impact divergences (e.g., being slightly off course) have a
small contribution, whereas events of high-impact divergences (e.g., leaving the allocated perimeter)
have a large contribution. Certain substitutions are possible, e.g., a few low-impact events can be
considered to be the equivalent of a single high-impact one.

Based on the relative occurrence of different events, it is possible to construct the acceptable
probability of events such that low-impact events can appear more frequently than high-impact ones.
Note that some impact is unavoidable, there is no state free from some disorganisation. Considering
that there is a finite precision, the state of being perfectly on course can be determined even if such a
state is not free from some impact.

As drones report their behaviour through events, it is possible to determine the difference between
the acceptable probability distribution of events and the actual one to find out whether the mission
flies at low or high levels of disorganisation.

4. Formalisation

Let us assume that there is a set of n classes of possible states, each reflecting a certain level of
divergence such that at any time interval, the drone can report one of n possible events. Those classes
(and associated events) are identified as C = {ci, i = 1, . . . , n}. At regular intervals throughout the
mission, each drone communicates the class they are currently in. With every class, there is an
associated relative impact factor on disorganisation, F =

{
fi, i = 1, . . . , n

}
. The assessment of such an

impact can be provided, e.g., by the analysis of previous missions in a way similar to risk assessment.
From the relationship between various impact factors, it is possible to calculate the normalised

discrete probability distribution Q, where events from classes associated with the lower impact factor
are granted a higher probability of occurrence. For example:

Q =
{
qi ; i = 1, . . . , n

}
; qi =

1

fi ×
∑

j=1,..., n
1
f j

. (1)

It is also possible to construct Q using other methods, e.g., by sampling previous events in a
manner that is often used in risk management. As high-impact events also tend to be low probability
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events, efficient sampling may be based on importance and may even internally employ cross-entropy
to determine Q [2].

The distribution Q describes the referential probability distribution when the overall
disorganisation is still at an acceptable level. This distribution is associated with a referential
entropy, i.e., a level of disorganisation that does not disrupt the mission. This referential entropy can
be calculated using Shannon’s equation [3]:

H(q) = −
∑

i=1,..., n
qi × log

(
qi

)
. (2)

As drones communicate signals, it is possible to determine the probability distribution of receiving
various classes of signals, P =

{
pi, i = 1, . . . , n

}
. Based on this, the cross-entropy between the observed

and the referential entropy can be calculated using [4]:

H(p, q) = −
∑

i=1,..., n
p(xi) × log(q(xi)). (3)

This cross-entropy can be interpreted as a measure of disorganisation of the swarm relative to
the referential one. Note that the cross-entropy can be both smaller and larger than the referential
one, indicating situations of (acceptable) low disorganisation and of high (potentially unacceptable)
disorganisation, respectively.

For clarification, the levels of entropy that are above the referential one represent an increased risk
to the mission but do not necessarily signify its failure. In practice, the levels below the referential
one may allow the swarm to continue its operation in a fully automatic or even autonomous manner,
while levels higher than the referential one may call for an operator’s action.

For example, let us consider a swarm that can emit five classes of signals that represent five real-life
situations, namely c1: the drone is on course, c2: the drone is slightly off course but not disturbing other
drones, c3: the drone is within the limits of the swarm but it is disturbing other drones, c4: the drone
has left the perimeter of the swarm and c5: the drone has lost contact with the swarm.

The impact of various classes on the disorganisation has been determined and shown in Table 1.
Such an impact can be associated, e.g., with the mission average delays, energy usage, or other risk
factors. Note that it is only the relative impact that is important, not the absolute values.

Table 1. Relative impact of classes of events.

c1 c2 c3 c4 c5

0.01 1.0 20.0 50.0 100.0

This implies the following (Table 2) probability distribution (all values rounded).

Table 2. Probability distribution for classes of events.

q1 q2 q3 q4 q5

0.9893 0.0990 0.0005 0.0002 0.0001

The referential entropy calculated according to the equation above is approx. 0.090. Therefore,
if the actual entropy of the swarm is below this value, the swarm can be characterised as having
low disorganisation, while higher values indicate an extent of disorganisation that may unacceptably
increase the risk to the mission.

Case 1: Let us consider a situation where the mission has been disturbed such that several drones
left their planned trajectories. The observed distribution of events is as shown in Table 3:
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Table 3. Probability distribution for significant disturbances.

p1 p2 p3 p4 p5

0.8 0.1 0.06 0.03 0.01

For this case, the cross-entropy is approx. 1.840, much higher than the referential one. This indicates
an increase in disorganisation and an increased risk.

Case 2: Let us consider the same swarm flying a very quiet mission where the drones fly exactly
as planned all the time. The observed distribution P has the form of the Kronecker delta (Table 4).

Table 4. Probability distribution for the undisturbed mission.

p1 p2 p3 p4 p5

1.0 0.0 0.0 0.0 0.0

In this case, the cross-entropy is approx. 0.016, lower than the referential one. This indicates that
this mission is well organised.

5. Continuous and Mixed Probability Distributions

As the size and the density of swarms grow, it is reasonable to consider a continuous case where
both probability distributions P and Q are continuous functions over some support X. For example,
probability distribution Q may be derived from a continuous function linking the distance from the
correct state with the impact on disorganisation. Alternatively, distribution P can be a continuous
estimate of the actual discrete distribution.

H(p, q) = −
∫

x∈X
P(x) × logQ(x) dx (4)

Situations of mixed distributions, where Q is continuous while p is discrete, are of some practical
use. For example, the drone management system may define the continuous impact function that
links the distance between the expected and the actual state to the extent of the impact, resulting in
a continuous distribution of Q. Meanwhile p can be discrete, as it is being calculated from events
observed during the swarm mission.

For such situations, the cross-entropy can be determined as follows, where Q(x) is the value of the
probability distribution function calculated using the impact function for given value x:

H(p, q) = −
∑

x∈X
p(x) × log(Q(x)). (5)

An alternative approach may require the use of the fixed-width quantisation of functions over
the support in the form of an LDDP (limiting density of discrete points). This may introduce the
need for correction of the quantisation error [5,6]. Note that the use of cross-entropy in this paper
is a comparative one: it is more interesting to compare two values than present their correctness.
Consequently, both approaches may provide a solution.

6. Discussion

6.1. Advantages of Cross-Entropy

The difference between the desired and the actual state of drones can be expressed through various
loss metrics, specifically using the mean squared error (MSE) or through cross-entropy. The choice
of cross-entropy over MSE comes from the intended purpose of the loss metric, namely to improve
the control algorithm for the swarm of drones. Compared to MSE, cross-entropy stresses the small
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differences from the referential level of entropy, i.e., cross-entropy allows for better differentiation
between what is acceptable (in terms of disorganisation) and what is excessive.

The problem of drones diverging from their intended trajectories is mostly seen as a control
problem with an impact on energy loss. Whatever method is used to manage the swarm, it has to
determine its situation and undertake control measures to revert drones to their routes. Thus, the key
determinants of the extent of the divergence are the control precision and energy loss. Out of these two
loss metrics, cross-entropy that is a better estimator for the required additional amount of information.

From the perspective of control, small differences must not be neglected, as they still require
actions to be taken and the swarm control algorithm must be adjusted to react to them without
over-reacting. In contrast, when the difference is large, the extent of this difference gradually matters
less from the perspective of control, as only some coarse actions have to be taken.

Similarly, from the perspective of energy consumption and owing to the inertia of the drone,
small manoeuvres are relatively expensive (per the unit of distance), while large manoeuvres can be
inexpensive. Thus, the cross-entropy seems to be a better estimator for both the control overhead and
the use of energy.

6.2. Coding Scheme

Cross-entropy is susceptible to the choice of the coding scheme (i.e., the distribution q). Specifically,
q must anticipate all possible classes of signals by assigning them certain non-zero probabilities over
all the support of p. If such a distribution is derived from the impact factor, then no signal is allowed to
be free from the impact. Otherwise, if the swarm is in situations not anticipated by q (i.e., where the
distribution is either undefined or zero), the information content of such signals is undefined or infinite.

The construction of an appropriate q can be done using different methods; this paper does not
assume that the impact factor is the only appropriate one. The impact factor is conceptually similar
to methods used in machine learning, where there are weighted penalties for misclassification [7].
The authors’ choice of a method for the determination of the probability distribution was affected by
two factors. First, the probability distribution forms the common denominator for various methods to
determine q. Second, the problem of controlling the swarm is a signalling and information problem;
therefore, adherence to the cross-entropy origin was preferential.

There is a further similarity between the problem of constructing q and machine learning where a
training set does not have samples of some classes, leading to difficulties in calculating the cross-entropy.
This is improved by the recommendation to include samples for all classes. Similarly, this paper
contains a restriction that there is no class without a certain impact. Note that, formally, this approach
is justified: in real life, the class of “being perfectly on course” cannot be described as a Dirac delta due
to measurement imprecision. Hence, it must always contain some range of low-impact behaviours.

The problem of assigning an appropriate probability to events that are only anticipated or that
are rare is known, with some propositions applying cross-entropy to optimise the importance of
sampling [2]. This proposition does not improve on them, as it only assumes that q can be determined.
The proposed use of a real-life impact function closely links the proposed metric with actual costs and
benefits of various behaviours, without claiming any particular shape of the impact function.

6.3. Referential Entropy

This model uses a referential probability distribution and its referential entropy to calculate
the cross-entropy. It makes cross-entropy both positive and negative, depending on whether the
actual distribution of signals indicates that the level of disorganisation is higher or lower than the
referential one. Consequently, in a way that is different than in other applications of cross-entropy,
there is no minimum entropy level that the cross-entropy will always be higher than, even though
such cross-entropy can be used to judge (and to optimise) the swarm management algorithm.

There is an underlying assumption that the swarm can take certain levels of disorganisation
such that not every localised disorganisation has an immediate impact on the swarm. Specifically,
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that imprecision in measurements may not allow us to confirm whether any drone is actually in the
desired state. Therefore, the algorithm quality should not be judged by absolute perfection but rather
by staying on the safe side of the referential level of disorganisation.

This reasoning means that the Kullback–Leibler (K-L) divergence is not applicable to this case.
K-L divergence provides an estimate of the difference between the entropy of the actual distribution
and the cross-entropy. In this case, it is at its minimum when p = q, i.e., when the swarm is disorganised
exactly in an acceptable way. Whether the actual distribution indicates more or less disorder than the
swarm can bear, the K-L divergence will grow. Still, K-L divergence may be a useful metric of the
distance from the referential disorganisation that helps design control algorithms.

7. Extended Example

Collision avoidance is an example of a process that temporarily increases the disorganisation of
the swarm. That is, in the presence of a disturbance, drones have to veer off course and break the
formation. In such situations, they find themselves at locations that are less expected. Intuitively,
the entropy of a swarm should increase. However, such an increase should only be temporary. In the
absence of continuous disturbances, drones should return to the desired paths to continue their mission.
As the drones again appear at the expected locations, the entropy of the swarm should decrease.
Thus, the managed swarm should be perceived as an entropy-minimisation device, i.e., its entropy
will increase only to the extent required to overcome an obstacle and will decrease once the obstacle
is removed. The quality of such a strategy is reflected by the level of entropy carried by the swarm
throughout the mission.

Collision avoidance by unmanned aerial vehicles can be implemented in many ways. Gong et al. [8]
used a gradient-based collision avoidance algorithm for the control of multi-agent formations.
The algorithm uses a consensus theory and a graph theory applied to three topologies. This method
uses two circular zones that define distances from adjacent objects, whether they be obstacles or
neighbours, to define prohibited zones.

This section makes use of the collision avoidance algorithm developed by Cofta et al. [9] that
bears a superficial similarity to the one described above. The algorithm itself is inspired by the physics
of repulsive forces (see, e.g. [10]), thus algorithmically replicating the exclusivity. The algorithm is run
by each drone independently for at least at fixed time intervals and always planning for the interval
ahead. It considers the location and movement of neighbouring drones. If some drones are nearby,
then the algorithm alters the paths of drones to avoid close encounters; otherwise, they attempt to
continue their original mission. The equations that define the algorithm are as follows:

→
p z =

→
p m + τ ∗

→
p u, (6)

→
p i =

−−−−−−→
(xi, x j) , (7)

i ∈ N↔
∣∣∣∣→p i

∣∣∣∣ ≤ R and i , j, (8)

→
u i =

→
p i∣∣∣∣→p i

∣∣∣∣ , (9)

→
p u =

∑
i∈N

→
u i(R−

∣∣∣∣→p i

∣∣∣∣)Q
, (10)

where:

→
p z—vector that the drone will adopt for the next time interval.
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→
p m—mission vector, i.e., the vector that the drone should have adopted to continue the mission;
this vector is calculated to achieve the objective of the mission in the current situation if it were
ignoring obstacles.
→
p u—escape vector that should be adopted to escape close encounters with neighbours disregarding
the mission.
x j—drone’s location.
xi —the location of the neighbour i.
→
u i—unit vector of

→
p i .

N—the set of neighbours within radius R.
R—radius within which neighbours are of interest (in this simulation R = 25 m).
Q and τ—parameter constants (in this simulation Q = 1 and τ = 1).

The following examples were developed using the simulation software created by the authors.
The probability function used in those examples directly relates the distance between the actual and
expected locations of the drone. It is defined as the cumulative distribution function of the lambda
distribution. Consequently, the probability distribution Q is a lambda function Q(x) = λe−λx; λ = 1,
with a referential entropy of 1. As the p distribution is a discrete one, the mixed version of cross-entropy
is used, where the sum is run over the product of the discrete probability distribution p and the point
value of Q(x).

This approach allows for an introduction of “momentary” entropy, where the distribution p takes
on the form of the Kronecker delta. This allows for analysing changes in the entropy over time in
response to obstacles for an individual drone or a swarm of them. While the “momentary” entropy
is not intended to be used as a metric of robustness, it is a useful tool to illustrate and analyse the
behaviour of drones and swarms.

Video recordings of simulations related to the extended example are included as
Supplementary Materials.

7.1. Close Encounter

Figure 1 shows the trajectory of the flight of a swarm D that consists of three drones. D2 and D3

fly to the east, while D1 flies to the west. Their trajectories were close enough such that the collision
avoidance algorithm was triggered for all of them.
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Figure 1. Close encounter of drones.

When the two topmost drones got too close to each other, they both veered off their courses,
as expected. However, this caused the central drone to move closer to the lower one, triggering its
algorithm as well. Eventually, all drones moved away from their courses. Once the distance became
safe again, they returned to their original courses. Figure 2 shows the momentary entropy of each
drone as a function of time.
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Figure 2. Momentary entropy of each drone as a function of time.

7.2. Grid Formation

Figure 3 shows a sixteen-drone swarm with drones stationary in a grid formation. The objective
of their mission was to remain in this formation and at their current positions. The simulation depicted
a situation where there was an intruder drone that passed through the swarm, paying no attention
to other drones, to the extent of potentially colliding with them. However, each drone in the swarm
was paying attention to every other drone, including the intruder, executing the collision avoidance
algorithm. Note that the path of the intruder was straight, while drones from the swarm gave way.
Once the intruder passed, each drone returned to its assumed position in the formation. Because the
formation was relatively dense, the movement of one drone affected its neighbours.
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Figure 3. Sixteen-drone swarm with an initial grid formation. The swarm avoids the intruder (straight
line) before returning to the grid formation via the paths shown.

Figure 4 shows the change in the momentary entropy over time of particular drones from
the swarm. Figure 5 shows the total momentary entropy of the swarm over time. As expected,
the appearance of the intruder initially increased the entropy but once the intruder left the swarm,
it eventually returned to just above zero.
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Figure 5. Momentary entropy of the swarm.

Note that the momentary entropy assumed the value of −log(Q(x)), i.e., it could reach any positive
value. The change in entropy over time, as shown in Figure 5, was calculated by including events from
all drones for a given moment in time. As all drones reported events at regular intervals, this made the
values presented in Figure 5 the average of the respective values from Figure 4.

Note that neither the momentary entropy of the drones nor the momentary entropy of the swarm
ever exceeded the value of the referential entropy, which means that the level of disorganisation
was acceptable. The entropy of the whole swarm, calculated for the whole passage of the intruder,
was approx. 0.14. Again, this indicates that, despite the disturbances, the swarm was reasonably
organised and that the mission itself was not endangered.

8. Related Works

Cross-entropy is a measure of a discrepancy between two probability distributions [4]. It is used
widely beyond the theory of information, e.g., as an objective function for the optimisation of traffic
flow [11] or in a particle swarm optimisation [12,13]. It is also used in machine learning as a loss
function for the training set of neural networks [14] or to improve the clustering of data [15]. Further,
it is used in robotics for the optimisation of controllers based on fuzzy logic [16,17]. Regarding the
social sciences, it can also be used to explain complex global behaviours [18] and can be used in swarm
intelligence [19].
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Swarms and their self-organisation borrows much from the observation of bees [20], locusts [21],
birds and fish [22–25]. The close resemblance between unmanned aircraft and insects or animals has
been researched [26], specifically in terms of collision avoidance and in collaborative intelligence [27],
while Can et al. [28] applies the rules of particle physics to swarms.

In those diverse areas, entropy is defined by re-applying Shannon’s formula to various forms of
grouping. For example, Folino and Forestiero [29], inspired by Van Dyke Parunak and Brueckner [30],
demonstrates how entropy can be used to assess the properties of self-organising flocking algorithms
by observing changes in entropy resulting from coupling organised and disorganised systems.

The application of cross-entropy to the process of training neural networks bears some resemblance
to the problem discussed here, specifically for discrete distributions. Cross-entropy is one of the
standard loss functions, specifically regarding multi-label classification [31]. Such a loss function can
be extended to include some penalties for mislabelling [32,33], making it attractive for some real-world
cases where misclassification should be penalised [6].

Particle swarm optimisation (PSO) [34] can use entropy for the simulated set of states (“particles”)
(EA-PSO) [12], and then it may apply cross-entropy in the meta-optimisation of the search space. Various
modifications and extensions exist, such as memetic based [13], niche strategy [35], or clustering [36].
The evolutionary approach is used in Hu et al. [37], while Zhang et al. [38] employs direct competition.

PSO may prematurely converge to local optima since the best performing particle attracts the
remaining ones. Therefore, the problem of diversity management (i.e., having particles exploring
different alternatives beyond the local optimum) is important. Entropy is used in a way inspired by
Shannon to manage the extent of diversity at the swarm level, combined with the optimum-seeking
behaviour of particles at the local level.

Cross-entropy is used by PSO (among others) as a way to meta-optimise the solution space.
For example, Yin [39] applies cross-entropy minimisation to determine the optimum threshold in
image segmentation by comparing the probability distribution of the original image and the one after
a threshold has been applied.

9. Conclusions

This paper proposes the use of cross-entropy as a metric for the quality of algorithms that manage
swarms of drones. It reflects the extent of disorganisation of the swarm throughout its mission,
where such disorganisation should be always minimised as much as possible. This cross-entropy is
calculated relative to the referential probability distribution that is constructed out of the real-world
impact that various events may have on the swarm.

Initial simulations demonstrated the viability of cross-entropy as a metric and allowed for
distinguishing between missions with low and high levels of disorganisation. This is a work in
progress. The authors plan to run both simulations and field experiments to determine the practical
usefulness of the proposed metric under various flight conditions.
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