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Abstract: Unique k-SAT is the promised version of k-SAT where the given formula has 0 or 1 solution
and is proved to be as difficult as the general k-SAT. For any k ≥ 3, s ≥ f (k, d) and (s + d)/2 > k− 1,
a parsimonious reduction from k-CNF to d-regular (k,s)-CNF is given. Here regular (k,s)-CNF is a
subclass of CNF, where each clause of the formula has exactly k distinct variables, and each variable
occurs in exactly s clauses. A d-regular (k,s)-CNF formula is a regular (k,s)-CNF formula, in which the
absolute value of the difference between positive and negative occurrences of every variable is at most
a nonnegative integer d. We prove that for all k ≥ 3, f (k, d) ≤ u(k, d) + 1 and f (k, d + 1) ≤ u(k, d).
The critical function f (k, d) is the maximal value of s, such that every d-regular (k,s)-CNF formula
is satisfiable. In this study, u(k, d) denotes the minimal value of s such that there exists a uniquely
satisfiable d-regular (k,s)-CNF formula. We further show that for s ≥ f (k, d)+ 1 and (s+ d)/2 > k− 1,
there exists a uniquely satisfiable d-regular (k, s + 1)-CNF formula. Moreover, for k ≥ 7, we have that
u(k, d) ≤ f (k, d) + 1.

Keywords: d-regular (k,s)-CNF; SAT-problem; uniquely satisfiable

1. Introduction

Satisfiability Problem (SAT) is a central problem in theoretical computer science of deciding
whether a given Conjunction Normal Formula (CNF) is satisfiable. The k-SAT is a satisfiability problem
where every clause has exactly k distinct variables, and was proved to be a NP-complete problem for
k ≥ 3 in [1]. That is, SAT problem should be a computationally hard problem. However, modern
SAT solvers are able to efficiently solve some formulas with millions of variables, such as MiniSat [2],
Glucose [3], Maple [4]. The conflict-driven clause learning technique is an important algorithm to
improve the efficiency of these SAT solver. Yet, how these solvers can be so successful has remained
elusive. In order to analyze and improve SAT solvers, some random SAT models were propose.

A natural measure of the solution space is the number of solutions. Unique k-SAT denotes the
promise search problem of k-SAT where the number of solutions is either 0 or 1. The harder instances
should have fewer solutions. But Calabro and Paturi in [5] proved that the exponential complexity
of deciding whether a k-CNF formula has a solution is the same as that of deciding whether it has
exactly one solution, both when it is promised and when it is not promised that the input formula has
a solution. Thus, the research of uniquely satisfiable SAT instances is a very significant work.

The (k, s)-SAT denotes the family of satisfiability problems restricted to CNF formulas with exactly
k distinct variables per clause and at most s occurrences of each variable. Regular (k, s)-SAT is a class of
special (k, s)-SAT which each variable occurs in exactly s clauses. By some polynomial time reductions,
it is discovered that some SAT problems with regular structures are NP-complete, such as (3,4)-SAT
problem in [6] and regular (3,4)-SAT problem in [7]. Experimental results and theoretical analysis on
a random k-SAT problem showed that the constrained density α of a CNF formula is an important
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parameter affecting the formula satisfiability and the solving difficulty in [8–11]. There is a phase
transition point α(k) on a random k-SAT problem such that

(i) all random k-CNF instances with α < α(k) are satisfiable with high probability;
(ii) all random k-CNF instances with α > α(k) are unsatisfiable with high probability.

But every regular (k, s)-CNF formula has a fixed constrained density α (the clause-to-variable
ratio), such as regular (3,4)-CNF formula corresponding to 4/3. The constrained density of the regular
(3,4)-CNF is much smaller than the SAT-UNSAT phase transition point of the random 3-SAT problem
α(3) ≈ 4.267 in [12]. This shows that a random regular (3,4)-CNF formula is satisfiable with high
probability, but the regular (3,4)-SAT problem is NP-complete. Obviously, it is not enough to describe
structural features of the CNF formula merely by the constrained density α.

In [13,14], M. Wahlström presented a definition of (a, b)-variable to classify all variables in a CNF
formula, and designed two algorithms for solving a CNF formula with at most d occurrences per
variable. Here, an (a, b)-variable is a variable which occurs positively in a clauses and negatively in b
clauses. In [15], Johannsen, Razgon and Wahlström presented an algorithm for solving a CNF formula
in which the number of occurrences of each literal is at most d. Their results demonstrated that the
CNF formulas with some restrictions on the number of occurrences (positive or negative) of each
variable have its own characteristics.

In order to further study SAT problems with regular structures, we introduced d-regular (k, s)-CNF
formula in [16,17]. The regular (k, s)-CNF formula requires that each clause contains exactly k variables
and each variable occurs in exactly s clauses. The d-regular (k, s)-CNF formula also requires that the
absolute value of the difference between positive and negative occurrences of each variable is no
more than a nonnegative integer d. In this paper, we investigate the existence condition of uniquely
satisfiable d-regular (k, s)-SAT Instances, and present a method to construct a uniquely satisfiable
d-regular (k, s)-formula. We also give a parsimonious reduction from k-CNF to d-regular (k, s)-CNF,
and further explain the constrained density is not enough to describe the structural features of a
CNF formula.

2. Related Works

Unique SAT is the promised version of the SAT, where a given CNF formula has 0 or 1 solution.
Valiant and Vazirani in [18] gave a randomized polynomial time reduction from SAT to Unique SAT,
and showed that deciding whether a CNF formula has zero or one solution is essentially as difficult as
SAT in general. Calabro et al. in [19] proved that Unique k-SAT is no easier than k-SAT, not just for
polynomial time algorithms but also super-polynomial time algorithms. They in [5] pointed out it
does not matter whether there has a promise that a formula has a solution. Matthews in [20] studied
the complexity of UNIQUE-(k, s)-SAT and proved that f (k) ≤ u(k) ≤ f (k) + 2 for k ≥ 3, where u(k) is
the minimal value of s so that uniquely satisfiable (k, s)-CNF formulas exist and f (k) represents the
maximal value of s such that all (k, s)-CNF formulas are satisfiable. The exact values of f (k) are only
known for k = 3 and k = 4, because f (3) = 3, f (4) = 4 were shown in [21]. In [22–25], it showed that
the upper and lower bounds for k = 5, 6, . . . , 9, f (k) are described as follows

5 ≤ f (5) ≤ 7, 7 ≤ f (6) ≤ 11, 13 ≤ f (7) ≤ 17, 24 ≤ f (8) ≤ 29, 41 ≤ f (9) ≤ 51.

Encoding into a CNF formula is a common way to solve a practical problem. These CNF formulas
often have some special structures and properties. It is important to design some random SAT models
that are similar to reality. Markström in [26] proposed a constructor method of SAT instance based on
Eulerian graphs, and discussed how a solver can try to avoid at least some of the pitfalls presented
by these instances. Giraldez-Cru and Levy in [27] proposed a new model of generation of random
SAT instances with community structure, and showed that modern solvers do actually exploit this
community structure. In [28], they presented a random SAT instances generator based on the notion
of locality, and showed that CDCL SAT solvers take advantage of both popularity and similarity.
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In [29,30], it showed that SAT instances with less solutions tend to be harder for stochastic local search
methods. In [31], Žnidarič gave an experimental evaluation of uniquely satisfiable 3-SAT instances
obtained by simply filtering randomly generated formulas.

In this paper, we investigate a uniquely satisfiable d-regular (k, s)-SAT Instances, and show that
f (k, d) ≤ u(k, d) + 1, f (k, d + 1) ≤ u(k, d) for k ≥ 3, and u(k, d) ≤ f (k, d) + 1 for k ≥ 7. Here u(k, d)
denotes the minimal value of s such that uniquely satisfiable d-regular (k, s)-CNF formulas exist,
and f (k, d) denotes the maximal value of s such that all d-regular (k, s)-CNF formulas are satisfiable.
We demonstrate that for s ≥ f (k, d) + 1 and (s + d)/2 > k− 1, there is a uniquely satisfiable d-regular
(k, s)-CNF formula. We also reveal that for k ≥ 7, if a d-regular (k, s)-CNF formula is unsatisfiable,
then (s + d)/2 > k− 1. Finally, for k ≥ 3, s ≥ f (k) + 1 and (s + d)/2 > k− 1, we give a parsimonious
reduction from a k-CNF formula to a d-regular (k, s)-CNF formula. Constructing uniquely satisfiable
d-regular (k, s+ 1)-CNF formulas from an unsatisfiable d-regular (k, s)-CNF formula is a key component
of our reduction.

3. Notations

A literal is a boolean variable x or a negated boolean variable ¬x. x is called a positive literal,
and ¬x is called a negative literal. A clause C is a disjunction of literals, C = L1 ∨ L2 ∨ . . . ∨ Lk or
C = {L1, L2, . . . , Lk}. A formula F in the conjunctive normal formula is a conjunction of clauses,
F = C1 ∧ C2 ∧ . . . ∧ Cm or F = {C1, C2, . . . , Cm}. var(F) denotes the set of boolean variables occurring
in a formula F, and #var(F) refers to the number of variables occurring in F. #cl(F) denotes the number
of clauses of F, and pos(F, x) (neg(F, x)) refers to the number of positive (negative) occurrences of a
variable x in F. pos(F) (neg(F)) denotes the number of positive (negative) literals in F, and pos(F, X)

(neg(F, X)) refers to the number of positive (negative) occurrences of all variables of the variable set X
in F.

A truth assignment τ is a function which assigns to each boolean variable v a unique value
τ(v) = {0, 1}. A CNF formula F is satisfiable, if a truth assignment τ with τ(F) = 1 exists. Such a
truth assignment is called a satisfying assignment. We divide boolean variables in these formulas into
forced variables or unforced variables. If every satisfying assignment of a formula sets a variable to the
same value, we call it a forced variable. Otherwise, the variable is regarded as an unforced variable.

If the formulas Φ and Ψ are either satisfiable at the same time or not, they are called
SAT-equivalents. This implies that, Φ is satisfiable if and only if Ψ is satisfiable. A formula F′ is
called the disjoint copy of a CNF formula F, if F′ is a copy of F and their variable sets are disjoint.
A uniquely satisfiable d-regular (k, s)-CNF formula is a d-regular (k, s)-CNF with only one solution.
A CNF formula F is a minimal unsatisfiable formula (MU), if F is unsatisfiable and F−{C} is satisfiable
for any clause C ∈ F. For a given unsatisfiable formula F, a minimal unsatisfiable formula can be
obtained by removing some clauses from F.

Definition 1. For each k ≥ 3, f (k) is defined as the maximal value of s such that all (k, s)-CNF formulas are
satisfiable, f (k, d) is defined as the maximal value of s such that all d-regular (k, s)-CNF formulas are satisfiable,
u(k) is defined as the minimal value of s such that uniquely satisfiable (k, s)-CNF formulas exist, and u(k, d) is
defined as the minimal value of s such that uniquely satisfiable d-regular (k, s)-CNF formulas exist.

Definition 2. A k-CNF formula F is called a k-forced-once d-regular (k, s)-CNF formula if

(i) there exist k variables x1, x2, . . . , xk that only occur once;
(ii) except for the k variables, every variable occurs in exactly s clauses, and the absolute value of the difference

between positive and negative occurrences of every variable is no more than the nonnegative integer d.
(iii) F is satisfiable and for any truth assignment τ satisfying F, it holds that

τ(x1) = τ(x2) = . . . = τ(xk) = true.
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We can represent a CNF formula as a matrix. Each variable xi corresponds to a row of the matrix
and each clause Cj corresponds to a column of the matrix. For each variable xi, if its positive (resp.,
negative) literal is in the clause Cj, then ai,j = + (resp., ai,j = −); otherwise, 0.

Let F is a CNF formula with 15 variables x1, x2, . . . , x15 and 25 clauses C1, C2, . . . , C25.
The representation matrix of the formula F is

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15



+ − + + − −
+ − − − + +
+ − − − + +

+ − + − + −
+ − − − + +

+ − + + − −
+ − − − + +
+ − − − + +

+ − + − + −
+ − − − + +

− − − + + +
+ + + − − −

+
+

+


.

Clearly, F is a 3-forced 0-regular (3,6)-CNF formula. Each of the three variables x13, x14, x15 occurs
in exactly one clause in F and is forced to be true.

Definition 3. In the context of SAT, a reduction M is identified to be parsimonious if x and M(x) have the
same number of satisfying assignments for any one formula x.

Lemma 1 ([32]). Let (k, s)-CNF be a class of satisfiable formulas, then all (k + r, s + r[s/k])-CNF formulas are
satisfiable for any nonnegative integer r ([x] denotes the integral part of x).

Lemma 2 ([17]). If the representation matrix of a formula F is

x1

x2
...
...

xn−1

xn



+ −
− +

−
. . .

+

− +


,

then the formula is satisfiable and every satisfying assignment forces all variables to a same value.

4. Uniquely Satisfiable d-Regular (k, s)-CNF Formula

The d-regular (k, s)-CNF formula has stronger regular constraints than the regular (k, s)-CNF
formula. It limits the absolute value of the difference between positive and negative occurrences of
each variable. The uniquely satisfiable d-regular (k, s)-CNF formula refers to a d-regular (k, s)-CNF
formula with only one solution. We investigate the existence conditions of the uniquely satisfiable
d-regular (k, s)-CNF formula.

Theorem 1. For all k ≥ 3, f (k, d) ≤ u(k, d) + 1 and f (k, d + 1) ≤ u(k, d).

Proof. Because f (k, d) denotes the maximal value of s such that all d-regular (k, s)-CNF formulas are
satisfiable, we usually construct an unsatisfiable d-regular (k, s)-CNF formula to find the upper bound
of f (k, d).

Let s = u(k, d). Because u(k, d) denotes the minimal value of s such that uniquely satisfiable
d-regular (k, s)-CNF formulas exist, there must be a uniquely satisfiable d-regular (k, s)-CNF formula F.
Obviously, by adding a clause to F which is violated by the unique satisfying assignment, the formula
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F can become an unsatisfiable formula. Suppose the formula F has n variables. We give two methods
to construct unsatisfiable instances.

Method 1: We introduce dn/kek− n new variables and add dn/ke(s + 2)− ns/k new clauses to
F, which contains at least one clause violated by the unique satisfying assignment. Let each original
variable occurs twice in the new clauses (one negative occurrence and another positive occurrence),
and each new variable occurs s + 2 times in the new clauses (the number of positive and negative
occurrences of every new variable is nearly equal). That is, each variable occurs s + 2 times in F and
the absolute value of the difference between positive and negative occurrences of each variable is no
more than d. Therefor, F is turned into an unsatisfiable d-regular (k, s + 2)-CNF formula. It can be seen
that f (k, d) ≤ s + 1 = u(k, d) + 1.

Method 2: We introduce dn/kek− n new variables and add dn/ke(s + 1)− ns/k new clauses to
F, which contains at least one clause violated by the unique satisfying assignment. Let each original
variable occur once in the new clauses, and each new variable occurs s + 1 times in the new clauses
(the number of positive and negative occurrences of every new variable is nearly equal). That is,
each variable occurs s + 1 times in F and the absolute value of the difference between positive and
negative occurrences of each variable is no more than d + 1. Therefor, F is turned into an unsatisfiable
(d + 1)-regular (k,s + 1)-CNF formula. It can be seen that f (k, d + 1) ≤ s = u(k, d).

Lemma 3. If k ≥ 3 and s are two nonnegative integers such that an unsatisfiable d-regular (k, s)-CNF formula
exists, there exists a k-forced-once d-regular (k, s)-CNF formula.

Proof. Let Φ be an unsatisfiable d-regular (k, s)-CNF formula. Obviously, the number of positive
occurrences and negative occurrences of every variable in Φ are all no more than (s + d)/2.
By removing some clauses of Φ, a minimal unsatisfiable (k, s)-CNF formula Φ1 can be obtained.
It is easy to get that, the number of positive occurrences and negative occurrences of every variable in
Φ1 are all no more than (s + d)/2.

Let Φ = Φ1 ∧Φ2, where Φ1 is the unsatisfiable (k, s)-CNF formula obtained by removing some
clauses of Φ, and Φ2 is a conjunction of the removed clauses. Suppose Φ2 contains m ≥ 0 clauses and
mk literals. Let C1 be the clause set of Φ1 and C2 be the clause set of Φ2. A variable y of var(Φ1) and a
clause c containing ¬y are randomly selected. Define C = (C1\{c}) ∪ {c̃}, with c̃ = (c\{¬y}) ∪ {x},
where x is a new extra variable that does not occur in Φ. Define Φ′1 = ∧c∈Cc. Clearly, the variable x is
forced to be true.

Let Φ1i be disjoint copies of the formula Φ′1 with the variable x, y of Φ′1 being renamed as xi, yi
in Φ1i, and Φ2i be disjoint copies of the formula Φ2, for 1 ≤ i ≤ k. In addition, we ensure that every
variable occurring both in Φ′1 and Φ2 is renamed as a same new variable in Φ1i and Φ2i, respectively,
for 1 ≤ i ≤ k.

Introduce a new boolean variable set Z = z1, z2, . . . , ztk which does not occur in Φ, t > 2mk/s.
The k-CNF formula Φ3 is constructed using ¬yi, the literals of Φ2i and the variables of Z, for 1 ≤ i ≤ k.
And it shall meet the following limits.

(i) Every variable of Z occurs positively in ds/2e clauses and negatively in bs/2c clauses;
(ii) All literals of Φ2i and ¬yi occur exactly once in Φ3, 1 ≤ i ≤ k;

(iii) Every clause of Φ3 must have at least one positive occurrence of any one of Z.

Define Φ′ = Φ3 ∧Φ11 ∧Φ12 ∧ . . . ∧Φ1k.
Obviously, condition (i) and (ii) of Definition 2 hold in Φ′ (note s > 3 from the unsatisfiability of

Φ). Φ1i is satisfiable and forces the variable xi to be true. Because every variable of Z does not occur in
Φ′1, Φ3 is satisfiable (let the value of every variable of Z be true) without affecting Φ11, Φ12, . . . , Φ1k.
So it can be concluded that Φ′ is satisfiable and forces x1, x2, . . . , xk to be true. Φ′1, Φ2 and ¬y only
contain x and all literals of Φ. Except for x, every variable of Φ′1, Φ2 and ¬y occur in s clause, and meet
the d-regularity (Φ is a d-regular (k, s)-CNF formula). Hence, Φ′1i, Φ2i and ¬yi meet these requirements
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(by the definition of disjoint copy). Every variable of Z occurs positively in ds/2e clauses and negatively
in bs/2c clauses. Thus, x1, x2, . . . , xk occur only once in Φ′. Except for the k variables, every variable
occurs in exactly s clauses, and the absolute value of the difference between positive and negative
occurrences of every variable is no more than d. Therefore, we claim that Φ′ is a k-forced-once d-regular
(k, s)-CNF formula.

Next, we will assess the feasibility of the construction of Φ′. If an unsatisfiable d-regular (k, s)-CNF
formula Φ exists, Φ′1 should be easily constructed. The number of literals of Φ3 is mk2 + tks + k,
and the number of positive occurrences of the variables of Z in Φ3 is ktds/2e. The number of clauses
of Φ3 is mk + ts + 1. For t > 2mk/s, we obtain mk < ts/2, mk + ts < 3ts/2. For k ≥ 3, we obtain
mk + ts + 1 ≤ kts/2 ≤ ktds/2e. As a result, the number of positive occurrences of Z in Φ3 is
greater than that of clauses of Φ3. The construction of Φ3 is almost random (First let each clause
get a positive literal of Z, then randomly arrange other literals). Therefore, Φ3 can be constructed in
polynomial time.

Lemma 4. For k ≥ 3, (s + d)/2 > k − 1 and m ≥ 1, we can transform a k-forced-once d-regular
(k, s)-CNF formula with n unforced variables into a (m + 1)k-forced-once d-regular (k, s)-CNF formula with n
unforced variables.

Proof. Let Φ be a k-forced-once d-regular (k, s)-CNF formula with n unforced variables,
and x1, x2, . . . , xk denote k forced variables that only occur once. That is, x1, x2, . . . , xk are forced
to be true. Let

H0 = ∧k
i=1(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xk−1 ∨ y1,i),

Hj = ∧k
i=1(¬yj,1 ∨ ¬yj,2 ∨ . . . ∨ ¬yj,k−1 ∨ yj+1,i), j = 1, 2, . . . , mk− 1,

where every yj,i is a fresh variable.
We construct a k-CNF formula Ψ with the variable set X = {xi} and the variable set Y = {yj,i},

for i = 1, 2, . . . , k− 1, j = 1, 2, . . . , mk− 1, which meets the following restrictions.

(i) every variable of X and Y occurs in exactly s− k− 1 clauses of Ψ,

if s ≤ 2k, pos(Ψ, xi) = s− k− 1, pos(Ψ, yj,i) = s− k− 1;

if s > 2k, pos(Ψ, xi) = ds/2e − 1, pos(Ψ, yj,i) = ds/2e − 1.

(ii) Every clause of Ψ must have at least one positive occurrence of any one of these variables.

Define Φ′ = Φ ∧ H0 ∧ H1 ∧ . . . ∧ Hmk−1 ∧Ψ.
Obviously, xi and yj,i are forced to be true for i = 1, 2, . . . , k, j = 1, 2, . . . , mk (this ensures that Ψ is

satisfiable). In these forced variables, xk, y1,k, y2,k, . . . , ymk−1,k and ymk,1, ymk,2, . . . , ymk,k occur exactly in
one clause of Φ′. Except for the (m + 1)k variables, every variable occurs in exactly s clauses, and the
absolute value of the difference between positive and negative occurrences of every variable is at
most d. The number of unforced variables in Φ′ is still n. So Φ′ is a (m + 1)k-forced-once d-regular
(k, s)-CNF formula with n unforced variables.

Next, we will prove that the construction of Ψ is feasible. We focus on the satisfiability of the
condition ii.

The variables of Ψ consists of two parts: X and Y. The variable set Y has (mk− 1)(k− 1) variables.
The variable set X has k− 1 variables. Every variable of X and Y occurs in exactly s− k− 1 clauses of Ψ.
Obviously, the number of literals of Ψ is (mk− 1)(k− 1)(s− k− 1) + (k− 1)(s− k− 1). The number
of clauses of Ψ is

#cl(Ψ) =
(mk−1)(k− 1)(s−k−1) + (k−1)(s−k−1)

k
= m(k− 1)(s− k− 1).
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When s ≤ 2k, all literals in Ψ are positive literal and must satisfy the condition iii. When s > 2k,
the number of positive occurrences of the variables in Ψ is

pos(Ψ) = (mk− 1)(k− 1)(ds/2e − 1) + (k− 1)(ds/2e − 1)

= mk(k− 1)(ds/2e − 1).

For k ≥ 3,

mk(k− 1)(ds/2e − 1) = m(k− 1)(k ds/2e − k) ≥ m(k− 1)(3 ds/2e − k)

≥ m(k− 1)(3s/2− k) > m(k− 1)(s− k)

> m(k− 1)(s− k− 1).

So pos(Ψ) > #cl(Ψ). That indicates that the number of positive literals is more than that of clauses.
That is, we can arrange a positive literal for every clause of Ψ, then randomly arrange other literals.
Hence, Ψ can be constructed.

Theorem 2. For k ≥ 3 and s ≥ f (k, d) + 1 and (s+ d)/2 > k− 1, there exists a uniquely satisfiable d-regular
(k, s)-CNF formula.

Proof. We will show a way to construct a uniquely satisfiable d-regular (k, s)-CNF formula.
By Lemma 3 and Lemma 4, for k ≥ 3, s ≥ f (k, d) + 1, (s + d)/2 > k − 1 and m ≥ 1, we can

construct a (m + 1)k-forced-once d-regular (k, s)-CNF formula Ψ. It is assumed that the (m + 1)k
forced variables which occur only once are X = {x1, x2, . . . , x(m+1)k}. Without loss of generality,
we assume that forcing n of unforced variables to be true can turn Ψ into a uniquely satisfiable formula.
Let Y = {y1, y2, . . . , yn} denote the n unforced variables. Let t = dn/(k− 1)e. Constructing a uniquely
satisfiable d-regular (k, s)-CNF formula is based on four stages, which are described as follows.

Step 1 Divide the variables y1, y2, . . . , yn arbitrarily into t variable sets Y1, Y2, . . . , Yt of size k− 1.
Some variables of Ψ forced to be true are added, so that every variable set contains exactly k − 1
variables (a variable forced to be f alse can be transformed to a variable forced to be true by flipping
all occurrences of the variable). The variables x1, x2, . . . , x(m+1)k are arbitrarily divided into 4t + 1
variable sets X1, X2, . . . , X4t+1. Moreover, it should be guaranteed that any one of X1, X2, . . . , X3t has
k− 2 variables, any one of X3t+1, . . . , X4t has k− 1 variables and X4t+1 includes the rest. When m is
appropriately chosen, the partition is feasible. Now assume X4t+1 contains r variables.

Step 2 For each 1 ≤ i ≤ t, we will construct a formula Hi using the variable sets Yi, Xi, Xt+i, X2t+i
and X3t+i.

For simplicity, let Yi = {y1, . . . , yk−1}, Xi = {x1, . . . , xk−2}, Xt+i = {xt+1, . . . , xt+k−2}, X2t+i =

{x2t+1, . . . , x2t+k−2} and X3t+i = {x3t+1, . . . , x3t+k−1}. For each 1 ≤ i ≤ t, we introduce a new boolean
variable set Zi = {z1,0, z1,1, z2,0, z2,1, . . . , zk−1,0, zk−1,1} which does not occur in Ψ and perform the
following steps to construct Hi.

(i) Let zj,0 replace any one of positive occurrences of yj, and ¬zj,1 replace any one of negative
occurrences of yj in Ψ, for j = 1, 2, . . . , k− 1. If yj does not occur as a positive literal, then we
let zj,0 replace one of other negative occurrences of yj in Ψ and flip all occurrences of zj,0 in the
following formulas Hi1, Hi2, Hi3, Hi4. If yj does not occur as a negative literal, then we perform
similar operations.
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(ii) Let

Hi1 = ∧k−1
j=1 (yj ∨ ¬zj,0 ∨ ¬x1 ∨ . . . ∨ ¬xk−2),

Hi2 = ∧k−1
j=1 (zj,0 ∨ ¬zj,1 ∨ ¬xt+1 ∨ . . . ∨ ¬xt+k−2),

Hi3 = ∧k−1
j=1 (zj,1 ∨ ¬yj ∨ ¬x2t+1 ∨ . . . ∨ ¬x2t+k−2),

Hi4 = ∧k−1
j=1 (zj,1 ∨ ¬x3t+1 ∨ . . . ∨ ¬x3t+k−1).

Define Hi = Hi1 ∧ Hi2 ∧ Hi3 ∧ Hi4. The new formula with all substitutions performed on Ψ is
denoted as Ψ1.

Step 3 We will make up the gap of the number of occurrences of every variable. Using the variables
in sets X and Z = {Zi, i = 1, 2, . . . , t}, we construct a formula Ψ2 that satisfies the following conditions.

(i) For i = 1, . . . , t, each zj,0, j = 1, 2, . . . , k− 1 in the variable set Zi occurs in exactly s− 3 clause of
Ψ2 and pos(Ψ2, zj,0) + 1− neg(Ψ2, zj,0) = min(d, 1).

(ii) For i = 1, . . . , t, each zj,1, j = 1, 2, . . . , k− 1 in the variable set Zi occurs in exactly s− 4 clauses of
Ψ2 and pos(Ψ2, zj,1)− neg(Ψ2, zj,1) = min(d, 1).

(iii) Each variable x in X1, X2, . . . , X4t occurs in exactly s− k clauses of Ψ2,

pos(Ψ2, x) = s− k for s < 2k or pos(Ψ2, x) = ds/2e − 1 for s ≥ 2k.

(iv) Each variable x in X4t+1 occurs in exactly s− 1 clauses of Ψ2 and

pos(Ψ2, x) + 1− neg(Ψ2, x) = min(d, 1).

(v) Every clause of Ψ2 must have at least one positive occurrence of any one of the variables.

Step 4 Let Φ = Ψ1 ∧ (∧t
i=1Hi) ∧Ψ2.

Clearly, Φ is a d-regular (k, s)-CNF formula. All variables in the set X are forced to be true. Hence,
zj,1, j = 1, 2, . . . , k− 1 is forced to be true by Hi4. By Lemma 2, zj,0, zj,1 and yj are forced to be the same
value. Given that, every variable in Y and Z is forced to be true, too. Because all variables in X and
Z are forced to be true, Ψ2 is apparently satisfiable. Thus, it can be concluded that Φ has only forced
variables and the unique solution. That is, Φ is a uniquely satisfiable d-regular (k, s)-CNF formula.

Next, we will discuss the feasibility of constructing Φ. We focus on the formula Ψ2. For Ψ2,
the number of positive literals should be more than that of clauses.

The variable set Z generates t(k− 1)(s− 3) + t(k− 1)(s− 4) literals in Ψ2. The variable set X
generate 3t(k− 2)(s− k) + t(k− 1)(s− k) + r(s− 1) literals in Ψ2. The number of clauses of Ψ2 is

#cl(Ψ2) =
t(k− 1)(2s− 7) + 3t(k− 2)(s− k) + t(k− 1)(s− k) + r(s− 1)

k
.

Every variable of Z generates ds/2e− 2 positive literals in Ψ2, and very variable of X4t+1 generates
ds/2e − 1 positive literals in Ψ2. About the number of positive literals of Ψ2, there are two situations.
When s < 2k, the number of positive literals of Ψ2 is

pos(Ψ2) = t(k− 1)(2 ds/2e − 4) + 3t(k− 2)(s− k) + t(k− 1)(s− k− 1) + r(ds/2e − 1).

When s ≥ 2k, the number of positive literals of Ψ2 is

pos(Ψ2) = t(k− 1)(2 ds/2e − 4) + 3t(k− 2)(ds/2e − 1) + t(k− 1)(ds/2e − 1) + r(ds/2e − 1).

Since k ≥ 3 and s > k , we get pos(Ψ2) > #cl(Ψ2) . To construct Ψ2, We first arrange a positive
literal for every clause, then randomly arrange other literals. That is, Ψ2 can be constructed in
polynomial time.
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Ψ1 and Hi can obviously be constructed in polynomial time. Therefore, we can construct a
uniquely satisfiable d-regular (k, s)-CNF formula Φ in polynomial time.

In the previous proof, we construct a uniquely satisfiable d-regular (k, s)-CNF formula Φ by using
a (m + 1)k-forced-once d-regular (k, s)-CNF formula Ψ. m determines the number of forced variables of
Ψ that only occurs once. If let m be 1 more than our demand, then Φ can preserve k forced variables
that only occurs once. Therefore, we get the following lemma.

Lemma 5. For k ≥ 3, s ≥ f (k, d) + 1 and (s+ d)/2 > k− 1, there exists a k-forced-once d-regular (k, s)-CNF
formula Ψ where every variable is forced.

Lemma 6. For k ≥ 7, if a d-regular (k, s)-CNF formula is unsatisfiable then (s + d)/2 > k− 1.

Proof. By 13 ≤ f (7) ≤ 17 in [22], if a (7,s)-CNF formula is unsatisfiable, then s ≥ 14. That is, for any
integer d ≥ 0, if a d-regular (7,s)-CNF formula is unsatisfiable, then s ≥ 14. It implies that for k = 7,
if a d-regular (k, s)-CNF formula is unsatisfiable, we can obtain that (s + d)/2 ≥ 14/2 > k− 1.

By 24 ≤ f (8) ≤ 29 in [22], all (8,24)-CNF formulas are satisfiable. That is, for any integer d ≥ 0,
if a d-regular (8,s)-CNF formula is unsatisfiable, then s > 24. As for k = 8, if a d-regular (k, s)-CNF
formula is unsatisfiable, we get (s + d)/2 > k− 1 again.

Using Lemma 1, all (8 + r, 24 + 3× r)-CNF formulas are satisfiable for any nonnegative integer
r. That is to say, if a (8 + r, s)-CNF formula is unsatisfiable, then s > 24 + 3× r for any nonnegative
integer r. For (24+ 3× r)/2 > 8+ r− 1, we obtain that for k ≥ 7 if a (k, s)-CNF formula is unsatisfiable,
then (s + d)/2 > k− 1.

Theorem 3. For all k ≥ 7 and s ≥ f (k, d) + 1, there exist uniquely satisfiable d-regular (k, s)-CNF formulas.

Proof. By the definition of f (k, d), if k ≥ 7 and s ≥ f (k, d) + 1, there exists an unsatisfiable d-regular
(k, s)-CNF formula. Using Lemma 6, we get (s + d)/2 > k− 1. By Theorem 2, we obtain that there
exist uniquely satisfiable d-regular (k, s)-CNF formulas.

By Theorem 3, for k ≥ 7, we get u(k, d) ≤ f (k, d) + 1. Matthews in [20] showed that f (k) ≤
u(k) ≤ f (k) + 2. Using Theorem 2, it is easy to achieve f (k) ≤ u(k) ≤ f (k) + 1.

Theorem 4. For all k ≥ 3, f (k) ≤ u(k) ≤ f (k) + 1.

Proof. Let d be a infinite integer. That is, any one of (k, s)-CNF formulas is a d-regular (k, s)-CNF
formula and any one of d-regular (k, s)-CNF formulas is a (k, s)-CNF formula. It holds that f (k) =

f (k, d) and (s + d)/2 > k − 1. Using Theorem 2, for a infinite integer d, k ≥ 3 and s ≥ f (k) + 1,
there exists a uniquely satisfiable d-regular (k, s)-CNF formula. Obviously, a uniquely satisfiable
d-regular (k, s)-CNF formula must be a uniquely satisfiable (k, s)-CNF formula. In other words, for k ≥ 3
and s ≥ f (k) + 1, there exists a uniquely satisfiable (k, s)-CNF formula. By f (k) ≤ u(k) ≤ f (k) + 2
in [20], we obtain that k ≥ 3, f (k) ≤ u(k) ≤ f (k) + 1.

Corollary 1. For k ≥ 7 and s ≥ f (k, d) + 1, there exists a k-forced-once d-regular (k, s)-CNF formula Ψ that
has exactly one satisfying assignment.

Proof. The statement follows directly from Lemmas 5 and 6.

5. A Parsimonious Polynomial Time Reduction

In [20], Matthews presented a parsimonious reduction from SAT to (k, s)-SAT for any k ≥ 3 and
s ≥ f (k) + 2. We will transform parsimoniously a k-CNF formula into a d-regular (k, s)-CNF formula.
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Theorem 5. For any constants k ≥ 3, s ≥ f (k) + 1 and (s + d)/2 > k − 1, there exists a parsimonious
polynomial time reduction from k-CNF to d-regular (k, s)-CNF.

Proof. Let Ψ be an arbitrarily k-CNF formula. It is supposed that Ψ contains m clauses. Obviously,
Ψ contains mk literals L1,1, L1,2, . . . , Lm,k. We will construct a d-regular (k, s)-CNF formula Ψ′ that is
SAT-equivalent with the formula Ψ, and they have the same number of solutions. Based on Lemma 5,
we first construct a k-forced-once d-regular (k, s)-CNF formula Φ where every variable is forced. It is
assumed that k forced variables that occur only once are x1, x2, . . . , xk.

The reduction method has five steps, which are described as follows.
Step 1 We introduce a new boolean variable set Z = {zi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k} to replace mk

literals in Ψ in order to construct a new formula Ψ1.

Ψ1 = ∧
1≤i≤m

∨
1≤j≤k

L′ i,j, L′ i,j =

{
zi,j, i f Li,j = v
¬zi,j, i f Li,j = ¬v

, v ∈ var(Ψ).

Here, Li,j is the jth literal of the ith clause of Ψ.
Step 2 Let Φi, 1 ≤ i ≤ m(k− 1) be disjoint copies of the formula Φ with the variables xj, 1 ≤ j ≤ k

of Φ being renamed as xi,j in Φi. All of xi,j are renumbered and formed a variable set X = {xi, 1 ≤ i ≤
mk(k− 1)}. Let Ψ2 = ∧1≤i≤m(k−1) Φi .

Step 3 Let Ψ3 = ∧1≤i≤m,1≤j≤k di,j, and di,j = zi,j ∨¬z′ i,j ∨k−2
l=1 ¬x((i−1)m−j−1)(k−2)+l . Here zi,j, z′i,j ∈

Z and if zi,j replaces a variable v in Ψ, then z′i,j will point to the next variable in Z that replaces v (if zi,j
is the last variable in Z that replaces v, then z′i,j will point to the first variable in Z that replaces v).
The variables in Z are sorted by their subscripts.

Step 4 We construct a k-CNF formula Ψ4 with two variable sets X and Z, satisfying the
following conditions.

(i) Every variable zi,j of the variable set Z occurs in exactly s− 3 clauses of Ψ4, and if zi,j occurs
negatively in Ψ1,

pos(Ψ4, zi,j)− neg(Ψ4, zi,j) = min(d, 1).

Otherwise
neg(Ψ4, zi,j)− pos(Ψ4, zi,j) = min(d, 1).

(ii) For 1 ≤ i ≤ mk(k− 2), every variable xi of X occurs in exactly s− 2 clauses of the formula Ψ4, and

pos(Ψ4, xi)− neg(Ψ4, xi) = min(d, 1).

(iii) For mk(k− 2) + 1 ≤ i ≤ mk(k− 1), every variable xi of the variable set X occurs in exactly s− 1
clauses of the formula Ψ4, and

pos(Ψ4, xi) + 1− neg(Ψ4, xi) = min(d, 1).

(iv) Every clause of Ψ4 must have at least one positive occurrence of any one of the variable set X.

Step 5 We construct the formula Ψ′ = {Ψ1, Ψ2, Ψ3, Ψ4}.
Obviously, every variable of Ψ′ occurs in exactly s clauses, and the absolute value of the difference

between positive and negative occurrences of every variable of Ψ′ is at most d. Therefore, Ψ′ is a
d-regular (k, s)-CNF formula. Next, we will evaluate the feasibility of Ψ′, SAT-equivalent with Ψ′ and
Ψ, the parsimony of the reduction.

First, we focus on the feasibility of Ψ′. The formulas Ψ1, Ψ2, Ψ3 apparently can be constructed in
polynomial time. With respect to the formula Ψ4, we need to consider the condition iv. That is to say,
the number of positive occurrences of X in Ψ4 should be more than the number of clauses of Ψ4.
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The variables of Ψ4 consists of two parts: X and Z. The variable set X generates mk(k− 2)(s−
3) + mk(s− 1) literals in Ψ4. The variable set Z generates mk(s− 3) literals in Ψ4. The number of
clauses of Ψ4

#cl(Ψ) =
mk(s− 3) + mk(k− 2)(s− 2) + mk(s− 1)

k
= m(s− 3) + m(k− 2)(s− 2) + m(s− 1)

= m(k− 2)(s− 2) + m(2s− 4).

For 1 ≤ i ≤ mk(k − 2), pos(Ψ4, xi) − neg(Ψ4, xi) = min(d, 1) and pos(Ψ4, xi) + neg(Ψ4, xi) =

s− 2. So,
pos(Ψ4, xi) = d(s− 2)/2e = ds/2e − 1.

For mk(k− 2) + 1 ≤ i ≤ mk(k− 1), pos(Ψ4, xi) + 1− neg(Ψ4, xi) = min(d, 1) and pos(Ψ4, xi) +

neg(Ψ4, xi) = s− 1. So, pos(Ψ4, xi) + 1 = ds/2e, pos(Ψ4, xi) = ds/2e − 1. The number of positive
occurrences of X in Ψ4

pos(Ψ4, X) = mk(k− 2)(ds/2e − 1) + mk(ds/2e − 1).

For k ≥ 3 and s > k, we get

pos(Ψ4, X) > 3m(k− 2)(ds/2e − 1) + 3m(ds/2e − 1)

> m(k− 2)(s− 2) + m(k− 2)(ds/2e − 1) + 3m(ds/2e − 1)

> m(k− 2)(s− 2) + 4m(ds/2e − 1)

> m(k− 2)(s− 2) + m(2s− 4) = #cl(Ψ4).

Obviously, the number of positive literals of X is more than the number of clauses in Ψ4.
To construct Ψ4, We first arrange a positive literal for every clause, then randomly arrange other
literals. That is, the formula Ψ4 can be constructed in polynomial time.

Second, we will prove that the formula Ψ is satisfiable if and only if the formula Ψ′ is satisfiable.
It is assumed that Ψ is satisfied by a truth assignment τ on var(Ψ) and Φi is satisfied by a truth

assignment τi on var(Φi) for 1 ≤ i ≤ m(k− 1). Because Φi forces the variable xi,j to be true, τi(xi,j)

must be true. A truth assignment τ′ is defined by

τ′(v) =

{
τ(z), i f v ∈ var(Ψ1) and a variable z o f var Ψ is replaced with v
τi(v), i f v ∈ var(Φi)

.

Obvious, the truth assignment τ′ can satisfy these formulas Ψ1, Ψ2, Ψ3. Every clause of Ψ4 must
have at least one positive occurrence of any one of X. As a result, τ′ also can satisfy the formula Ψ4.
The formula Ψ′ is a conjunction of Ψ1, Ψ2, Ψ3, Ψ4. Thus, τ′ can satisfy the formula Ψ′ certainly.

It is assumed that Ψ′ is satisfied by a truth assignment τ over var(Ψ′). Obviously, the truth
assignment τ can satisfy these formulas Ψ1, Ψ2, Ψ3, Ψ4. For Ψ2 = ∧1≤i≤m(k−1) Φi, the truth assignment
τ can satisfy these formulas Φi, 1 ≤ i ≤ m(k− 1). Because Φi forces the variable xi,j to be true,

τ(¬xi,j) = f alse, 1 ≤ i ≤ mk, 1 ≤ j ≤ k− 2. (1)

We substitute Equation (1) into Ψ3, and simplify Ψ3. The simplified Ψ3 contains some similar
structure that are mentioned in Lemma 2. According to Lemma 2, if zi and zj replace the same variable
of Ψ, τ(zi) = τ(zj). Therefore, we define a truth assignment τ′ on var(Ψ) by

τ′(v) = τ(z), if a variable v of Ψ is replaced with a variable z in Ψ1.

Obviously, the truth assignment τ′ can satisfy the formula Ψ, and the formula Ψ is satisfiable.
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Therefore, Ψ′ is SAT-equivalent with Ψ.
Finally, we will explain why the polynomial-time reduction is parsimonious. If Ψ′ is satisfiable,

all variables in X are forced to be true. Due to the formula Ψ3, all variables of Z that replaced the same
variable of Ψ are forced to be the same value in every satisfying assignment. Thus, the number of
satisfying assignments cannot be changed by introducing new variable set Z. Due to only one solution
of Φ, Ψ2 must not influence the number of satisfying assignments. Therefore, Ψ has as many satisfying
assignments as the formula Ψ′.

6. Conclusions

For k ≥ 3, k-SAT problem is a NP-complete problem. From Theorem 5, it demonstrates
that there exists a polynomial time reduction from k-SAT to d-regular (k, s)-SAT for any constants
k ≥ 3, s ≥ f (k) + 1 and (s + d)/2 > k − 1. That is to say, d-regular (k, s)-SAT problem is
NP-complete in this case. For example, the 2-regular (3,4)-SAT problem is NP-complete. In other
words, there exists a parsimonious polynomial time reduction from 3-CNF to 2-regular (3,4)-CNF.
Although the parsimonious reduction does not increase the number of solutions, it adds numerous
new variables to the original formula. That is, The new formula has bigger solution space than the
original formula. It seems that the parsimonious reduction diluted these solutions and make the SAT
problem harder to solve. This explains why a random regular (3,4)-SAT instance is satisfiable with
high probability and can be easily solved, but the 2-regular (3,4)-SAT problem is NP-complete.

From Lemma 6, this suggests that for k ≥ 7 and (s + d)/2 < k, all d-regular (k, s)-CNF formulas
are satisfiable. Consider a regular (k, s)-CNF formula F in which the positive and negative occurrences
number of every variable do not exceed k− 1. Obviously, s ≤ 2k− 2 and the formula F is a (2k−
s− 2)-regular (k, s)-CNF formula. For (s + d)/2 = (s + 2k − s− 2)/2 = k − 1 < k, we obtain that
the formula F must be satisfiable for k ≥ 7. That is, all regular (k, s)-CNF formulas in which the
positive and negative occurrences number of every variable are less than k, can be satisfiable for k ≥ 7.
However, it is unknown whether this phenomenon exists for k < 7.

We present the construction method of a uniquely satisfiable d-regular (k, s)-formula. Uniquely
satisfiable d-regular (k, s)-SAT instances have their own characteristics. How to use uniquely satisfiable
SAT instances to evaluate, analyze and improve some SAT solvers will be considered in the future.
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