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Abstract: The review is devoted to two important quantities characterizing many-body systems,
order indices and the measure of entanglement production. Order indices describe the type of
order distinguishing statistical systems. Contrary to the order parameters characterizing systems
in the thermodynamic limit and describing long-range order, the order indices are applicable to
finite systems and classify all types of orders, including long-range, mid-range, and short-range
orders. The measure of entanglement production quantifies the amount of entanglement produced
in a many-partite system by a quantum operation. Despite that the notions of order indices and
entanglement production seem to be quite different, there is an intimate relation between them, which
is emphasized in the review.
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1. Introduction

Many-body systems can be described by different characteristics representing the main system
properties. One of the pivotal notions is that of the type of order associated with the system state.
The order is usually quantified by order parameters (see, e.g., [1–3]). The order parameters, as is well
known, are rigorously defined in the thermodynamic limit, while for finite systems they, strictly
speaking, degenerate to zero [3]. Here we mean a mathematically rigorous definition of order
parameters, although in practical experiments and in numerical modeling one can still see the order
parameters behave as if the thermodynamic limit is reached, when the system size is much larger than
the correlation length.

At the same time, large many-body systems, even being finite, can posses a kind of order that
is not of a long-range type, but rather it is a quasi-long-range or algebraic order. In addition, some
two-dimensional systems exhibit quasi-long-range order below the Berezinskii–Kosterlitz–Thouless
transition [4,5].

Order indices for density matrices were introduced in Refs. [6–9] as a general tool for quantifying
all types of order, whether long-range, mid-range, or short-range. These characteristics can be defined
for any statistical system, whether finite or in the thermodynamic limit. The notion of order indices
can be generalized for arbitrary operators or matrices [10].

Another important notion characterizing the state of a multi-partite system is entanglement
widely employed in quantum information processing and quantum computing [11–17], as well as
in the theory of quantum measurements and quantum decision theory [18–22]. To be more precise,
one has to distinguish between the entanglement of a state, or a statistical operator, or generally of an
arbitrary operator, and the entanglement production describing the action of an operator on the given
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Hilbert space. The state entanglement characterizes the structure of a statistical operator, while the
entanglement production by an operator describes the result of an operator action. These notions will
be concretized below.

The aim of the present review is two-fold. First, a survey of the notions of order indices and
of entanglement production, and their applications for treating many-body systems, will be given.
Second, we shall emphasize the interrelation between these characteristics. It turns out that the latter
are intimately related with each other, so that the qualitative change of a state leads to the quantitative
changes of order indices as well as of the entanglement production.

Throughout the paper, the system of units is used where the Planck and Boltzmann constants are
set to one.

2. Order Indices

Below, we consider systems composed of N parts, or particles, with N being finite, although it
can be rather large. Suppose a collection {Â} of trace-class operators acts on a Hilbert spaceH, so that

0 < | TrH Â | < ∞ . (1)

The order index of an operator Â is defined as

ω(Â) ≡ log || Â ||
log | TrH Â |

, (2)

where the base of the logarithm can be taken according to convenience, since the above definition does
not depend on the choice of the base due to the property loga(x) = logb(x) loga(b). In other words,
the order index is the exponent connecting the norm and trace of an operator,

|| Â || = | TrH Â |ω(Â) .

In the case of a positive operator,

|| Â || ≤ TrH Â (Â ≥ 0) ,

because of which
ω(Â) ≤ 1 (Â ≥ 0) . (3)

As the norm, it is possible to take some of the Shatten norms

|| Â ||p ≡
(
TrH| Â |p

)1/p ,

where
| Â | ≡

√
Â+ Â (p ∈ [1, ∞]) .

Thus, for p = 1, we have the trace norm

|| Â ||1 = TrH| Â | ,

and for p = 2, we come to the Hilbert–Shmidt norm

|| Â ||2 =
(

TrH| Â |2
)1/2

.
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Below, it will be more convenient to accept the operator norm corresponding to p = ∞, which gives
the operator norm

|| Â ||∞ = sup
ϕ

|| Âϕ ||
|| ϕ || (ϕ 6= 0) (4)

generated by the vector norm

|| Âϕ || =
√
(Âϕ, Âϕ) .

Dealing with Hermitian operators, we get

|| Â ||∞ = sup
ϕ

(ϕ, Âϕ)

|| ϕ || (Â+ = Â) . (5)

Comparing two operators Â1 and Â2, we say that the operator having a larger order index is
better ordered. In physical applications, the operator or matrix order indices characterize the type of
order associated with the considered operators. Examples will be given below.

3. Entangled Structures

One has to distinguish two different notions, entangled structures and entangling operations.
The first notion characterizes the property of such structures as wave functions, statistical operators
(quantum states), and which can be generalized to arbitrary operators. The second notion describes
the action of quantum operations on the members of a Hilbert space. To better explain the difference
of these notions, in the present section we recall the main definitions concerning entangled structures,
and in the next section we shall elucidate the meaning of the entanglement production by quantum
operations.

3.1. Entangled Functions

The notion of wave-function entanglement was introduced by Schrödinger [23,24] with respect to
quantum systems that can be separated into several subsystems. Then the system Hilbert space can be
represented as the tensor product

H =
n⊗

i=1

Hi (6)

of the subsystem Hilbert spaces. Wave functions of the whole system, pertaining to the spaceH can be
separated into two classes, separable and entangled functions. Separable functions have the form of
the product

ϕsep =
⊗

i
ϕi (ϕi ∈ Hi) . (7)

Entangled functions can be represented as the linear combinations

ϕent = ∑
α

cα

⊗
i

ϕiα (ϕiα ∈ Hi) , (8)

where at least two coefficients cα are not zero. From the physical point of view, separable wave functions
are rather exceptional, being attributed to quantum subsystems that have never interacted and are
distinguishable [25]. Generally, subsystems are characterized by entangled wave functions [26,27].

The collection of all separable functions forms a disentangled set

D = {ϕsep ∈ H} . (9)

All entangled functions compose an entangled set

H \D = {ϕent ∈ H} . (10)
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Considering wave functions, one keeps in mind the functions normalized to one, but in principle,
the same definitions are valid for non-normalized functions that are the members of the Hilbert space
H.

3.2. Entangled States

Generally, quantum states are represented by statistical operators. For pure states, statistical
operators can be written as

ρ̂ = | ϕ 〉〈 ϕ | , (11)

where the standard bra-ket notation is used. Separable wave functions compose separable states

ρ̂sep = | ϕsep 〉〈 ϕsep | =
⊗

i
| ϕi 〉〈 ϕi | , (12)

while entangled wave functions form entangled states

ρ̂ent = | ϕent 〉〈 ϕent | = ∑
αβ

c∗αcβ

⊗
i
| ϕiβ 〉〈 ϕiα | . (13)

More generally, a state is separable if and only if it has the structure

ρ̂sep = ∑
α

λα

⊗
i

ρ̂iα , (14)

in which
0 ≤ λα ≤ 1 , ∑

α

λα = 1

and ρ̂iα is a statistical operator acting on a partial Hilbert spaceHi. A state that cannot be represented
in the above form is entangled.

3.3. Entangled Operators

The notion of entangled states can be generalized to trace-class entangled operators [19–21]. Let
us consider an algebra A = {Â} of trace-class operators acting on a Hilbert space HA. For any two
operators Â1 and Â2 from the algebra A one can introduce the Hilbert–Schmidt scalar product

(Â1, Â2) ≡ TrH(Â+
1 Â2) .

The triple of the operator algebra A, acting on the Hilbert spaceHA, and the Hilbert–Schmidt scalar
product form the Hilbert–Schmidt space

Ã ≡ {A, HA, (, )} .

Similarly, one can define the Hilbert–Schmidt space for another trace-class operator algebra B as

B̃ ≡ {B, HB, (, )} .

The composite Hilbert–Schmidt space is given by the tensor product

Ã
⊗
B̃ = {A, HA, (, )}

⊗
{B, HB, (, )}. (15)

An operator Ĉsep from the composite Hilbert–Schmidt space in Equation (15) is separable if and only if
it can be represented in the form

Ĉsep = ∑
α

λα Âα

⊗
B̂α (Âα ∈ Ã, B̂α ∈ B̃) . (16)
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Otherwise, the operator is entangled.
In general, an operator Ĉsep, defined on the Hilbert space in Equation (6) is separable if and only

if it can be represented as
Ĉsep = ∑

α

λα

⊗
i

Âiα , (17)

where the operators Âiα act onHi.
These definitions lift the notion of entanglement to the operator level. In the Hilbert–Schmidt

space, operators are isomorphic to the space members, so that the distinction between entangled and
separable states in the Hilbert–Schmidt space becomes similar to that in the Hilbert space [19–21,28–31].

4. Entangling Operations

The other notion is the entanglement production by quantum operations. Considering the
operators acting on a Hilbert spaceH, it is possible to distinguish two types of the operator actions,
entangling and nonentangling. If an operator Â, acting on any function from the disentangled set D,
leaves the function in this set, it is called a nonentangling operator [32,33],

ÂD → D (nonentangling) . (18)

However, if there exists at least one function of the disentangled set D that becomes entangled under
the action of the operator, this operator is termed entangling [34,35]. The strongest type of an entangling
operator is a universal entangling operator that makes all disentangled functions entangled [36],

ÂD → H \D (entangling) . (19)

A principal problem is how to measure the entangling power of operators. When one is interested
in just a few wave functions, it is admissible to analyze the action of a given operator on all the functions
of interest. In the case of a bipartite system, one can check the amount of the produced entanglement
by studying the entanglement entropy for the considered few wave functions [28,30,31,37]. This,
however, does not allow for quantifying the entangling power of the examined operator on the whole
Hilbert space.

A general measure of entanglement production for arbitrary trace-class operators acting on a
Hilbert space was advanced in Refs. [38,39]. The idea behind the definition of this measure is to
compare the action of the given operator Â with the action of its nonentangling counterpart

Â⊗ ≡
⊗n

i=1 Âi

(TrH Â)n−1
, (20)

in which Âi are partially traced operators

Âi ≡ TrH/Hi
Â . (21)

The coefficient in Equation (20) is defined so that to preserve the trace normalization

TrH Â = TrH Â⊗ . (22)

The measure of entanglement production [38,39] by an operator Â on a Hilbert spaceH is

ε(Â) ≡ log
|| Â ||
|| Â⊗ ||

. (23)
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This measure is based on the comparison of the action of an operator on the whole Hilbert space with
the action of its nonentangling counterpart that leaves invariant the disentangled set,

ÂH → H , Â⊗D → D .

It is useful to emphasize that, as has been proved [40–45], the only operators preserving
separability are the operators having the form of tensor products of local operators and a swap
operator permuting Hilbert subspaces in the tensor product of the total Hilbert space of a composite
system. However, the action of the swap operator is trivial, merely permuting the indices labeling the
subspaces. Up to the enumeration of subspaces, the product operators are the sole operators preserving
the separability of functions. The tensor-product operators, as is evident, do not produce entanglement,

ε(Â⊗) = 0 .

Thus, the entanglement-production measure (23) is zero for nonentangling operators, and also it
is continuous, additive, and invariant under local unitary operations [39,46]. As it should be for being
a measure, it is semipositive. The sketch of the proof of this important property is as follows [39,46].

The set of trace-class operators Â acting on the Hilbert space H, with a given operator norm,
forms the Banach space

B(Â) = {Â, H, || Â ||} , (24)

which is a complete normed linear space. Similarly, the set of the product operators Â⊗, leaving
invariant the disentangled set D, composes the Banach space

B(Â⊗) = {Â⊗, D, || Â⊗ ||} . (25)

The latter space, by definition, is a subspace of the Banach space seen in Equation (24),

B(Â⊗) ⊂ B(Â) .

Then it is admissible to define a projector transforming the members of space in Equation (24) into the
members of space in Equation (25),

P̂⊗ Â = Â⊗ , (26)

with the standard projector properties

P̂2
⊗ = P̂⊗ , P̂+

⊗ = P̂⊗ , || P̂⊗ || = 1 .

Therefore we have
|| Â⊗ || = || P̂⊗ Â || ≤ || P̂⊗ || · || Â || = || Â || ,

from where the semi-positivity of the measure follows:

ε(Â) ≥ 0 . (27)

It is important to stress that the entangled structure of an operator and entanglement production
by this operator are quite different notions. An operator can be separable but entangling. Thus,
the action of the separable operator in Equation (17) on the separable function in Equation (7) results
in an entangled function,

Ĉsep ϕsep = ϕent ,

where
ϕent = ∑

α

λα

⊗
i

ϕ′iα (ϕ′iα ≡ Âiα ϕi) .
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It is possible to notice that the measure of entanglement production in Equation (23) and the order
indices in Equation (2), although having rather different meanings, but are connected with each other
through the relations

ε(Â) = log
| TrH Â |ω(Â)

|| Â⊗ ||
, ω(Â) =

ε(Â) + log ||Â⊗||
log |TrH Â|

.

The relations between these quantities will be considered in more detail below.

5. Density Matrices

To illustrate physical applications of the introduced notions, it is reasonable to consider such
important physical quantities as reduced density matrices, which can be treated as matrix elements of
reduced density operators [47]. For instance, the first-order density operator

ρ̂1 = [ ρ(x, x′) ] (28)

is expressed through the matrix elements

ρ(x, x′) = TrFψ(x) ρ̂ ψ̂†(x′) = 〈 ψ†(x′)ψ(x) 〉 . (29)

Here x denotes a set of variables, such as spatial coordinates and spin, ψ(x) are field operators,
the trace is over the Fock space generated by the field operators [48], and ρ̂ is a statistical operator.
The second-order density operator

ρ̂2 = [ ρ2(x1, x2, x′1, x′2) ] (30)

has the matrix elements

ρ2(x1, x2, x′1, x′2) = TrFψ(x1)ψ(x2) ρ̂ ψ†(x′2)ψ
†(x′1) =

= 〈 ψ†(x′2)ψ
†(x′1)ψ(x1)ψ(x2) 〉 . (31)

Generally, the n-th order density operator is defined through the matrix elements

ρn(x1, x2, . . . , xn, x′1, x′2, . . . , x′n) = TrFψ(x1)ψ(x2) . . . ψ(xn) ρ̂ ψ†(x′n) . . . ψ†(x′2)ψ
†(x′1) =

= 〈 ψ†(x′n) . . . ψ†(x′2)ψ
†(x′1)ψ(x1)ψ(x2) . . . ψ(xn) 〉 . (32)

The reduced density matrices of different orders are connected with each other by means of
the relations ∫

ρn(x1, x2, . . . , xn, x′1, x′2, . . . , xn) dxn =

= (N − n + 1)ρn−1(x1, x2, . . . , xn−1, x′1, x′2, . . . , x′n−1) , (33)

in which N is the number of particles in the system. For example,∫
ρ2(x1, x2, x′1, x2) dx2 = (N − 1)ρ(x1, x′1) . (34)

The trace operation here implies the summation over the variable x, defined as

Trρ̂n =
∫

ρn(x1, x2, . . . , xn, x1, x2, . . . , xn) dx1dx2 . . . dxn =
N!

(N − n)!
. (35)
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In particular

Trρ̂1 =
∫

ρ(x, x) dx = N , Trρ̂2 =
∫

ρ2(x1, x2, x1, x2) dx1dx2 = N(N − 1) . (36)

The non-entangling product operator for the second-order density matrix is expressed through the
matrix elements

ρ⊗2 (x1, x2, x′1, x′2) =
N − 1

N
ρ(x1, x′1)ρ(x2, x′2) , (37)

so that
|| ρ̂⊗2 || =

N − 1
N

|| ρ̂1 ||2 . (38)

Keeping in mind the operator norm in Equation (5), associated with the vector norm, we have

|| ρ̂1 || = sup
k
(ϕk, ρ̂1 ϕk) (|| ϕk || = 1) ,

|| ρ̂2 || = sup
kp

(ϕk ϕp, ρ̂2 ϕk ϕp) , (39)

where {ϕk} is a natural ortho-normalized basis [47] and k is a multi-index labeling quantum states.
In first order, we have

|| ρ̂1 || = sup
k

Nk , (40)

with the notation
Nk =

∫
ϕ∗k (x)ρ(x, x′)ϕk(x′) dxdx′ .

In the second order, we find
|| ρ̂2 || = sup

kp
Nkp , (41)

with
Nkp =

∫
ϕ∗k (x1)ϕ∗p(x2)ρ2(x1, x2, x′1, x′2)ϕp(x′2)ϕk(x′1) dx1dx2dx′1dx′2 .

In this way, we can calculate the order indices of density matrices

ω(ρn) =
log || ρ̂n ||
log | Trρ̂n |

(42)

as well as the measure of entanglement production

ε(ρ̂n) = log
|| ρ̂n ||
|| ρ̂⊗n ||

. (43)

Using the properties of reduced density matrices, one can show [9,10,47,49] that the order indices,
depending on statistics, satisfy the inequalities

ω(ρ̂n) ≤ 1 (Bose) (44)

for Bose–Einstein statistics and

ω(ρ̂2n) ≤
1
2

, ω(ρ̂2n+1) ≤
n

2n + 1
(Fermi) (45)

for Fermi–Dirac statistics. When the upper boundary is reached, this signifies the occurrence of
long-range order. Otherwise, there can only be mid-range or short-range order.
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6. Correlation Matrices

Reduced density matrices are a particular case of correlation functions constructed by means of the
field operators. In general, it is possible to consider correlation functions based on some other operators.
Thus, taking an arbitrary operator Â(x), acting on the Fock space, one can set the correlation functions

Cn(x1, x2, . . . , xn, x′1, x′2, . . . , x′n) ≡ TrF Â(x1)Â(x2) . . . Â(xn) ρ̂ Â(x′n) . . . Â(x′2)Â(x′1) =

= 〈 Â(x′n) . . . Â(x′2)Â(x′1)Â(x1)Â(x2) . . . Â(xn) 〉 . (46)

Then, one can introduce the correlation operator

Ĉn = [ Cn(x1, x2, . . . , xn, x′1, x′2, . . . , x′n) ] , (47)

whose matrix elements are the above correlation functions. For the correlation operator, it is
straightforward to define the order indices

ω(Ĉn) =
log || Ĉn ||
log | TrĈn |

(48)

and the entanglement-production measure

ε(Ĉn) = log
|| Ĉn ||
|| Ĉ⊗n ||

. (49)

By choosing appropriate correlation functions one can quantify the properties of arbitrary
physical systems.

7. Examples of Order Indices

Order indices are defined by the structure of the system state and can essentially vary under
phase transformations [50]. Some examples of order indices that have been considered in literature are
mentioned below.

7.1. Superconducting State

The structure of reduced density matrices have been analyzed in several works [6,8,9,47,49]. In the
thermodynamic limit, the order indices of density matrices in a three-dimensional system are zero for
the normal state and take the values

ω(ρ̂2n) =
1
2

, ω(ρ̂2n+1) =
n

2n + 1
, (50)

for superconducting state. This corresponds to even long-range order.

7.2. Bose-Condensed System

Under the usual Bose–Einstein condensation into the state with zero momentum, in the
thermodynamic limit in three dimensions, all order indices grow from zero to one, becoming

ω(ρ̂n) = 1 . (51)

This corresponds to the total long-range order [47,49]. Developing long-range order strongly influences
the structure of correlation functions and density matrices [51–54].
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7.3. Even Bose Condensate

There are theoretical speculations [55–63] that in Bose systems there can develop the so-called
even condensate, with the formation of pairs similar to those for Fermi systems in the superconducting
state, when

ω(ρ̂2n) =
1
2

, (52)

thus exhibiting even long-range order.

7.4. Finite-Momentum Condensate

If the condensed state is characterized not by zero momentum but by a momentum with finite
absolute value and random direction [51,64–66], then the system possesses mid-range order with the
order indices that, depending on dimensionality d, are

ω(ρ̂n) =
1
d

. (53)

For d > 1 this implies a mid-range order [10].

7.5. Two-Dimensional Systems

Two-dimensional systems below the Berezinskii–Kosterlitz–Thouless transition [4,5] temperature
TK possess the order indices [6]

ω(ρ̂n) = 1 − η

4
(d = 2, T < TK) , (54)

where η is the exponent describing the behavior of the pair correlation function at large distance.
In that case

1
4
≤ η ≤ 1

3
,

so that there exists a mid-range order with the order indices

11
12
≤ ω(ρ̂n) ≤

15
16

(d = 2, T < TK) .

Mid-range order also develops in two-dimensional antiferromagnets in a strong magnetic
field [67,68].

7.6. Critical Point

At the point of a second-order phase transition, we have [6]

ω(ρ̂n) =
d + 2− η

2d
(T = Tc) , (55)

with η being the exponent characterizing the pair correlation function. For different dimensions,
this gives

ω(ρ̂n) =
4− η

4
(d = 2, T = Tc) ,

ω(ρ̂n) =
5− η

6
(d = 3, T = Tc) , (56)

which implies mid-range order. In particular, for the two-dimensional Ising model, we have [69–71]
η = 1/4, hence

ω(ρ̂n) =
15
16

(d = 2, Ising, T = Tc) . (57)



Entropy 2020, 22, 565 11 of 33

For the three-dimensional Heisenberg model, η = 0.036, therefore

ω(ρ̂n) = 0.827 (d = 3, Heisenberg, T = Tc) . (58)

7.7. Tonks–Girardeau Gas

One-dimensional systems usually do not exhibit long-range order, although they can possess
mid-range order. As an example, let us consider the Tonks–Girardeau gas [72]. This is a
one-dimensional system of impenetrable bosons described by the Hamiltonian

Ĥ = − 1
2m

N

∑
i=1

∂2

∂x2
i
+

N

∑
i=1

U(xi) , (59)

where U(x) is an external potential, and complimented by the condition on the wave function

ψ(x1, x2, . . . , xN , t) = 0 (| xi − xj | ≤ a0) , (60)

where a0 is an effective diameter of particles. Studying the properties of reduced density
matrices [73–76] one concludes that the order indices are

ω(ρ̂n) =
1
2

(61)

for both homogeneous as well as for systems trapped in power-law potentials. This shows that the
Tonks–Girardeau gas possesses a mid-range order.

7.8. Lieb–Liniger Model

This is a one-dimensional model described by the Hamiltonian [77]

Ĥ = − 1
2m

N

∑
i=1

∂2

∂x2
i
+ Φ0 ∑

i 6=j
δ(xi − xj), (62)

with point-like interactions of finite strength Φ0. The characteristic dimensionless interaction parameter
is defined by the ratio of the typical potential energy to the typical kinetic energy

EK =
ρ2

2m

(
ρ ≡ N

L

)
,

which gives

γ ≡ ρΦ0

EK
=

2m
ρ

Φ0 . (63)

The model is exactly solvable by Bethe ansatz [77,78], which provides the exact expression of the
many-body eigenfunctions [79]. At zero temperature, the ground-state energy, the sound velocity c,
and other equilibrium quantities can be expressed in terms of the solution of the Lieb–Liniger integral
equations [77]. The other useful quantity is the Luttinger parameter [80]

M ≡ vF
c

(
vF ≡

πρ

m

)
, (64)

in which vF is the Fermi velocity and c is the sound velocity. Note that this parameter reminds
the effective Mach number used for characterizing statistical systems [81]. Solving the Lieb–Liniger
integral equations one has access to the sound velocity c and the Luttinger parameter M for any values
of the coupling constant [82–85].
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The order index of the first-order density matrix can be estimated [86] as

ω(ρ̂1) = 1 − 1
2M

. (65)

For small γ, one has
c ' ρ

m
√

γ , M ' π√
γ

(γ→ 0) ,

so that

ω(ρ̂1) ' 1 −
√

γ

2π
(γ→ 0) . (66)

While for strong interactions, when

c ' vF , M ' 1 (γ→ ∞) ,

the order index tends to that of the Tonks–Girardeau gas,

ω(ρ̂1) '
1
2

(γ→ ∞) . (67)

As we see, the Lieb–Liniger model demonstrates a mid-range order. Formally, the order index tends
to one in the limit of the ideal gas, when γ = 0. However, the ideal one-dimensional uniform gas is
unstable [87,88].

7.9. Finite Systems

Strictly speaking, usually long-range order can arise only in thermodynamic limit. In finite
systems, order parameters not always can be rigorously defined. However, the order indices can be
well defined for any finite system. It is reasonable to expect that in finite systems, instead of long-range
order, there could exist only mid-range or short-range order. In that case, the order indices vary in
the interval

0 ≤ ω(ρ̂n) < 1 (Bose) ,

0 ≤ ω(ρ̂n) <
1
2

(Fermi) , (68)

depending on the number of particles in the system, on the interaction strength, and on other system
parameters [89,90]. We shall discuss the details of calculating the order indices for systems with a
finite, although large, number of particles in Sections 9 and 10.

8. Examples of Entanglement Production

Now we shall give several examples of the entanglement-production measure calculated [39,91]
according to Section 4. For bipartite states, it is also possible to find the entanglement entropy

S(ρ̂i) = −TrHi ρ̂i ln ρ̂i , (69)

where
ρ̂i = TrH/Hi

ρ̂

is a partially traced statistical operator. The latter can be compared with the entanglement-production
measure in Equation (23). In general, measures in Equations (23) and (69) do not need to be equal.
In addition, the entanglement entropy in Equation (69) can be defined only for bipartite states, while the
entanglement-production measure in Equation (23) can be defined for arbitrary states and operators.
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8.1. Einstein–Podolsky–Rosen-States

The statistical operator of this entangled pure state is

ρ̂EPR = | EPR 〉〈 EPR | ,

in which
| EPR 〉 = 1√

2
( | 12 〉 ± | 21 〉 ) .

This is a two-particle two-mode state. For the entanglement-production measure, we have

ε(ρ̂EPR) = log 2 . (70)

This coincides with the entanglement entropy in Equation (69).

8.2. Bell States

This is also an entangled two-particle two-mode pure state with the statistical operator

ρ̂B = |B〉〈B| ,

where
|B〉 = 1√

2
( | 11 〉 ± | 22 〉 ) .

The measure in Equation (23)
ε(ρ̂B) = log 2 (71)

equals the entanglement entropy in Equation (69).

8.3. Greenberger–Horne–Zeilinger States

This is an N-particle two-mode state

ρ̂GHZ = | GHZ 〉〈 GHZ | ,

with
| GHZ 〉 = 1√

2
( | 11 . . . 1 〉 ± | 22 . . . 2 〉 ) .

For the measure in Equation (23), we get

ε(ρ̂GHZ) = (N − 1) log 2 . (72)

For the number of particles more than two, the entanglement entropy is not defined.

8.4. Multicat States

The statistical operator for the two-mode N-particle state

ρ̂MC = | MC 〉〈 MC |

is expressed through the multicat function

| MC 〉 = c1| 11 . . . 1 〉 + c2| 22 . . . 2 〉 ,

where
|c1|2 + |c2|2 = 1 .
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The entanglement-production measure becomes

ε(ρ̂MC) = (1− N) log sup{|c1|2, |c2|2|} . (73)

Multicat states can be realized in multiparticle systems where each particle possesses two internal
energy states, for instance, for trapped ions subject to the action of resonant laser beams [92,93] or for
Bose-condensed neutral atoms under coherent Raman scattering [94]. Instead of internal single-particle
states, one can use collective nonlinear states created by means of the resonant excitation of topological
coherent modes in trapped Bose–Einstein condensates [95–98].

8.5. Multimode States

The state of N particles possessing NM modes each,

ρ̂MM = | MM 〉〈 MM | ,

is formed by the multimode function

| MM 〉 =
NM

∑
n=1

cn|nn . . . n〉 ,

for which
NM

∑
n=1
|cn|2 = 1 .

This is a generalization of the multicat state to the case of N particles. The measure of entanglement
production is

ε(ρ̂MM) = (1− N) log sup
n
|cn|2 . (74)

The multimode functions can be represented by coherent states [99].

8.6. Hatree–Fock States

The state with the statistical operator

ρ̂HF = | HF 〉〈 HF |

is formed by N-particle symmetrized or antisymmetrized functions

| HF 〉 = 1√
N!

∑
sym
|12 . . . N〉 .

Such functions represent N identical particles, bosons or fermions, in N different energy states.
The entanglement-production measure reads as

ε(ρ̂HF) = log
NN

N!
. (75)

In the case of two particles, the measure reduces to the that for the Einstein–Podolsky–Rosen state,

ε(ρ̂HF) = log 2 (N = 2) . (76)

For macroscopic systems, it tends to the expression

ε(ρ̂HF) ' N log e (N � 1) . (77)
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8.7. Reduced Statistical Operators

In the above examples, pure states are considered. The measure of entanglement production,
being general, can be found for mixed states as well. To this end, we can study reduced statistical
operators defined through partial traces of the Hartree–Fock state

ρ̂n ≡ TrHn+1TrHn+2 . . . TrHN ρ̂HF ,

with n = 1, 2, . . . , N − 1. The entanglement-production measure for this operator is

ε(ρ̂n) = log
(N − n)!Nn

N!
. (78)

For a large number of particles, this yields

ε(ρ̂n) '
n(n− 1)

2N
log e (N � 1) . (79)

8.8. Gibbs States

An equilibrium system of N particles, characterized by a Hamiltonian H acting on a Hilbert space

H =
N⊗

i=1

Hi ,

is described by the Gibbs statistical operator

ρ̂ =
1
Z

e−βH
(

Z ≡ TrHe−βH
)

,

in which β ≡ 1/T is inverse temperature. The entanglement-production measure can be calculated as
is explained in Section 4. For two-particle registers, represented by Ising and Heisenberg Hamiltonians,
this was done in Refs. [39,91].

9. Werner Operator

The case of the Werner operator [100] is interesting since, depending on parametrization, it can
represent a separable or entangled state. The operator has the form

ρ̂W =
1

(d2 − 1)d
[
(d− γ)1̂ + (γd− 1)σ̂

]
, (80)

with the unity operator
1̂ = ∑

mn
| mn 〉〈 nm | = 1̂A

⊗
1̂B ,

where
1̂A = ∑

m
| m 〉〈 m | , 1̂B = ∑

n
| n 〉〈 n | ,

and the flip operator
σ̂ = ∑

mn
| mn 〉〈 mn | = ∑

mn
| m 〉〈 n |

⊗
| n 〉〈 m | .

The name of the latter comes from the property of the flip operator to flip functions:

σ̂ | mn 〉 = | nm 〉 .
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The parametrization of the Werner operator is done by the parameter γ defined by the equation

γ = TrH ρ̂W σ̂ (TrH ρ̂W = 1) .

The partially traced operators are

ρ̂1 = TrH2 ρ̂W =
1
d

1̂A , ρ̂2 = TrH1 ρ̂W =
1
d

1̂B .

These reduced operators are normalized to one,

TrH1 ρ̂1 = TrH2 ρ̂2 = 1 .

The nonentangling counterpart of the Werner operator is

ρ̂⊗W = ρ̂1
⊗

ρ̂2 =
1
d2 1̂ ,

which gives its norm

||ρ̂⊗W || =
1
d2 .

In view of the matrix elements

〈 mn |1̂ | nm 〉 = 1 , 〈 mn |σ̂ | nm 〉 = δmn ,

we have

〈 mn |ρ̂W | nm 〉 = d− γ + (γd− 1)δmn

(d2 − 1)d
.

Thence the norm of the Werner operator is

||ρ̂W || =
1

(d2 − 1)d
sup{d− γ, (1 + γ)(d− 1)} .

Therefore for the entanglement-production measure we find

ε(ρ̂W) = log[
d

d2 − 1
sup{d− γ, (1 + γ)(d− 1)} ] . (81)

The measure is positive for all values of γ, which means that the Werner operator is always entangling.
At the same time, the positive partial transpose criterion [101,102] tells us that the Werner state is
separable if and only if γ ≥ 0, while it is entangled for γ < 0. However, even being separable,
the Werner operator is entangling, that is, producing entanglement.

The Werner operator is an explicit example of an operator that can be separable, although being
entangling, as is discussed in Section 4. The entanglement entropy for the Werner operator is

Sj = −TrHj ρ̂j ln ρ̂j =
1
d

ln d .

10. Bose–Einstein Condensation

The aim of the present section is twofold. First, it shows explicitly how the order indices and the
entanglement-production measure can be calculated for a system with a phase transformation for a
large, however finite, number of particles. Second, it is demonstrated that both these characteristics,
order indices as well as entanglement production, simultaneously change under phase transitions.

The correct description of a Bose-condensed system requires the validity of the following
important stipulations. (i) The theory has to respect conservation laws and thermodynamic relations.
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(ii) The excitation spectrum must be gapless. (iii) The Bose–Einstein condensation has to be a phase
transition of second order. (iv) The system must be stable, satisfying the necessary stability conditions.
(v) Reasonable quantitative agreement with experiments is required. The validity of these stipulations
can be achieved in the self-consistent approach based on representative statistical ensembles [103–106]
which we use here.

In the presence of Bose–Einstein condensate, the boson field operators acquire the Bogolubov
shift [107,108], being represented as the sum

ψ̂(r) = η(r) + ψ1(r) , (82)

in which η is the condensate wave function and ψ1 is the field operator of uncondensed particles.
The field operators are also functions of time, which are not shown explicitly for the sake of notation
compactness. The functional variables η and ψ are orthogonal with each other,∫

η∗(r)ψ1(r) dr = 0 (83)

and satisfy the conditions
η(r) = 〈 ψ̂(r) 〉 , 〈 ψ̂1(r) 〉 = 0 . (84)

The condensate function is normalized to the number of condensed particles,

N0 =
∫
| η(r) |2 dr , (85)

while the number of uncondensed particles is

N1 =
∫
〈 ψ̂†

1(r)ψ1(r) 〉 dr . (86)

The first-order density matrix reads as

ρ(r, r′) = η∗(r′)η(r) + 〈 ψ̂†
1(r
′)ψ1(r) 〉 . (87)

Its eigenvalues can be represented through the integral

Nk =
∫

ϕ∗k (r)ρ(r, r′)ϕk(r
′) drdr′ , (88)

in which ϕk are the natural orbitals [47]. Taking account of Equation (87) leads to the sum

Nk = N0k + nk , (89)

where

N0k ≡
∣∣∣∣ ∫ η∗(r)ϕk(r) dr

∣∣∣∣2
and

nk ≡ 〈 a†
k ak 〉 , ak ≡

∫
ϕ∗k (r)ψ1(r) dr .

Thus we obtain the norm
|| ρ̂1 || = sup

k
(N0k + nk) . (90)

In the absence of the condensate, η = 0 and N0k = 0.
In the presence of the condensate, there also exists the so-called anomalous average

σ1(r1, r2) ≡ 〈 ψ1(r2)ψ1(r1) 〉 = σ1(r2, r1) , (91)
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with the property
σ∗1 (r1, r2) ≡ 〈 ψ†

1(r1)ψ
†
1(r2) 〉 = σ∗1 (r2, r1) .

If the system is uniform, then

η(r) =
√

ρ0

(
ρ0 ≡

N0

V

)
(92)

and it follows
N0k = N0δk0 . (93)

Considering the second-order density matrix, we shall use the simplified notation writing just j
instead of rj and j′ instead of r′j. For instance,

ρ1(1, 2) ≡ ρ1(r1, r2) = 〈 ψ†
1(r2)ψ1(r1) 〉 . (94)

Then the second-order density matrix reads as

ρ2(1, 2, 1′, 2′) = η∗(2′)η∗(1′)η(1)η(2) + ρ1(1, 2′)η∗(1′)η(2) + ρ1(1, 1′)η∗(2′)η(2)+

+ρ1(2, 2′)η∗(1′)η(1) + ρ1(2, 1′)η∗(2′)η(1) + σ1(1, 2)η∗(2′)η∗(1′) + σ∗1 (1
′, 2′)η(1)η(2)+

+〈 ψ†
1(2
′)ψ†

1(1
′)ψ1(1) 〉 η(2) + 〈 ψ†

1(2
′)ψ†

1(1
′)ψ1(2) 〉η(1)+

+ 〈 ψ†
1(2
′)ψ1(1)ψ1(2) 〉 η∗(1′) + 〈 ψ†

1(1
′)ψ1(1)ψ1(2) 〉 η∗(2′) + 〈 ψ†

1(2
′)ψ†

1(1
′)ψ1(1)ψ1(2) 〉 . (95)

In what follows, let us consider a uniform system, when Equation (92) holds true. In that case,
the natural orbitals are plane waves. By employing the Hartree–Fock–Bogolubov decoupling reduces
the second-order density matrix to the expression

ρ2(1, 2, 1′, 2′) = ρ2
0 + ρ0[ ρ1(1, 2′) + ρ1(1, 1′) + ρ1(2, 2′) + ρ1(2, 1′) + σ1(1, 2) + σ∗1 (1

′, 2′) ]+

+ ρ1(1, 2′)ρ1(2, 1′) + ρ1(2, 2′)ρ1(1, 1′) + σ∗1 (1
′, 2′)σ1(1, 2) . (96)

The matrix element in Equation (94) becomes

ρ1(r, r′) =
1
V ∑

k 6=0
nkeik·(r−r′) , (97)

where
nk ≡ 〈 a†

k ak 〉 =
1
V

∫
ρ1(r′, r)eik·(r−r′) drdr′ .

Similarly, the anomalous average in Equation (91) takes the form

σ1(r, r′) =
1
V ∑

k 6=0
σkeik·(r−r′) , (98)

with
σk ≡ 〈 aka−k 〉 =

1
V

∫
σ1(r′, r)eik·(r−r′) drdr′ .

For the norm of the second-order density operator, we get

|| ρ̂2 || = sup
kp

(
N2

0 δk0δp0 + 2nknp + σkσp

)
. (99)
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In that way, we find the order indices for the density operators of first order,

ω(ρ̂1) =
log || ρ̂1 ||
log | Trρ̂1 |

=
log supk Nk

log N
, (100)

in which
Nk = N0δk0 + nk ,

and of second order

ω(ρ̂2) =
log || ρ̂2 ||
log | Trρ̂2 |

=
log supkp Nkp

2 log N
, (101)

where
Nkp = N2

0 δk0δp0 + 2nknp + σkσp .

For the entanglement-production measure, we obtain

ε(ρ̂2) = log
|| ρ̂2 ||
|| ρ̂⊗2 ||

= log
supkp Nkp

(supk Nk)2 . (102)

These quantities can be calculated [89,90] as functions of the number of particles and other system
parameters.

For illustration, let us consider the limiting case of N → ∞. Then, for temperatures below the
condensation temperature Tc, we find that

sup
k

Nk ' N0 ∝ N , sup
kp

Nkp ' N2
0 ∝ N2 (T < Tc) ,

while supk nk ∝ N1/3. At temperatures above the condensation temperature Tc, we have

sup
k

Nk = sup
k

nk , sup
kp

Nkp = 2 sup
k

n2
k (T > Tc) .

Therefore the studied order indices are

ω(ρ̂1) = ω(ρ̂2) =

{
1, T < Tc

0, T > Tc
(103)

and the entanglement-production measure is

ε(ρ̂2) =

{
0, T < Tc

log 2, T > Tc
. (104)

At the phase transition point, both these quantities experience noticeable change. The appearance of
order is accompanied by the reduction of the entanglement production.

11. Magnetic Transitions

Magnetic systems are characterized by spin operators Sj located at lattice sites enumerated by
j = 1, 2, . . . , N. Instead of density matrices defined through field operators, we need now to introduce
correlation matrices, as in Section 6, composed of spin operators [10]. Thus the first-order spin
correlation matrix

Ĉ1 = [ Cij ] (105)

is composed of the matrix elements
Cij = 〈 Si · Sj 〉 . (106)
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The second-order spin correlation matrix

Ĉ2 = [ Cijmn ] (107)

is formed by the correlation functions

Cijmn = 〈 Si(Sj · Sm)Sn 〉 . (108)

Keeping in mind that
S2

j = S(S + 1) ,

we have the traces
TrĈ1 = ∑

j
Cjj = S(S + 1)N (109)

and
TrĈ2 = ∑

ij
Cijji = [ S(S + 1)N ]2 . (110)

In calculating the matrix norms, we use the natural lattice orbital

ϕk(aj) =
1√
N

eik·aj . (111)

Then the norm of the first-order correlation matrix is

|| Ĉ1 || = sup
k

∣∣∣∣∣ ∑
ij

ϕ∗k (ai)Cij ϕk(aj)

∣∣∣∣∣ . (112)

Employing the properties

Cijjn = S(S + 1)Cin , | ϕk(aj) |2 =
1
N

,

and separating the terms with coinciding and non-coinciding lattice sites, we get

|| Ĉ1 || = sup
k

∣∣∣∣∣ S(S + 1) + ∑
i 6=j

ϕ∗k (ai)Cij ϕk(aj)

∣∣∣∣∣ . (113)

Similarly, for the second-order spin correlation matrix, we have the norm

|| Ĉ2 || = sup
kp

∣∣∣∣∣ ∑
ijmn

ϕ∗k (ai)ϕ∗p(aj)Cijmn ϕp(am)ϕk(an)

∣∣∣∣∣ , (114)

which leads to

|| Ĉ2 || = sup
kp

∣∣∣∣∣ [ S(S + 1) ]2 + 2S(S + 1)∑
i 6=j

ϕ∗k (ai)Cij ϕk(aj)+

+ ∑
i 6=n

∑
j 6=m

ϕ∗k (ai)ϕ∗p(aj)Cijmn ϕp(am)ϕk(an)

∣∣∣∣∣ . (115)

Defining the magnetization
M = 〈 Sj 〉 , (116)

for different lattice sites, one can resort to the mean-field approximation

〈 Si · Sj 〉 = 〈 Si 〉〈 Sj 〉 = M2 (i 6= j) . (117)
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Then we have

Cij =

{
M2, i 6= j
S(S + 1), i = j ,

which gives
|| Ĉ1 || = S(S + 1) + (N − 1)M2 . (118)

Depending on the number of coinciding and non-coinciding lattice sites, we find

〈 Si(Sj · Sm)Sn 〉 = 〈 Si · Sn 〉〈 Sj · Sm 〉 (i 6= n, j 6= m, j 6= n, m 6= n) ,

〈 Sj(Sj · Sm)Sn 〉 = 〈 Sj · Sj 〉〈 Sm · Sn 〉 (j 6= n, j 6= m, m 6= n) ,

〈 Si(Sj · Sn)Sn 〉 = 〈 Si · Sj 〉〈 Sn · Sn 〉 (i 6= n, j 6= n) ,

〈 Sj(Sj · Sn)Sn 〉 = 〈 Sj · Sj 〉〈 Sn · Sn 〉 (j 6= n) .

This leads to the matrix elements

Cijmn = M4 (i 6= n, j 6= m, j 6= n, m 6= n) ,

Cjjmn = S(S + 1)M2 (j 6= n, j 6= m, m 6= n) ,

Cijnn = S(S + 1)M2 (i 6= n, j 6= n) ,

Cjjnn = [ S(S + 1) ]2 (j 6= n) .

Therefore we obtain

|| Ĉ2 || = 2[ S(S + 1) ]2 + 4(N − 1)S(S + 1)M2 + (N − 1)2M4 . (119)

The nonentangling counterpart of the second-order correlation matrix,

Ĉ⊗2 = Ĉ1
⊗

Ĉ2 , (120)

for which
TrĈ⊗2 = TrĈ2 = [ S(S + 1)N ]2, (121)

results in the norm

|| Ĉ⊗2 || = || Ĉ1 ||2 = [ S(S + 1) ]2 + 2(N − 1)S(S + 1)M2 + (N − 1)2M4 . (122)

The norms are essentially different for the magnetically ordered state, when a nonzero
magnetization is present, and for the paramagnetic state without average magnetization:

|| Ĉ1 || =
{

NM2, |M| > 0
S(S + 1), M = 0

,

|| Ĉ2 || =
{

N2M4, |M| > 0
2[ S(S + 1) ]2, M = 0

,

|| Ĉ⊗2 || =
{

N2M4, |M| > 0
[ S(S + 1) ]2, M = 0

, (123)
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For the order indices

ω(Ĉn) =
log | Ĉn |

log | TrĈn |
, (124)

we have

ω(Ĉ1) = ω(Ĉ2) =

{
1, |M| > 0
0, M = 0

. (125)

For the entanglement-production measure

ε(Ĉ2) = log
|| Ĉ2 ||
|| Ĉ⊗2 ||

, (126)

we find

ε(Ĉ2) =

{
0, |M| > 0
log 2, M = 0

. (127)

Here a large system, with N � 1 is assumed.
Again we see that the entanglement production diminishes upon arising order and increases for a

disordered state.

12. Diagonal Order

In the previous Sections 10 and 11, the cases of phase transformations with the arising off-diagonal
order are analyzed. There exists an opinion that the transitions with the arising diagonal order have to
be treated differently, since the related reduced density matrices behave in a different way. However,
in the approach based on the order indices, there is no difference in the method of treating any type
of phase transition. What needed is to define the appropriate correlation matrix [10]. In the present
section, we illustrate this for the solid-liquid transition that is the most known transition exhibiting
diagonal order.

Under the solidification–melting phase transition, what changes is the particle density

ρ(r) = 〈 ρ̂(r) 〉 (128)

that is the statistical average of the density operator

ρ̂(r) ≡ ψ†(r)ψ(r) . (129)

In the liquid state, the particle density is constant in space, being equal to the average density

ρ =
1
V

∫
ρ(r) dr =

N
V

. (130)

In the solid state, the density is nonuniform, having minima and maxima.
We can label the points of the density maxima by aj, enumerating them by the index j =

1, 2, . . . , NL, thus defining them by the condition

max
r

ρ(r) = ρ(aj) . (131)

Generally, the points of maxima do not need to form a periodic structure, but can be randomly located,
as in amorphous solids. For crystalline structures, the points of density maxima form a periodic
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crystalline lattice, where the set of {aj} fixes lattice sites. Below, we shall consider a crystalline lattice,
where the points of density maxima are identical to each other, so that

ρ(aj) = ρ(a) , (132)

with a being any site from the set of lattice sites. This is not principal for the approach, but just
simplifies some notations.

Let us introduce the operator
Â(aj) ≡ ρ̂(aj)− ρ . (133)

Its average is
〈 Â(aj) 〉 = ρ(a)− ρ .

With these operators, it is straightforward to define the correlation functions

Dij = 〈 Â(ai)Â(aj) 〉 . (134)

These functions play the role of matrix elements of the correlation matrix

D̂1 = [ Dij ] , (135)

for which
Dij = 〈 ρ̂(ai)ρ̂(aj) 〉 − 2ρρ(a) + ρ2 . (136)

The trace of this matrix is

TrD̂1 = ∑
j

Djj = NL

[
〈 ρ̂(a)2 〉 − 2ρρ(a) + ρ2

]
, (137)

with NL being the number of lattice sites. This trace can be rewritten as

TrD̂1 = NL

{
[ ρ(a)− ρ ]2 + varρ̂(a)

}
, (138)

where
varρ̂(a) ≡ 〈 ρ̂(a)2 〉 − ρ(a)2

is the density variance at a lattice site. For different sites, one can use the Hartree decoupling

〈 ρ̂(ai)ρ̂(aj) 〉 = 〈 ρ̂(ai) 〉〈 ρ̂(aj) 〉 (i 6= j)

that is known to provide a good description for crystals [109–114]. Keeping in mind the lattice function
in Equation (111), for the norm of the matrix, we find

|| D̂1 || = ρ(a)2 + varρ̂(a) + NL[ ρ(a)− ρ ]2 . (139)

In this way, we come to the order index

ω(D̂1) =
log || D̂1 ||
log | TrD̂1 |

=

=
log{NL[ρ(a)− ρ]2 + ρ(a)2 + varρ̂(a)}
log NL + log{[ρ(a)− ρ]2 + varρ̂(a)} . (140)



Entropy 2020, 22, 565 24 of 33

For a solid, this reduces to

ω(D̂1) = 1 +
2 log[ρ(a)− ρ]

log NL
, ρ(a) > ρ , (141)

while for a liquid, it gives

ω(D̂1) =
log{ρ(a)2 + varρ̂(a)}

log NL
, ρ(a) = ρ . (142)

These expressions can be used for both, finite systems as well as for macroscopic systems with a
large number of particles. Note that finite crystalline structures can be stable, or metastable, even
in low dimensions, forming crystalline chains and planes [115] for which the Lindemann stability
criterion [116] is valid. In the thermodynamic limit, we obtain

ω(D̂1) =

{
1, solid
0, liquid

(NL → ∞) . (143)

Similarly, the characteristics of higher-order correlation matrices D̂n can be calculated. The overall
situation is analogous to the cases of phase transitions treated in Sections 10 and 11.

13. Dynamical Effects

Order indices and entanglement production can vary with time. Time dependence can come
through equations of motion. If the operator obeys a unitary evolution, the order indices do not
change with time, although the entanglement production can vary since the non-entangling operator,
generally, does not follow the unitary evolution. Reduced density matrices and correlation matrices,
in general, also are not governed by unitary time dependence. Therefore the order indices and
entanglement-production measure, say for reduced density matrices of nonequilibrium systems, do
depend on time,

ω(ρ̂n(t)) =
log || ρ̂n(t) ||
log | Trρ̂n(t) |

,

ε(ρ̂n(t)) = log
|| ρ̂n(t) ||
|| ρ̂⊗n (t) ||

. (144)

13.1. Multitrap Multimode States

As an example, let us consider the case of multiple traps filled by Bose–Einstein condensate. This
can be realized with an optical lattice having deep wells, where condensate clouds are located. Thus,
cold rubidium 87Rb atoms were loaded [117,118] into an optical lattice, with adjacent sites spaced
so that these sites were practically independent, with the tunneling time between sites above 1018 s.
The number of lattice sites was typically between 5 to 35. The number of condensed atoms in each
site could be varied between about 200 to 104. Shaking the lattice as a whole, it is possible to create in
each lattice site multimode states of excited Bose–Einstein condensates [95–98,119–123]. Such states
are described by the statistical operator

ρ̂n(t) =
NM

∑
k=1

nk(t) | kk . . . k 〉〈 kk . . . k | , (145)
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where nk is the fraction of atoms in the k-th mode, NM is the number of modes in a lattice site,
whose number is NL. The normalization of the statistical operator to one, requires the validity of
the summation

NM

∑
k=1

nk = 1 .

The entanglement-production is quantified by the measure

ε(ρ̂(t)) = (1− NL) log sup
k

nk(t) (146)

varying in the range
0 ≤ ε(ρ̂(t)) ≤ (NL − 1) log NM . (147)

The temporal evolution of the measure was studied for two and three modes [124–127].
For the realization of the multitrap multimode states it is important that the traps be identical, so

that the transition frequencies between the ground-state condensate and the generated coherent mode
be the same in all traps. Only then it is feasible to shake the lattice with a frequency that would be
in resonance with the transition frequency of all traps, which is necessary for the generation of the
same mode in these traps. A collection of different traps, such as effective potential wells in a random
matter, where the so-called Bose glass can arise [128–130] is not appropriate, since these effective wells
are not identical, hence are characterised by different transition frequencies.

13.2. Entangling by Evolution Operators

Entanglement production by the evolution operator

Û(t) = e−iHt (148)

was studied in Refs. [46,131]. The operator norm was defined as the Hilbert–Schmidt norm.
Calculations were performed for finite-site Heisenberg and Ising Hamiltonians. Depending on the
system parameters, the evolution of the entanglement-production measure

ε(Û(t)) = log
|| Û(t) ||
|| Û⊗(t) ||

(149)

is periodic or quasiperiodic.

14. Coherence Phenomena

Coherence phenomena occurring in nonequilibrium systems can be treated as a kind of dynamic
phase transitions. Therefore the temporal behavior of these coherent phenomena can also be
accompanied by drastic changes in the order indices and entanglement production. Examples of these
phenomena are given by the dynamics of strongly nonequilibrium spin systems [132,133] and radiating
systems [134–136]. Being many-particle collections, these systems allow for considering order indices
and entanglement production characterizing their temporal behavior. To describe nonequilibrium
processes in these systems, it is convenient to resort to quasispin representation [134–136] based on the
quasispin operators

Sz
j =

1
2

σz
j , S±j =

1
2

σ±j ,

where the index j enumerates particles, or spins, and σα
j are Pauli matrices. The main observable

quantities are the fractional population imbalance (or longitudinal spin polarization)

s ≡ 2
N

N

∑
j=1
〈 Sz

j 〉 (150)
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and the dimensionless coherence intensity or radiation intensity

w ≡ 4
N2

N

∑
i 6=j
〈 S+

i S−j 〉 (151)

that are functions of time coming from the equations of motion. Summation is over all atoms or spins.
It is useful to mention that in nonequilibrium processes, such as radiation, the population imbalance s
is never identically equals minus one, which would mean an equilibrium state, when the coherence
intensity w would be zero.

Since there are two physically different operators, one related to coherence intensity and the
other describing the atomic population imbalance (spin polarization), it is convenient to consider
two different types of correlation functions [137]. Dealing with the population-imbalance operators
requires to define correlation functions using the z-spin operators. Thus, it is possible to introduce the
first-order correlation operator

Q̂1 = [ Qij ] , (152)

with the matrix elements
Qij ≡ 〈 Sz

i Sz
j 〉 . (153)

The second-order correlation operator is

Q̂2 = [ Qijmn ] , (154)

having the matrix elements
Qijmn ≡ 〈 Sz

i Sz
j Sz

mSz
n 〉 . (155)

Similarly, it is straightforward to define the correlation operators composed of the ladder spin
operators, the first order

R̂1 = [ Rij ] , (156)

with the elements
Rij ≡ 〈 S+

i S−j 〉 , (157)

and the second order
R̂2 = [ Rijmn ] , (158)

with the matrix elements
Rijmn ≡ 〈 S+

i S+
j S−mS−n 〉 . (159)

To calculate the traces and norms of the correlation operators, we shall need the following equalities
for coinciding locations,

S+
j S+

j = S−j S−j = 0 Sz
j Sz

j =
1
4

,

S+
j S−j =

1
2
+ Sz

j , S−j S+
j =

1
2
− Sz

j ,

S+
j Sz

j = −
1
2

S+
j , S−j Sz

j =
1
2

S−j ,

Sz
j S+

j =
1
2

S+
j , Sz

j S−j = − 1
2

S−j .

Let us start with the operators Q̂n. For the traces, we have

TrQ̂1 =
N

∑
j=1

Qjj =
N
4

, TrQ̂2 = ∑
jn

Qjnnj =
N2

16
. (160)
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The partially traced operators

Q̂(α)
1 = TrH/Hα

Q̂2 =
N
4

Q̂1 (α = 1, 2) (161)

give the related nonentangling factor operator

Q̂⊗1 =
Q(1)

1
⊗

Q(2)
1

TrQ̂2
= Q̂1

⊗
Q̂2 . (162)

For the norms, we find

|| Q̂1 || =
1
4

(
1 + Ns2

)
,

|| Q̂2 || =
1
8
+

N
4

s2 +
N2

16
s4 ,

|| Q̂⊗2 || = || Q̂1 ||2 =
1

16

(
1 + Ns2

)2
. (163)

Calculating the order indices and entanglement-production measure, we simplify the final
expressions by keeping in mind a large number of atoms N � 1. Then we get the order indices

ω(Q̂1) = ω(Q̂2) =

{
1, s 6= 0
0, s = 0

(164)

and the entanglement-production measure

ε(Q̂2) =

{
0, s 6= 0
log 2, s = 0

. (165)

The behavior of the order indices here is similar to the case of magnetic systems. However the physical
nature of the arising order is rather different from the latter. In the process of coherent dynamics or
radiation, the ordering occurs for a short time, since s = s(t) is a function of time. Here it is an example
of a dynamical order, while in a magnet, it is a stationary order. Similarly to the stationary magnetic
order, the dynamic order also reduces the measure of entanglement production.

For the correlation operators related to the coherence intensity, we have the traces

TrR̂1 = ∑
j
〈 S+

j S−j 〉 =
N
2

(1 + s) , TrR̂2 =
N2

4
(1 + s)2 . (166)

The partially traced operators

R̂(α)
1 =

N
2

(1 + s)R̂1 (α = 1, 2) (167)

result in the nonentangling factor operator

R̂⊗2 =
R̂(1)

1
⊗

R̂(2)
1

TrR̂2
= R̂1

⊗
R̂1 . (168)

We find the following norms

|| R̂1 || =
1
2
(1 + s) +

N
4

w , || R̂(α)
1 || = N

2
(1 + s)|| R̂1 || ,
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|| R̂⊗2 || = || R̂1 ||2 , || R̂2 || =
1
2
(1 + s)2 +

N
2

(1 + s)w +
N2

16
w2 . (169)

Thus, for large N � 1, we obtain the order indices

ω(R̂1) = ω(R̂2) =

{
1, w 6= 0
0, w = 0

(170)

and the entanglement-production measure

ε(R̂2) =

{
0, w 6= 0
log 2, w = 0

. (171)

These quantities essentially depend on the coherence intensity w = w(t) that plays here the
role of a dynamic order characteristic. A nonzero w signifies the appearance of a coherent dynamic
order. Sometimes, the occurrence of the coherent dynamic order is paralleled with the nonequilibrium
magnon condensation [138–140]. Note that in equilibrium systems magnons cannot condense [141,142].

15. Conclusions

We have surveyed the meaning and applications of two concepts, order indices and entanglement
production. The concept of order indices generalizes that of order parameters. The latter usually
describe long-range order and are well defined only for macroscopic systems in the thermodynamic
limit. However the order indices can be defined for any system, whether in the thermodynamic limit or
finite. They characterize all types of order, long-range, mid-range, or short-range, making it possible not
merely distinguishing the qualitative types of orders, but prescribing a measure uniquely quantifying
the level of ordering and being applicable to equilibrium as well as to nonequilibrium systems.

The entanglement production describes how much entanglement is produced by an operator.
This should be distinguished from the notion of entanglement describing the operator structure.
It is possible to say that entanglement, characterizing the operator structure, is a static notion,
while the entanglement production, describing the operator action, is a kind of a dynamic notion.
The entanglement production can be quantified by a measure that is valid for any system, bipartite or
multipartite, equilibrium or not.

It turns out that order indices and the entanglement-production measure are closely related with
each other. As a rule, the larger the level of order in a system, the smaller the entanglement-production
measure. The use of these concepts helps to better understand the properties of the studied systems
and to more efficiently employ them in applications.

In the review, we considered the cases that could be treated analytically. Dealing with finite
systems, it is usually necessary to resort to numerical calculations. Thus powerful numerical
methods have been developed for studying the dynamics of finite Bose systems [143–145]. Hopefully,
the described notions could be successfully employed for the analysis of finite systems by applying
numerical methods.

Funding: This research received no external funding.

Acknowledgments: The author is grateful for many useful discussions to E.P. Yukalova.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Landau, L.D.; Lifshitz, E.M. Statistical Physics; Elsevier: Oxford, UK, 1980.
2. Ter Haar, D. Lectures on Selected Topics in Statistical Mechanics; Pergamon: Oxford, UK, 1977.
3. Bogolubov, N.N. Quantum Statistical Mechanics; World Scientific: Singapore, 2015.



Entropy 2020, 22, 565 29 of 33

4. Berezinskiı̆, V.L. Destruction of long-range order in one-dimensional and two-dimensional systems
possessing a continuous symmetry group. J. Exp. Theor. Phys. 1972, 34, 610–617.

5. Kosterlitz, J.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems.
J. Phys. C 1973, 6, 1181–1203. [CrossRef]

6. Coleman, A.J.; Yukalov, V.I. Order indices and mid-range order. Mod. Phys. Lett. B 1991, 5, 1679–1686.
[CrossRef]

7. Coleman, A.J.; Yukalov, V.I. Order indices for boson density matrices. Nuovo Cimento B 1992, 107, 535–552.
[CrossRef]

8. Coleman, A.J.; Yukalov, V.I. Order indices and ordering in macroscopic systems. Nuovo Cimento B 1993,
108, 1377–1397. [CrossRef]

9. Coleman, A.J.; Yukalov, V.I. Relation between microscopic and macroscopic characteristics of statistical
systems. Int. J. Mod. Phys. B 1996, 10, 3505–3515. [CrossRef]

10. Yukalov, V.I. Matrix order indices in statistical mechanics. Physica A 2002, 310, 413–434. [CrossRef]
11. Williams, C.P.; Clearwater, S.H. Explorations in Quantum Computing; Springer: New York, NY, USA,1998.
12. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:

Cambridge, UK, 2000.
13. Vedral, V. The role of relative entropy in quantum information theory. Rev. Mod. Phys. 2002, 74, 197–234.

[CrossRef]
14. Keyl, M. Fundamentals of quantum information theory. Phys. Rep. 2002, 369, 431–548. [CrossRef]
15. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009,

81, 865–942. [CrossRef]
16. Gühne, O.; Toth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75 [CrossRef]
17. Wilde, M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2013.
18. Yukalov, V.I.; Sornette, D. Processing information in quantum decision theory. Entropy 2009, 11, 1073–1120.

[CrossRef]
19. Yukalov, V.I.; Sornette, D. Quantum probabilities of composite events in quantum measurements with

multimode states. Laser Physics 2013, 23, 105502. [CrossRef]
20. Yukalov, V.I.; Sornette, D. Quantum theory of measurements as quantum decision theory. J. Phys. Conf. Ser.

2015, 594, 012048. [CrossRef]
21. Yukalov, V.I.; Sornette, D. Quantum probability and quantum decision-making. Phil. Trans. R. Soc. A 2016,

374, 20150100. [CrossRef]
22. Yukalov, V.I.; Sornette, D. Quantum probabilities as behavioral probabilities. Entropy 2017, 19, 112. [CrossRef]
23. Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Cambridge

Philos. Soc. 1935, 31, 555–563. [CrossRef]
24. Schrödinger, E. Probability relations between separated systems. Math. Proc. Cambridge Philos. Soc. 1936,

32, 446–452. [CrossRef]
25. Schiff, L.I. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1955.
26. Yukalov, V.I. Existence of a wave function for a subsystem. Moscow Univ. Phys. Bull. 1970, 25, 49–53.
27. Yukalov, V.I. Concept of distinctness for quantum subsystems. Moscow Univ. Phys. Bull. 1971, 26, 22–26.
28. Zanardi, P. Entanglement of quantum evolutions. Phys. Rev. A 2001, 63, 040304. [CrossRef]
29. Balakrishnan, S.; Sankaranarayanan, R. Characterizing the geometrical edges of nonlocal two-qubit gates.

Phys. Rev. A 2009, 79, 052339. [CrossRef]
30. Macchiavello, C.; Rossi, M. Detection methods to rule out completely co-positive and bi-entangling

operations. J. Phys. Conf. Ser. 2013, 470, 012005. [CrossRef]
31. Kong, F.Z.; Zhao, J.L.; Yang, M.; Cao, Z.L. Entangling power and operator entanglement of nonunitary

quantum evolutions. Phys. Rev. A 2015, 92, 012127. [CrossRef]
32. Gohberg, J.; Goldberg, S. Semi-separable operators along chains of projections and systems. J. Math.

Anal. Appl. 1987, 125, 124–140. [CrossRef]
33. Crouzeux, J.P.; Hassouni, A. Quasimonotonicity of separable operators and monotonicity indices.

SIAM J. Optim. 1994, 4, 649–658. [CrossRef]
34. Fan, H.Y. Normally ordered expansion of entangling operators and their squeezing transformation.

Mod. Phys. Lett. B 2001, 15, 1475–1483. [CrossRef]

http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1142/S0217984991002021
http://dx.doi.org/10.1007/BF02723631
http://dx.doi.org/10.1007/BF02755191
http://dx.doi.org/10.1142/S0217979296001872
http://dx.doi.org/10.1016/S0378-4371(02)00783-5
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1016/S0370-1573(02)00266-1
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.3390/e11041073
http://dx.doi.org/10.1088/1054-660X/23/10/105502
http://dx.doi.org/10.1088/1742-6596/594/1/012048
http://dx.doi.org/10.1098/rsta.2015.0100
http://dx.doi.org/10.3390/e19030112
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1103/PhysRevA.63.040304
http://dx.doi.org/10.1103/PhysRevA.79.052339
http://dx.doi.org/10.1088/1742-6596/470/1/012005
http://dx.doi.org/10.1103/PhysRevA.92.012127
http://dx.doi.org/10.1016/0022-247X(87)90168-5
http://dx.doi.org/10.1137/0804037
http://dx.doi.org/10.1142/S0217984901003408


Entropy 2020, 22, 565 30 of 33

35. Dao-Ming, L. Fundamental entangling operators in quantum mechanics and their properties. Int. J.
Theor. Phys. 2016, 55, 3156–3163. [CrossRef]

36. Chen, J.; Duan, R.; Ji, Z.; Ying, M.; Yu, J. Existence of universal entangler. J. Math. Phys. 2008, 49, 012103.
[CrossRef]

37. Zanardi, P.; Zalka, C.; Faoro, L. Entangling power of quantum evolutions. Phys. Rev. A 2000, 62, 030301.
[CrossRef]

38. Yukalov, V.I. Entanglement measure for composite systems. Phys. Rev. Lett. 2003, 90, 167905. [CrossRef]
[PubMed]

39. Yukalov, V.I. Quantifying entanglement production of quantum operations. Phys. Rev. A 2003, 68, 022109.
[CrossRef]

40. Marcus, M.; Moyls, B.N. Transformations on tensor product spaces. Pacif. J. Math. 1959, 9, 1215–1221.
[CrossRef]

41. Westwick, R. Transformations on tensor spaces. Pacif. J. Math. 1967, 23, 613–620. [CrossRef]
42. Beasley, L. Linear operators on matrices: The invariance of rank-k matrices. Linear Algebra Appl. 1988,

107, 161–167. [CrossRef]
43. Alfsen, E.; Shultz, F. Unique decompositions, faces, and automorphisms of separable states. J. Math. Phys.

2010, 51, 052201. [CrossRef]
44. Johnston, N. Characterizing operations preserving separability measures via linear preserver problems.

Linear Multilinear Algebra 2011, 59, 1171–1187. [CrossRef]
45. Friedland, S.; Li, C.K.; Poon, Y.T.; Sze, N.S. The automorphism group of separable states in quantum

information theory. J. Math. Phys. 2011, 52, 042203. [CrossRef]
46. Yukalov, V.I.; Yukalova, E.P. Entanglement production by evolution operator. J. Phys. Conf. Ser. 2017,

826, 012021. [CrossRef]
47. Coleman, A.J.; Yukalov, V.I. Reduced Density Matrices; Springer: Berlin, Germany, 2000.
48. Yukalov, V.I. Theory of cold atoms: basics of quantum statistics. Laser Phys. 2013, 23, 062001. [CrossRef]
49. Yang, C.N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of

superconductors. Rev. Mod. Phys. 1962, 34, 694–703. [CrossRef]
50. Coleman, A.J. Kummer variety, geometry of N-representability, and phase transitions. Phys. Rev. A 2002,

66, 022503. [CrossRef]
51. Yukalov, V.I. Pair correlations in superfluid helium. Phys. Lett. A 1981, 83, 26–28. [CrossRef]
52. Cummings, F.W.; Hyland, G.J.; Rowlands, G. Proposal for measurement of 4He II condensate. Phys. Lett. A

1981, 86, 370–372. [CrossRef]
53. Ghassib, H.B.; Sridhar, R. On the Fröhlich decomposition and the condensate fraction in He II. Phys. Lett. A

1984, 100, 198–200. [CrossRef]
54. Chow, W.K.; Wong, K.W.; Fung, P.C.W. Bose-Eisntein condenastion in superfluid Helium four. J. Phys.

Soc. Jap. 1985, 54, 4490–4493. [CrossRef]
55. Valatin, J.G.; Butler, D. On the collective properties of a boson system. Nuovo Cimento 1958, 10, 37–54.

[CrossRef]
56. Girardeau, M.; Arnowitt, R. Theory of many-boson systems: pair theory. Phys. Rev. 1959, 113, 755–761.

[CrossRef]
57. Coniglio, A.; Marianro, M. On condensation for an interacting boson system. Nuovo Cimento B 1967,

48, 249–261. [CrossRef]
58. Evans, W.; Imry, Y. On the pairing theory of the bose superfluid. Nuovo Cimento B 1969, 63, 155–184.

[CrossRef]
59. Coniglio, A.; Mancini, F.; Maturi, M. On the coexistence of single-and two-particle condensation in an

interacting boson gas. Nuovo Cimento B 1969, 63, 227–235. [CrossRef]
60. Hasting, R.; Halley, T. Phenomenolgical two-branch model for the long-wavelength excitation spectrum of

superfluid 4He. Phys. Rev. B 1975, 12, 267–275. [CrossRef]
61. Kondratenko, P.S. On the “even” mechanism of superfluidity in bose systems. Theor. Math. Phys. 1975,

22, 196–202. [CrossRef]
62. Peletminskii, A.S.; Peletminskii, S.V. Quasiparticle theory of superfluid Bose systems with single-particle

and pair condensates. Low Temp. Phys. 2010, 36, 693–699. [CrossRef]

http://dx.doi.org/10.1007/s10773-016-2945-7
http://dx.doi.org/10.1063/1.2829895
http://dx.doi.org/10.1103/PhysRevA.62.030301
http://dx.doi.org/10.1103/PhysRevLett.90.167905
http://www.ncbi.nlm.nih.gov/pubmed/12732013
http://dx.doi.org/10.1103/PhysRevA.68.022109
http://dx.doi.org/10.2140/pjm.1959.9.1215
http://dx.doi.org/10.2140/pjm.1967.23.613
http://dx.doi.org/10.1016/0024-3795(88)90242-X
http://dx.doi.org/10.1063/1.3399808
http://dx.doi.org/10.1080/03081087.2011.596540
http://dx.doi.org/10.1063/1.3578015
http://dx.doi.org/10.1088/1742-6596/826/1/012021
http://dx.doi.org/10.1088/1054-660X/23/6/062001
http://dx.doi.org/10.1103/RevModPhys.34.694
http://dx.doi.org/10.1103/PhysRevA.66.022503
http://dx.doi.org/10.1016/0375-9601(81)90539-9
http://dx.doi.org/10.1016/0375-9601(81)90559-4
http://dx.doi.org/10.1016/0375-9601(84)90759-X
http://dx.doi.org/10.1143/JPSJ.54.4490
http://dx.doi.org/10.1007/BF02859603
http://dx.doi.org/10.1103/PhysRev.113.755
http://dx.doi.org/10.1007/BF02712190
http://dx.doi.org/10.1007/BF02711051
http://dx.doi.org/10.1007/BF02711056
http://dx.doi.org/10.1103/PhysRevB.12.267
http://dx.doi.org/10.1007/BF01036327
http://dx.doi.org/10.1063/1.3490834


Entropy 2020, 22, 565 31 of 33

63. Pashitskii, E.A. The role of pair correlations in the formation of the ground state and the elementary excitation
spectrum in a superfluid Bose liquid. Low Temp. Phys. 1999, 25, 81–99. [CrossRef]

64. Yukalov, V.I. Bose condensation into a state with finite momentum. Theor. Math. Phys. 1978, 37, 1093–1101.
[CrossRef]

65. Yukalov, V.I. Bose condensation in strongly nonideal systems. Physica A 1980, 100, 431–442. [CrossRef]
66. Yukalov, V.I. Superfluidity and condensate with nonzero momentum. Physica B 1981, 107, 233–234. [CrossRef]
67. Gluzman, S. Two-dimensional quantum antiferromagnet in a strong magnetic field: the case of spin 1/2.

Phys. Status Solidi B 1993, 174, 237–245. [CrossRef]
68. Gluzman, S. Two-dimensional quantum antiferromagnet in a strong magnetic field: the case of arbitrary

spin. Z. Phys. B 1993, 90, 313–318. [CrossRef]
69. Pelissetto, A.; Vicari, E. Critical phenomena and renormalization-group theory. Phys. Rep. 2002, 368, 549–727.

[CrossRef]
70. Yukalov, V.I.; Yukalova, E.P. Calculation of critical exponents by self-similar factor approximants. Eur. Phys.

J. B 2007, 55, 93–99. [CrossRef]
71. Yukalov, V.I. Interplay between approximation theory and renormalization group. Phys. Part. Nucl. 2019,

50, 141–209. [CrossRef]
72. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension.

J. Math. Phys. 1960, 1, 516–523. [CrossRef]
73. Lenard, A. Momentum distribution in the ground state of the one-dimensional system of impenetrable

bosons. J. Math. Phys. 1964, 5, 930–943. [CrossRef]
74. Forrester, P.J.; Frankel, N.E.; Garoni, T.M.; Witte, N.S. Finite one-dimensional impenetrable Bose systems:

occupation numbers. Phys. Rev. A 2003, 67, 043607. [CrossRef]
75. Yukalov, V.I.; Girardeau, M.D. Fermi-Bose mapping for one-dimensional Bose gases. Laser Phys. Lett. 2005,

2, 375–382. [CrossRef]
76. Colcelli, A.; Viti, J.; Mussardo, G.; Trombettoni, A. Universal off-diagonal long-range-order behavior for a

trapped Tonks-Girardeau gas. Phys. Rev. A 2018, 98, 063633. [CrossRef]
77. Lieb, E.; Liniger, W. Exact analysis of an interacting Bose gas: The general solution and the ground state.

Phys. Rev. 1963, 130, 1605–1615. [CrossRef]
78. Yang, C.N.; Yang, C.P. Thermodynamics of one-dimensional system of bosons with repulsive delta function

interaction. J. Math. Phys. 1969, 10, 1115–1122. [CrossRef]
79. Gaudin, M. The Bethe Wavefunction; Cambridge University Press: Cambridge, UK, 2014.
80. Giamarchi, T. Quantum Physics in One Dimension; Oxford University Press: Oxford, UK, 2003.
81. Yukalov, V.I.; Novikov, A.N.; Bagnato, V.S. Characterization of nonequilibrium states of trapped Bose-Einstein

condensates. Laser Phys. Lett. 2018, 15, 065501. [CrossRef]
82. Cazalilla, M.A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M. One dimensional bosons: From condensed

matter systems to ultracold gases. Rev. Mod. Phys. 2011, 83, 1405–1466. [CrossRef]
83. Lang, G.; Hekking, F.; Minguzzi, A. Ground-state energy and excitation spectrum of the Lieb-Liniger model:

accurate analytical results and conjectures about the exact solution. Sci. Post Phys. 2017, 3, 003. [CrossRef]
84. Lang, G. Conjectures about the structure of strong- and weak-coupling expansions of a few ground-state

observables in the Lieb-Liniger and Yang-Gaudin models. Sci. Post Phys. 2019, 7, 055. [CrossRef]
85. Ristivojevic, Z. Conjectures about the ground-state energy of the Lieb-Liniger model at weak repulsion.

Phys. Rev. B 2019, 100, 081110. [CrossRef]
86. Colcelli, A.; Mussardo, G.; Trombettoni, A. Deviations from off-diagonal long-range order in one-dimensional

quantum systems. Europhys. Lett. 2018, 122, 50006. [CrossRef]
87. Yukalov, V.I. Modified semiclassical approximation for trapped Bose gases. Phys. Rev. A 2005, 72, 033608.

[CrossRef]
88. Yukalov, V.I. Particle fluctuations in mesoscopic Bose systems. Symmetry 2019, 11, 603. [CrossRef]
89. Yukalov, V.I.; Yukalova, E.P. Order indices of density matrices for finite systems. Comput. Theor. Chem. 2013,

1003, 37–43. [CrossRef]
90. Yukalov, V.I.; Yukalova, E.P. Mid-range order in trapped quasi-condensates of bosonic atoms. Laser Phys. Lett.

2019, 16, 065501. [CrossRef]
91. Yukalov, V.I.; Yukalova, E.P.; Yurovsky, V.A. Entanglement production by statistical operators. Laser Phys.

2019, 29, 065502. [CrossRef]

http://dx.doi.org/10.1063/1.593709
http://dx.doi.org/10.1007/BF01018592
http://dx.doi.org/10.1016/0378-4371(80)90130-2
http://dx.doi.org/10.1016/0378-4363(81)90422-8
http://dx.doi.org/10.1002/pssb.2221760123
http://dx.doi.org/10.1007/BF01433054
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1140/epjb/e2007-00044-4
http://dx.doi.org/10.1134/S1063779619020047
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1704196
http://dx.doi.org/10.1103/PhysRevA.67.043607
http://dx.doi.org/10.1002/lapl.200510011
http://dx.doi.org/10.1103/PhysRevA.98.063633
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1088/1612-202X/aa99fa
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.21468/SciPostPhys.3.1.003
http://dx.doi.org/10.21468/SciPostPhys.7.4.055
http://dx.doi.org/10.1103/PhysRevB.100.081110
http://dx.doi.org/10.1209/0295-5075/122/50006
http://dx.doi.org/10.1103/PhysRevA.72.033608
http://dx.doi.org/10.3390/sym11050603
http://dx.doi.org/10.1016/j.comptc.2012.08.002
http://dx.doi.org/10.1088/1612-202X/ab1337
http://dx.doi.org/10.1088/1555-6611/ab0cf9


Entropy 2020, 22, 565 32 of 33

92. Mølmer, K.; Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 1999, 82, 1835–1838.
[CrossRef]

93. Sørensen, A.; Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 1999,
82, 1971–1974. [CrossRef]

94. Helmerson, K.; You, L. Creating massive entanglement of Bose-Einstein condensed atoms. Phys. Rev. Lett.
2001, 87, 170402. [CrossRef] [PubMed]

95. Yukalov, V.I.; Yukalova, E.P.; Bagnato, V.S. Non-ground-state Bose-Einstein condensates of trapped atoms.
Phys. Rev. A 1997, 56, 4845–4854. [CrossRef]

96. Yukalov, V.I.; Yukalova, E.P.; Bagnato, V.S. Excited coherent modes of ultracold trapped atoms. Laser Phys.
2000, 10, 26–30.

97. Yukalov, V.I.; Yukalova, E.P.; Bagnato, V.S. Nonground state condensates of ultracold trapped atoms.
Laser Phys. 2001, 11, 455–459.

98. Yukalov, V.I.; Yukalova, E.P.; Bagnato, V.S. Nonlinear coherent modes of trapped Bose-Einstein condensates.
Phys. Rev. A 2002, 66, 043602. [CrossRef]

99. Carusotto, I.; Castin, Y.; Dalibard, J. N-boson time-dependent problem: A reformulation with stochastic
wave functions. Phys. Rev. A 2001, 63, 023606.

100. Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable mode.
Phys. Rev. A 1989, 40, 4277–4281. [CrossRef]

101. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 1996, 77, 1413–1415. [CrossRef]
[PubMed]

102. Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: necessary and sufficient conditions.
Phys. Lett. A 1996, 223, 1–8. [CrossRef]

103. Yukalov, V.I. Fluctuations of composite observables and stability of statistical systems. Phys. Rev. E 2005,
72, 066119. [CrossRef] [PubMed]

104. Yukalov, V.I. Self-consistent theory of Bose-condensed systems. Phys. Lett. A 2006, 359, 712–717. [CrossRef]
105. Yukalov, V.I. Nonequivalent operator representations for Bose-condensed systems. Laser Phys. 2006,

16, 511–525. [CrossRef]
106. Yukalov, V.I. Basics of Bose-Einstein condensation. Phys. Part. Nucl. 2011, 42, 460–513. [CrossRef]
107. Bogolubov, N.N. Lectures on Quantum Statistics; Gordon and Breach: New York, NY, USA, 1967; Volume 1.
108. Bogolubov, N.N. Lectures on Quantum Statistics; Gordon and Breach: New York, NY, USA, 1970; Volume 2.
109. Guyer, R.A. The physics of quantum crystals. Solid State Phys. 1969, 23, 413–499.
110. Zubov, V.I. One-particle distribution functions and thermodynamics of crystals with many-body forces.

Ann. Phys. (Leipzig) 1975, 32, 93–106. [CrossRef]
111. Glyde, H.R.; Keech, G.H. Dynamics of the crystallized one-component plasma. Ann. Phys. (N.Y.) 1980,

127, 330–366. [CrossRef]
112. Yukalov, V.I.; Zubov, V.I. Localized-particles approach for classical and quantum crystals. Fortshr. Phys. 1983,

31, 627–672. [CrossRef]
113. Zubov, V.I.; Pascual, M.F.; Rodriguez, C.G. On the interatomic correlations and mean square relative atomic

displacements in an anharmonic model of the close-packed crystal. Mod. Phys. Lett. B 1995, 9, 839–847.
[CrossRef]

114. Zubov, V.I.; Sanchez, J.F.; Tretiakov, N.P.; Yuseff, A.E. Self-consistent theory of elastic properties of strongly
anharmonic crystals. Int. J. Mod. Phys. B 1995, 9, 803–817. [CrossRef]

115. Yukalov, V.I. Destiny of optical lattices with strong intersite interactions. Laser Phys. 2020, 30, 015501.
[CrossRef]

116. Lindemann, F.A. On the calculation of molecular natural frequencies. Phys. Z. 1910, 11, 609–614.
117. Hadzibabic, Z.; Stock, S.; Battelier, B.; Bretin, V.; Dalibard, J. Interference of an array of independent

Bose-Einstein condensates. Phys. Rev. Lett. 2004, 93, 180403. [CrossRef]
118. Cennini, G.; Geckeler, C.; Ritt, G.; Weitz, W. Interference of a variable number of coherent atomic sources.

Phys. Rev. A 2005, 72, 051601. [CrossRef]
119. Kivshar, Y.S.; Alexander, T.J.; Turitsin, S.K. Nonlinear modes of a microscopic quantum oscillator. Phys. Lett. A

2001, 278, 225–230. [CrossRef]
120. Yukalov, V.I.; Yukalova, E.P. Topological coherent modes for nonlinear Schrödinger equation. J. Phys. A 2002,

35, 8603–8613. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.87.170402
http://www.ncbi.nlm.nih.gov/pubmed/11690254
http://dx.doi.org/10.1103/PhysRevA.56.4845
http://dx.doi.org/10.1103/PhysRevA.66.043602
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://www.ncbi.nlm.nih.gov/pubmed/10063072
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevE.72.066119
http://www.ncbi.nlm.nih.gov/pubmed/16486022
http://dx.doi.org/10.1016/j.physleta.2006.07.060
http://dx.doi.org/10.1134/S1054660X06030145
http://dx.doi.org/10.1134/S1063779611030063
http://dx.doi.org/10.1002/andp.19754870203
http://dx.doi.org/10.1016/0003-4916(80)90102-5
http://dx.doi.org/10.1002/prop.2190311202
http://dx.doi.org/10.1142/S0217984995000796
http://dx.doi.org/10.1142/S0217979295000318
http://dx.doi.org/10.1088/1555-6611/ab5807
http://dx.doi.org/10.1103/PhysRevLett.93.180403
http://dx.doi.org/10.1103/PhysRevA.72.051601
http://dx.doi.org/10.1016/S0375-9601(00)00774-X
http://dx.doi.org/10.1088/0305-4470/35/40/317


Entropy 2020, 22, 565 33 of 33

121. Proukakis, N.P.; Lambropoulos, P. Basis-dependent dynamics of trapped Bose-Einstein condensates and
analogies with semi-classical laser theory. Eur. Phys. J. B 2002, 19, 355–370. [CrossRef]

122. Yukalov, V.I.; Yukalova, E.P.; Bagnato, V.S. Resonant Bose condensate: analog of resonant atom. Laser Phys.
2003, 13, 551–561.

123. Liu, J.; Wu, B.; Niu, Q. Nonlinear evolution of quantum states in the adiabatic regime. Phys. Rev. Lett. 2003,
90, 170404. [CrossRef] [PubMed]

124. Yukalov, V.I. Evolutional entanglement in nonequilibrium processes. Mod. Phys. Lett. B 2003, 17, 95–103.
[CrossRef]

125. Yukalov, V.I.; Yukalova, E.P. Entanglement production with multimode Bose-Einstein condensates in optical
lattices. Laser Phys. 2006, 16, 354–359. [CrossRef]

126. Yukalov, V.I.; Yukalova, E.P. Regulating entanglement production in multitrap Bose-Einstein condensates.
Phys. Rev. A 2006, 73, 022335. [CrossRef]

127. Yukalov, V.I.; Yukalova, E.P. Entanglement production with Bose atoms in optical lattices. J. Phys. Conf. Ser.
2008, 104, 012003. [CrossRef]

128. Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S. Boson localization and the superfluid-insulator
transition. Phys. Rev. B 1989, 40, 546–570. [CrossRef]

129. Sanchez-Palencia, L.; Clement, D.; Lugan, P.; Bouyer, P.; Aspect, A. Disorder-induced versus Anderson
localization in Bose-Einstein condensates expanding in disordered potentials. New J. Phys. 2008, 10, 045019.
[CrossRef]

130. Könenberg, M.; Moser, T.; Seiringer, R.; Yngvason, J. Superfluid behavior of a Bose-Einstein condensate in a
random potential. New J. Phys. 2015, 17, 013022. [CrossRef]

131. Yukalov, V.I.; Yukalova, E.P. Evolutional entanglement production. Phys. Rev. A 2015, 92, 052121. [CrossRef]
132. Yukalov, V.I. Nonlinear spin relaxation in strongly nonequilibrium magnets. Phys. Rev. B 2005, 71, 184432.

[CrossRef]
133. Yukalov, V.I.; Henner, V.K.; Kharebov P.V. Coherent spin relaxation in molecular magnets. Phys. Rev. B 2008,

77, 134427. [CrossRef]
134. Yukalov, V.I.; Yukalova, E.P. Cooperative electromagnetic effects. Phys. Part. Nucl. 2000, 31, 561–602.
135. Yukalov, V.I.; Yukalova, E.P. Coherent nuclear radiation. Phys. Part. Nucl. 2004, 35, 348–382.
136. Yukalov, V.I. Coherent dynamics of radiationg atomic systems in pseudopsin representation. Laser Phys.

2014, 24, 094015. [CrossRef]
137. Yukalov, V.I. Entanglement production under collective radiation. Laser Phys. 2004, 14, 1403–1414.
138. Volovik, G. Twenty years of magnon Bose condensation and spin current superfluidity in He-3-B. J. Low

Temp. Phys. 2008, 153, 266–284. [CrossRef]
139. Bunkov, Y.M.; Volovik, G.E. Magnon Bose–Einstein condensation and spin superfluidity. J. Phys.

Condens. Matter 2010, 22, 164210. [CrossRef]
140. Bunkov, Y.M.; Safonov, V.L. Magnon condensation and spin superfluidity. J. Magn. Magn. Mater. 2017,

452, 30–34. [CrossRef]
141. Yukalov, V.I. Difference in Bose-Einstein condensation of conserved and unconserved particles. Laser Phys.

2012, 22, 1145–1168. [CrossRef]
142. Birman, J.L.; Nazmitdinov, R.G.; Yukalov, V.I. Effects of symmetry breaking in finite quantum systems.

Phys. Rep. 2013, 526, 1–91. [CrossRef]
143. Alon, O.E. Analysis of a trapped Bose–Einstein condensate in terms of position, momentum, and

angular-momentum variance. Symmetry 2019, 11, 1344. [CrossRef]
144. Alon, O.E. Condensates in annuli: dimensionality of the variance. Mol. Phys. 2019, 117, 2108–2120. [CrossRef]
145. Lode, A.U.J.; Lévêque, C.; Madsen, L.B.; Streltsov, A.I.; Alon, O.E. Multiconfigurational time-dependent

Hartree approaches for indistinguishable particles. Rev. Mod. Phys. 2020, 92, 011001. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1140/epjd/e20020083
http://dx.doi.org/10.1103/PhysRevLett.90.170404
http://www.ncbi.nlm.nih.gov/pubmed/12786058
http://dx.doi.org/10.1142/S021798490300497X
http://dx.doi.org/10.1134/S1054660X06020265
http://dx.doi.org/10.1103/PhysRevA.73.022335
http://dx.doi.org/10.1088/1742-6596/104/1/012003
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1088/1367-2630/17/1/013022
http://dx.doi.org/10.1103/PhysRevA.92.052121
http://dx.doi.org/10.1103/PhysRevB.71.184432
http://dx.doi.org/10.1103/PhysRevB.77.134427
http://dx.doi.org/10.1088/1054-660X/24/9/094015
http://dx.doi.org/10.1007/s10909-008-9845-z
http://dx.doi.org/10.1088/0953-8984/22/16/164210
http://dx.doi.org/10.1016/j.jmmm.2017.12.029
http://dx.doi.org/10.1134/S1054660X12070171
http://dx.doi.org/10.1016/j.physrep.2012.11.005
http://dx.doi.org/10.3390/sym11111344
http://dx.doi.org/10.1080/00268976.2019.1587533
http://dx.doi.org/10.1103/RevModPhys.92.011001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Order Indices
	Entangled Structures
	Entangled Functions
	Entangled States
	Entangled Operators

	Entangling Operations
	Density Matrices
	Correlation Matrices
	Examples of Order Indices
	Superconducting State
	Bose-Condensed System
	Even Bose Condensate
	Finite-Momentum Condensate
	Two-Dimensional Systems
	Critical Point
	Tonks–Girardeau Gas
	Lieb–Liniger Model
	Finite Systems

	Examples of Entanglement Production
	Einstein–Podolsky–Rosen-States
	Bell States
	Greenberger–Horne–Zeilinger States
	Multicat States
	Multimode States
	Hatree–Fock States
	Reduced Statistical Operators
	Gibbs States

	Werner Operator
	Bose–Einstein Condensation
	Magnetic Transitions
	Diagonal Order
	Dynamical Effects
	Multitrap Multimode States
	Entangling by Evolution Operators

	Coherence Phenomena
	Conclusions
	References

