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Abstract: This paper studies the representation of a general epidemic model by means of a first-order
differential equation with a time-varying log-normal type coefficient. Then the generalization of
the first-order differential system to epidemic models with more subpopulations is focused on by
introducing the inter-subpopulations dynamics couplings and the control interventions information
through the mentioned time-varying coefficient which drives the basic differential equation model.
It is considered a relevant tool the control intervention of the infection along its transient to fight
more efficiently against a potential initial exploding transmission. The study is based on the fact
that the disease-free and endemic equilibrium points and their stability properties depend on the
concrete parameterization while they admit a certain design monitoring by the choice of the control
and treatment gains and the use of feedback information in the corresponding control interventions.
Therefore, special attention is paid to the evolution transients of the infection curve, rather than to the
equilibrium points, in terms of the time instants of its first relative maximum towards its previous
inflection time instant. Such relevant time instants are evaluated via the calculation of an “ad hoc”
Shannon’s entropy. Analytical and numerical examples are included in the study in order to evaluate
the study and its conclusions.

Keywords: Shannon entropy; epidemic model; transient behavior; vaccination and treatment
intervention controls

1. Introduction

Some classical works by Boltzmann, Gibbs and Maxwell have defined entropy under a statistical
framework. A useful entropy concept is the Shannon entropy since it is a basic tool to quantify the
amount of uncertainty in many kinds of physical or biological processes [1–6]. It may be interpreted
as a quantification of information loss [1–3,7–9]. On the other hand, entropy-based tools have been
also proposed to evaluate the propagation of epidemics and related public control interventions
(see, for instance, [10–17] and some of the references therein). There are also models whose basic
framework relies on the use of entropy tools, as for instance [13–16]. It can be also pointed out
that the control designs might be incorporated to some epidemic propagation and other biological
problems, see, for instance, [18–27], and, in particular, for the synthesis of decentralized control in
patchy (or network node-based) interlaced environments [24,27]. A typical situation is that of several
towns each with its own health center, whose susceptible and infectious populations, apart from their
coupled self-dynamics among their integrating subpopulations, might also mutually interact with the
subpopulations of the neighboring nodes through in-coming and out-coming fluxes.
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It can be pointed out that the knowledge or estimation of the transient behavior of the infection is
very relevant for the hospital management of the disease since it is necessary to manage the availability
of beds and other sanitary utensils and sanitary means, in general. The work by Wang et al. in [11] pays
mainly attention to the description of the transient behavior of the evolution of epidemics rather than
to the equilibrium states. The main purpose in that paper was to formulate the time interval occurring
between the time instant of the maximum of the infection, which gives a relative maximum of the
infection evolution through time (and which zeroes the first time-derivative of the infection function),
and the time instant giving its previous inflection time instant. It turns out that the knowledge of the
first part of the transient evolution is very relevant to fight against the initial exploding of the illness
since any eventual control intervention is typically much more efficient as far as it is taken as quickly as
possible. The model proposed in [11] is a time-varying differential equation of first-order describing the
infectious population which is the unique explicit one in the model. It is also pointed out in that paper
that the time-varying coefficient might potentially contain the supplementary environment information
to make such an equation well-posed to practically describe a concrete disease evolution. An interesting
point of that work is that the infection evolution is identified with a log-normal distribution whose
parameterization is selected in such a way that the entropy production rate is maximized. The above
proposed theoretical first-order model has been proved to be very efficient to describe the data of SARS
2003. Alternative interpretations of the entropy in terms of maximum entropy or maximum entropy
rate are given, for instance, in [12–14] and some references therein.

This paper studies how to link the extension of the first-order differential system proposed
in [11] for the study of infection propagations to epidemic models with more integrated coupled
subpopulations (such as susceptible, immune, vaccinated etc.) by introducing the coupling and control
information through the time-varying coefficient which drives the basic differential equation model. It
is considered relevant the control of the infection along its transient to fight more efficiently against a
potential initial exploding transmission. Note that the disease-free and endemic equilibrium points
and their stability properties depend on the concrete parameterization while they admit a certain
design monitoring by the choice of the control and treatment gains and the use of feedback information
in the corresponding controls. See, for instance [19,27]. Therefore, special attention is paid to the
transients of the infection curve evolution in terms of the time instants of its first relative maximum
towards its previous inflection time instant since there is a certain gap in the background literature
concerning the study of such transients. The ratio of such time instants is later on considered subject
to some worst-case uncertainty relations via the calculation and analysis of an “ad hoc” Shannon’s
entropy. Note that entropy issues have been considered in the study of biological, evolution and
epidemic models by incorporating techniques of information theory. See, for instance [11–13,28–32]. It
is well-known that the entropy production theorems might be classified according to a generalized
sequence of stable thermodynamic states. Also, the thermodynamic equilibrium, which is characterized
by the absence of gradients of state or kinematic variables, is in a state of maximum entropy and
zero entropy production [33,34]. Furthermore, linear non-equilibrium processes are associated with
entropy production so that the entropy concept may be also invoked in transient processes [35]. On the
other hand, it may be pointed out that uncertainties can appear in the characterization of the infection
evolution through time, even in deterministic models, due to parameterization uncertainties, fluxes
of populations or existing uncertainties in the initial conditions. Other mathematical techniques of
interest which combine analytical and numerical issues have been also been applied to the analysis
and discussion of epidemic models with eventual support of mathematical techniques on homotopy
analysis and distribution functions as, forinstance, the log-normal distribution [36,37]. For instance,
in [38], the SIR and SIS epidemic models are solved through the homotopy analysis method. A
one-parameter family of series solutions is obtained which gives a method to ensure convergent series
solutions for those kinds of models. On the other hand, in [39], the analytic solutions of an SIR epidemic
model are investigated in parametric form. It is also found that the generalization of a SIR model
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including births and mortality with vital dynamics might be reduced to an Abel-type which greatly
simplify the analysis.

The paper is organized as follows: Section 2 gives an extension of the basic model of [11] to
be then compared in subsequent sections with some existing models with several subpopulations.
Such a model only considers the infection evolution through time and it is based on the action of
two auxiliary non-negative functions which define appropriately the time-varying coefficient which
defines the first-order differential equation of the infection evolution. The model includes, as particular
case, that of the abovementioned reference where both such auxiliary functions are identical to the
time argument. Particular choices of those functions make it possible to consider alternative effects
linked to the basic model like, for instance, the influence on the infectious subpopulation of other
coupled subpopulations in more general models like, for instance, the susceptible, exposed, recovered
or vaccinated ones. It is also possible to include the control effects through such a varying coefficient, if
any, like for instance, the vaccination and treatment controls. Some basic formal results are stated and
proved mainly concerning with the first relative maxima and inflection time instants of the infection
curve through time. The above two time instants are relevant to take appropriate control interventions
to fight against an initially exploding infectious disease.

Section 3 links the basic model of Section 2 with some known epidemic models which integrate
more subpopulations than just the infectious one, like for instance, the susceptible and recovered
subpopulations, The time-varying coefficient driving the infection evolution is defined explicitly for
each of the discussed epidemic models. Basically, it is taken in mind that some relevant information of
higher-order differential epidemic models concerning the transient trajectory solution can be captured
by a parameter-dependent and time-varying coefficient which drives a first-order differential equation
to the light of the basic model of Section 2. So, the time-varying coefficient describing the infection
evolution depends in those cases of the remaining subpopulations integrated in the model. The
maximum and inflection time instants are characterized for some given examples involving epidemic
models of several subpopulations. In particular, the last one of the discussed theoretical examples
includes the effects of vaccination and treatment intervention controls generated by linear feedback
of the susceptible and infectious subpopulations, respectively. Later on, Section 4 investigates the
entropy associated with the infection accordingly to the generalizations of Section 2 concerning the
specific structure of the time-varying coefficient describing the infection dynamics and its links with
the theoretical examples discussed in Section 3. The error of the entropy related to the reference one
associated with the log-normal distribution is estimated. In practice, that property can be interpreted
in terms of public medical and social interventions which control the disease propagation when
introducing the controls of the last example discussed in Section 3. The second part of Section 4 is
devoted to linking the entropy and inflection and maximum infection time instants and their reached
values of the discussed multi-population structures to their counterparts of the maximum dissipation
rate being associated to the formulation of a simpler model based on the log-normal distribution and
one-dimensional infection dynamics. Some numerical tests are performed for comparisons of the
entropies and its width of the basic model with two of the discussed examples in the previous sections
which involve the presence of more than one integrated subpopulations. Finally, conclusions end
the paper.

Notation

R+ = { r ∈ R : r > 0}; R0+ = { r ∈ R : r ≥ 0} = R+ ∪ {0}

Z+ = { r ∈ Z : r > 0}; Z0+ = { r ∈ Z : r ≥ 0} = Z+ ∪ {0}

n = {0, 1, · · · , n}
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2. The Basic Model Description and Some Related Technical Results

Since disease propagation can be interpreted as a thermodynamic system, it can be assumed
that the rate of increase or decrease is proportional to the infection at the previous day following the
approach of modelling the rate of chemical reactions, [11]. Thus, assume that the infection evolution
obeys the following time-varying differential equation:

.
I(t) = α(t)I(t); I(0) = I0 > 0 (1)

where α : R0+ → R0+ is continuous and time differentiable on (0, +∞). The particular structure of the
varying coefficient α(t) depends on the balances between the spreading mechanism and the exerted
controls during the public intervention. Such a coefficient contains the available information related to
the incorporation of all the control mechanisms and the coupling dynamics between the infectious
populations and the remaining interacting ones such as the susceptible, immune or vaccinated ones.
By taking time-derivatives with respect to time in (1), one gets:

..
I(t) =

.
α(t)I(t) + α(t)

.
I(t)

=
( .
α(t)/α(t) + α(t)

) .
I(t)

=
( .
α(t) + α2(t)

)
I(t);

.
I(0) =

.
I0 = α(0)I0

(2)

It is proposed in [11] to consider two relevant time instants in the disease evolution, namely:

(1) The inflection time instant of I(t) which is the date in the infection evolution at which the
controlling actions take effect on the evolution. Typically, this time instant is the undulation point
date in the evolution of I(t), that is the zero of

..
I(t), provided that the first non-zero derivative of

I(n)(t) = dnI(t)
dtn , n ≥ 3 occurs for some even n since this last condition ensures that the undulation

time instant is the inflection time instant.
(2) The critical time instant at which the spread rate turns from initial growing to decrease which can

be empirically attributed to the global influence of the control interventions. This time instant is a
relative maximum of I(t) and it satisfies the constraints

.
I(t) = 0 and

..
I(t) < 0 under the reasonable

assumption that
.
I0 > 0.

It turns out that, along the whole disease evolution, several successive inflection points and
relative maxima can happen. The subsequent result which is concerned with the non-negativity,
boundedness and asymptotic vanishing property of the infection as time tends to infinity and its two
first- time derivatives is immediate from the above expressions (1) and (2):

Theorem 1. The following properties hold:

(i) The infection population and its two first-time derivatives obey the following time evolution equations:

I(t) = e
∫ t

0 α(τ)dτI0;
.
I(t) = α(t)e

∫ t
0 α(τ)dτI0;

..
I(t) =

( .
α(t) + α2(t)

)
e
∫ t

0 α(τ)dτI0;∀t ∈ R0+ (3)

(ii) I(t) > 0; ∀t ∈ R0+ if and only if I0 ≥ 0; and I(t) = 0; ∀t ∈ R0+ if and only if I0 = 0.
(iii) If +∞ > I0 ≥ 0 then I(t) ≤ KI0 < +∞; ∀t ∈ R0+ for some K ∈ R+ if and only if α : R0+ → R0+ is

such that
∫ t

0 α(τ)dτ ≤ K < +∞; ∀t ∈ R0+.

(iv) I(t)→ 0 as t→ +∞ for any given finite I0 if and only if lim
t→+∞

∫ t
0 α(τ)dτ = −∞.

(v) If +∞ > I0 ≥ 0 and
∫ t

0 α(τ)dτ ≤ K < +∞; ∀t ∈ R0+ for some K ∈ R0+ then
∣∣∣∣ .I(t)∣∣∣∣ < +∞; ∀t ∈ R0+

if and only if, for some K1 ∈ R+,
∣∣∣α(t)∣∣∣ ≤ K1 < +∞; ∀t ∈ R0+. If +∞ > I0 ≥ 0 then

∣∣∣∣ .I(t)∣∣∣∣ < +∞;

∀t ∈ R0+ if and only if
∣∣∣α(t)∣∣∣e∫ t

0 α(τ)dτ ≤ K2 < +∞; ∀t ∈ R0+, for some K2 ∈ R+ provided that
α(0) < +∞.
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(vi)
.
I(t)→ 0 as t→ +∞ for any given finite I0 if and only if lim

t→+∞

(
α(t)e

∫ t
0 α(τ)dτ

)
= 0. If α : R0+ → R0+

is bounded and I(t)→ 0 as t→ +∞ then
.
I(t)→ 0 as t→ +∞ .

(vii) If +∞ > I0 ≥ 0 then
∣∣∣∣..I(t)∣∣∣∣ < +∞; ∀t ∈ R+ if and only if

∣∣∣ .
α(t) + α2(t)

∣∣∣e∫ t
0 α(τ)dτ ≤ K3 < +∞;

∀t ∈ R0+, for some K3 ∈ R+.
..
I(t)→ 0 as t→ +∞ for any given finite I0 if and only if

lim
t→+∞

(( .
α(t) + α2(t)

)
e
∫ t

0 α(τ)dτ
)
= 0. If

(
α+

.
α
)

: R0+ → R0+ is bounded and I(t)→ 0 as t→ +∞

then
..
I(t)→ 0 as t→ +∞ .

Note that α(t) (respectively, α(t) +
.
α(t)) is infinity at t = 0 while it is bounded for t > 0, as it

happens for instance with the α—function proposed in [11], then
.
I(t) (respectively,

..
I(t)) is still bounded

under the conditions of Theorem 1 (v) (respectively, Theorem 1 (vii)) on R+.
Note also that the vanishing infection condition of Theorem 1 typically occurs under convergence

of the solution to the disease-free equilibrium point if the disease reproduction number is less than
one [19,22–24,27,29,30,36]. However, it can happen that the infection oscillates around some stable
equilibrium or that it converges to a nonzero positive constant defining the corresponding component
of the endemic equilibrium steady-state as it is discussed in the next result.

Corollary 1. The following properties hold:

(i) Assume that there exists some C ∈ R+ such that
∫ t

0 α(τ)dτ→ C as t→ +∞ and that α(t),
.
α(t)→ 0

as t→ +∞ . Then, I(t)→ eCI0 ,
.
I(t)→ 0 and

..
I(t)→ 0 as t→ +∞ .

(ii) Assume that
∫ t

0 α(τ)dτ→ C as t→ +∞ and that α : R0+ → R0+ is uniformly continuous. Then,

α(t) → 0 , I(t)→ eCI0 and
.
I(t)→ 0 as t→ +∞ . Assume, in addition, that

.
α : R0+ → R0+ is

uniformly continuous. Then
..
I(t)→ 0 as t→ +∞ .

Proof of Property (i). Follows directly from (1)–(3). On the other hand, since α : R0+ → R0+ is
uniformly continuous and the limit lim

t→+∞

∫ t
0 α(τ)dτ = C exists and it is finite then α(t)→ 0 as t→ +∞

(Barbalat´s Lemma) and I(t)→ eCI0 as t→ +∞ from (3),
.
I : R+ → R0+ is bounded, since being

continuous, it cannot diverge in finite time, and
.
I(t)→ 0 as t→ +∞ from (1). If, furthermore,

.
α : R0+ → R0+ is uniformly continuous and, since lim

t→+∞

∫ t
0

.
α(τ)dτ = lim

t→+∞
α(t) − α(0) = −α(0) then

.
α(t)→ 0 as t→ +∞ (again from Barbalat´s Lemma). Since α(t),

.
α(t)→ 0 as t→ +∞ then

..
I(t)→ 0

as t→ +∞ from (2). �

Let us introduce the following definitions and lemma of usefulness for the proof of the subsequent
theorem [36]:

Definition 1. Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R. Then, t0 is an
undulation point (or pre-inflection point) of f if

..
f (t0) = 0.

Inflection points of the continuous and twice-differentiable f : R→ R are the undulation points of the
function where the curvature changes its sign, that is, points of change of local convexity to local concavity or
vice-versa. They are also the isolated extrema of

.
f : R→ R . A well-known technical definition and a related

result on inflection points follow:

Definition 2. Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R which is an isolated
extremum of f (that is, a local maximum or minimum, and also an undulation point of, f as a result).

Lemma 1. The following properties hold:
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(i) Let f : R→ R be everywhere continuous and twice differentiable at t0 ∈ R. Then, t0 is an inflection point

of f if
..
f (t + ε)

..
f (t− ε) < 0 for some sufficiently small ε ∈ R+.

(ii) Let f : R→ R be everywhere continuous and an odd number k(≥ 3) -times differentiable, within a
neighborhood of t0 ∈ R which is an undulation point of f satisfying f ( j)(t0) = 0 for j = 2, 3, . . . k − 1
and f (k)(t0) , 0. Then, t0 is an inflection point of f .

The subsequent result has a very technical proof leading to the basic result that the zeros at finite
time instants of

.
I(t) and

..
I(t) alternate if I(t) is sufficiently smooth and α(t) is sufficiently smooth. In

order to simplify the result proof, it is assumed, with no loss in generality, that the disease dynamics
(1)–(2) has no equilibrium points such that the zeros under study are isolated.

Theorem 2. Assume that the function α : R0+ → R0+ defined by α(t) = − cln(g(t)/E)
h(t) , where c , E ∈ R+ and

g, h : R0+ → R0+ are everywhere continuous and time-differentiable such that g(0) = 0 with lim
t→0

ln(g(t)/E)
h(t) ≤

−ε for some ε ∈ R0+, and furthermore, α : R0+ → R0+ fulfills the constraints:

α(Di) = 0;
.
α(Li) = −α

2(Li) (4)

h(Li)
.
g(Li) − ln(g(Li)/E)

.
h(Li)g(Li)

g(Li)ln
2(g(Li)/E)

= K > 0; ∀Li ∈ LS ∩
[
0, L

]
(5)

for any given positive real number L, with Di ∈ DS and Li ∈ LS, where DS =
{
D ∈ R+ : α(D) = g(D) = E

}
⊂

R0+ and LS =
{
L ∈ R+ :

.
α(L) + α2(L) = 0

}
⊂ R0+ are assumed to be nonempty and of zero Lebesgue measure.

Then, the following properties hold:

(i) g(Li) = E⇔ h(Li)
.
g(Li) > 0 , equivalently, DS ∩ LS = ∅.

(ii) (a) cardLS = cardDS + ϑ with ϑ = {0, 1}, and (a) if card(DS) = card(LS) ≤ ℵ0 (with ℵ0 denoting the
infinite cardinality of denumerable sets) then Li < Di < Li+1; ∀i ∈ Z0+ for any pairs Di , Di+1 ∈ DS
and Li , Li+1 ∈ LS fulfilling (Di, Di+1) ∩DS = ∅ and (Li, Li+1) ∩ LS = ∅, (b) if 1 ≤ card(LS) =

card(DS) − 1 = ` < ∞ then Li < Di < Li+1 for i ∈ ` − 1. α : R0+ → R0+ is subject to the constraint
c = K,

.
I(Di) =

..
I(Li) = 0; ∀Li ∈ LS ∩ [0, L] and Di > Li.

(iii) α : R0+ → R0+ is subject to
.
I(Di) =

..
I(Li) = 0; ∀Di ∈ DS ∩ [0, L], ∀Li ∈ LS ∩ [0, L] and D1 > L1 for

any I0 > 0.

Proof. First, note that
.
I(D) =

..
I(L) = 0; ∀D ∈ DS, ∀L ∈ LS since α(D) = 0 even if I(D) , 0. On the

other hand, LS is the set of undulation points of I : R0+ → R0+ and it is clear that DS is contained in
the set of relative maximum and minimum points of I(t). The properties (i)–(iii) are now proved:

Proof of Property (i). It is now proved that DS is the set of extreme points of I(t) which is disjoint to
its set of undulation points LS. Assume, on the contrary, that there is some D < DS such that

.
I(D) = 0.

Then, I(D) = 0 since α(D) , 0, and then the disease-free equilibrium point is reached in finite time

contradicting the fact that α(t) = − cln(g(t)/E)
h(t) is only zero at finite time for a discrete set of time instants

satisfying g(t) = E so that
.
I(D) = 0 if and only if D ∈ DS. Then, I(D) =

.
I(D) =

..
I(D) = 0 is a

disease-free equilibrium point which is reached in finite time which contradicts the given hypothesis.
So, it is easy to see that LS and DS are discrete sets of non-negative real time instants which can be
strictly ordered. Note also from (1)–(2) that:

α(Di) = −
cln(g(Di)/E)

h(Di)
= 0; ∀Di ∈ DS (6)

.
α(Li) = −α

2(Li); ∀Li ∈ LS (7)
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If Di ≤ D < +∞ then g(Di) = E since c , 0. Also, α(t) = − cln(g(t)/E)
h(t) and, if Li ∈ LS and since

h(Li) > 0, one has:

α2(Li) = −
.
α(Li) =

d
dt

[
cln(g(t)/E)

h(t)

]
t=Li

= c h(Li)
.
g(Li)/g(Li)−ln(g(Li)/E)

.
h(Li)

h2(Li)
= c2 ln2(g(Li)/E)

h2(Li)

(8)

c =
h(Li)

.
g(Li) − ln(g(Li)/E)

.
h(Li)g(Li)

g(Li)ln
2(g(Li)/E)

> 0 (9)

Now, if there is some Li ∈ LS ∩DS, equivalently, LS ∩DS , ∅, then g(Li) = E⇔ h(Li)
.
g(Li) , 0

from (9) since c , 0 and ln(g(Li)/E) = 0 and, furthermore, one gets from (8) that
.
α(Li) , 0 since

g(Li) = E. But one also has that
.
α(Li) = α(Li) = 0, since

.
α(Li) = −α2(Li); ∀Li ∈ LS from the first

identity of (8). Then, 0 ,
.
α(Li) = 0 is a contradiction so that Li < LS ∩DS. Equivalently, DS ∩ LS = ∅.

Property (i) has been proved. �

Proof of Property (ii). Since
.
α(Li) = −α

2(Li) then
..
α(Li) = −2α(Li)

.
α(Li) so that:

..
I(Li) =

( .
α(Li) + α2(Li)

)
I(Li) = 0

...
I (Li) =

( ..
α(Li) + 2α(Li)

.
α(Li)

)
I(Li) +

( .
α(Li) + α2(Li)

) .
I(Li)

=
( ..
α(Li) − 2α3(Li)

)
I(Li)

Since the zeros of α(t) and those of its first time- derivative do not coincide since DS ∩ LS = ∅
(from Property (i)), it turns out that the two sets of respective zeros alternate if there are not two zeros
of α(t) within any open time interval of two consecutive zeros of

.
α(t) or vice-versa. One proceeds by

contradiction arguments by assuming two cases which are both rebutted.
Case 1: Assume that there are two consecutive zeros of

.
I(t) between two consecutive zeros of

..
I(t),

then satisfying the constraint 0 ≤ Li < Di < Di+1 < Li+1 for some two consecutive time instants Di , Di+1

in DS and two consecutive time instants Li , Li+1 in LS so that α(Di) = α(Di+1) =
..
I(Li) =

..
I(Li+1) = 0.

Assume that I(t) = 0 for some t ∈ (Di, Di+1) then
.
I(t) = α(t)I(t) = 0 so that t ∈ DS and then Di , Di+1

are not consecutive time instants in DS and this case has to be excluded from further reasoning.
Now, assume that I(t) , 0 for all t ∈ (Di, Di+1) and

.
α(t) , 0, otherwise, if

.
α(t) = 0 then t ∈ Ds

and Di , Di+1 are not consecutive time instants in DS. Thus, α(t) = α(Di) +
∫ t

Di

.
α(τ)dτ =

∫ t
Di

.
α(τ)dτ

for all t ∈ (Di, Di+1). Since
.
α(t) , 0 for all t ∈ (Di, Di+1), it has no sign change in (Di, Di+1) so

that lim
t→D−i+1

α(t) , 0 and since α : R0+ → R0+ is continuous then α(Di+1) , 0 which contradicts that

Di+1 ∈ DS. It has been proved that Case 1 is impossible 0 ≤ Li < Di < Di+1 < Li+1 cannot happen.
Case 2: Assume now that there are two consecutive zeros of

..
I(t) between two consecutive

zeros of
.
I(t), that is 0 ≤ Di < Li < Li+1 < Di+1 for some consecutive time instants Di , Di+1 in DS

and some two consecutive time instants Li , Li+1 in LS. Then, α(t) , 0 for all t ∈ (Li, Li+1) since,
otherwise, there exists some t ∈ (Li, Li+1) such that t ∈ DS, and then the previously claimed constraint
0 ≤ Di < Li < Li+1 < Di+1 does not hold, and also

.
α(t) , −α2(t) < 0 for all t ∈ (Li, Li+1) since,

otherwise, there exists some t ∈ (Li, Li+1) such that t ∈ LS and then Li and Li+1 are not two consecutive
time instants in LS as claimed. Also, note that.

.
α(Li) + α2(Li) =

.
α(Li) + α2(Li) = 0 with α(Li) , 0 and α(Li+1) , 0 since Li , Li+1 < DS. But then,

by continuity arguments on
.
α(t) + α2(t), there is a change of sign point t ∈ (Li, Li+1) which zeroes this

function which contradicts
.
α(t) , −α2(t) < 0 for all t ∈ (Li, Li+1). Then, Case 2 is impossible so that

0 ≤ Di < Li < Li+1 < Di+1 cannot happen and Property (ii) has been proved. �

Proof of Property (iii). Assume that, contrarily to the statement, D1 ≤ L1. If L1 = D1 then
.
I(L1) =

..
I(L1)

and the equilibrium point is reached in finite time what is impossible, since I0 > 0, for a non-trivial
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solution of a continuous-time first-order differential equation with continuous-time parameterization.

Then, L1 = D1 is impossible. Now, assume that L1 > D1 and 0 =
.
I(L1) =

.
I(D1) +

∫ D1
L1

..
I(τ)dτ =∫ D1

L1

..
I(τ)dτ with

..
I(L1) = 0 and then it exists some L2 ∈ (L1, D1) such that

..
I(L2) = 0 and L2 ∈ LS. As

a result, there is D1 > L2 > L1 and then there are two consecutive undulation time instants what
contradicts Property (ii). As a result, D1 > L1 as claimed. �

Remark 1. In Theorem 2, note that the sets DS and LS have the following properties:
They are nonempty so that there is at least one D ∈ DS such that α(D) = 0 implying that

.
I(D) = 0 and at

least one L ∈ LS such that
.
α(L) = −α2(L) implying that

..
I(L) = 0. Otherwise, the infection could converge

asymptotically to zero as time goes to infinity but it would not have finite zeros,
They are sets of zero Lebesgue measure so that they are denumerable discrete sets of strictly ordered isolated

real points, for any real numbers,
They fulfill that cardLS = cardDS + ϑ with ϑ = {0, 1} so that they are of either identical finite or infinite

cardinal or the cardinal of LS is finite and exceeds that of DS by one,
If ϑ = 0 then card(DS) = card(LS) ≤ ℵ0, that is, if both sets have infinity cardinal or identical finite one

then any ordered points of LS and DS alternate.

On the other hand, note that:
Equation (4) establishes that DS is the set of zeros of α(t). At those zeros, the first-time derivative

of the infection function is zeroed from (1) without such a function being necessarily zero while on
the other hand, Equation (5) is a nonzero real constant for any finite undulation time instant Li ≤ L of
I : R0+ → R0+ zeroing the second derivative of the infection function according to (2) which holds if
c = K from (5). The fact that (5) is constant follows easily under periodicity conditions of the same or
integer multiple/submultiple periods of g(t) and h(t).

Since α : R0+ → R0+ has no finite zero coincident with a zero of its first time-derivative, by
hypothesis, then g(Li) = E⇔ h(Li)

.
g(Li) , 0 since c , 0 from inspection of (8)–(9). This is equivalent

to DS ∩ LS = ∅, that is, the finite zeros which make zero
.
I(t) and which do not make zero I(t) do not

make zero either
..
I(t). However,

..
I(t) = 0 if I(t) =

.
I(t) = 0 from (2), provided that α : R0+ → R0+ is

twice everywhere continuously differentiable in [0, +∞) but this can only happen as time tends to
infinity for certain structures of g(t) and h(t). Note that the constraint (5) also implies that the auxiliary
functions g, h : R0+ → R0+ used to define the function α : R0+ → R0+ in (1) fulfill the constraint
h(Li)

.
g(Li) , ln(g(Li)/E)

.
h(Li)g(Li); ∀Li ∈ LS.

By examining Definitions 1 and 3 and Lemma 1, it turns out that the set LS of undulation points
of I(t) includes but, maybe non-properly, the set of its inflection points. However, it suffices to
give some further weak conditions on α : R0+ → R0+ , that is, on g, h : R0+ → R0+ to guarantee that
every undulation point of I(t) is also an inflection point. Some such conditions are discussed in the
next corollary.

Corollary 2. The following properties hold:

(i) Assume that:
lim sup
ε→0+

[θ(Li + ε)θ(Li − ε)] < 0; ∀Li ∈ LS

where:
θ(t) = h(t)

.
g(t) − g(t)

.
h(t)ln(g(t)/E); ∀t ∈ R0+

Then, the set LS of undulation points of I(t) is the set of its inflection points.
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(ii) Assume that f , g : R0+ → R0+ are twice continuously differentiable at each undulation point Li ∈ LS.
Then, the sets of undulation points and that of the inflection points of I(t) coincide if

h3(Li)
(
g(Li)

..
g(Li) −

.
g2
(Li)

)
h4(Li)g2(Li)

,
2

h3(Li)

(
ln3 g(Li)

E
+

.
h(Li)ln

g(Li)

E

)
; ∀Li ∈ LS

Proof. Note that
..
I(t) =

(
α2(t) +

.
α(t)

)
I(t), ∀t ∈ R0+ so that

..
I(Li ± ε) =

(
α2(Li ± ε) +

.
α(Li ± ε)

)
I(Li ± ε).

Since Li > 0, g(t)h(t) > 0 if t > 0 and lim
ε→0

I(Li ± ε) = I(Li), since I(t) is continuous, one gets

that lim sup
ε→0+

[..
I(Li + ε)

..
I(Li − ε)

]
< 0 if and only if lim sup

ε→0+
[θ(Li + ε)θ(Li − ε)] < 0. Property (i) has

been proved.
On the other hand, if f , g : R0+ → R0+ are twice continuously differentiable at each undulation

point Li ∈ LS of I(t), then
..
f ,

..
g exist in LS. Then, defining α̂(t) = −c−1α(t) = ln(g(t)/E)

h(t) ; ∀t ∈ R0+ yields:

.
α̂(t) =

h(t)
.
g(t) − g(t)

.
h(t)ln(g(t)/E)

h2(t)g(t)
; ∀t ∈ LS

..
α̂(t) =

h3(t)
(
g(t)

..
g(t) −

.
g2
(t)

)
/g2(t) +

.
h(t)

.
g(t)/g(t) − 2h(t)

.
h(t)ln(g(t)/E)

h4(t)
; ∀t ∈ LS

..
I(t) =

(
α2(t) +

.
α(t)

)
I(t)⇒

...
I (t) = 0 with α2(t) = −

.
α(t) and I(t) > 0; ∀t ∈ LS

...
I (t) =

(
α2(t) +

.
α(t)

) .
I(t) +

(
2α(t)

.
α(t) +

..
α(t)

)
I(t)⇒

...
I (t) =

(
2α(t)

.
α(t) +

..
α(t)

)
I(t) =

( ..
α(t) − 2α3(t)

)
I(t) ; ∀t ∈ LS

Since I(t) > 0; ∀t ∈ R0+ then
...
I (t) , 0; ∀t ∈ LS if and only if

..
α(t) , 2α3(t); ∀t ∈ LS, equivalently, if

and only if
..
α̂(t) , 2α̂3(t); ∀t ∈ LS which is fully equivalent to the condition of Property (ii). The proof

is complete. �

Remark 2. Note that Theorem 2 applies, in particular, to the case when there are equilibrium points with
the initial conditions being distinct from such points. It can be also extended by including the above case by
redefining finite discrete sets of the zeros of

.
I(t) and

..
I(t) DS → DS ∩ [0, L]¸ LS → LS ∩ [0, L] for any given

L ∈ [0, ∞) in the sense that the eventual zeros at finite time of
.
I(t) and

..
I(t) alternate although an equilibrium

points has not still been reached provided that it exists.

Inspired in Theorem 2, some conditions are discussed in the next result which imply that the first
undulation point of the infection evolution function (i.e., the first zero of its second-time derivative)
precedes the first zero of its first time-derivative. It is not required that the infection has necessarily a
disease-free equilibrium point or that it might be oscillatory leading to successive zeros of its time-
derivative along time.

Theorem 3. Assume that the function α(t) = −
cln(g(t)/E)

h(t) , where c , E ∈ R+ and g, h : R0+ → R0+ are
everywhere continuous and time-differentiable and satisfy the constraints:

(1) g(t) < E; ∀t ∈ [0, D), g(D) = E

(2)
.
g(0) <

(
cln2(g(0)/E)

h(0) −
|ln(g(0)/E)|

h(0)
.
h(0)

)
g(0)

(3) g(t) > 0 and h(t) > 0 if t > 0

(4) ln(g(0)/E)
h(0) , 0
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Assume also that I0 > 0. Then, min
(
I(t),

.
I(t)

)
> 0; ∀t ∈ [0, D);

.
I(D) = 0 and there is some L ∈ (0, D)

such that
..
I(t) , 0; ∀t ∈ [0, L) and

..
I(L) = 0.

Proof. Note from the definition of α(t), (1), (2) and the given constraints 1 and 2 that

.
α(0) = −

c
h(0)

 1

h(0)
.
h(0)

∣∣∣∣∣∣ln g(0)
E

∣∣∣∣∣∣+
.
g(0)
g(0)


α(0) > 0, since 0 ≤ g(0) < E, α(D) = 0, since g(D) = E), α2(0) +

.
α(0) > 0, from the condition 2

since α(0) > 0 and since α : R0+ → R0+ is continuous and time-differentiable since g, h : R0+ → R0+

are everywhere continuous and time-differentiable. Note also that, from the given assumptions and
constraints, min

(
I0,

.
I0,

..
I0

)
> 0 since I0 > 0 by hypothesis,

.
I0 = α(0) I0 > 0 and

..
I0 =

(
α2(0) +

.
α(0)

)
I0 > 0.

Furthermore,
.
I(D) = α(D)I(D) = 0. From the constraint 3 and the continuity of g, h : R0+ → R0+ ,

one has that α,
.
α,

..
α : R0+ → R0+ are continuous and bounded on (0,+∞),

.
I(t) > 0; ∀t ∈ [0, D) and

..
I(t) > 0; ∀t ∈ [0, L0) and some L0 ∈ R+. Furthermore since c > 0 and ln(g(0)/E)

h(0) , 0, from the
constraint 4, g(t) < E; ∀t ∈ [0, D), from the constraint 1, and g(t) > 0 and h(t) > 0 if t > 0, from
the constraint 3. Then α(t) > 0; ∀t ∈ [0, D). Since g, h : R0+ → R0+ are continuous and positive
on any bounded interval [0, T) then α(t) is positive and finite on [0, D). It is now proved that
t = D is the first zero of

.
I(t). Assume that this is not the case so that there is some D1 < D such

that
.
I(D1) = 0, with α(D1) , 0, and

.
I(t) > 0; ∀t ∈ [0, D1). Then I(D1) =

.
I(D1) =

.
I(D1) = 0

from (2) and the infection extinguishes in a finite time D1 < D. This leads to a contradiction since

I(D1) = I0 +
∫ D1

0

.
I(τ)dτ > 0 since I0 > 0 and

.
I(t) > 0; ∀t ∈ [0, D1). Therefore, if D1 < D such that

.
I(D1) = 0 then I(D1) > 0. But then α(D1) =

.
I(D1)/I(D1) = 0 from (1) which contradicts that α(t) , 0;

∀t ∈ [0, D). As a result, t = D is the first zero of
.
I(t) and there is no D1 < D such that I(D1) = 0. Since

I,
.
I : R0+ ∩ [0, D]→ R0+ are continuous with

.
I(t) > 0; ∀t ∈ [0, D) and

.
I(D) = 0 and

..
I(t); ∀t ∈ [0, L0)

and some L0 ∈ R+ then there is some L ∈ (0, D) such that
..
I(L) = 0. Assume that this is not the case.

Then, 0 =
.
I(D) =

.
I0 +

∫ D
0

..
I(τ)dτ > 0. Hence, a contradiction arises. Thus, there is some L ∈ (0, D)

such that
..
I(L) = 0. �

Remark 3. Note that, under all the conditions of Theorem 3, α(t) > 0; ∀t ∈ [0, D) and α(D) = 0. Furthermore,
the first zero of

.
I(t) = 0 occurs at t = D, there is no t < D such that I(t) =

.
I(t) = 0 and there is some L < D

such that
..
I(L) = 0.

The following example describes the basic model proposed in [11] under a first-order differential
equation for the infection evolution without any entropy considerations at this stage:

Example 1. The function α(t) = −c ln(t/D)/t, for some D > 0, proposed in [11] satisfies all the conditions of
Theorem 3 with h(t) = g(t) = t and E = D. It satisfies, in addition, that α(0) = +∞. This function satisfies
also the given further conditions of Theorem 2 g(0) = h(0) = 0 with lim

t→0

ln(g(t)/E)
h(t) ≤ −ε.

Note that the condition α(0) > 0 of Theorem 3 avoids that
.
I0 = 0 if I0 , 0 so that t = 0 is a zero of

.
I(t).

It can be argued that the proposed basic model (1) is a very simple time-varying differential
equation of first-order which describes the infective population time-evolution. Note that the use
of appropriate particular structures in the definition of the time-varying coefficient α(t) can take
care of the eventual incorporation of the necessary supplementary environment information to make
such an equation well-posed to practically describe a concrete disease evolution through time. The
incorporation which can be incorporated is the eventual couplings of the infectious subpopulation with
another ones (such as the susceptible, recovered or vaccinated subpopulations and their associated
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dynamics) or the information about the feedback information controls in more elaborated models. The
next section develops some work in this direction.

3. Further Examples of Linking the Basic Model to Some Existing Epidemic Models Incorporating
Other Subpopulations

The infection description via (1) assumes implicitly that it has a first-order dynamics. It has been
argued that α(t) in (1) contains the information about the controls and other coupled subpopulations
influencing the disease evolution through time. It can be of interest to discuss its application to infection
descriptions described by differential equations of orders higher than one which is a very common
situation in disease transmission mathematical models.

It is now seen how a well-known epidemic model can be also discussed under the point of view of
Theorem 3. In the subsequent example, the above characterization, based on the first zero of infection
evolution time-derivative and on the undulation point of the infection evolution, is used for a model
with three subpopulations via an appropriate choice of g(t) and h(t) in the definition of α(t).

Example 2. Consider the following SIR model without demography [30]:

.
S(t) = −βS(t)I(t);

.
I(t) = (βS(t) − γ)I(t);

.
R(t) = γI(t); ∀t ∈ R0+ (10)

where S(t), I(t) and R(t) are, respectively, the susceptible, infectious and recovered (or immune) subpopulations,
under nonzero initial conditions being subject to min(S(0), I(0), R(0)) ≥ 0, where β is the coefficient
transmission rate and γ is the removal or recovery rate (its inverse γ−1 being the average infectious period).
The mathematical study of this model and their variants is not easy as seen in [30,40]. First, note that the
total population N(t) = S(t) + R(t) + I(t) = S0 + R0 + I0; ∀t ∈ R0+ is constant for all time. The basic
reproductive ratio (or reproduction number) is R

∗
= β/γ and, if S0 ≤ R−1

∗
, then

.
I0 ≤ 0 while if S0 > R−1

∗
, it

becomes endemic for all time since
.
I0 > 0. The solution of (10) becomes in closed form:

S(t) = e−β
∫ t

0 I(τ)dτS0; I(t) = e
∫ t

0 (βS(τ)−γ)dτI0; R(t) = S0 + R0 + I0 − S(t) − I(t); ∀t ∈ R0+ (11)

Note that by combining the above equations that:

S(t) = e−βI0
∫ t

0 e
∫ τ
0 (βS(σ)−γ)dσdτS0; I(t) = e

∫ t
0 (βe−β

∫ τ
0 I(σ)dσS0−γ)dτI0 (12)

Note from (11) that S : R0+ → R0+ is non-increasing so that there exists a susceptible equilibrium
subpopulation Se = lim

t→∞
S(t) ≤ S0 for any given non-negative initial conditions. Note also from

(10) that
.

N(t) = 0 and then N(t) = N0; ∀t ∈ R0+ Note that If I0 = 0 then I(t) = 0, S(t) = S0 and
R(t) = R0 = N0 − S0; ∀t ∈ R0+. We examine three cases for I0 > 0:

Case (a) if S0 < R−1
∗

then S(t) ≤ S0 and βS(t) − γ < 0; ∀t ∈ R0+, then I(t)→ 0, S(t)→ Se and
R(t)→ Re = N0 − Se as t→∞ . Since S : R0+ → R0+ is non-increasing, Se ≤ S0 < R−1

∗
. This implies

that lim
t→∞

∫ t
0 (βS(τ) − γ)dτ = −∞ and

.
I(t) = −λ(t)I(t) ≤ −λaI(t), I(t)→ 0 at exponential rate as t→∞

for some λa > 0 from (10) and (11) since I0 − I(t) ≥ λa
∫ t

0 I(τ)dτ so that
∫
∞

0 I(τ)dτ ≤ I0/λa < +∞.

Then, I : R0+ → R0+ is integrable on [0,∞). Thus, C = β
∫
∞

0 I(t)dt < +∞ so that Se = e−β
∫
∞

0 I(t)dtS0 =

e−CS0 > 0 (then there is a nonzero susceptible equilibrium level) and Re = N0 − Se < N0.
Case (b) if S0 = R−1

∗
then S(t)→ Se ≤ S0 = γ/β as t→∞ since S : R0+ → R0+ is non-increasing

and then it converges to Se satisfying 0 ≤ Se ≤ S0. By inspection of the second equation of (11), it also
follows that I(t)→ Ie and R(t)→ Re as t→∞ satisfying Ie ≥ 0 and Re ≥ 0. Assume that Ie > 0 then
Se = 0 from the first equation of (11). But if Se = 0 then Ie = 0 since then I : R0+ → R0+ is strictly
decreasing on [ta, ∞) for some finite ta > 0 from the second equation of (11). Hence, a contradiction to
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Ie > 0 follows implying that Ie = 0 if Se = 0. Now, assume that γ/β > Se > 0. Then, from the second
equation of (11), I(t)→ Ie = 0 as t→∞ . But then Se > 0, from the first equation of (12), since γ/β > Se

if I0 > 0 and then Re = N0 − Se. From the second equation of (12) and, under a similar reasoning as
that of Case a, I : R0+ → R0+ is integrable on [0,∞) and Se > 0. In summary, if S0 = R−1

∗
= γ/β and

I0 > 0 then I(t)→ 0, S(t)→ 0 and R(t)→ N0 = S0 + R0 + I0 as t→∞ in the same way as in Case a
if S0 ≤ R−1

∗
.

Case (c) if S0 > R−1
∗

then
.
I0 > 0 from (10) and S : R0+ → R0+ is increasing on some interval [0, t0].

The fact that I : R0+ → R0+ is strictly increasing on some initial time interval is of interest from the point
of view of hospital management of availability of beds and other sanitary specific means in the event
that the disease might have a relevant number of seriously infected individuals. Since S : R0+ → R0+

is non-increasing then either I(t)→ Ie = S0 + I0 + R0 = N0 , S(t)→ Se = 0 and R(t)→ Re = 0 as
t→∞ or S(t)→ Se ∈

(
0, R−1

∗

]
as t→∞ from (11) since S : R0+ → R0+ is non-increasing. The firs

possibility I(t)→ Ie = N0 is unfeasible since from the first equation of (11) I(t)→∞ as t→∞ .
Then, S(t)→ Se ∈

(
0, R−1

∗

]
as t→∞ . Now, first, assume that Se ∈

(
γ/β, R−1

∗

]
. Then, from the first

equation of (12), S(t)→ 0 as t→∞ . Then, Se = 0 which contradicts that Se > γ/β , As a result,
0 ≤ Se ≤ γ/β . Now, assume that Se = 0. Then, from (11), I(t)→ Ie = 0 and I : R0+ → R0+ being
square-integrable, and following a similar argument as that of Cases a–b, one again concludes that
Se > 0 so that Se ∈ (0, γ/β ] and Re = N0 − Se, as a result. But, since Se ≤ γ/β then Ie = 0 from (11)
since I : R0+ → R0+ is strictly decreasing after some finite time instant t0 and integrable on [0,∞)

and a following again the reasoning of Cases a–b, one concludes that Se > 0. As a result, if S0 > R−1
∗

and I0 > 0, then Ie = 0, Se > 0 and Re = N0 − Se. Thus, the relevant conclusions on the disease- free
equilibrium point which is a disease- free one are similar for the three above cases.

On the other hand, since S : R0+ → R0+ it exists a finite t = D > 0 such that S(D) = R−1
∗

= γ/β

and
.
I(D) = α(D)I(D) = (βS(D) − γ)I(D) = 0, I(D) = e

∫ D
0 (βS(τ)−γ)dτI0 , 0, if I0 , 0 and, furthermore,

..
I(D) =

(
β

.
S(D) − γ

)
I(D) + (βS(D) − γ)

.
I(D)

=
(
β

.
S(D) − γ

)
I(D) = −β2S(D)I2(D) − γI(D)

= −γ
(
β e

∫ D
0 (βS(τ)−γ)dτI0 + 1

)
e
∫ D

0 (βS(τ)−γ)dτI0 < 0

(13)

and also:
..
I0 = −β2S0I2

0 + (βS0 − γ)
.
I0 = I0

[
(βS0 − γ)

2
− β2S0I0

]
(14)

and
..
I0 > 0 under the reasonable assumption that I0 is sufficiently small (the initial numbers of infectious

is usually very small in practice) satisfying I0 <
(βS0−γ)

2

β2S0
. As a result, there is some time instant

L ∈ (0, D) such that
..
I(L) = 0 so that it is an undulation point of I : R0+ → R0+ . As a result, we find

that if the basic reproduction number exceeds unity then the infection curve corresponding to the
endemic solution has a minimum at a larger time instant that the one defining its undulation point.
That situation corresponds to the situation of small initial infection force with reproduction number
greater than one. On the other hand, if

..
I0 ≤ 0, then

.
I0 > 0 does not hold.

Comparing the infectious subpopulation evolution to (1) and the structure of the function in
Theorem 3 yields:

α(t) = βS(t) − γ = −
cln(g(t)/E)

h(t)
(15)

.
α(t) = β

.
S(t) = −c

d
dt

(
ln(g(t)/E)

h(t)

)
(16)

= −β2S(t)I(t) = −
c

h(t)

 1

h(t)
.
h(t)

∣∣∣∣∣∣ln g(t)
E

∣∣∣∣∣∣+
.
g(t)
g(t)

; (17)
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∀t ∈ R0+. If one defines g(t) = t; ∀t ∈ R0+ and h(t) = cln(t/E)
γ−βS(t) ; ∀t ∈ R0+, then h(t) = c|ln(t/E)|

βS(t)−γ ; ∀t ∈ R0+.
It is easy to verify that these functions satisfy the conditions of Theorem 3.

In the case when the reproduction number is less than unity and it is an upper-bound of the
normalized susceptible population, each primary infection generates, in average, less than one
secondary one so that the infection extinguishes asymptotically. According to this particular model,
also the susceptible subpopulation extinguishes asymptotically. See Case a referred to (11). Thus,

the disease-free equilibrium point is
(
S∗d f , I∗d f , R∗d f

)T
= (0 , 0 , N)T. In this case, I(t),

.
I(t),

..
I(t)→ 0 as

t→∞ but there are no finite time instants of minimum and undulation of the infectious curve to the
light of Theorem 3.

However, we can have a practical visualization of the disease removal by defining a design
quadruple (k1, k2, k3, ε) ∈ R4

+ and the following cut associate time instants:

tIi(ki, ε) = min
(
τ ∈ R0+ :

∣∣∣∣∣∣dI(i−1)

dt

∣∣∣∣∣∣ ≤ kiε : t ∈ [τ , +∞)

)
; i = 1, 2, 3 (18)

Note that tI2(k2, ε) and tI3(k3, ε) generalize the roles of the time instants D and L, that is, the finite
minimum infection and undulation time instants, respectively, within prescribed margins when those
time instants do not exist.

Example 3. Consider Case a of Example 2 so that S(t) ≤ S0 < γ/β leading to I(t)→ 0, S(t)→ Se > 0 and
R(t)→ Re = N0 − Se as t→∞ and I(t) > 0,

.
I(t) < 0 and

..
I(t) < 0 are strictly decreasing on [0, +∞). Take

prescribed constants ε ∈ (0, 1) ki ≥ 1 for i = 1, 2, 3. The solution trajectory converges to the disease-free
equilibrium point at exponential rate. Then, one gets by combining (10)–(12) and (18) that:∣∣∣∣∣∣

∫ tI1

0
(γ− βS(τ))dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ tI1

0

(
γ− βe−β

∫ σ
0 I(σ)dσS0

)
dτ

∣∣∣∣∣∣ ≤ lnI0 − lnk1 + |lnε|; ∀t ∈ R0+ (19)

(
γ− βe−β

∫ tI2
0 I(τ)dτS0

)
e−

∫ tI2
0 (γ−βe−β

∫ τ
0 I(σ)dσS0)dτI0 ≤ k2ε; ∀t ∈ R0+ (20)[

β2 S(t)I(t) − (βS(t) − γ)2
]
I(t) ≤ k3ε, ∀t ∈ R0+ (21)

implying that:

tI1 = min
(
t ∈ R0+ : γt− βS0

∫ t

0
e−β

∫ σ
0 I(σ)dσdτ = lnI0 − lnk1 + |lnε|

)
≥

1
γ
(lnI0 − lnk1 + |lnε|) (22)

2min(k2εI0, βS0)e−β
∫ tI2

0 I(τ)dτ

≤ η(tI2) = k2εe
∫ tI2

0 (γ−βS(τ))dτI0 + βe−β
∫ tI2

0 I(τ)dτS0

≤ (k2εI0 + βS0)e
∫ tI2

0 (γ−βS(τ))dτI0

(23)

which leads to:

e
∫ tI2

0 (γ−βS(τ)+βI(τ))dτ
≥

2min(k2εI0, βS0)

(k2εI0+βS0)I0

⇒ tI2 ≥ max
(
t > 0 :

∫ t
0 (γ− βS(τ) + βI(τ))dτ

)
= ln

[
2min(k2εI0, βS0)

(k2εI0+βS0)I0

] (24)

e
∫ tI2

0 (βS(τ)−βI(τ)−γ)dτ
≤

(k2εI0+βS0)I0
2min(k2εI0, βS0)

⇒ tI2 ≤ min
(
t > 0 :

∫ t
0 (βS(τ) − βI(τ) − γ)dτ

)
= ln

[
(k2εI0+βS0)I0

2min(k2εI0, βS0)

] (25)

and:
− k3ε ≤

..
I(t) = (βS(t) − γ)

.
I(t) + β

.
S(t)I(t) =

[
(γ− βS(t))2

− β2S(t)I(t)
]
I(t) ≤ k3ε
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what implies that
∣∣∣∣..I(t)∣∣∣∣ ≤ k3ε; ∀t ∈ [tI3, ∞) such that:

tI3 ≥ max
(
t > 0 :

[
(γ− βS(t))2

− β2S(t)I(t)
]
I(t)

)
≥ −k3ε,

tI3 ≤ min
(
t > 0 :

[
(γ− βS(t))2

− β2S(t)I(t)
]
I(t)

)
≤ k3ε

Example 4. Consider the following SIS model with vaccination and antiviral or antibiotic controls:

.
S(t) = γI(t) − βS(t)I(t) − kVS(t);

.
I(t) = (βS(t) − γ− kT)I(t); ∀t ∈ R0+ (26)

subject to S(0) = S0, I(0) = I0 with min(S0, I0 ) ≥ 0 where the vaccination and treatment feedback controls
on the susceptible and infectious are, respectively, V(t) = kVS(t) and T(t) = kTI(t) with min(kV, kT) ≥ 0.
If it is assumed that the total population N(t) = N0 = S0 + I0; ∀t ∈ R0+ is constant through time then
there is a complementary recovered (or immune) subpopulation present which obeys the differential equation
.
R(t) = kVS(t) + kTI(t) with R(0) = R0 = 0. The solution is:

S(t) = e−
∫ t

0 (βI(τ)+kV)dτS0 + γ
∫ t

0 e−
∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

= e−kVtS0 −
∫ t

0 e−kV(t−τ)(βS(τ) − γ)I(τ)dτ
(27)

I(t) = eβ
∫ t

0 S(τ)dτe−(γ+ kT)tI0 (28)

R(t) =
∫ t

0
(kVS(τ) + kTI(τ))dτ (29)

The following result links the above SIS model with a complementary recovered subpopulation to
the generic one (1) under a minimum number of initial susceptible and sufficiently large number of
initial infectious with initial growing rate.

Theorem 4. Assume that S0 >
γ+kT
β , I0 < 1 + 1

γ (kT + kVS0) and
.
I0 >

β
∣∣∣∣ .
S0

∣∣∣∣I0

βS0−γ−kT
.

Then, the following properties hold:

(i)
.
S0 < 0 and

..
I0 > 0,

(ii) S(t) is strictly decreasing on [0, tSmin] with tSmin = min(t ∈ R0+ : S(t) = γ/β),
(iii) I(t) is strictly increasing on [0, tImax], and Imax = I(tmax) =

max(I(t) : t ∈ [0 , tImax], tImax = min(t ∈ R0+ : S(t) = (γ+ kT)/β)) with tImax ≥ tSmin,
(iv) There is tund < tImax which is an undulation and, furthermore, strict inflection time instant of I(t),

(v) Assume, in addition, that I0 is large enough to satisfy I0 >
(γ+kT)kV

(γ−β(γ+kT))
e−β

∫ tImax
0 S(τ)dτe(γ+ kT)tImax .

Then, the epidemic model (26) can be written in the form (1) on [0, tImax] with the following function
α : [0, tImax]→ R0+ :

α(t) = β

(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t

0
e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT; t ∈ [0, tImax] (30)

which is of the form α(t) = −
cln(g(t)/E)

h(t) with g : [0, tImax]→ [0, E] ; ∀t ∈ [0, tImax] and any given

E ∈ R+ and h(t) = c|ln(g(t)/E)|

β

(
e−

∫ t
0 (βI(τ)+kV )dτS0+γ

∫ t
0 e−

∫ t
τ (βI(σ)+kV )dσI(τ)dτ

)
−γ−kT

; ∀t ∈ [0, tImax].

(vi) The equilibrium points are S∗1 = I∗1 = 0, R∗1 = N0 if kV , 0 and kT ≥ 0, and S∗2 =
γ+kT
β , I∗2 = 0 and

R∗2 = N0 −
γ+kT
β which is only reachable if kV = 0 since, otherwise, I∗2 = − kV

kT

γ+kT
β < 0.
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Proof. Since S0 >
γ+kT
β and I0 < 1 + 1

γ (kT + kVS0) then
.
I0 > 0 and

.
S0 < 0. Also,

..
I0 = β

.
S0I0 +

(βS0 − γ− kT)
.
I0 = (βS0 − γ− kT)

.
I0 − β

∣∣∣∣ .
S0

∣∣∣∣I0 > 0 if
.
I0 >

β
∣∣∣∣ .
S0

∣∣∣∣I0

βS0−γ−kT
. Property (i) has been proved.

Furthermore, S0 >
γ+kT
β ≥

γ
β implies from (27) that S(t) is strictly decreasing on [0, t′] where

t′ = min(t ∈ R0+ : S(t) = γ/β) what proves Property (ii) with tSmin = t′. On the other hand and since
S : R0+ → R0+ is continuous, there exists some t′′ ∈ [0, t′] such that S(t′′) = γ+kT

β with t′′ = t′ if and

only if kT = 0. From (26),
.
I(t′′ ) = 0 and

.
I(t) > 0 for t ∈ [0, t′′) since

.
I0 > 0. On the other hand, one has

from (26) and (28) that:
..
I(t′′) = (βS(t′′) − γ− kT)

.
I(t′′) + β

.
S(t′′)I(t′′)

= β[β(γ− βS(t′′))I(t′′) − kVS(t′′)]I(t′′)

= −
[
β2kTI(t′′) + kV(γ+ kT)

]
I(t′′)

= −
[
β2kTeβ

∫ t
0 S(τ)dτe−(γ+ kT)tI0 + kV(γ+ kT)

]
eβ

∫ t′′

0 S(τ)dτe−(γ+ kT)t′′ I0 < 0

and I(t) has a relative maximum Imax at t = t′′ = tImax which is also the absolute maximum on [0, tmax].
Property (iii) has been proved. Note also that since

..
I(t) is continuous and

..
I0 > 0, there exists some

tund < t′′ such that tund is an undulation point of I(t). Note furthermore that

..
I(tund) = (βS(tund) − γ− kT)

.
I(tund) + β

.
S(tund)I(tund) = 0

From Lemma 1(i),
..
I(tund − ε)

..
I(tund + ε) < 0; ∀ε ∈ B(0, r) and some r ∈ R+ implies that tund is also

an inflection time instant of I(t). The equivalent logic contrapositive proposition establishes that:[
∀r ∈ R+, ∃ ε ∈ [0, r] :

..
I(tund − ε)

..
I(tund + ε) ≥ 0

]
⇒ [tund is not an inflection time instant of I(t)]

Then, if
..
I(tund − ε)

..
I(tund + ε) < 0; ∀ε ∈ B(0, r) and some r ∈ R+ then tund is in fact an inflection time

instant of I(t). Assume that there is some arbitrarily small ε ∈ R+ such that
..
I(tund − ε)

..
I(tund + ε) ≥ 0

Then:
.
I(tund + ε) =

..
I(tund) +

∫ ε
0

..
I(tund + τ)dτ;

.
I(tund − ε) =

..
I(tund) +

∫
−ε

0

..
I(tund + τ)dτ.

Since
..
I(t) is continuous on [tund − ε, tund + ε] and one gets that

.
I(tund + ε) −

.
I(tund − ε) =

∫ ε

0

..
I(tund + τ)dτ−

∫
−ε

0

..
I(tund + τ)dτ

It is known that 0 < εI ≤
.
I(tund) <

.
I0 so that, for some arbitrarily small ε ∈ R+ such that

..
I(tund − ε)

..
I(tund + ε) ≥ 0, there are ε1 ∈ [0, ε] and ε2 ∈ R+ with −ε2 ∈ [−ε, 0] such that the following

joint constraints hold:

(1)
.
I(tund + τ) > 0; ∀τ ∈ [−ε2, ε1] ⊂ [−ε, ε] with

.
I(t) being strictly increasing on [−ε2, ε1].

(2)
∫ ε1

0

..
I(tund + τ)dτ =

∫
−ε2

0

..
I(tund + τ)dτ

Then, one gets from Condition 2 that:

.
I(tund + ε1) −

.
I(tund − ε2) =

∫ ε1

0

..
I(tund + τ)dτ−

∫
−ε2

0

..
I(tund + τ)dτ = 0

so that
.
I(t) is not strictly increasing on [−ε2, ε1], hence a contradiction. As a result, the undulation time

instant tund of I(t) is also a strict inflection time instant of I(t) since
.
I(tund) , 0 since Lemma 1 (ii) holds

and the first zero of
.
I(t) occurs at tImax > tund. Property (iv) has been proved. To prove Property (v),
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note that Equation (30) follows from (26)–(27). Now, we equalize (30) to (1) to get admissible functions
g, h : R0+ → R0+ leading to:

α(t) = β

(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t

0
e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT = −

cln(g(t)/E)
h(t)

(31)

and note that α(0) = βS0 −γ− kT > 0. Note also that α(0) = +∞
h(0) from the use of (31) in (30) implies that

h(0) = 0 irrespective of g(t) while g(t) is chosen arbitrary and continuous time-differentiable subject
to g(0) = 0 and α(tImax) = 0, g(tImax) = E (so that ln(g(tImax)/E) = 0) with h(t) = c/E

βγI(t)−β(βI(t)+kV)S(t)
for t ∈ [0, tImax].

Now, note that h(tImax) is a primary (0/0)—type indetermination which is resolved through L´H
ô pital rule leading to:

h(tImax) =
c/g(tImax)

β
.
S(tImax)

= c/E
βγI(tImax)−β(βI(tImax)+kV)S(tImax)

=
c/(βE)

γI(tImax)−(βI(tImax)+kV)(γ+kT)

Since I(tImax) = eβ
∫ tImax

0 S(τ)dτe−(γ+ kT)tI0 then for sufficiently large I0 such that

I0 >
(γ+ kT)kV

(γ− β(γ+ kT))
e−β

∫ tImax
0 S(τ)dτe(γ+ kT)tImax

then:

h(t) =
c
∣∣∣ln(g(t)/E)

∣∣∣
β
(
e−

∫ t
0 (βI(τ)+kV)dτS0 + γ

∫ t
0 e−

∫ t
τ
(βI(σ)+kV)dσI(τ)dτ

)
− γ− kT

=
cln(g(t)/E)

γ+ kT − β
(
e−kVtS0 −

∫ t
0 e−kV(t−τ)(βS(τ) − γ)I(τ)dτ

)
fulfilling, in particular:

h(tImax) =
c/(βE)

(γ− β(γ+ kT))ItImax − (γ+ kT)kV

=
c/(βE)

(γ− β(γ+ kT))eβ
∫ tImax

0 S(τ)dτe−(γ+ kT)tImax I0 − (γ+ kT)kV

> 0

Property (v) has been proved. Property (vi) is obvious by zeroing (26). �

Example 4 is tested numerically in the sequel with the following data β = 30, γ = 50 years−1,
implying that the average infectious period is Tγ = 365/50 = 7.3 days, kV = 1 and kT = 50. The time
scale of the figures is in a scale of years accordingly with the above numerical values. In Figure 1, the
solution trajectories of all the subpopulation are shown with the constraints of Theorem 4 being fulfilled
by the initial conditions, in particular S0 >

γ+kT
β , I0 = 1− S0 and R0 = 0 so that N0 is normalized to

unity. It is seen that the infectious subpopulation trajectory has a maximum at a finite time and that
the state trajectory solution converges asymptotically to an endemic equilibrium point. In Figure 2, the
state trajectory solution is shown with N0 = 1 when S0 = (γ+ kT)/β which violates the conditions of
Theorem 4 with

.
I0 = 0. In this case, there is no relative maximum of the infectious subpopulation at

finite time. In both situations, it has been observed by extending the overall simulation time that the
susceptible and the infectious subpopulations converge asymptotically to zero while the recovered
subpopulation converges to unity as time tends to infinity. The controls are suppressed in Figure 3
with N0 = 1. In this case, the recovered subpopulation may be deleted from the model since it is
unnecessary while being identically zero. The infectious and susceptible subpopulations are in an
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endemic equilibrium point for all time so that the infection results to be permanent in the sense that it
cannot be asymptotically removed. See Theorem 4(vi) for the case kV= 0. Figure 4 exhibits a trajectory
solution which agrees with Theorem 4 while there is no normalization of the initial conditions to unity.
In this case, the maximum of the infectious subpopulation at a finite time becomes very apparent.
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Figure 3. N0 = 1 and the initial conditions constraints of Theorem 4 hold with no controls used.
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4. Links with Entropy and Maximum Dissipation Mechanism Issues

4.1. Comparison of the Epidemic Model and Reference Model Information Entropies

Since (1) is a scalar equation, a valid solution for the particular model-dependent time-varying
coefficient α(t) = −cln(g(t)/E)/h(t) of Theorem 2 and Theorem 3 is, according to Theorem 1:

I(t) = e−c
∫ t

0 h−1(τ) ln(g(τ)/E)dτI0; t ∈ R0+ (32)

Under the particular constraints E = D, c = (1− ln(L/D))/ln2(L/D) and g(t) = h(t) = t, it is got
in [11] that α(t) =

[
(ln(L/D) − 1)/ln2(L/D)

]
t−1ln(t/D) and (32), namely:

Ip(t) = e(ln(L/D)−1)/ln2(L/D)
∫ t

0 τ
−1ln(τ/D)dτI0; t ∈ R+ (33)

approaches the log-normal distribution:

Ir(t) =
k

√
2πσrt

e
−

(ln t−µr)2

2σ2
r ; t ∈ R+ (34)

for reference values D = Dr and L = Lr of the maximum and inflection reference time instants where
µr = lnDr + σ2

r and σr is given by the principle of extreme entropy production rate, typically σr ≈ 0.408
gives the width of the distribution function for the maximum dissipation rate for the usual definition
of the Shannon entropy. The main reason for the limitation of such a width is that the medical and
social interventions are a dissipation mechanism which controls and limits the disease propagation.
Comparing (33) and (34), one gets that k =

√
2πσ3

r I0 after solving the indetermination 0/0 at t = 0 via
L´ Hôpital rule leading to the “infection reference evolution” Ir(t) = Ip(t), that is by equalizing (23)
and (24), under the above set of particular constraints, where:

Ir(t) = t−1σ2
r e
−

(lnt−lnDr−σ2
r )

2

2σ2
r I0; t ∈ R+ (35)

Now, equalize I(t) = Ir(t) + Ĩ(t); ∀t ∈ R+ for some perturbation function Ĩ : R+ → R0+ resulting
to be from (32) and (35) for I0 > 0:

Ĩ(t) =

e−c
∫ t

0 h−1(τ) ln(g(τ)/E)dτ
− t−1σ2

r e
−

(lnt−lnDr−σ2
r )

2

2σ2
r

I0; t ∈ R+ (36)

The Shannon entropy of the infection SI(η) results to be given by the following Riemann- Stieljes
integral which quantifies the entropy error S̃I(η) of that associated with any given model related to the
entropy of the “infection reference evolution” given by the log- normal function SIr(η) = SIr(η, σr) for
the given reference width value σr =

√
1/2η:

SI(η) = −
∫
∞

0 t1−ηI(t)ln
(
t1−ηI(t)

)
dtη

= −
∫
∞

0 t1−ηI(t)((1− η)lnt + lnI(t))dtη

= −
∫
∞

0 t1−η
(
Ir(t) + Ĩ(t)

)(
(1− η)lnt + ln

(
Ir(t)

(
1 + I−1

r (t)̃I(t)
)))

dtη

= −
∫
∞

0 t1−η
(
Ir(t) + Ĩ(t)

)(
(1− η)lnt + lnIr(t) + ln

(
1 + I−1

r (t)̃I(t)
))

dtη

= SIr(η) −
∫
∞

0 t1−ηIr(t)ln
(
1 + I−1

r (t)̃I(t)
)
dtη −

∫
∞

0 t1−η̃I(t)lnI(t)dtη − (1− η)
∫
∞

0 t1−η̃I(t)lntdtη

= SIr(η) −
∫
∞

0 t1−ηIr(t)ln
(
1 + I−1

r (t)̃I(t)
)
dtη − (1− η)

∫
∞

0 t1−η̃I(t)lntdtη

+
∫
∞

0 t1−ηIr(t)
(
1− I−1

r (t)I(t)
)
lnI(t)dtη

= SIr(η) + S̃I(σ); t ∈ R+

(37)
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after using I(t) = Ir(t)
(
1 + I−1

r (t)̃I(t)
)

and its equivalent expression Ĩ(t) = −Ir(t)
(
1− I−1

r (t)I(t)
)
, where

the reference entropy based on the identification of the log-normal function (34)with the solution of (1),
that is, (33), yields for σr =

√
1/2η:

SIr( η) = −
∫
∞

0 t1−ηIr(t)ln
(
t1−ηIr(t)

)
dtη

= η
(
ln

(√
π
η

)
+ η

(
lnDr +

1
2η

)
+ 1

2

) (38)

after converting the Riemann-Stieljes integral (39) in a Riemann integral via differentiation of dtη by
using (35). Note that it is assumed that both current and reference entropies are evaluated for the same
parameter η which is typically chosen as η = 3. At the same time, it is assumed that the maximum
dissipation rate proportional to the maximum rate of entropy production is governed by the width of
the distribution function σ. So the current model can potentially have a value σ , σr. See [11] for the
normalized case obtained for I0 = 1, and, also one gets the following entropy error:

S̃I(η) = −
∫
∞

0 t1−η
[
ln

(
(I(t)/Ir(t))

Ir(t)
)
+ ln

(
I(t)I(t)−Ir(t)

)]
dtη − (1− η)

∫
∞

0 t1−η̃I(t)lntdtη

= −
∫
∞

0 t1−η
[
ln

(
(I(t)/Ir(t))

Ir(t)
(
I(t)I(t)−Ir(t)

))]
dtη + (1− η)

∫
∞

0 t1−ηIr(t)
(
1− I−1

r (t)I(t)
)
lntdtη

= −η
∫
∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
dt + η(η− 1)

∫
∞

0 ln
(
tIr(t)−I(t)

)
dt

= −η
∫
∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt; t ∈ R+

(39)

It turns out obvious that the integrand of (39) is identically zero if Ĩ(t) ≡ 0, so that I(t) ≡ Ir(t),
leading to S̃I(η) ≡ 0. The expression (37), subject to (38)–(39), parameterizes the incremental entropy
with the same parameter η which parameterizes the reference entropy SIr( ηr). Now, define the error:

δ(t) =
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1; t ∈ R0+ (40)

so that S̃I(η) ≡ 0 if δ(t) ≡ 0 and, expanding ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
via the Newton- Mercator series for the

logarithm, leads to:

ln

 I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

 = ln(1 + δ(t)) = δ(t) +
∞∑

n=2

(−1)n+1

n
δn(t); t ∈ R0+ (41)

and such a series converges to ln(1 + δ(t)) for all t ∈ R0+ provided that δ(t) ∈ (−1, 1], equivalently,
Ĩ(t) ∈ (−Ir(t), Ir(t)]; ∀t ∈ R0+; ∀t ∈ R0+. Thus, the following description in linear and higher-order
additive terms of the entropy error follows from (40)–(41) into (39):

S̃I(η) = S̃IL(η) +
˜̃SI(η); t ∈ R0+ (42)

where:

S̃IL(η) = −η

∫
∞

0

 I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

dt; t ∈ R0+ (43)

˜̃SI(η) = −η

 ∞∑
n=2

(−1)n+1

n

 I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

n

dt

; t ∈ R0+ (44)

The subsequent results hold related to the case when the error between the infectious functions of
the model and the reference one associated to the log-normal function converges asymptotically to
zero as time tends to infinity. The first result, stated separately by convenience concerned its proof,
discusses the simplest case for η = 1.
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Proposition 1. Assume that η = 1 and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Ir(τ)

)
dτ

∣∣∣∣∣ < +∞.

then, S̃I( 1) < +∞ for all t ∈ R0+ and lim
t→+∞

(I(t) − Ir(t)) = 0.

Proof. Note from (39) that S̃I(1) =
∫
∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)

)
dt < +∞. Since the function I(t)I(t)

Ir(t)
Ir(t)

is uniformly

continuous on R0+ and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Ir(τ)

)
dτ

∣∣∣∣∣ < +∞ then ln I(t)I(t)

Ir(t)
Ir(t)
→ 0 as t→ +∞ from Barbalat´s

lemma and then I(t)I(t)

Ir(t)
Ir(t)
→ 1 as t→ +∞ . It is clear that a limit solution which satisfies this constraint

is lim
t→+∞

(I(t) − Ir(t)) = 0. It is now proved that no alternative limiting constraint on the pair (I(t), Ir(t))

as t→ +∞ is compatible with lim
t→+∞

I(t)I(t)

Ir(t)
Ir(t)

= 1. Assume that lim inf
t→+∞

∣∣∣ I(t) − Ir(t)
∣∣∣ > 0 It can happen that:

(a) lim inf
t→+∞

(I(t) − Ir(t)) > 0. Then, lim inf
t→+∞

ln I(t)I(t)

Ir(t)
Ir(t)

= lim inf
t→+∞

(I(t)lnI(t) − Ir(t)lnIr(t))>

lim inf
t→+∞

(Ir(t)lnI(t) − Ir(t)lnIr(t)) > lim inf
t→+∞

(Ir(t)lnIr(t) − Ir(t)lnIr(t)) = 0 so that lim inf
t→+∞

ln I(t)I(t)

Ir(t)
Ir(t)

> 0.

Hence, a contradiction to Barbalat´s lemma; or

(b) lim inf
t→+∞

(Ir(t) − I(t)) > 0. Under a similar reasoning to that of a), one gets that lim inf
t→+∞

ln Ir(t)
Ir(t)

I(t)I(t) > 0.

Again, a contradiction to Barbalat´s lemma.

The second result discusses the simplest case for η , 1. It is seen that the basic limit result
lim

t→+∞
(I(t) − Ir(t)) = 0 of Proposition 1 is still kept under the reasonable assumption that the infection

and reference infection functions are bounded. �

Proposition 2. Assume that η , 1, I, Ir : R0+ → R0+ are bounded and lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(τ)I(τ)

Ir(τ)
Irτt(η−1)(Ir(ς)−I(τ))

)
dτ

∣∣∣∣∣ <
+∞.

Then, S̃I( η) < +∞ for all t ∈ R0+ and lim
t→+∞

(I(t) − Ir(t)) = 0.

Proof. Note that S̃I(1) < +∞ and that, from the uniform continuity of I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

everywhere in R0+, the boundedness of its integral on [0,∞) and Barbalat´s lemma, it follows

that I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

→ 1 as t→ +∞ what implies that:

lim
t→+∞

(I(t)lnI(t) − Ir(t)lnIr(t) + (1− η)(Ir(t) − I(t)) ln t) = 0

If η > 1 and lnt→∞ as t→∞ then there exists some strictly increasing real sequence {ti}
∞

i=0,
such that lim

k→∞

∣∣∣(1− η)(Ir((tk)) − I((tk))) ln tk
∣∣∣ = ∞ with tk ∈ {ti}

∞

i=0 if lim
t→+∞

(I(t) − Ir(t)) , 0. But this

can hold only if lim
k→+∞

∣∣∣ I(tk)lnI(tk) − Ir(tk)lnIr(tk)
∣∣∣ = +∞. But, since Ir : R0+ → R0+ is bounded for all

time, this implies that I(tk)→ +∞ as tk
(
∈ {ti}

∞

i=0

)
→ +∞ and I : R0+ → R0+ is unbounded. But then

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk) + (η− 1)(I(tk) − Ir(tk)) ln tk) = ∞+∞ = ∞

and a contradiction follows to the above limit to be zero. As a result, lim
t→+∞

(I(t) − Ir(t)) = 0 if η > 1.

Now, assume that η < 1. Since lim
k→∞

∣∣∣(1− η)(Ir(tk) − I(tk)) ln tk
∣∣∣ = ∞ for tk

(
∈ {ti}

∞

i=0

)
→ +∞ and

some strictly increasing real sequence {ti}
∞

i=0, provided that lim
t→+∞

(I(t) − Ir(t)) , 0, then I(tk)→ +∞ as

tk
(
∈ {ti}

∞

i=0

)
→ +∞ since Ir : R0+ → R0+ is bounded. Since I : R0+ → R0+ is unbounded, because it

has a divergent subsequence
{
I(tk)

}∞
k=0 and it is a solution of a unstable time-invariant linear differential
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system, it is of positive exponential order ς0 > 0 and there exists a real constant ς < ς0 such that
I(tk) ≥ eςtk ; ∀tk ∈ {ti}

∞

i=0 and I(tk)/lntk
(
≥ eςtk /lntk

)
→∞ as tk

(
∈ {ti}

∞

i=0

)
→∞ and, furthermore,

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk)) = (1− η) lim
k→+∞

(I(tk) − Ir(tk)) ln tk = ∞

but the expression below is an infinity limit (and not a∞−∞ indetermination since I(tk)/lntk →∞ ):

lim
k→+∞

(I(tk)lnI(tk) − Ir(tk)lnIr(tk) − (1− η)(I(tk) − Ir(tk)) ln tk) = ∞

which contradicts:

lim
t→+∞

(I(t)lnI(t) − Ir(t)lnIr(t) + (1− η)(Ir(t) − I(t)) ln t) = 0

As a result, lim
t→+∞

(I(t) − Ir(t)) = 0 if η , 1.

It is now briefly discussed the fact that the boundedness hypothesis of Proposition 2 is not
very restrictive for some of the given examples, like for instance, Examples 2,3, where the infectious
subpopulation converges asymptotically to zero. For such a purpose, note from (35) that Ir(t)→ 0
exponentially fast as t→∞ . In example 2, I(t)→ 0 exponentially as t→∞ so their difference function
also converges to zero exponentially as t→∞ . The integral boundedness invoked in the assumption

of Proposition 2 is of the form F =
∣∣∣ ∫ ∞

0 ln x(t)dt
∣∣∣ < +∞, where x(t) = I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Irt−I(t))

is everywhere

differentiable with respect to time. In order to convert the elevant Riemann-Stieljes integral into a
standard Riemann one, take dx =

.
x(t)dt and, later on, perform the change of variable x→ u defined

by u = lnx, du = dx/x to yield:

F =

∣∣∣∣∣∣
∫ 1

x0

ln x
.
x

dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

x0

ln x
x

x
.
x

dx

∣∣∣∣∣∣ ≤
(

sup
0≤t≤+∞

∣∣∣∣∣∣x(t).
x(t)

∣∣∣∣∣∣
)∣∣∣∣∣∣

∫ 1

x0

ln x
x

dx

∣∣∣∣∣∣
= M(η)

∣∣∣∣∣∣
∫ 0

lnx0

udu

∣∣∣∣∣∣ = M(η)
lnx2

0

2

where x(0) = x0 and M(η) = sup
0≤t≤+∞

∣∣∣∣ x(t)
.
x(t)

∣∣∣∣ ≤ +∞ for the given constant η. Note that M(η) < +∞ if and

only if the set of zeros of
.
x(t) at any finite time instant is empty, that is, if and only if Zxdot(η) = ∅,

where Zxdot(η) =
{
t ≥ 0 :

.
x(t) = 0

}
= ∅ (equivalently, M(η) = +∞ if and only if Zxdot(η) , ∅.

Rewriting x(t) =
y(t)

tη−1z(t)
it follows that

.
x(t) = 0 for any t ≥ 0 if and only the following constraint

holds t =
(η−1)z(t)y(t)

z(t)
.
y(t)−y(t)

.
z(t)

. Therefore, Zxdot(η) =
{
t ≥ 0 : t = (η−1)z(t)y(t)

z(t)
.
y(t)−y(t)

.
z(t)

}
, ∅ is an event of zero

probability. Thus, the boundedness hypothesis of Proposition 2 happens almost surely in the event
that the infectious subpopulation converges asymptotically to zero as time tends to infinity. �

Propositions 1 and 2 yield the direct joint result independently of the value of η:

Proposition 3. Assume that η ∈ R0+, I, Ir : R0+ → R0+ are bounded and

lim
t→+∞

∣∣∣∣∣∫ t
0 ln

(
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt

∣∣∣∣∣ < +∞.

Then, S̃I( η) < +∞ for all t ∈ R0+ and lim
t→+∞

(I(t) − Ir(t)) = 0.

Concerning Proposition 3, note that the boundedness of S̃I( η) does not guarantee that the linear
part and the remaining part of higher- order terms in the decomposition of (42), subject to (43) and (44),
are both finite. It could “a priori” happen that they both tend to infinity with opposite signs. But if any
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of them is bounded, the other one should be bounded as well according to Proposition 3. Fortunately,
this does not happen under weak extra assumptions. In particular, the following result holds:

Proposition 4. Assume that η ∈ R0+, I, Ir : R0+ → R0+ are bounded, and∫
∞

0
ln

 I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

− 1

dt < +∞.

Then, S̃IL(η) < +∞; t ∈ R0+.

If, in addition,
∫
∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

dt
)
< +∞ then

∣∣∣∣∣̃S̃I(η)

∣∣∣∣∣ < +∞ and S̃I(η) < +∞ for all t ∈ R0+

and lim
t→+∞

(I(t) − Ir(t)) = 0.

Proof. It is direct to see that S̃IL(η) < +∞. Also, and again from Barbalat´s lemma,
I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

→ 1 as t→ +∞ . Thus, from Proposition 3, lim
t→+∞

(I(t) − Ir(t)) = 0. If,

furthermore,
∫
∞

0 ln
(

I(t)I(t)

Ir(t)
Ir(t)t(η−1)(Ir(t)−I(t))

)
dt < +∞ then, again from Proposition 3, S̃I(η) < +∞ and

−∞ < −
∣∣∣∣S̃(η) − S̃IL(η)

∣∣∣∣ ≤ ˜̃SI(η) ≤
∣∣∣∣S̃(η) − S̃IL(η)

∣∣∣∣ < +∞. �

Note that the above results agree with the asymptotic results of Examples 1–4, where I(t)→ 0
as t→∞ , and with Theorem 1, since the reference Ir(t)→ 0 , jointly implying (I(t) − Ir(t))→ 0 as
t→∞ .

Remark 4. The rationale behind the definition of a time-varying coefficient in (1) is to reduce the higher-order
epidemic model with two or more states to a single-order differential equation based on the assumption that the
log-normal distribution is a sufficiently accurate model for the infectious evolution. It is apparent that the profile
of the log-normal distribution remembers the behavior of the strong infections in their blowing–up evolution phase
along time. However, it is obvious that the epidemic models have the concourse of several coupled subpopulations
so that it the model is reduced to a first-order dynamics the influence of the remaining dynamics should be
accounted for through a time-varying parameterization and dynamics uncertainty in (1) since the model order is
reduced to unity. The accuracy of the modeling procedure is evaluated by means of the entropy through (37).
Hence if the actual infectious population curve is close to the reference one, then we have SI(η) = SIr(η) which
generates the dissipation rate of the model. On the other hand, if the current system differs from the reference
model, then the entropy becomes corrected with the additional term S̃I(η). Therefore, the contributing terms in
(37) provide an estimation of the modeling uncertainty based on the assumed log- normal reference distribution.
As a result, the best approximation of the current model to the reference one is that which minimizes the error
entropy S̃I(η), i.e., the one which reduces as much as possible the uncertainty introduced by the approximation.

Remark 5. Note that the entropy of the infection I(t) for η = 1 is defined as SI(1) = −
∫
∞

0 I(τ)lnI(τ)dτ
The entropy of the truncated function It(τ) = I(τ) for τ ∈ [0, t] and It(τ) = 0 for τ < [0, t] is
SIt(1) = −

∫
∞

0 I
t
(τ)lnIt(τ)dτ = −

∫ t
0 I(τ)lnI(τ)dτ. Note also that

.
SIt(1) = −I(t)lnI(t) and

..
SIt(1) =

−
.
I(t)(1 + lnI(t)) = 0 if t = D. That is, the inflection point of the truncated entropy occurs at the relative

extreme values of I(t). In particular, if the infection is in its first expanding phase, this occurs at its maximum
t = D.
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4.2. Estimation of Errors of the Distribution Widths between the Log-Normal Reference and Current Model
Information Entropies

One gets from (38) for the usual reference entropy definition based on the log-normal distribution
of width σr =

1√
2η

, [11,33,37], that:

SIr(σr, Dr, η) = η
(
ln

(√
2πσr

)
+ η

(
lnDr + σ2

r

)
+

1
2

)
(45)

and the particular value:

σr = σr(η) = arg
(
r ∈ R0+ :

d2S(σr, Dr, η)
dr2 = 0

)
(46)

is the width distribution maximum value which makes the reference entropy to cease to increase while
giving the maximum dissipation rate which leads to:

SIr


√

1
2η

, Dr, η

 = η

(
ln

√
π
η
+ η

(
lnDr + σ2

r

)
+

1
2

)
= arg

(
SIr(σr, η) :

d2S(σr, η)

dσ2
r

= 0
)

(47)

Note that the above reference description is easily associated to an epidemic model given by
a first-order differential equation involving only the infection evolution. Note also, in particular,
that the infection curve solution is of exponential order as it is the log-normal function. Such an
order is negative if the disease-free equilibrium point is globally asymptotically stable (that is, the
reproduction number is less than one) so that the infection converges exponentially to zero. In other
words, the curves (43) and (44) can be reasonably identified with each other as it has been made in the
above subsection by considering the influence of the initial conditions. In more sophisticated models
involving the concourse of more subpopulations (say susceptible, immune, etc.), like those discussed
in the above section, the differential equation is of higher-order than one so that the α(t) -function
describing the time evolution of I(t) depends on the remaining subpopulations. This translates into
the following facts:

(1) Fact 1: It is known that, for η = 3, σr =
√

1
6 ≈ 0.408; Dr

Lr
= 1.649; I(Dr)

I(Lr)
=

f (Dr)

f (Lr)
= 2.120, [11].

(2) Fact 2: A modification of the relevant time instants D and L of maximum infection and previous
inflection point with respect to Dr and Lr, and the corresponding entropies as it has been discussed
analytically in Section 4.1. Those parameters depend on each particular model. This also will
translate, as a result, into a change of the distribution width σ related to the reference width σr for
the maximum dissipation concerns.

(3) Fact 3: Although the above reference values σr and ratio Dr/Lr are independent on I0, since they
are got from the log-normal distribution function, the current ones are, in general, dependent on
I0. The entropy of the current given multi-subpopulation model is given explicitly by (37), subject
to (38)–(39). The time instants D and L of the respective maximum and inflection infection time
instants and their values I(D) and I(L) are calculated from the first zeros of the curves

.
I(t) and

..
I(t), respectively which also lead directly to their corresponding rates.

(4) Fact 4: The entropy of the current model might be interpreted in terms of the maximum dissipation
rate by assuming a description via a log-normal distribution. However, it is easy to verify that
the log-normal function is zeroed as its argument is either zero or +∞, although its profile is
close, but not identical, to the solution of a first-order differential equation describing a decaying
exponential infection evolution towards a disease- free equilibrium point. For this reason, and
having in mind the comparison of the solution of models with more than one subpopulation (with
associated differential system of order larger than one) to the log-normal distribution f (t) which
is zero at zero and at infinity and which satisfies

∫
∞

0 f (t)d(t) = 1, we first normalize the infectious
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subpopulation of the current model in order to get a comparable entropy to the reference one
associated with the log-normal function, that is, we define:

In(t) =
I(t)∫
∞

0 I(τ)dτ
; SIn(η) = −

∫
∞

0
In(τ)ln

(
In(τ)/tη−1

)
dτ (48)

4.3. Some Numerical Tests on Reference and Current Model Entropies

Now Example 2 and Example 4 are compared to the infection study of [11], by introducing the
appropriate tools of normalized infection entropy (48) associated with the maximum dissipation rate
for the choice η = 1. Recall the basic notation Dr, Lr, D and L being the first time instants such that
.
I(Dr) = 0,

..
I(Lr) = 0,

.
I(D) = 0,

..
I(L) = 0 (Examples 2 and 4). One gets from (45) for η = 1 and,

correspondingly, σr =
√

1/2 that the parameterized reference entropy is:

SIr


√

1
2

, Dr, 1

 = (
ln
√
π+ lnDr + 1

)
(49)

and one gets for Example 2 that its associated normalized entropy for η = 1 being un-parameterized in
(D, σ) becomes from (48):

SIn(1) = −
∫
∞

0
In(t)lnIn(t)dt (50)

Numerical experimentation with Example 2: Note that D is the first time instant such that
.
I(D) = 0

and I(D) is a relative maximum, which in practice, gives the maximum expected infectious numbers.
Also, L is the first time instant such that

..
I(L) = 0. Note also that the basic model, of response being

close to a log- normal function, has only an infectious subpopulation while the examples of Section 3
have more subpopulations integrated in the models. Therefore, the reasonable condition that the initial
conditions of the infectious subpopulation are the one percent of the total population, we consider a
total population of N0 = S0 + I0 + R0 = 1 for Example 2 in order to get a feasible comparison.

Thus, we perform several alternative experiments as follows:

(a) We get the values of the time instants D and L and the corresponding infection numbers I(D)

and I(L), from the solution trajectory of Example 2 and its first two-time derivatives trajectories
through time, as well as the normalized entropy SIn(1) from (50). Later on, by equalizing (50) to
(49), one then gets the value of Drm which specifies the time instant given a maximum infectious
subpopulation with a maximum dissipation rate in a log normal distribution. This equalization
yields:

Drm = eSIn (1)−1/
√
π (51)

(b) We equalize again (49) by fixing Dr = D in (50). Then, we get the necessary value σrm for such an
equality to hold.

(c) We define the variance with distribution function In(t) and log- normal distribution resulting to
be:

var(ω) =
∫
∞

0
ω(t)

(
t−

∫
∞

0
ω(t)tdt

)2

dt (52)

where ω(t) = In(t) or ω(t) = x(t, Dr, σr), the log-normal distribution. Then, we obtain the
necessary σrmv = σrmv(var(In), D) got from

var(In) = var(x(Dr = D, σrmv)) (53)

One observes that, in general, σrmv , σr = 1
√

2
which ensures that the variance of log- normal

distribution is equal to var(In) for such a value of σrmv. Some numerical data on Example 2 are now
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compared with the log-normal distribution function. The model parameters are β = 13,065 and
γ = 50.1 year−1 what means that the average infectious period is Tγ= 1/γ = 365/50.1 = 7.29 days. The
initial infectious subpopulation is the one percent of the normalized total one N0 = 1. For those
initialization, the quotient S0/I0 (percentage of initial susceptible subpopulation versus recovered
subpopulation) is used to plot Figures 5–8 whose time scale are in years. Figure 5 displays the time
instants of maximum infection and inflection point versus different values of S0/R0. The values of
Drm from (51) is also plotted. The corresponding infectious subpopulations are displayed in Figure 6.
Figure 7 gives the entropies of (50) and (49). On the other hand, Figure 8 displays σrm, σrmv and
the variance of the normalized infectious In(t) of (52). It is basically concluded that for the model
of example 2 which has three subpopulations, the results are distinct from to those obtained from
the log-normal distribution which we can recall that behave closely to the solution of a first-order
differential equation involving the infectious only for initial infection being close to zero and small
susceptible amounts. The above discrepancy increases as the quotient S0/I0 increases. The reason
of the approximation discrepancy is that the couplings of the infectious subpopulations with the
remaining ones becomes increasingly relevant to the transient responses evolution as the proportion of
susceptible to infectious increases.
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Numerical experimentation with Example 4: The initial values satisfy a normalization constraint
N0 = S0 + R0 = 1 with subpopulations S0 = 0.99, io = 0.01 (that, is the initial infectious subpopulation
is 1% of the total one) and R0 = 0 since the recovered populations is compensatory in the model in
order to take into account the effects of the intervention controls. The parameters β and γ are fixed
as in Example 2. In particular, Figures 9 and 10 show the maximum infection and its previous value
at the inflection time instant and the corresponding time instants without vaccination and with a
vaccination effort rate of kT = 290 for different values of the vaccination control gain. It is basically seen
that the maximum and inflection amounts decrease as the treatment control gain gives a skip from
zero to an important effort as that, in parallel, the above values also decrease as the vaccination control
gain increases. Figures 10 and 11 describe parallel experiments where the roles of the vaccination
and treatment control gains are reversed with respect to the data of Figures 9 and 10. The obtained
conclusions are similar. The time instants of maximum infection and the inflection value are reached
without and with vaccination control as the treatment control effort increases for Example 4 are plotted
in Figure 12. The corresponding entropies for those to experiments compared to the reference entropy
are displayed in Figures 13 and 14. Note that the entropies (48) and (50) reach negative values because
of the normalization of the infection by the total infection integral contribution (48) used to evaluate the
normalized entropy (50). Note that the vaccination control does not affect to the entropy as significantly
as the treatment control gains since it influences less significantly to the model dynamics.
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5. Conclusions

This paper has investigated the extensions of a first-order differential system describing the
infection propagation through time to epidemic models integrating more than one subpopulation. The
main involved tool has been the consideration of the coupling of inter-populations dynamics and the
control intervention information through the structure of the time-varying coefficient which drives the
basic differential equation model of first-order. The control of the infection along its transient to fight
more efficiently against a potential initial exploding transmission from a high initial growth rate is
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considered relevant. Special attention has been paid throughout the manuscript to the discussion of the
profiles of the transients of the infection curve in terms of the time instants of its first relative maximum
towards its previous inflection time instant, so the study is mainly focused on the transient behavior
characterization rather than on the steady-state equilibrium points. The time instants leading to the
maximum infection and inflection numbers have been investigated via the Shannon´s information
entropy for the maximum dissipation rate linked to a previous background study for a first-order
differential equation describing the infection propagation. Since it is relevant to know the time instants
of maximum infection and inflection as well as its numbers in order to monitor the availability of
hospitalization resources, some examples related to existing epidemic models integrated by more than a
subpopulation have been studied. The obtained results have been compared, both via theoretical work
and also by numerical experimentation, to the background results obtained from a reference model, just
involving a single infectious population, which is based on a description via a log-normal distribution
which has a close profile to the solution response of a first-order differential equation. In those examples,
special attention is paid to the comparisons of the maximum infection and inflection time dates for
different values of initial conditions and to the entropy discrepancies related to the reference one. It
can be concluded that the influence of the couplings of the dynamics of other subpopulations in the
model to the infectious one is relevant to the infection evolution, especially, in the cases when the initial
amounts of the susceptible are significantly large compared to the initial amounts of the infectious.
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