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Abstract: Paroxysmal atrial fibrillation (Paro. AF) is challenging to identify at the right moment.
This disease is often undiagnosed using currently existing methods. Nonlinear analysis is gaining
importance due to its capability to provide more insight into complex heart dynamics. The aim
of this study is to use several recently developed nonlinear techniques to discriminate persistent
AF (Pers. AF) from normal sinus rhythm (NSR), and more importantly, Paro. AF from NSR, using
short-term single-lead electrocardiogram (ECG) signals. Specifically, we adapted and modified the
time-delayed embedding method to minimize incorrect embedding parameter selection and further
support to reconstruct proper phase plots of NSR and AF heart dynamics, from MIT-BIH databases.
We also examine information-based methods, such as multiscale entropy (MSE) and kurtosis (Kt) for
the same purposes. Our results demonstrate that embedding parameter time delay (τ), as well as
MSE and Kt values can be successfully used to discriminate between Pers. AF and NSR. Moreover,
we demonstrate that τ and Kt can successfully discriminate Paro. AF from NSR. Our results suggest
that nonlinear time-delayed embedding method and information-based methods provide robust
discriminating features to distinguish both Pers. AF and Paro. AF from NSR, thus offering effective
treatment before suffering chaotic Pers. AF.

Keywords: paroxysmal AF discrimination; nonlinear dynamic method; time-delayed embedding;
multiscale entropy; kurtosis

1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and an estimated 2.7–6.1 million
people in the United States suffer from AF [1]. AF by itself, is not fatal, but it increases the risk of other
fatal cardiac conditions like heart failure and stroke, thus leading to sudden cardiac death [2].

Accurate detection of AF using electrocardiogram (ECG) is challenging. In general, AF is
a progressive disease that can be categorized as paroxysmal (Paro. AF), persistent (Pers. AF),
and long-lasting AF. Paro. AF is an early stage of the disease with intermittent spontaneously
terminated episodes of AF, and Pers. AF and long-lasting AF are characterized by constant presence of
AF episodes in the ECG signals. As mentioned in guidelines for the management of AF [3], proper
management and treatments should be started no later than the Paro. AF stage. However, this is
especially difficult to do because heart rhythms in patients with Paro. AF switches irregularly between
normal and abnormal states. Moreover, many previous studies investigating AF detection have not
clearly separated between these different types of AF due to the lack of separate opensource Pers. AF
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and Paro. AF datasets, and only some used their own proprietary datasets separately named Paro. AF
and Pers. AF [4].

Several studies have attempted to develop improved methods to detect/classify normal sinus
rhythm (NSR) and AF (most often Pers. AF.) using ECG signals, based on R-R interval analysis,
filtering, spectral analysis, statistical approaches etc. [5–7]. Especially, ECG analysis using R-R intervals
has been frequently adopted [5,8,9] due to its simplicity and ease of use. However, this analysis does
not provide reliable results with respect to Paro. AF discrimination, as it captures regularity of the
heart rhythm instead of the entire morphological characteristics in the ECG waveform.

On the other hand, in the past few decades, nonlinear analysis methods have been gaining
much attention due to their capability to reveal clinically relevant nonlinear features of the heart’s
dynamics, such as fractal dimension [10], correlation dimension [9,11], Lyapunov exponents [8,12],
and reconstructed phase space approaches [8,13,14]. As one of the foundations of nonlinear analysis
methods, phase space reconstruction using time-delayed embedding [15,16] provides a motivation
for nonlinear heart rhythm analysis using a single lead ECG. According to Taken’s theorem [16], the
full dynamics of a complex nonlinear system might be reconstructed from a single time series, in the
absence of noise. We believe that this method has strong potential to discriminate both Pers. and
Paro. AF from NSR by capturing the intrinsic complexity of heart behaviors. Despite these advantages,
there is relatively little research directly applying phase space reconstruction using time-delayed
embedding method for discriminating between NSR and either types of AF [11,17] and there has
been little discussion on discovering inherent properties of nonlinear heart behavior of Pers. AF in
short-term signals to improve the discrimination of Paro. AF from NSR.

In addition, several new information-based signal analysis techniques have recently been
developed, such as multi-scale entropy (MSE) [7,18,19] and kurtosis (Kt) [20]. These techniques
also utilize different cardiac characteristics to uncover the intrinsic complexity of the heart behavior in
the normal and abnormal states. These techniques were successfully applied to optical mapping data
to identify the pivot points of rotors [20–22], and were also used for Pers. AF discrimination from NSR
using short time ECG signals [7,23].

The aim of this study is to adapt nonlinear time-delayed embedding, MSE, and Kt to discriminate
between Pers. AF and NSR, and further Paro. AF and NSR using short-term single-lead ECG signals
(see Figure 1). Specifically, we adapt and modify the time-delayed embedding method to reconstruct
proper phase plots of NSR and AF heart dynamics. We also examined the robustness of our approaches
for AF discrimination using short-term ECG signals of varying lengths: 5, 10, and 30 seconds.

Figure 1. Overview of the process for discriminating AF from normal sinus rhythm (NSR). All NSR
and atrial fibrillation (AF) electrocardiogram (ECG) signals first undergo Preprocessing (see Table 1),
and the following datasets were created: NSR, paroxysmal AF (Paro. AF), and persistent AF (Pers.
AF). Each trace was the cut into 5-, 10-, and 30-second time series, and was analyzed using modified
time-delayed embedding method, multiscale entropy (MSE), and kurtosis (Kt) methods to obtain
intrinsic characteristics of heart behavior, τ, embedding dimension (ED), MSE, and Kt, specifically.
Finally, these parameters were used to differentiate Pers. AF from NSR, and further Paro. AF from NSR.
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Table 1. Data Acquisition Information and Preprocessing Procedure

NSR Paro. AF Pers. AF
Database MIT-BIH NSR MIT-BIH AF MIT-BIH AF
No. of Patients 8

(100% of NSR)
8

(~82% of NSR)
8

(0% of NSR)
Sampling Rate, Hz 128 250→ 128 250→ 128

No. of 10-sec segments total 5760 5760 5537
per patient 720 720 20, 33, 134, 1953,

304, 1733, 584, 776
Filtering Baseline wander removal by bandpass filter [0.5, 40] Hz

2. Materials and Methods

2.1. Data Description and Preprocessing

ECG traces (2 hours long) of NSR (n = 8 patients) and Paro. AF (n = 8 patients) were taken from
the MIT-BIH NSR and AF databases [24], see Table 1. Note that Paro. AF traces consist of NSR (~82% of
NSR) as well as AF episodes that are annotated by clinicians. Following these annotations, we created a
Pers. AF database that only consists traces of “true” AF episodes (0% of NSR). All the raw ECG signals
were resampled at 128 Hz and filtered via a bandpass of 0.5–40 Hz to remove baseline wander and
noise. Each trace was the cut into 5, 10, and 30 seconds long intervals. All analysis in the manuscript is
given for 10 seconds traces, and results for 5- and 30-second data are shown in Appendix C.

Representative examples of 10-second ECG traces are shown in Figure 2: NSR (left), Paro. AF
(center), and Pers. AF (right). The original (blue) and filtered signals (red) demonstrate successful
removal of the baseline wander in the ECG traces after preprocessing.

Figure 2. Representative examples of 10-second raw (blue) and filtered (red) traces from single-lead
ECG signals: (A) NSR, (B) Paro. AF, and (C) Pers. AF.

2.2. Phase Space Reconstruction Using Time-Delayed Embedding Method

Phase space reconstruction was introduced into dynamical system numerically by Packard [25]
and formalized by Taken [16]. Taken’s theorem proved that a multi-dimensional state space can
be reconstructed from a scalar time series in the absence of noise by calculating time delay (τ) and
subsequent embedding dimension (ED).

Time-delayed embedding approach assumes that the delayed versions of a time series contain
information about unobserved state variables. Therefore, lagged versions of the original time
series are used to reconstruct a new time series of multiple state vectors. Let us consider a single
10-second single-lead ECG trace (see Section 2.1) as a single time series x(t) = (x1, x2, . . . , xi, . . . , xn),
where n is the number of data points in x(t). Then a delayed reconstructed state vector is given
by vi =

(
xi, xi+τ, xi+2τ, . . . , xi+(d−1)τ

)
, where τ is time delay. This vector has intrinsic ED d, which is

a minimal required dimension to display the original complex dynamics of the system. The entire
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reconstructed phase space of the heart dynamics based on a single time series x(t) can be expressed as
the following:

V =



v1

v2
...

vi
...

vn−(d−1)τ


=



x1 x1+τ . . . x1+(d−1)τ
x2 x2+τ . . . x2+(d−1)τ
...

...
...

xi xi+τ . . . xi+(d−1)τ
...

...
...

xn−(d−1)τ xn−(d−2)τ . . . xn


(1)

with i, 1 ≤ i ≤ n− (d− 1)τ.
To perform the phase space reconstruction based on time-delayed embedding analysis using

a single time series, we execute the following steps: estimate time delay parameter τ, estimate
corresponding ED, and finally create reconstruction phase plots. Estimating optimal values for τ
and ED are one of the main challenges that we had to address since it entirely depends on the ECG
characteristics of NSR, Paro. and Pers. AF.

2.2.1. Estimating τ: Autocorrelation and Mutual Information

The time delay τ can be estimated by measuring the independent τ -separated points in time
series. Here, we aim to use two well-known approaches for τ identification to compare their robustness:
the computation of autocorrelation (AC) [26] and mutual information (MI) [27].

The zero crossing of AC yields the points that minimizes the linear relationship between lagged
values of a time series and is calculated by AC function Γ(x(t), x(t + τ)):

Γ(x(t), x(t + τ)) =

∑n−τ
t=1(xt − x)(xt+τ − x)∑n

t=1(xt − x)2 , (2)

where x is the mean of x(t).
On the other hand, the local minima of MI provide maximum independence including nonlinear

correlation, which can be completely blind to certain nonlinear effects in AC with nonlinear dynamics.
For this reason, MI function I(x(t), x(t + τ)) has been widely used for selecting τ in nonlinear time
series analysis:

I(x(t), x(t + τ)) =
∑
i, j

pi, j(τ)log
pi, j(τ)

pip j
, (3)

where pi is the probability that x(t) is in bin i of the histogram of x(t), and pi, j(τ) is the joint probability
that x(t) is in bin i and x(t + τ) is in bin j of the histogram of x(t).

For the effective selection of τ, we identified the RR intervals for each time series x(t), and calculated
AC and MI values up to 1/2 of that period, since further values will be repeated in every beat due to
periodicity in heart rhythm (see Appendix A).

In addition, we improved the traditional way to identify τ, in which only the first zero crossing
for AC and the first local minimum for MI are used. Specifically, we identified the first three τ (τ1, τ2

and τ3) based on the first three zero crossings for AC and the first three local minima for MI to reduce
the risk of improper τ selection. The rationale behind our improvement is the following. In practice,
unexpected local minimum dependency values in both AC and MI can be found, resulting from data
measurement noise or other small movement of waveforms, and sometimes these values are accidently
chosen for the optimal τ. Using this improper τ, even highly correlated coordinates may fail to draw
attractors in reconstructed phase plots, misrepresenting the original properties of system dynamics.
To avoid this situation, we provide three τ (τ1, τ2 and τ3) within a half period of one regular heartbeat
and compare their corresponding reconstructed phase plots.
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2.2.2. Estimating ED: False Nearest Neighbor Algorithm

After estimating τ1, τ2 and τ3, the corresponding embedding EDs were selected using the false
nearest neighbor (FNN) algorithm, as described in [28]. This method is based on the principle that the
pair of points which are located very near each other at a large enough dimension d will remain close
to each other at the dimension d + 1. Thus, if the number of neighbors does not change appreciably,
then embedding leaves the shape of the attractor unchanged. The neighbors are checked at increasing
embedding dimensions until a negligible number of false neighbors are found while moving from
dimension d to d + 1. In FNN algorithm, the square of the Euclidean distance between d and d + 1–
dimensional phase space is used to determine the number of neighbors, according to the following
equations:

Dist2
d(t, r) =

d−1∑
k=0

[
x(t + kτ) − x(r)(t + kτ)

]2
, (4)

Dist2
d+1(t, r) = Dist2

d(t, r) +
[
x(t + dτ) − x(r)(t + dτ)

]2
, (5)

where r is the number of nearest neighbors. Therefore ED1, ED2, and ED3 were computed using
Equations (4) and (5) for the corresponding τ1, τ2 and τ3.

If the second term in the right side of Equation (5) is close to zero, then the current dimension d is
selected as a minimal required ED to display the original complex dynamics of this system. However,
in practical cases, ED is selected when it less than a small threshold (i.e., 1% or 5%), because reaching
the zero of FNN is almost impossible or takes too long. The % of FNN value as a function of every
increasing d will be used for representing the way to select a minimal required ED:

%o f FNN =
#o f FNN
total N

× 100. (6)

In this work, ED1, ED2, and ED3 were estimated separately using AC and MI approaches.

2.2.3. Phase Space Reconstruction

Reconstructed phase plots are formed by ED-dimensional coordinates as shifted versions of τ from
the single time series x(t) (as shown in Equation (1)): vi = [xi(t), xi(t + τ), . . . , xi(t + (ED− 1)τ)], i =
1, 2, . . . , N − (ED− 1)τ. Due to limitations in visualization, we are showing only in 3D plots.

2.3. Multiscale Entropy (MSE)

Multiscale entropy measures the unpredictability of a signal by estimating its tendency to repeat
itself in long and short sequences, with a greater relative amount of long repeated sequences indicating
an orderly and low-entropy signal. However, analysis of short vectors can only investigate self-similarity
in small portions of these waveforms. To appreciate large ECG features that may distinguish NSR and
AF signals, we implement a moving average filter to ECGs to capture information on a broader time
scale and highlight differences in larger-scale dynamics of AF and NSR heart behaviors.

Prior to analysis, an averaged time series is obtained from the original single time series
x = (x1, x2, . . . , xi, . . . , xn) by applying a moving average filter to x. The size of the moving average
is determined by the time scale value τMSE, creating a time series z =

(
z1, z2, . . . , z j, . . . , zn−τMSE

)
,

such that:

zτMSE
j =

1
2τMSE + 1

2τMSE+1∑
i= j

xi, (7)

where 1 ≤ j ≤ n− τMSE and i = 1, 2, 3, . . . , n.
The new time series z is then evaluated for self-similarity as was suggested previously [7].

A tolerance range r is determined as one fifth of the standard deviation of the time series, and pairs
of vectors within a distance of r of each other are considered a vector match. The relative quantity
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of long (m + 1 length) matches to short (m length) matches is used as a measure of the likelihood of
the signal to repeat itself. MSE also employs a delay factor δ, which determines whether compared
sequences are constructed from consecutive points or every δ points from the time series z. MSE is
therefore evaluated as a function of the time series z:

MSE = −ln
(

Nz(m + 1, δ, r)
Nz(m, δ, r)

)
, (8)

where N(. . . , δ, r) represents the number of vector matches in z at m and m + 1. A proportionally small
number of long matches corresponds to a large entropy value. It is expected that AF, having more
chaotic dynamics, will have a larger MSE value. In this manuscript, we use τMSE = 3, m = 2, δ = 1, as
was suggested in [7].

2.4. Kurtosis

Kurtosis (Kt) is a higher-order statistical approach to determine the peakedness of the ECG signal’s
amplitude distribution. Kt is the fourth moment of statistics, calculated as follows:

Kt (x) = E


[

x− E(x)
σ

]4
 =

µ4
x

σ4
x

, (9)

where E(x) represents the mean value of timeseries x and σx represents the standard deviation.

2.5. Data Analysis

Histograms were constructed by plotting embedding parameters τ, ED, MSE, and Kt values
for every 10 second ECG trace from all patients during NSR and Paro. AF (5760 values for each
parameter), as well as Pers. AF (5537 values for each parameter). Boxplots were also constructed for
each parameter by plotting the average value for each patient, which were calculated as the mean value
of approximately 2 hours of ECG traces for NSR, Paro. AF, and Pers. AF. Statistical significance test was
performed using one-way ANOVA and the result was judged as significant when the p-value ≤ 0.05 (*).

All the analysis was performed on the single-lead ECG recordings using custom-written MATLAB
(MathWorks, Inc., Natick, MA, USA) scripts for all three methods, additionally a CRP MATLAB
toolbox [29] is used for the embedding method.

3. Results

3.1. Optimized Time-Delayed Embedding Method to discriminate Pers. AF from NSR

3.1.1. τ: Pers. AF Discriminator

To observe the distribution of the embedding delay parameters τ, histograms of τ1, τ2, and τ3

(in samples) were obtained for NSR (blue) and Pers. AF (red) for 10-second traces for all subjects (see
Figure 3A) both for AC (top panels) and MI (bottom panels) approaches. Figure 3A shows that in
general, the mean values of all three τs associated with Pers. AF (red) are higher than those of for
NSR, both for MI and AC approaches. Figure 3A also demonstrates that the values of τ1 are in lower
ranges, which is due to misidentification of the minimum dependency criteria from noisy signals.
In addition, using MI approach leads to smoother and more stable distribution of all three τs for both
NSR and Pers. AF, in comparison to AC approach. This suggests that MI approach is less sensitive to
nonlinear heart rhythm analysis. Finally, note that the distribution of τ3 (for MI approach) is normally
distributed for both NSR and Pers. AF, and is less right-skewed than τ2 distribution. This indicates
that τ3 points to the global minimum dependency of a time lag between (x(t), x(t + τ)) in majority
of cases (see Appendix A). Therefore, examining all three τ1, τ2, and τ3 for MI approach, which are
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located in the lowest dependency region (see Figure A2), is necessary to investigate all the different
intrinsic properties of the heart behavior between Pers. AF from NSR using short-time ECG traces.

Figure 3. Distribution of the embedding time delay parameter τ between NSR and Pers. AF: (A)
histograms of τ1, τ2, and τ3 calculated by autocorrelation (AC) (top) and mutual information (MI)
(bottom) and (B) representative values of τ1, τ2, and τ3 in a heartbeat of ECG trace, which are the
distances between the two points (t0, τi=1, 2, 3). These τ are calculated by MI. From both (A) and (B),
larger τ were observed for Pers. AF.

Figure 3B compares the representative values of τ1, τ2, and τ3 that were obtained for NSR (top)
and Pers. AF (bottom). Note that the value of τ was inversely proportional to RR intervals: larger τs
were observed for AF (RR ≈ 0.42 s) than for NSR (RR ≈ 0.65 s). Thus, Pers. AF patients have larger τ
values. The selected τ also represented different morphological properties between (x(t), x(t + τ)).

To evaluate the ability of τs to discriminate between Pers. AF and NSR presented in Figure 3,
the average τ1, τ2, and τ3 values of each patient were plotted in Figure 4 both AC (top) and MI
(bottom) techniques. Note that MI approach allows for robust discriminations between NSR and
Pers. AF for all τ values (p < 0.05), whereas the use of AC approach only leads to τ1 be statistically
significant (p < 0.05). These findings clearly show that τ calculated using MI approach is a significant
and independent discriminator of Pers. AF from NSR.

Figure 4. Discrimination boxplots of the embedding parameter τ1, τ2, and τ3 using both AC (top)
and MI (bottom) for Pers. AF and NSR. The symbol ‘*’ indicates statistical significance p < 0.05 using
one-way ANOVA.
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3.1.2. ED: Pers. AF Discriminator

For the investigation of another embedding parameter ED, parameters ED1, ED2, and ED3 were
estimated from corresponding τ1, τ2, and τ3 values using FNN algorithm. Figure 5 shows boxplots of
the average ED1, ED2, and ED3 values calculated from NSR and Pers. AF patients for both AC and
MI approaches. Note that ED did not offer robust discrimination when compared with τ (see Figure 4).
Indeed, only ED1 and ED3 (calculated using AC approach, p < 0.05) and ED3 (calculated using MI
approaches, p < 0.05) were significantly different between Pers. AF from NSR. Note that the variation
of ED increases across patients for NSR from ED1 to ED3, while there are negligible changes for Pers.
AF. This arises from the oscillation in FNN calculation as embedding increases (see Figure A2 in
Appendix A). Our finding indicates that ED does not robustly discriminate Pers. AF from NSR.

Figure 5. Discrimination boxplots of the embedding parameter ED1, ED2, and ED3 using both AC
(top) and MI (bottom) for Pers. AF and NSR. ‘*’ indicates statistical significance p < 0.05 using
one-way ANOVA.

3.1.3. Phase Space Reconstruction Plots

The full reconstructed phase plots for NSR and Pers. AF ECG traces are shown in Figure 6
for various values of τ1, τ2, and τ3 and corresponding values of ED1, ED2, and ED3. Note that
QRS-complexes are represented in green and the rest of the ECG is in blue. Figure 6 demonstrates that
the reconstructed trajectories of heart behaviors were visually distinguishable between NSR and Pers.
AF patients. The reconstructed plots of NSR show trajectories of regular heartbeats in three orthogonal
directions. The green closed trajectory reflects QRS complexes and the P-waves in ECG traces are in
near the origin. The trajectories for Pers. AF also consist of similar orthogonal directions, but their
trajectories have larger variance, due to the properties of Pers. AF, such as absence or distortion of
P-wave, faster RR interval, prolonged QRS complex, noisy T-wave, etc.

The impact of misidentified τ1 is presented in Figure 3A. This is shown as an example of
reconstructed plots of NSR with an inadequate choice of τ1 (red box) and better choices of τ2 and τ3

(NSR from AC). This small τ1 (τ = 2) reproduces a different shape of attractor compared to that of
τ2 and τ3. The trajectories constructed by too small τ1 do not preserve the original heart dynamics
because of misidentified minimum dependencies, and they eventually result in reconstruction phase
plots with no consistency. Thus, it is further evidence that our strategy of estimating all τ1, τ2, and τ3,
helps to obtain proper and consistent trajectories of heart behaviors to discriminate between NSR and
Pers. AF.
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Figure 6. 3D visualization of reconstructed phase space plots using the modified time-delayed
embedding method. The normalized reconstruction plots with various values of τ1, τ2, τ3 and
corresponding values of ED1, ED2, and ED3 using both AC (top) and MI (bottom) approaches are
shown to discriminate Pers. AF from NSR. QRS-complexes are represented in green trajectories and
the rest of the ECG components are shown in blue.

Figure 6 also shows that the reconstructed phase plots between NSR and Pers. AF have
distinguishable trajectories for similar ED values. Note that reconstructed phase plots visually
discriminate Pers. AF from NSR, which appropriate embedding parameters τ and ED, despite
ED not being a robust independent discriminator. Here, we are displaying only in 3D; however,
these differences will be more prominent in the ED-dimensional (higher dimensional) representation,
by revealing the intrinsic NSR and AF properties.

3.2. Information-Based Methods to Discriminate Pers. AF from NSR

As before in the modified embedding method, we investigated and confirmed the ability of two
information-based methods MSE and Kt, for discriminating AF’s intrinsic properties from NSR.

3.2.1. MSE

We employ MSE approach to estimate the unpredictability of signals in NSR and Pers. AF ECG
traces. The comparisons of a histogram and a boxplot between NSR (blue) and Pers. AF (red) are
shown in Figure 7A respectively. As shown in these distributions, significantly higher values of MSE
were observed for Pers. AF compared to those of NSR. Our results indicate that AF ECG traces include
less matched templates at successive lengths, due to the presence of uncoordinated electrical activity
in the atria. MSE approach successfully discriminates between Pers. AF and NSR by utilizing the
unpredictability of these ECG signals.

3.2.2. Kt

To perform discrimination between NSR and Pers. AF, we additionally apply Kt as a higher-order
statistical approach to emphasize the irregular properties of AF signals. As shown in a histogram
and a boxplot for Pers. AF (red) and NSR (blue) in Figure 7B respectively, Kt values for NSR were
significantly different compared to those of Pers. AF, with higher variations for NSR. The lower Kt
value of AF was due to the wide range of amplitudes found in Pers. AF traces, which flattens the
amplitude distribution and reduces the measured peakedness.
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Figure 7. Information-based method analysis: Histograms and boxplots between NSR (blue) and Pers.
AF (red) (A) MSE (B) Kt. ‘*’ indicates statistical significance p < 0.05 using one-way ANOVA.

3.3. Paro. AF discrimination

Finally, Figure 8 shows the feasibility of our discriminating embedding parameters τ, and MSE,
Kt values in information-based approaches to discriminate Paro. AF from NSR using short time
single-lead ECG traces. The boxplots of embedding parameters τ1, τ2, and τ3 calculated using AC and
MI approaches, as well as MSE and Kt values are shown in Figure 8. This clearly demonstrates that the
average of all τ1, τ2, and τ3 values of each patient calculated from MI (bottom in (A)), were robust
discriminators between NSR and Paro. AF with statistical significance p < 0.05. In addition, the
distinguishably lower average Kt values were observed for Paro. AF compared to that for NSR with
p < 0.05. Therefore, time delay embedding parameter τ using MI approach and Kt values are significant
and independent discriminators of Paro. AF from NSR.

Figure 8. Discrimination boxplots of embedding parameter τ (τ1, τ2, and τ3) (A), MSE (B), and Kt (C)
values between Paro. AF and NSR. NSR and Paro. AF are significantly different in all τ calculated
using MI approach and Kt values. ‘*’ indicates statistical significance p < 0.05 using one-way ANOVA.

4. Discussion

In this study, we first evaluated our recently developed methods, time-delayed embedding method,
MSE, and Kt, to discriminate Pers. AF from NSR using short time single-lead ECG signals. Next,
the feasibility of discriminating Paro. AF from NSR was assessed. The main results are summarized
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as follows: (1) The embedding time delay parameter τ1, τ2, τ3 using MI approach, MSE, and Kt
values were able to discriminate Pers. AF from NSR. (2) The embedding parameter τ1, τ2, τ3 using
MI approach, and Kt values were successfully able to discriminate Paro. AF from NSR. (3) The
procedure for discrimination between NSR and AF is based on time-delayed embedding method
using MI approach. (4) The conventional procedure to select time delay parameter (choosing τ1) may
return improper reconstructed plots. (5) Higher τ, MSE, and lower Kt in Pers. AF indicate its chaotic
nature compared to NSR. The critical value of our study is that nonlinear time-delayed embedding
method and information-based methods provide robust discriminating features to distinguish Paro.
AF from NSR.

In many previous studies of AF detection, Paro. AF and Pers. AF, which have different critical
information, were not considered separately [8,9]. Identification of AF episodes is of primary focus
rather than detection of the intrinsic conditions of heart dynamics in the presence of NSR and mixed AF
in Paro. AF patients. However, our nonlinear analysis methods have great capability to discriminate
Paro. AF from NSR even in the presence of approximately 82% NSR. By capturing significantly
differentiable features of embedding parameter τ and Kt between AF and NSR, clear identification of
Paro. AF from NSR is feasible. This makes our methods contribute a step towards the development of
more robust Paro. AF detection approaches and treatment of AF before suffering chaotic Pers. AF.

4.1. Benefits of Time-Delayed Embedding Method

Due to its ability to rebuild the full dynamics of a complex nonlinear system from a single observed
time series for an infinitely long noise-free observation in theory, phase space reconstruction using
time-delayed embedding also has strong potential for nonlinear system analysis in practical cases.
In time-delayed embedding method, estimating optimal values for the parameters τ and ED is one of
the main challenges. Although Taken’s theorem suggests that any τ value can be chosen (excluding
periodicities) and makes equivalent state space of an observed system in the absence of noise [30], in
practice, the choice of τ affects the ability to reconstruct equivalent phase plot, which should preserve
geometrical invariants of the original system. Thus, while there has been some theoretical discussion
of what constitutes an optimal τ and optimal ED [31], there are no universal strategies so far for
implementation of time-delayed embedding in practical applications, such as AF discrimination.

To address this, our time-delayed embedding strategy suggests one possible optimal process that
can be applied to AF discrimination problem, by selecting three embedding parameters and plotting
the distinguishable reconstructed phase plots between NSR and Pers. AF. Particularly, we provide
three τ (τ1, τ2 and τ3) within a half period of one regular heartbeat and compare their corresponding
reconstructed phase plots. This minimizes the selection of incorrect embedding parameters and
guarantees the ability to reconstruct phase portraits of the original heart dynamics to discriminate AF
from NSR. In Appendix A, the cyclic behavior of heartbeats and an improper case of too small of τs in
MI dependency measurements for estimating τ parameters are addressed. It was the motivation of our
strategy and the evidence of the need for multiple τs and of their searching range for application in
AF discrimination.

The embedding parameter τ calculated using MI approach was an independent discriminator for
both Pers. AF and Paro. AF. It has strong possibility in the correlation between τ and QRS-complex
duration. In Figure 3B NSR case, the length of τ1 is approximately represented from the R-peak (t0) to
the end of the QRS-complex, which is the minimal duration where its morphological characteristics
can be changed in a single beat of ECG waveform. This duration of τ1 for Pers. AF has been prolonged
compared to τ1 in NSR, and this is in consistent with the slightly prolong duration of QRS-complex for
abnormal rhythms in general (Normal: 80–100 ms, intermediate: 100–120 ms, abnormal: >120 ms).
Thus, this embedding parameter τ may reflect the RS duration (the half QRS-complex duration).
As shown in our results, τ larger than 5 (in samples, 40–50 ms in times) for NSR and higher value of
AF were observed.
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4.2. Benefits of Information-Based Methods

MSE and Kt values themselves were significant discriminating factors, discriminating Pers. AF
and NSR through analysis of self-similarity and peakedness of ECG trace amplitude respectively.

The MSE method yield a more meaningful approach than conventional entropy measurements
like sample entropy for short-term physiological signals. MSE was applied on the short ECG traces
and clearly distinguishes between NSR and Pers. AF. In Appendix B, the value of entropy for the
coarse-grained time series is plotted as a function of time scales. The MSE calculation yields consistent
findings that the entropy measure from Pers. AF has significantly higher value which indicates more
unpredictable time series. We also find clear reverse patterns from the increasing entropy measure
of NSR and the decreasing measure of Paro. AF, which were not significantly different with a single
time scale factor in Figure 7A. In this respect, analyzing MSE for a range of time scales is valuable for
evaluating the irregularity of ECG signals to discriminate AF from NSR.

Kt highlights the differences in the signal amplitude distributions. The regularity of NSR produces
narrower and taller amplitude distributions (e.g., R-, T- and P-peaks), resulting in a significantly larger
Kt value compared to the wider and flatly distributed signal amplitudes of AF patients. This reduced
peaknedness in the amplitude distribution of AF ECG traces helps distinguish both Pers. AF and Paro.
AF from NSR and makes Kt an independent discriminator.

Decreased Kt values in Pers. AF may be partially explained by the absence of P-waves. As periodic
P-wave are replaced by numerous, lower amplitude aperiodic waves in each cycle in the ECG, the
amplitude distribution of the analyzed signal will change considerably. The periodic/regular P-waves
in ECG contributes to narrow and tall amplitude distributions in NSR, as the amplitude falls in a
smaller interval. But in the case of the AF traces the absence of regular P-waves changes the range of
amplitude distributions to be more random. This in turn causes the distribution to be flatter and wider,
correspondingly reducing the Kt values.

The decreased Kt values for Paro. AF may be related to a number of electrophysiological changes
involved with the incidence and perpetuation of AF. In response to fast atrial rhythms in AF episodes,
atria can undergo a number of changes such as lowered conduction, due to calcium (Ca2+) release [32].
ECG readings from this slow-conducting atria display a prolonged P-wave, which is a biomarker to
predict AF onset [33]. This prolonged P-wave has a different amplitude morphology and replaces part
of the PR segment. This can reduce the peakedness of the amplitude distribution and the corresponding
Kt value. These changes may manifest in ECG recordings even outside of AF episodes, resulting in
significant changes to Paro. AF Kt values and not only Pers. AF.

Based on these clear differences in MSE and Kt values, our information-based methods have strong
potential as AF discriminator that utilize unpredictability and amplitude distribution, respectively.

4.3. Validation of Three Nonlinear Methods with Short Length of ECG

To evaluate the robustness of our three methods with respect to length of short-term ECG signals
to discriminate Pers. AF, Paro. AF, and NSR, we examined their performance for different lengths of
ECG traces from short (5 s) to long (30 s), and representative valid results from 5-, 10-, and 30-second
traces were presented. Similar to results in 10-second ECG traces, τ, MSE, and Kt values were able
to discriminate between NSR and Pers. AF, and τ and Kt performed well for discriminating Paro.
AF from NSR for all the tested time lengths. More detailed information on methods and results are
presented in Appendix C.

4.4. Influence of Noise Removal

It is essential to remove noise before the implementation of the three nonlinear approaches on
the ECG traces. Noise removal can be performed using various methods such as adaptive least
mean squares (LMS) filtering, Kalman filtering, wavelet decomposition, bandpass filtering, etc. [34,35].
The complexity of the noise removal techniques increases depending on the purpose of the removal
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level of noise present. In our work, a bandpass filter that restricts the signals within the physiological
frequency range of 0.5 Hz to 40 Hz for AF identification is used as the minimal level of noise removal.

4.5. Limitations

One of the main limitations of this work is the limited data set used. In the future, larger data sets
can be integrated to show and analyze both Paro. AF and Pers. AF separately. In order to confirm the
potential use of our approaches, validation in datasets from more subjects as well as different datasets is
necessary to reduce bias and uncertainty in both Pers. and Paro. AF discrimination. Another limitation
is that the reconstructed phase plot cannot visualize the full attractor of the original system dynamics,
especially where the state space is high dimensional (or even infinite) or where the dynamics have
spatio-temporal properties. More quantitative measures using the reconstructed phase space must
be explored to automate the discrimination. Despite all these limitations, our work highlights the
potential utility in identifying which single technique or combination of techniques is necessary to
accurately discriminate AF from NSR.

5. Conclusions

We have presented three nonlinear approaches to discriminate between patients with AF and NSR
using a short time single-lead ECG. The proposed strategy using time-delayed embedding method
and Kt provided highly robust and reliable discriminating features to distinguish Paro. AF from
NSR. These results motivate improved methods using single or combining our techniques to more
accurately characterize Paro. AF and further other arrhythmias, and they offer a potential clinical
utility in effective treatment before the onset of severe Pers. AF or long-lasting AF as well as diagnosis
and prognosis of life-threatening heart disease for real-time ECG monitoring.
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Appendix A. Motivation to Select Multiple Embedding Time Delay τ

We improved the traditional way to identify τ, in which only the first zero crossing for AC and the
first local minimum for MI are used to select the minimum dependency between original and shifted
time series. In practice, the signals analyzed are not ideal and have minimal noise and disturbances,
that results in misidentification of local minimum dependency values in both AC and MI, thus resulting
in improper τ. Using this improper τ, even highly correlated coordinates may fail to draw attractors in
reconstructed phase plots, misrepresenting the original properties of system dynamics.

The cyclic behavior of heartbeats and a misidentified τ in MI dependency measurements for
estimating τ parameters are addressed in Figure A1. This dependency graph has peaks almost every
100 samples (~0.78 s) which are exactly matched with single regular heartbeat of NSR patients. If we
select τ traditionally as a value of the first local minimum, sometimes it provides a distorted and
disformed phase plot, which could not preserve the intrinsic properties of heart behavior (see in
Figure 5 the first graph, τ1 calculated by AC). However, there are more stable lowest dependency
regions (yellow highlighted) in every regular heartbeat. Thus, selection of multiple local minima for
MI within the lowest dependency region and comparing all their reconstructed plots will reduce error
in the reconstructed phase plot, providing a possible optimal solution.



Entropy 2020, 22, 531 14 of 18

Specifically, we identified the first three τ (τ1, τ2 and τ3) based on the first 3 zero crossings for
AC and the first three local minima for MI to reduce the risk of improper τ selection. For the effective
selection of τ, we identified the period RR for each time series x(t), and calculated AC and MI values
up to 1/2 of that period, since further values will be repeated in every beat due to periodicity in heart
rhythm (see Figure A1).

Figure A1. Motivation to select multiple τ. The cyclic behavior of heartbeats and a misidentified τ
in MI dependency measurements for estimating τ parameters are addressed. Our strategy provides
three τ (τ1, τ2 and τ3) with in a half period of one regular heartbeat and compares their corresponding
reconstructed phase plots, in order to reduce the risk of misidentified τ.

Figure A2. A representative example of embedding parameter estimations. (A) Determination of the
proper τ having the lowest dependency with the original ECG x(t). Each τ1, τ2 and τ3 are calculated
by AC and MI methods. (B) Determination of the minimal required ED. The percentage of FNN (% of
FNN) drops convincingly to almost zero (here, 5%) at ED1, ED2 and ED3 in the range of 5–15.

Figure A2 shows a representative example of time-delayed embedding parameter estimations to
discriminate Pers. AF from NSR. The visualization of estimating τ1, τ2 and τ3 is in Figure A2A and
estimating ED1, ED2 and ED3 is in Figure A2B.

First, as shown in Figure A2A, the measurement of dependency between the original 10-second
ECG x(t) and the shifted segment x(t + τ) are calculated from AC (top) and MI (bottom) methods
respectively. Estimated τ1, τ2 and τ3 are marked on each graph, which are the first three zero crossings
in AC and the first three local minima in MI. These values provide the possible optimal time delay τ,
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which has the lowest dependency between (x(t), (t + τ)), producing the minimum time lag to rebuild
the reconstructed phase plots.

As presented in Figure A1, misidentified τ1 can be found in MI calculation for NSR. Here, τ1 is
absolutely in the local minima, however, the dependency measure still has been decreasing, thus more
stable minimum can be found near τ2 and τ3. Relatively more cases of misclassified τ1 were found for
NSR than Pers. AF cases.

Then, to estimate the minimal required ED, the percentage of FNN (% of FNN) values are
calculated as a function of embedding dimension (ED). In Figure A2B, minimally required ED1, ED2

and ED3 were selected, which are the points that FNN drops convincingly close to zero (< 5%). Due
to the fluctuations of % of FNN values for NSR, ED’s cutting point cannot be zero. Note that much
higher oscillations in % of FNN for NSR can be found, leading the increasing variations in ED across
patients for NSR in Figure 4 boxplots. On the other hand, surprisingly all ED for Pers. AF satisfied
within the ED range of 5–8, further converged to zero at around 10. For that reason, the complexities of
NSR and Pers. AF cannot be directly compared, and ED is not preferable to use for AF discrimination
from NSR independently.

Appendix B. MSE

In physiological data, many variations of MSE [7,18,19] has been developed to measure the
complexity of time series for a range of scales. In this study, we examined the value of MSE in 10-second
ECG traces for analysis of discriminating Paro. AF from NSR. In Figure A3, the value of entropy
(Sample Entropy) for the coarse-grained time series is plotted in function of the time scale. Pers. AF
(red), Paro. AF (orange), and NSR (blue).

In Figure A3, we observed three different types of behaviors: (1) For all time scales, a higher
value of entropy was observed for ECG traces from Pers. AF, containing more complex structures than
NSR traces. (2) The entropy measure for NSR increases on small time scales and then stabilizes to a
constant value. This is due to the smoothing effect of the dynamic moving average filter that reduces
the abrupt morphological changes of the signal. As a result, fewer matches are detected in the signal,
which is inherently regular. (3) The entropy measure for Paro. AF decreases on small time scales and
then stabilizes to a constant value with decreasing variances. Of note, for scale one, Paro. AF has a
higher entropy than NSR, but for scales > 4, NSR and Paro. AF MSE values become indistinguishable.
These reductions in MSE at higher time scales for Paro. AF indicate that their signals have similar
regularity when smoothed by a moving average filter.

Our results seem to suggest that Paro. AF electrical activity is inherently less regular than NSR,
even outside of arrhythmic episodes. This may be a result of heterogenous conductance and ICa slowing
that occurs in response to fast atrial pacing [32]. Uneven modifications to electrical activity could result
in changes that are detected at lower time scales but removed at higher scales.

The MSE method yields consistent findings that the entropy measure from Pers. AF is significantly
higher value, indicating more unpredictable time series. We also found clear reverse patterns from
the increasing entropy measure of NSR and the decreasing measure of Paro. AF, which were not
distinguishable in a single time scale factor (τMSE = 3) in Figure 8B. In this respect, the MSE method
appears to yield a more meaningful approach than conventional entropy measurements.
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Figure A3. MSE analysis derived from NSR (blue), Paro. AF (orange), and Pers. AF (red). Values are
given as average values of each patients (n = 5).

Appendix C. Validation of Three Nonlinear Methods with Short Length of ECG

To evaluate the robustness of our three methods with respect to length of short-term ECG signals
to discriminate Pers. AF, Paro. AF, and NSR, we examined their performance for different lengths of
ECG traces from short (5 s) to long (30 s). The same process as described previously in the method
section, was followed for each short-term signal. The representative discriminating results from 30, 10,
and 5 seconds are presented in the form of boxplots in Figure A4. Properties are similar between all
tested durations for the embedding parameter, τ, MSE, and Kt values as observed in previous results.
Similarly, τ, MSE, and Kt values were able to discriminate between NSR and Pers. AF, and τ and Kt
performed well for discriminating Paro. AF from NSR for all the tested time lengths.

Figure A4. The robustness of AF discriminators. The similarities between nonlinear methods with
different length of ECG traces (30 s, 10 s, and 5 s) are shown. Estimating (A) τ1 and their corresponding
ED1 from the modified embedding method, (B) MSE, and (C) Kt for all groups (NSR, Paro. AF, and
Pers. AF). All the results with different lengths of signals are consistent.
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