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Abstract: Entropy-based indices are long-established measures of biological diversity, nowadays
used to gauge partitioning of diversity at different spatial scales. Here, we tackle the measurement of
diversity of interactions among two sets of organisms, such as plants and their pollinators. Actual
interactions in ecological communities are depicted as bipartite networks or interaction matrices.
Recent studies concentrate on distinctive structural patterns, such as nestedness or modularity, found
in different modes of interaction. By contrast, we investigate mutual information as a general measure
of structure in interactive networks. Mutual information (MI) measures the degree of reciprocal
matching or specialization between interacting organisms. To ascertain its usefulness as a general
measure, we explore (a) analytical solutions for different models; (b) the response of MI to network
parameters, especially size and occupancy; (c) MI in nested, modular, and compound topologies.
MI varies with fundamental matrix parameters: dimension and occupancy, for which it can be
adjusted or normalized. Apparent differences among topologies are contingent on dimensions
and occupancy, rather than on topological patterns themselves. As a general measure of interaction
structure, MI is applicable to conceptually and empirically fruitful analyses, such as comparing similar
ecological networks along geographical gradients or among interaction modalities in mutualistic or
antagonistic networks.

Keywords: interaction diversity; community ecology; specialization

1. Introduction

Entropy models and measures have been applied in a variety of areas in ecology, such as ecological
genetics [1], macroecology [2], landscape ecology [3] and ecological economics [4]. Entropy-based
models have been prominent especially in two fields: circulation models for ecosystems [5–9] and
measurement of species diversity in communities. Ramón Margalef [10,11] pioneered the use
of the Shannon–Weaver function to assess the diversity of collections with non-uniform species
abundances [12]. This metric came into widespread use from the 1960s onwards, both because of its
simplicity and the appealing possibility that it might represent the actual “information content” of
multispecies assemblages [11,13], see [14,15].

More recently, two further developments rekindled interest in this metric: first, partitioning
diversity within and among spatial units (alpha versus beta diversity, see, e.g., the Forum papers
introduced by Ellison [16]) or among a hierarchy of spatial levels [17]. The second is the measurement
of interactions between species in ecological networks, and is the subject for the current paper.
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Ecological interactions span a wide range of modes of directional or reciprocal ways in which
individuals, populations or species assemblages influence one another. Classical modes include
mutualisms, i.e., mutually beneficial interactions, such as plant associations with their animal
dispersers and pollinators [18] or with mycorrhizal fungi and soil bacteria [19]. Many mutualistic
interactions are nontrophic, which do not involve consumption. By contrast, except for competition,
most antagonistic interactions are trophic between resource and consumer taxa, such as prey and
predators, or hosts and parasites or pathogens [20–22]; in combination, these make up food webs.
Interactions may also switch from positive to negative effects, as in plant species that compete or
facilitate coexistence under different circumstances [23].

The Shannon-Weaver entropy of a biotic assemblage—usually, a group of species belonging to
a given taxon—measures the "information content" of that assemblage; in other terms, it measures
the uncertainty of the species to which a randomly drawn individual belongs. Thus, entropy is
higher in more diverse assemblages. By contrast, the mutual information of an interactive assemblage
corresponds to the reduction in the uncertainty of the species affiliation of an individual randomly
drawn from the assemblage, if we know the identity of the individual(s) with which it interacts.
Therefore, mutual information is higher in assemblages with a higher degree of specialization, in which
individuals (and species) have fewer interaction partners. In bipartite networks, mutual information
will be maximal when reciprocal specialization is maximal; in the special case of square matrices,
all relationships will be biunique or bijective (for instance, each resource species is consumed by only
one consumer species and vice versa).

Recent investigations of interaction patterns in ecological communities have been strongly
stimulated by developments of complex network theory [24,25]. Subsequently, ecological research
has favoured network depictions and analyses. However, bipartite networks can be depicted and
analyzed equally well as matrices or as multivariate systems in ordination space [26]. To examine
entropy and its components in interactive systems we represent them here as bidimensional matrices,
with cross-references to their equivalents in network terminology that are widely used in the current
ecological literature.

In this paper, we scrutinize the effect of an array of matrix (or network) attributes on mutual
information, starting from primary or first-order parameters of simple patterns [27] and progressing to
more complex structures, notably topologies which have been intensively investigated by ecologists
in recent years [26,28]. Our goal is to evaluate whether mutual information is suitable for general
comparisons of structure among interaction matrices, whatever their interaction modality, dimensions
and topological attributes.

A word of caution about the computation of entropy or complexity in networks. In fact, several
network entropy measures have been developed in the literature, see for instance [29]. In addition,
entropy measures are dependent on probability distribution associated to the graph, for instance,
connectivity, distances, or clustering distributions, but a unique entropy measure for the network is
a fragile concept [30]. In this study, we do not deal with a global entropy or information measure
for a network, but rather to the mutual information between the two marginal sets that constitute a
bipartite network.

2. Mutual Information—Setting the Problem

The mathematical notation we employ is based on a widely-used source [31]. We consider two
sets X and Y that represent two sets of biological entities, linked by a given mode of biotic interaction,
such as consumer and resource species in a community. The entropy of these sets is H(X) and H(Y).
The formal definition of entropy comes from the original Shannon paper [32]:

H(X) = −
NX

∑
i=1

pi log pi (1)
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where pi are the probabilities associated with the NX states in which the elements of the set X are
distributed. In community ecology 1 ≤ i ≤ NX represents species i and NX the total number of species
in the X subset of the community and, correspondingly, j and NY for the species in the Y community
subset. The elements of sets X and Y are functionally connected, forming a web of interactions.
This web, in fact a bipartite network, is defined by an adjacency matrix A = ai,j.

In the special case of the entropy in which the distribution is flat, pi = 1/NX for all i species of
the NX set. The entropy in this case is:

H = −
NX

∑
i=1

1
NX

log
1

NX
= logNX (2)

It is possible to prove that the limit of this equiprobable distribution corresponds to the maximal
entropy [31,32].

Next, we formalize the concept and notation for interacting populations and networks. For the
set X the population species distribution is the number of individuals belonging to species i, i.e., ki(X)

with 1 ≤ i ≤ NX, in the NX species that form the X subset. Likewise, k j(Y), with 1 ≤ j ≤ NY, is the
distribution of individuals in the NY species that form the Y interactive subset. Both ki(X) and k j(Y)
can be computed from the matrix adjacency elements ai,j:

ki(X) =
NY

∑
j=1

ai,j k j(Y) =
NX

∑
i=1

ai,j (3)

From ki(X) we compute pi(X) = ki(X)
NM

for NM = ∑i,j ai,j, the total number of interactions in the

community; similarly, pj(Y) =
kj(Y)
NM

. For pl(X, Y) = al
NM

the probability matrix, we assume that al is
the conversion of the matrix ai,j into a vector of size NL (the number of interactions of the network),
and pl(X, Y) is a probability associated with the interaction matrix. Finally, H(X), H(Y) and H(X, Y)
are computed from pi(X), pj(Y) and pl(X, Y), respectively.

According to references [31,33] the mutual information I(X; Y) of two interconnected sets X and
Y can be obtained from the entropies of the two sets and the joint entropy of both sets H(X, Y):

I(X; Y) = H(X) + H(Y)− H(X, Y) (4)

In set theory, H(X, Y) is the entropy of the joint set, or union set, and I(X; Y) the entropy of the
intersection set between X and Y. A normalized version S of mutual information [33] is given by:

S =
I(X; Y)
H(X, Y)

(5)

The quantity S has a range of 0 ≤ S ≤ 1 which allows comparing networks of different sizes,
one of the goals of the present paper.

Note that H(X, Y) is maximal when there is no overlap between the sets H(X) and H(Y) in
Figure 1,

H(X, Y)max = H(X) + H(Y) (6)

representing the scenario where X and Y are independent sets, and the values in each matrix cell ai,j
is directly proportional to the marginal probabilities pi(X) and pj(Y). In ecological terms, H(X, Y) is
maximal in the absence of specialization, when species interact proportionally to their abundances.
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By combining Equations (4) and (6), it is possible to show that H′2, a widely used metric of
specialization in ecological networks [34], is the mutual information normalized by its maximal value,
given the marginal totals of the matrix:

H′2 =
H(X, Y)max − H(X, Y)

H(X, Y)max − H(X, Y)min
(7)

H′2 =
I(X; Y)

I(X; Y)max
(8)

H(X)
H(Y)

H(Y|X)
H(X|Y)

I(X;Y)

H(X,Y)

Figure 1. Venn diagram representing two interconnected subsets X and Y with their entropies, H(X)
and H(Y), their joint entropy H(X,Y) and their mutual information, I(X;Y). H(X|Y) is the conditional
entropy of X given Y, and H(Y|X) its converse.

In the next section we explore a sequence of simple models that can be solved analytically and/or
compared with exact ones. Analytical results were tested on artificial models in the R-program
environment [35].

3. Baseline Models

3.1. Uniform Networks

Our initial model is a square lattice in which NX = NY = N, with randomly filled sites with a
constant ki. The occupancy ρ is defined as the ratio between the total number of actual interactions
in the matrix NM and the total number of cells N2, or ρ = NM

N2 . Figure 2a–d illustrates four cases of
matrices with uniform distribution and decreasing ρ.
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Figure 2. Square matrix with uniform distributions; (a–d) show representative patterns for levels of
occupancy, ρ, from 0.1 to 0.5. (e) shows values of S, solved by Equation (9), plotted against the full
range of ρ, for matrices varying in size (N = NX = NY).

By assuming that occupancy ρ follows a flat distribution, the entropy is maximal. Following
Equation (2) we have H(X) = H(Y) = log N. To compute the entropy of the matrix we
employ Equation (2) with number of states ρ N2. Using Equation (5) we compute the normalized
mutual information:

S =
2 log N − log ρN2

log ρN2 =
log 1

ρ

log ρN2 (9)

In Figure 2e we plot S versus ρ, for different numbers of species N. As expected from Equation (9),
for a given ρ, mutual information decreases with N. In fact S ∝ (logN2)−1. Figure 2e also shows that
S→ 0 as ρ→ 1.

3.2. Random Networks

Random networks are the most important class of networks for null models in theoretical
ecology [36]. The construction of proper random networks as null models for bipartite networks is a
theme of longstanding debate [37]. Any random model is associated to a distribution of probabilities.
The random network with fixed ki is the uniform or planar network presented before; this is a
convenient starting point because it assumes no a priori information on the classes within the
interconnected sets X and Y. In random models ki is not strictly fixed, so that marginal totals can vary
within the bound of total occupied cells, ρ(N)2. Thus, the random matrix is a relaxed version of the
uniform model; compare Figure 3a with Figure 3c and Figure 3b with Figure 3d.

The random models we employ are Monte Carlo randomizations with total occupancy ρ fixed,
but marginal totals free to vary. Figure 3e shows that for large size N the results coincide. This is
expected, since for a large number of species the uniform model and the random model are quite
close. On the other side, for smaller N (here, with N approximately ≤ 50), the S of the uniform model
slightly exceeds the random model.
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Figure 3. Uniform versus random matrices; comparison between the exact solution of the uniform
model, Equation (9), and a Monte Carlo random model. In the uniform model (a,b) the marginal totals
(represented by the bars to the right of the matrices) are held constant, whereas in random models (c,d),
marginal totals vary freely; only occupancy for the entire matrix, ρ, is held constant. Figure (e) shows
mutual information versus matrix size for both cases, with ρ = 0.4 and 0.6. The uniform model
Equation (9), is represented by lines and the Monte Carlo random model by symbols; see insert legend.

3.3. Matrix Shape

The preceding square network models fixed the same number of classes (species) in both
interactive subsets. We call networks with X 6= Y size-asymmetrical; for non-square matrices,
matrix shape is expressed as NX/NY. In order to test the effect of matrix shape on mutual information,
we expand the square uniform model of Section 3.1 for distinct NX and NY instead of a common
N. A general formula for S is developed as in previous Equation (9). Here, mutual information is
written as:

S =
log NX + log NY − log ρNX NY

log ρNX NY
=

log 1
ρ

log ρNX NY
(10)

From Equation (10) we see that if the product of NX by NY is constant, then S is the same as when
NX = NY = N. For instance, a matrix with sizes NX = 40 , NY = 40 will have the same S as a matrix
of sizes NX = 80 , NY = 20. This is in fact the most important result for matrix shape. Note, however,
that whereas S is invariant for matrices of any shape given their total size, occupancy is constrained by
shape. For a non-degenerate square matrix the minimum ρ implies in N = NX = NY which is attained
in diagonal matrices. At the other extreme, to be non-degenerate a same-sized linear matrix (NX = 1
or NY = 1) requires maximum occupancy, ρ = 1.

4. Simple Topologies

4.1. Nested Networks

In this section we compute mutual information for nested networks. First, we take as baseline
model the square matrix with all cells above the diagonal line occupied, for which we provide an exact
solution. Second, the general case with any occupancy is explored by Monte Carlo simulation.

In the initial model the square matrix is symmetric: NX = NY = N, so that H(X) = H(Y). Also,
ρ is always above 0.5; as N → ∞ , ρ→ 0.5. This model is illustrated in Figure 4b; according to usage in
the ecological literature, nesting is represented from cell a1,1 outwards, so that the matrix is packed
above the antidiagonal.
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Figure 4. Mutual information versus occupancy for nested matrices, with N = 20. Figures (a–d) show
nested matrices with decreasing occupancies.; Plot (e) shows the normalized mutual information S of a
set of nested matrices of distinct occupancies. We plot also S of the uniform model for comparison. The
analytical result of Equation (14) for half occupancy (b), is indicated with an arrow.

The number of interactions of each species is given by ki = i. The interaction probability of each
species is normalized as pi = i/NM, scaling it by NM, the sum of all realized interactions for this
half-occupied matrix:

NM =
N

∑
i=1

i =
N(N + 1)

2
. (11)

From the species interaction probabilities we compute the species entropy using the usual
definition, Equation (1):

H(X) = −
N

∑
i=1

i
NM

log
i

NM
=

N

∑
i=1

i
NM

(log NM − log i) (12)

Using the hyperfactorial function Hyp(x) (see Appendix A) we obtain:

H(X) = log NM −
1

NM
log Hyp(N) (13)

To compute S we need to estimate first the total matrix entropy H(X, Y), given the total number
of interactions NM, H(X, Y) = log(NM). From Equation (5) we then estimate the normalized
mutual information:

S =
2
(

log NM − 1
NM

log Hyp(N)
)
− log NM

log NM
(14)

The general case of nested networks is explored with an algorithm that computes nested matrices
with any size and occupancy. The mutual information of randomly generated nested matrices was
computed with Equation (5).

Through Monte Carlo simulation we produced 200 samples with variable occupancies in square
matrices of size N = 20. Figure 4e shows the distribution of normalized mutual entropy versus ρ.
The analytical result of Equation (14) for the special case of a half-occupied matrix is indicated by the
arrow; in this case ρ ≈ 0.5 corresponds to S ≈ 0.05. The value of S increases for small ρ, up to the limit
of one line and one column occupied (see Figure 4d) . Conversely, as ρ → 1, S → 0 as seen before
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(Section 3.1). The chief result of the comparison in Figure 4e is that nested matrices always have a
smaller mutual information than matrices with uniform marginal distributions of same dimension and
occupancy, due to their difference in degree distributions.

4.2. Isometric Modules

The second topology of interest to ecologists is modularity or compartmentation, which is often
found in interaction networks. As before, we examine a square matrix of size N in which interactions
are set out as m equal modules of size t. Figure 5 illustrates this model in square matrices of size N,
varying from m = 20 and t = 6, to m = 3 and t = 40. Note that when t = 1, m = N, the diagonal
matrix which is the limit case of H(X) = H(Y) = H(X, Y) = I(X; Y).

Because all modules are of equal size, the species distributions in X and Y are trivially flat.
Therefore, we can use the previous result (Equation (2)), to compute S. The number of species is given
by NX = NY = m t, and the number of realized interactions in the matrix is m t2 = N t. Combining
these, we obtain:

S =
log N + log N − log N t

log N t
=

log N2/N t
log N t

(15)

or
S =

log N/t
log N t

=
log N − log t
log N + log t

(16)

Figure 5e shows how mutual information and occupancy vary with the number of modules in
isometric modular matrices. S and ρ are, respectively, increasing and decreasing functions of the
number of modules. The inverse relation between m and ρ is also quite simple. As ρ is the ratio
between the number of occupied cells and the total cell number, it follows that:

ρ =
mtt
NN

=
mtt

mt mt
=

1
m

(17)

For example, m = 2 corresponds to ρ = 0.5 and m = 3 to ρ = 0.333 (Figure 5e).
It is also relevant to explore when two modular matrices with different number of modules

and different sizes will have identical normalized mutual information. In other terms, what are the
conditions for matrices M1 and M2 with, respectively, m1 and m2 numbers of modules and t1 and t2

module sizes to have identical S. Since we are only considering square matrices with isometric modules,
the number of species in the matrices are, respectively, N1 = NX1 = NY1 and N2 = NX2 = NY2 . From
Equation (16), the condition of equal S for two modular matrices is:

log N1 − log t1

log N1 + log t1
=

log N2 − log t2

log N2 + log t2
(18)

Algebraically, Equation (18) is equivalent to:

log N1

log t1
=

log N2

log t2
(19)

Using basic logarithm properties, the equation above can be rewritten in a more intuitive way as:

log t1 N1 = log t2 N2 (20)

Thus, according to Equation (20), two isometric modular matrices will have the same S if, and
only if, the number of species by module and the number of total species in the matrix are in the
same power relationship in both matrices. To illustrate Equation (20) we show in Figure 6a–d cases
that share the same S. In Figure 6e we explore the behaviour of S, H(X, Y) and I(X; Y) when matrix
size (N) increases while keeping logtN constant. Figure 6e shows that S remains constant in this case
because both H(X, Y) and I(X; Y) increase by the same proportion.



Entropy 2020, 22, 528 9 of 17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
S

   
an

d 
  ρ

● S
ρ

N = 120

(e)

Figure 5. Models with isometric modules in square matrices of size N = 120 . Panels (a–d) show four
cases varying from m = 3 to 20. Panel (e) shows the relation of mutual information S and occupancy ρ

with the number of modules m. The limit case m = 120 corresponds to the diagonal matrix, whereas
m = 1 corresponds to ρ = 1 and S = 0. The graph also represents the expected inverse relation between
ρ and S.
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Figure 6. Square matrices with equal-size modules. Matrix size, number of modules and module size
increase from (a–d). Plot (e) shows normalized mutual information S, mutual information I(X; Y), and
total entropy H(X, Y) plotted against increasing matrix size, while keeping logt N constant

4.3. Non-Square Modular Matrices

The last simple model we examine is the case of non-square modular matrices. Given that
modules are identical, they are also non-square and the size of each of the m modules is represented as
t by z. Therefore, the number of species in the X set is NX = m t and in the Y set NY = m z.
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As before, the two distributions of X and Y sets are flat, so we can again apply Equation (2).
Following Equation (15) we obtain:

S =
log m z + log m t− log m t z

log m t z
=

log m
log m t z

(21)

Note that Equation (21) is a special case of Equation (19). Indeed, Equation (19) becomes (21) for
t = z and N = m t.

Furthermore, the condition for two asymmetrical matrices with m1, t1, z1 and m2, t2, z2 parameters
to have the same normalized mutual information is given by:

log m1

log m1 t1 z1
=

log m2

log m2 t2 z2
(22)

5. Complex Topologies

In this section we advance beyond simple models of bipartite networks. Among many ways of
producing more complex structures, we focus on two that are especially relevant to interactions in
actual ecological assemblages.

5.1. Modules of Varying Size

In this subsection we consider a model composed of square modules of increasing size. Two
examples are given in Figure 7; in (a), a matrix of size N = 6 with three modules of size t = 1, 2 and 3;
in (c), N = 15 and five modules with sizes t = 1 to 5. For the general case with m modules the number
of species NX = NY = N is given by:

N =
m

∑
i=1

i =
m(m + 1)

2
(23)

The total number of interactions in the network is:

NM =
m

∑
i=1

i2 =
m(m + 1)(2m + 1)

6
(24)

From the combination of Equations (23) and (24) we calculate the occupancy ρ of this model as a
function of the number of modules m:

ρ =
NM

N2 =
m(m+1)(2m+1)

6

(m(m+1)
2 )2

=
2 (2m + 1)
3m (m + 1)

(25)

Given the species probabilities pi = i
NM

, for i as the number of species in each module, we
compute entropy using Equation (1):

H(X) = −
m

∑
i=1

i
i

NM
log

i
NM

=
m

∑
i=1

i2

NM
(log NM − log i) (26)

Using the hyperfactorial squared function Ĥyp(x), detailed in Appendix A, we obtain:

H(X) =
NM log NM − log Ĥyp(m)

NM
(27)
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From Equation (27) we then calculate the normalized mutual information, Equation (5), as:

S =
2H(X)− log NM

log NM
(28)

To assess mutual information in models with increasing modules, they are compared with their
counterparts (same N) with constant-sized modules, in which S depends only on m and t. Thus, results
of Section 4.2 are compared with Section 5.1. In Figure 7e, normalized entropy S is plotted against
N, with each point corresponding to a distinct m. The occupancies ρ corresponding to each S curve
are plotted as continuous lines with a common range of zero to one. Notably, the normalized mutual
information remains almost constant if we expand the matrix by adding modules of increasing size
(Figure 7e). Despite the positive effect on S of decreasing the matrix’s occupancy (see Section 3.1), this
is offset by the negative effect on S of increasing the degree unevenness of the matrix (Section 4.1).

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 50 100 150
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S

(e)

● increasing size
 modular  t=3
 modular  t=5

Figure 7. Matrices with varying module size. Panels (a,c) show modules of increasing size for m = 3
and m = 5, respectively; for comparison, panels (b,d) illustrate m = 3 modules of constant size. Panel
(e) shows S versus size N for modules of increasing size, compared with the case of constant size for
two distinct t. The corresponding occupancy is indicated with lines.

5.2. Compound Models with Nested Modules

The final model that we consider is the combination of two topologies. This model is hierarchical:
a modular structure whose modules are internally nested. This compound topology is of special
interest because it accords with common features of ecological and evolutionary scenarios [26,38,39].
To examine mutual information in these compound models, as before we set up square matrices with
m internally nested modules. This case is show in Figure 8b for the particular case of m = 4. Because
of matrix symmetry, NX = NY = N and H(X) = H(Y). Each isometric module has N

m = t species, and
the total number of interactions in each module is given by Km:

Km =
t

∑
i=1

i =
t (t + 1)

2
(29)

The total number of interactions in the networks is NM = m Km. The entropy of the matrix rows
(or columns) is computed summing the entropies over the m modules:

H(X) = −m
t

∑
i=1

i
NM

log
i

NM
=

t

∑
i=1

i
NM

(log NM − log i) (30)
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Using the hyperfactorial function Ĥyp(x), introduced in the previous section, we have a closed
form for the Equation (30) entropy:

H(X) = m
(

Km log NM −
1

NM
log Hyp (t)

)
(31)

The normalized mutual information, Equation (5), is then:

S =
2H(X)− log NM

log NM
(32)

Equation (32) presents the analytical solution for mutual information in matrices with internally
nested modules. To compare these with simple modular matrices (Section 4.2), we set a common size
(N = 120) for the square matrices, and a similar occupancy, for both topologies; compare Figure 8a
with b, and c with d. In Figure 8e, mutual information is plotted against occupancy which, as seen
before, is an inverse function of number of modules (Equation (17)).

As Figure 8e shows, compound matrices have smaller values of normalized mutual information
S than the corresponding simple modular matrices. This result is in agreement with the difference
between uniform, Section 3.1 and nested networks seen in Section 4.1. In fact, both plots, Figure 8e
and Figure 4e, indicate the same result: nested patterns have less reciprocal information than matrices
with uniform link distributions.
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Figure 8. Examples of two simple modular matrices (a,c) and two compound matrices (b,d) with similar
parameters. Plot (e) shows mutual information for various levels of occupancy in these two topologies.
Mutual information of simple modules calculated with Equation (16), of compound matrices with
Equation (32). Note that, for any given ρ, matrices with compound topology have smaller S than their
simple modular counterparts.

6. Does Mutual Information Vary with Topology?

The results of the previous sections suggest that mutual information is sensitive to network
topology. However, is this sensitivity to topology due solely to the effects of lower-order network
properties [27] on MI? How does MI change if we alter the matrix topology while holding size,
occupancy and degree distribution constant ?

To address this question we set up a square matrix, N = 15, composed of equally sized square
nested modules, t = 5 and m = 3 as in Figure 9a. We then apply sequential swaps [40] on this matrix
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(Figure 9b–d) altering its structure while holding its occupancy and its degree-distribution constant.
As shown in Figure 9e, the swaps decrease both network modularity (which is disrupted within circa
10 swaps, Figure 9c), and nestedness. However, mutual information is completely unaffected.

This is a robust demonstration that, for a given set of lower-order network parameters [27],
mutual information is completely insensitive to changes in topology. Since mutual information is
closely connected to specialization, this conclusion has profound implications for the relationship
between specialization and topology. The degree of specialization of a network sets the space of
topologies possible for that network, and, conversely, any topology within this space is bound to that
level of specialization. No variation in topology is possible at both extremes, either MI = 1 (maximum
specialization) and MI = 0 (minimum specialization). Variation in topology is possible along the
continuum 0 < MI < 1, with maximal freedom at MI = 0.5.

Figure 9. A compound matrix with identical internally nested modules (a) whose topology is disrupted
by sequential swaps, (b–d). Panel (e) shows the effect of the swap sequence on normalized mutual
information (S), modularity, measured according to [41], and nestedness, measured by NODF [42].
Whereas both components of the compound pattern are disrupted by swapping, mutual information
remains constant.

7. Discussion and Conclusions

The chief goal of this study was to assess the suitability of mutual information as the basis
for a general measure of reciprocal correspondence in a bipartite set of interacting entities, notably
biological species. On theoretical grounds, MI is arguably the simplest and most general way of
representing such correspondence (Figure 1). However, several variables that set the structure of
interactive matrices can potentially alter MI. Since we seek a metric applicable to interactive matrices
of any kind, irrespective of their topologies and dimensions, sensitivity to structural differences would
compromise the wide-ranging comparisons for which the metric is intended. In this respect, the
present study differs from most explorations of metrics of interactive matrices, whose goal is to find
descriptors indicative of particular topologies and patterns [34,42,43].

We set up a sequence of matrix models starting from the simplest ones in which we examined
effects of various parameters on MI, providing analytical formulations whenever feasible for square
and non-square matrices. We then inspected how MI behaves in the most commonly investigated
topologies: nested or modular networks, and their combinations. Normalized mutual information is
inversely correlated with matrix occupancy and with matrix size, as set by its formula (Figure 2). This
relationship holds for matrices with uniform as well as random marginal distributions, although the
actual values of S diverge in smaller matrices (Figure 3).

In nested interactive matrices, MI changes with occupancy as do simple non-structured matrices.
This is shown in Figure 4, which also demonstrates that fully packed nested matrices have lower values
of S than same-sized matrices with uniform degree distributions. This difference diminishes of course
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in saturated matrices. As in all interactive systems when ρ→ 1, S→ 0. In a community composed only
of generalists, uncertainty on partnerships or associate species is maximal and reciprocal information
is null.

Modular networks have a two-tiered structure, so that their topologies require at least one
additional parameter. Using again the simplest possible model as starting point, we examined how
module size and number affect MI. With isometric modules in a square matrix of a given size, MI is
inversely correlated with the number of modules (Figure 5), which, in turn are inversely correlated
with module size. In Figure 5a–d, we illustrate that occupancy increases as fewer and larger modules
fill the interaction matrix. As seen in Figure 5e, MI is inversely related to occupancy. Hence, occupancy,
given the network dimensions, arises as the key determinant of MI, irrespective of network topologies.

The choice of MI as a fundamental descriptor reflects our focus on interaction diversity. Most of
the effort in modeling and parametrizing diversity and its components to date has been concerned with
measuring species assemblages of a given taxon, such as birds or flowering plants. There are formal
parallels between assessing entropy within bipartite networks and within the distribution of species
over geographical space, especially when these are scored in discrete units such as islands or disjunct
sampling sites. However, similar computation should not obscure essential differences. Processes
which give rise to structure are very distinct in interactive networks as compared to biogeographical
assemblages. Biotic assemblages adjust to, but do not essentially modify, the geographic units in
which they exist. By contrast, interactions between two sets of species are organized according to
the interaction modality, and derive from evolutionary and ecological processes which modify both
species sets, each of which can have major effects on the other [44].

Entropy measures are also applied in vegetation ecology. As in interaction networks, in this case
the distribution of plant species in vegetation units is a problem of reciprocal information, expressed
as mutual information [43]. Nevertheless, the classification of plant communities is largely based on
species composition; hence mutual information can only be used to compare classifications erected by
researchers, presuming that more effective classifications will have higher mutual information.

The measurement of structure in interactive networks is closest to studies which address
specialization, either one-way or reciprocal [34,45]. Specialization is a key process as well as a central
component of interactive communities, both trophic and non-trophic [18,46,47]. By no coincidence, a
widely-used measure of specialization, Blüthgen’s H′2 [34] is based on the Kullback–Leibler distance
and its derivation is similar to our rationale. However, H′2 is distinguished by its denominator: realized
interactions are normalized by the potential range of H2 values given the matrix dimensions, whereas
we normalize mutual information as a fraction of total matrix entropy. This reflects the different goals
of these metrics. Blüthgen’s H′2 is intended to assess and compare specialization in communities that
vary in their network topology and in other ecological attributes. In turn, we propose to compare the
structure of interactive networks of any kind, regardless of their specific topologies. Scaling reciprocal
information by total matrix entropy seems both conceptually and practically more appropriate to the
latter goal.

The simple models that were examined in this paper, both analytically and through Monte Carlo
procedures, help to elucidate the relationships of network dimensions and topologies and with mutual
information as mediated by specialization. Neither modularity, nestedness or any other topological
descriptor are direct measures of specialization. Instead, they describe how interactions are structured
within a network that has a given degree of specialization (Figure 9). In this respect, a noteworthy
result is the robustness of mutual information to compound as well as simple topologies. This is
convincingly demonstrated by its invariance at any level of topology-destroying swaps (Figure 9).

In actual networks, sampling effects require consideration. Further sampling may add unrecorded
species and/or interactions. Novel species are likely to be associated with a single partner, therefore
increasing mutual information. Conversely, a novel interaction between previously recorded species
will decrease mutual information. Thus, the effect of additional sampling on perceived network
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structure depends on whether interactions accumulate at a higher rate than collector’s curves for the
interacting species in the assemblage.

Local bipartite interactive networks may be extended profitably in several ways, some of which
we highlight here for further work. First, the orthogonal extension of a local interaction network over
space (or time); three-dimensional interaction matrices include three two-way and one three-way
mutual information components [43]. This richer model allows assessing whether, and how, MI shifts
across space or, in other terms, whether it is invariant among local communities despite eventual
spatial turnover of species. This can be assessed by comparing accumulation curves for species and for
interactions among localities, as noted in the preceding paragraph.

Second, mutual information deserves investigation in multitrophic systems, starting with
tritrophic models that overlay two interactive interfaces (such as plants, herbivores and predators
or parasites). These are especially promising to explore whether mutual information matches or
shifts noticeably between these interfaces. Alternatively, one set of species may interact in different
modes with two other sets; for instance, plants with pollinators and with herbivores. Here, mutual
information will be compared between two networks with one partner set in common. Different
interaction modes, particularly mutualistic and antagonistic ones, have been contrasted in comparative
analyses, searching especially for differences in specialization and topologies (e.g., [28]). However, few
if any studies have investigated interactive networks with a shared species set. These are prime items
in an agenda for promising developments of this growing field of ecological research.
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Appendix A. The Hyperfactorial Function

The factorial n! of a natural number n, is the product of all the integers up to n:

n! = 1.2.3....n =
n

∏
i=1

i (A1)

The factorial function is closely related to the sum of logarithm of integers. In fact, since the
logarithm of a product of two numbers is equal to the sum of their logarithms,

n

∑
i=1

log i = log

(
n

∏
i=1

i

)
= log n! (A2)

Moreover, to compute the entropy of a nested matrix (Section 4.1), we obtain:

n

∑
i=1

i log i =
n

∑
i=1

log ii = log

(
n

∏
i=1

ii

)
(A3)

In the above equation we arrive at the hyperfactorial function Hyp(n) defined as:

Hyp(n) =
n

∏
i=1

ii = 112233 ... nn (A4)
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In addition, the computation of the entropy of a modular matrix with increasing modules
(Section 5.1) results in:

n

∑
i=1

i2 log i =
n

∑
i=1

log ii2 = log

(
n

∏
i=1

ii2
)

(A5)

We designate this new function the hyperfactorial squared function, Ĥyp(n), which is given by:

Ĥyp(n) =
n

∏
i=1

ii2 (A6)
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