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Abstract: Many health systems over the world have collapsed due to limited capacity and a 
dramatic increase of suspected COVID-19 cases. What has emerged is the need for finding an 
efficient, quick and accurate method to mitigate the overloading of radiologists’ efforts to diagnose 
the suspected cases. This study presents the combination of deep learning of extracted features with 
the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, 
pneumonia and healthy computed tomography (CT) lung scans. In this study, pre-processing is 
used to reduce the effect of intensity variations between CT slices. Then histogram thresholding is 
used to isolate the background of the CT lung scan. Each CT lung scan undergoes a feature 
extraction which involves deep learning and a Q-deformed entropy algorithm. The obtained 
features are classified using a long short-term memory (LSTM) neural network classifier. 
Subsequently, combining all extracted features significantly improves the performance of the LSTM 
network to precisely discriminate between COVID-19, pneumonia and healthy cases. The maximum 
achieved accuracy for classifying the collected dataset comprising 321 patients is 99.68%. 

Keywords: deep learning; CT scans of lungs; fractional calculus; Q—deformed entropy; features 
extraction; LSTM network 

 

1. Introduction 

COVID-19 has been spreading rapidly into different countries in the world until it was classified 
as a pandemic by the World Health Organization (WHO). The first WHO report of confirmed cases 
of COVID-19 was released on 21 January 2020, with a total of 282 confirmed cases, which is 
comparable with the most recent report on 18 March 2020, which reached 191,127 confirmed cases. 
Due to this crisis, computer-aided detection/diagnosis must be employed to help radiologists in the 
diagnosis process to mitigate the overcapacity of a large number of COVID-19 patients. There are 
three common methods to diagnose COVID-19, which are blood test, X-ray, and computed 
tomography (CT) scan [1,2]. Among many medical imaging technologies, CT is a non-invasive 
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technology, that has been chosen since it is regarded as a promising technique for advanced internal 
porosity detection and characterization [3]. According to Zonneveld [4], CT technology plays an 
important role in diagnostic medicine, image-guided intervention, and the assessment of therapeutic 
and surgical outcomes. Progress in CT technology and its applications continues to result in 
increasing image quality, decreasing acquisition times and dramatically expanding the clinical 
applications of modern CT [5]. Moreover, CT scan diagnosis is sometimes more accurate than a blood 
test such as CRP (C-Reactive Protein Level) [6]. As mentioned in [6], one of the cases had been tested 
twice negative with the CRP test while it had been diagnosed positive with a CT scan and the third 
test of CRP had been reported positive; which shows that CT images can be more accurate than blood 
tests. The CT scanner emits X-ray radiation from different angles toward the patient, and there are a 
set of detectors that are used to measure the density of the imaged tissue by calculating the difference 
between the absorbed X-rays by the patient body and the X-rays transmitted through the patient 
body. High-density tissue appears when the tissue absorbs the radiation to a greater amount, such as 
bones, while low-density tissue appears when the tissue absorbs the radiation in a lower amount, 
such as lungs. Therefore, discriminating boundaries between some tissues and organs or between 
healthy from pathological tissue within the same organ is quite challenging [5,7]. 

The X-ray imaging technique can be used as well as a standalone technique to diagnosis COVID-
19, but because of low accuracy of the obtained results such as [8] where they get around 30% of false 
positive rate while [9] had 92.6% accuracy and 87.1% sensitivity which are not quite reliable enough 
to be considered as main diagnostic approaches. 

Although the CT is considered as an active way for initial screening and diagnosis of COVID-
19, it may share certain similar texture features between COVID-19 and pneumonia, resulting in 
making them difficult to be differentiated as shown in Figure 1 [10]. 

  
(a) (b) 

Figure 1. Computed tomography (CT) slices of lung in axial view: (a) infected lung with COVID-19, 
and (b) infected lung with pneumonia. 

In this study, the efficacy of convolutional neural networks (CNNs) and the proposed Q-
deformed entropy are exploited for discriminating COVID-19 coronavirus, pneumonia and healthy 
CT lung scan. The long short-term memory (LSTM) network is considered as an extension type of 
artificial recurrent neural networks which is used as the classifier. The rest of the study is organized 
as follows: some recent previous work is demonstrated in Section 2. In Section 3, we present the 
proposed model. The experimentation results are presented in Section 4, and finally, Section 5 
presents the conclusion and future work. 

2. Related Work 

The development of an automated system for classification of CT scans of the lung remains 
challenging due to the complexity of diagnosing infectious and inflammatory lung diseases in a 
visual examination. Although a visual examination is an acceptable standard, it is prone to errors that 
come from the massive number of patients that need to be diagnosed. Wang et al. [11] proposed an 
automated method based on using a CNN to identify the unique features of COVID-19 to provide a 
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clinical diagnosis of the pathogenic test. The achieved accuracy of the dataset that is comprised of 217 
cases, was 82.9%. Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang and Song [10] proposed a fully 
automated framework based on using a CNN as a feature extractor to detect COVID-19 and 
discriminate it from pneumonia and non-pneumonia diseases. The overall accuracy to detect the 
COVID-19 cases of the dataset comprised of 400 CT scans, was 96%. Xu et al. [12] proposed an 
automated screening model based on deep learning techniques to discriminate CT cases that were 
infected by COVID-19 or influenza-A viral pneumonia from those cases for patients who had healthy 
lungs. The experimentation result revealed that the overall achieved accuracy of classifying the 
dataset comprised of 618 CT scans of the lung, was 86.7%. Song, et al. [13] developed an automated 
deep learning diagnosis system to help clinicians detect and recognize the patients who are infected 
by COVID-19. The collected dataset included 88, 86 and 100 CT scans of COVID-19, healthy and 
bacterial pneumonia cases, respectively. The proposed model is capable of classifying COVID-19 and 
bacterial pneumonia infected cases with an accuracy of 95%. 

The existing classification models show some limitations in terms of feature extraction 
complexity. Feature extraction algorithms have an important role in catching the important changes 
in the spatial distribution of image pixels. Recently, fractional calculus and its applications were 
employed in different applications of sciences [14–16]. In this study, we develop a new handcrafted 
texture descriptor based on the Q-deformed entropy for image classification tasks, which is 
considered as one of the contributions of this study [14–16]. 

The existing models for lung CT scan classification rely on deep learning alone for feature 
extraction. Therefore, combining the handcrafted and deep learning features will further improve the 
performance of classification between COVID-19, pneumonia and healthy cases. 

The motivation for this study is to propose an efficient classification of COVID-19 coronavirus, 
pneumonia and healthy lungs in CT scans using the combination of deep learning and Q-deformed 
entropy image features. Our contributions can be summarized as follows: 

1) By achieving efficient classification results under limited computational resources with the use 
of fewer parameters on the collected 321 chest CT scans, we have shown that the proposed 
approach could effectively improve the performance of classifying lungs in CT scans. 

2) The new proposed Q-deformed entropy features which are used as new texture extracted 
features for image classification tasks. 

3) The proposed nine layers fully convolutional network architecture which is used to extract the 
deep features from lungs’ CT scans. 

3. Materials and Methods 

This study aimed to improve the diagnosis process by reducing the erroneous diagnostic 
interpretation of CT lung scans and assist the clinicians to quickly discriminate patients who are 
infected by COVID-19 or pneumonia, as well as helping clinicians ignore CT lung scans of healthy 
patients. The proposed system comprises four main stages: CT images preprocessing, deep and 
handcrafted feature extraction, feature selection and finally LSTM network is used to classify these 
selected features into three categories (COVID-19, pneumonia and healthy) as shown in Figure 2. 

 
Figure 2. Block diagram of the proposed model. Note: Long short-term memory (LSTM). 
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3.1. Data Collection 

A total number of 321 chest CT scans were used in this study, including 118 CT scans of infected 
COVID-19 patients, 96 CT scans of infected pneumonia patients and 107 CT scans of healthy people 
without any detectable chest infection were collected from Radiopaedia and the cancer imaging 
archive (TCIA) websites [17,18]. The former is an international collaborative radiology educational 
web resource that provides reference articles, radiology images and patients’ cases freely, and the 
latter includes open-access datasets for a large archive of medical images for public download. The 
site is sponsored by the National Cancer Institute (NCI) Cancer Imaging Program, and the University 
of Chicago. The healthy CT scans were collected from people who have pathologies in one lung, and 
another is labelled as normal. 

3.2. CT Lung Scan Preprocessing 

The different types of CT artefacts that come from the image reconstruction process is based on 
collecting a million independent detector measurements. Any error that may occur in these 
measurements will affect the scan and result in intensity variations between the consecutive slices of 
the reconstructed CT scan [19], therefore, prior to extracting handcrafted and deep features, a set of 
image processes are used to normalize the intensity and reduce the effect of intensity variations 
between CT slices [20–22], and also will speed up the CNN training and improve classification 
performances. In addition, these processes help to identify the boundaries of a lung from its 
surrounding thoracic tissue in an axial view of a CT scan as it contains a high number of insignificant 
pixels [23]. Histogram thresholding was used to isolate the background of a CT lung scan by 
thresholding the intensity values by the mean value of each CT slice individually. Subsequently, a set 
of morphological operations such as dilation and hole filling are implemented to remove any hole 
appearing in the segmented image [23–25]. Then the deficiencies of the segmentation process are 
overcome by removing all small connected objects. Consequently, a binary mask with ones 
representing the lung, and zeros representing the background, is multiplied with the original CT lung 
scan to extract only the effective pulmonary regions [12]. The pseudo-code for the preprocessing of 
CT lung scan steps is shown in Algorithm 1. Figure 3 displays a sample of how a CT lung slice is 
segmented. 

Algorithm 1: Pseudo-code for CT lung scans preprocessing.  
Input: Input image I(n,m) 
Output: Output image K(n,m) 
begin 
Adjust image intensity values 
Convert the image into a binary image(B)  
   For all I pixels: 
           IF the grayscale value < the image Mean,  
           THEN, the pixel value=0 
           ELSE the pixel grayscale value=255 
           End IF 
    End For 
Remove small objects from binary image, and Fill image regions and holes 
Produce the output image(K) 
For each Input image I do  
          For i=1 to n do  
               For j=1 to m do 
                    Multiply each element in I(i,j)  by the corresponding element  
                    in B(i,j) and return the output image(K) 
               End For 
          End For             
End For 



Entropy 2020, 22, 517 5 of 15 

 

 
(a) (b) 

Figure 3. An example of lung boundary identification: (a) original CT slice, and (b) segmented CT slice. 

3.3. Q-Deformed Entropy Feature Extraction (QDE) 

Texture feature is an important aspect in many medical image analyses which provides a 
significant advantage in medical image classification. The concept of entropy has been generalized 
and applied in many scientific disciplines [26]. The entropy-based algorithms are the most significant 
feature extraction methods which are capable of detecting the image’s small changes in intensity 
values, as well as sharpening the texture details [27]. 

Inspired by the deformation theory in q-calculus, which has been explored intensively in several 
physical disciplines, we propose the QDE feature extraction model for extracting the texture features 
from CT scans. 

Deformation theory is the investigation of accurate settings which are connected with 
changeable solutions. The accurate settings are, therefore, the consequence of employing the method 
of fractional differential calculus to resolve a problem with restraints. Quantum calculus, named 
calculus without limits at times, corresponds to traditional accurate calculus, without the concept of 
limits. Quantum calculus defines “q-calculus” as shown in Equation (1):  ∆ 𝐼(𝑥) = 𝐼(𝑞𝑥) − 𝐼(𝑋)(𝑞 − 1)𝑥  , (1) 

where I is a function and x indicates the variable. 
The q-logarithm deformation is given by Equation (2) [28]: 

𝑙𝑛  (𝑥) =  ⎩⎨
⎧ ln(𝑥)                  𝑞 = 1, 𝑥 > 0𝑥 − 11 − 𝑞                𝑞 ≠ 1, 𝑥 > 0     .𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                         𝑥 ≤ 0               (2) 

The Box–Muller transform is a process used to modify many recent concepts such as entropy 
and probability density functions. Equation (2) implies the generalized q-deform Box–Muller 
transform as shown in Equation (3): 

𝐵𝑀  (𝑥) =  −2𝑙𝑛  (𝑥) = (−2) 𝑥 − 11 − 𝑞  =  (−2) 𝑥 ( ) − 11 − (1 + 𝑞3 − 𝑞)   , (3) 

where 𝑞 =  , 𝑞 ≠ 3. 

To apply the QDE for image texture feature extraction, we will consider the value of the pixel as 
a positive number, therefore, to avoid complex numbers, we use the radius (|q|). Hence, by solving 
Equation (3) for |q|, taking into account the positive value of x, we have |q|< 3. 

The suggested technique computes the above 𝑞-BM based on occurrence information of the 
effort image, which provides a consistency asset to investigate its construction. The improvement of 
the 𝑞-BM fractional function is that it is sensitive to non-textured sections (with low occurrence). 
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Moreover, it improves any variations in texture specifics in the sections, where pixel standards are 
shifting sharply (high occurrence). 

We proceed to define the QDE by applying Equation (4). Entropy is designed in two behaviours; 
the first is the entropy transformation (ΔE) to a scheme (image) covering a sub-scheme. The second 
computes the absolute entropy (E) of the image based on its individual pixels. Roughly, it gives the 
probability of the image’s organism in that state. In this situation, it efficiently describes entropy 
independently from its properties due to changes, which may involve energies. In addition, it 
contains logical situations such as information of the image (see [29]). Following the above treatment, 
we utilize the entropy transformation (ΔE) as follows in Equation (4): 

(𝛥𝐸) (𝑥) =   𝐵𝑀  𝑝(𝑥)𝐿  =  
(−2) 𝑝 (𝑥) − 11 − 1 + 𝑞3 − 𝑞   ,

∑ 𝑝 (𝑥)  

(4) 

where 0 < q < 3, L indicates the localized change of the image (L is usually referred to as an energy of 
the image, which represents the difference between the lightness and the darkness in the grey images 
and the difference in colours in coloured images in the suggested domain). The formula of L was 
determined by the probability of the pixel as well as the BMq. Equation (4) designates that the 
transformation is flexible because it displays a comparative association between entropy and the 
energy movement, in the image. 

The proposed QDE depends on the image detail, and on the grey level’s intensity which is 
characterized by the texture property of the image. 

For our proposed QDE texture extraction, we first divide the CT lung image into non-
overlapping blocks with size m x m pixels, then the QDE for each block is computed. In total, 16 QDE 
features are extracted from each CT lung image. The pseudo-code for the proposed QDE is described 
in Algorithm 2. 

Algorithm 2: Pseudo-code for the proposed Q-deformed entropy feature extraction (QDE) 
algorithm.  

Initialization: I=Input image, 0<q<3 
For each Input image I do  
         (b1, b2, …, bn)←divide I into n blocks of size m x m pixels 
         For i=1 to n do  
                QDE in Eq. (5), where i denotes the ith block of m x m  
                dimension   
         End For 
         QDE ← I=(1,2,…n) // QDE Features of all (n) blocks 
End For 

3.4. Deep Learning for Feature Extraction 

The deep learning method has been proven to be suitable as a feature extractor in many 
computer vision systems that can be used to enhance the classification accuracies. Although the 
handcrafted feature extraction method has been verified to be sufficient for classification tasks, their 
performances based on expert knowledge reflect limited aspects of the problem. To extract more 
efficient features, we further use the CNN method to learn a feature extraction model which has 
proven to be a powerful method in many computer vision systems. By combining the deep learning 
and handcrafted image features, the classification accuracy has been enhanced. 

The convolutional neural network (CNN) is an adapted version of the traditional neural network 
architecture, comprised of three layers; convolutional, pooling and fully-connected layers [25,30]. 
Each convolutional layer includes a set of kernels or also named convolutional filters (Cf), that are 
responsible for determining a tensor of feature maps; these kernels convolve the input volume 
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entirely by moving with a certain amount named “stride(s)” which is chosen in such a way that makes 
the output volume dimensions as integers [25,31]. Due to the striding process, the spatial dimensions 
of the input volume shrink dramatically after each convolutional layer. Therefore, to preserve the 
original input volume and low level of features, zero-padding is needed to pad the input volume 
with zeros [25,32]. Then, all negative numbers in the feature maps are set to zero through the rectified 
linear unit (ReLU) layer, which is used to increase the nonlinearity of the feature maps. Subsequently, 
pooling layers are used to reduce the dimensionality by partitioning the feature maps into small non-
overlapped regions [25,33]. In this study, the max pooling function is used for dimensionality 
reduction in the pooling layer of CNN. Thereafter, the batch normalization layer is used to accelerate 
the training process and regulate the CNN, by normalizing the feature maps. Finally, the normalized 
feature maps are fed to the fully connected layer (FC) which represents the most important layer in 
the CNN. The fully connected layer is used as a classifier to derive the final decision and to give the 
final probability for each label [25,30,31]. 

The CNN has verified to be a powerful approach for feature extraction, but it still has the over-
fitting problem, due to a huge number of the network’s parameters that need to be trained. Therefore, 
we used a few convolution layers in order to minimize the over-fitting by reducing the CNN 
architecture complexity.  

The main objective of the CNN is to extract the high-level features for a specific task. Therefore, 
it is necessary to know how the network is architected, the number and size of convolutional layers, 
how these layers are connected and how the CT slices are fed to the network. In this study, to avoid 
the computation complexity of CNN, the dimensions of CT slices are resized to 256 × 256 pixels. The 
size of convolutional layers and the number of zero-padding (ZP) are determined for a given CT slice 
by using Equations (5)–(8), as shown in the following [25,34,35]: 𝐶𝑜𝑛𝑣 = 𝐶𝑇𝑆𝑙𝑖𝑐𝑒 − 𝐶𝑓 + (2 × 𝑍𝑃 )𝑆 + 1  ,   (5) 

𝐶𝑜𝑛𝑣 = 𝐶𝑇𝑆𝑙𝑖𝑐𝑒 − 𝐶𝑓 + (2 × 𝑍𝑃 )𝑆 + 1 ,    (6) 

𝑍𝑃 = 𝐶𝑓 − 12  , and         (7) 

𝑍𝑃 = 𝐶𝑓 − 12   .  (8) 

The proposed CNN architecture with a given input CT slice of 256 × 256 pixels is shown in Figure 
4: 

i- 𝐶𝑜𝑛𝑣  (filters of size 3 × 3, stride of 1, padding of 1, and kernels of 16) are applied: 𝐶𝑜𝑛𝑣 , = 256 − 3 + (2 × 1)1 + 1 = 256 . 
For the feature maps, we have 256 × 256 × 16 = 1,048,576 neurons. 

ii- 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔  is equal to the previous feature maps divided by the stride number: 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = 2562 = 128 . 
For the feature maps, we have 128 × 128 × 16 = 262,144 neurons in the feature map of the first 

max pooling layer. 
iii- 𝐶𝑜𝑛𝑣  (filters of size 5 × 5, a stride of 1, padding of 2 and kernels of 32) are applied: 𝐶𝑜𝑛𝑣 , = 128 − 5 + (2 × 2)1 + 1 = 128. 

For the feature maps, there are 128 × 128 × 32 = 524,288 neurons. 
iv- 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔  is equal to the previous feature maps divided by the stride number: 
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𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = 1282 = 64. 
For the feature maps, we have 64 × 64 × 32 = 131,072 neurons. 

v- 𝐶𝑜𝑛𝑣  (filters of size 5 × 5, a stride of 1, padding of 2 and kernels of 64) are applied: 𝐶𝑜𝑛𝑣 , = 64 − 5 + (2 × 2)1 + 1 = 64. 
For the feature maps, we have 64 × 64 × 64 = 262,144 neurons in the feature map of the third 

convolution layer. 
vi- 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔  is equal to the previous feature maps divided by the stride number: 𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = 642 = 32. 

For the feature maps, we have 32 × 32 × 64 = 65,536 neurons. 
vii- 𝐶𝑜𝑛𝑣  (convolutional filters of size 7 × 7, a stride of 1, padding of 3 and kernels of 128) are 

applied: 𝐶𝑜𝑛𝑣 , = 32 − 7 + (2 × 3)1 + 1 = 32. 
For the feature maps, we have 32 × 32 × 128 = 131,072 neurons. 

viii- The fully connected (FC) layer determines the class scores by combining all features which are 
produced and learned by the previous layers to produce a feature map of size 1 × 1 × 3, that is 
equal to the number of classes in the dataset. The input size of the FC layer is equal to 131,072 
that is produced by 𝐶𝑜𝑛𝑣 . 

 
Figure 4. Architecture of the convolutional neural network (CNN) as a feature extractor with four 
convolutional layers, three pooling layers and one fully connected layer. 

Then the QDE features and deep features are combined and refined by employing the analysis 
of variance (ANOVA) method. ANOVA is an efficient statistical method, used for eliminating and 
ignoring the irrelevant and redundant features in the feature vector. It assesses features by 
determining both an F-statistic value and a p-value. The F-statistic is a ratio of between-class variance 
to within-class variance, while the P-value is the probability of the test statistic being at least equal to 
or less than the critical value of the test (5% or 1%). ANOVA was explained in details in [36]. 

3.5. LSTM Neural Network Classifier 

LSTM is a powerful artificial neural network, proposed by Hochreiter and Schmidhuber in the 
middle of the 1990s to address the substantial limitation of artificial neural networks when dealing 
with sequences of data. It is a type of recurrent neural network (RNN) which can learn and remember 
input data through the use of gates. These gates are used to regulate the information within the 
network by discarding information from previous steps that results in the loss of important 
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information in the next steps [37,38]. The LSTM is composed of a cell state, input and forget and 
output gates as shown in Figure 5, where, xt is the current input, Ct and Ct−1 denote the new updated 
cell state and cell state from last LSTM unit, respectively, ht and ht−1 represent the current output and 
the output of the last LSTM unit, respectively [37]. The forget gate uses the previous LSTM’s output 
ht-1 and the current input xt to produce a vector of numbers, ranging from 0 to 1, corresponding to 
each value in Ct-1 to decide which information should be kept and which should be discarded from 
Ct−1. The forget gate is given by [39]: 𝑓𝑡 = 𝜎 𝑊𝑓 ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑓  ,   (9) 

where, σ denotes the sigmoid function, Wf and bf are the weighted matrices, and the bias of the forget 
gate of LSTM, respectively. 

While the input gate of LSTM uses the sigmoid function and tanh function respectively to decide 
which values in the current input xt and the output of the previous LSTM ht−1 are important and allow 
them to pass to the next gate after normalizing them into a new range between −1 and 1 to regulate 
the LSTM network by using Equations (10)–(12), as shown in the following [40]: 𝑀 = 𝜎(𝑊 ℎ , 𝑥 + 𝑏 ),  (10) 𝑁 = 𝑡𝑎𝑛ℎ(𝑊 ℎ , 𝑥 + 𝑏 ) and   (11) 𝑖 = 𝑁  𝑀  ,          (12) 

where, Mt and Nt are the outputs of the sigmoid function and the tanh function, respectively. Wi and 
bi are the weighted matrices and the bias of the input gate of LSTM, respectively. Then, the previous 
cell state Ct-1 is updated by multiplying it with the forget gate output to drop values in the cell state 
if the corresponding values in the forget gate output are close to 0 as given in Equation (13) [32,37]. 

 
Figure 5. The structure of Long short-term memory (LSTM). 

𝐶 = 𝐶  𝑓  ,   (13) 

where, Ct is the current cell state of LSTM network. 
Then, the current cell Ct is updated by adding the output of the input gate, as given in Equation 

(14) [22]: 𝐶 = 𝐶 + 𝑖  . (14) 

Finally, the output gate determines the new output values based on multiplying the new 
updated cell state Ct after passing through a tanh function and the previous output ht−1 after passing 
through a sigmoid function, as given in Equation (15) and Equation (16): 𝑂 = 𝜎(𝑊 ℎ , 𝑥 + 𝑏 ), (15) ℎ = 𝑂 𝑡𝑎𝑛ℎ(𝐶 ) ,   (16) 

where, 𝑊  and 𝑏  are the weighted matrices and the bias of the output gate of LSTM, respectively. 
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Consequently, the information that is relevant to be kept from the previous LSTMs units is 
decided by the forget gate. The information that is relevant to be added from the current LSTM 
network is decided by the input gate. The next output is determined by the output gate. 

The LSTM was improved by the bidirectional LSTM network (BiLSTM), where, it trains two 
LSTM layers instead of one; one works in a forward direction of the input sequence and the second 
works in a backward direction of the input sequence. This can improve and accelerate the network 
performance in classifying sequential data [32,37]. 

In this study, the LSTM network contains seven layers; sequence input with 14 dimensions that 
come from combining the QDE and DF features. 

4. Experimental Results 

Experimentally, there are 16 features, extracted from each CT lung image, coming from 
combining the features that are extracted by QDE and CNN methods. Definitely not all the extracted 
features are significant, and high dimensionality of a feature vector can negatively affect the 
classification accuracy [41]. ANOVA is applied to measure t the extracted features, where the number 
of features is reduced from 19 to 14 significant predictors. 

Contrast-enhancement CT scan axial viewing is preferred for the clinicians to diagnose lung 
disease. Therefore, it is used in this study due to being highly sensitive to COVID-19 and pneumonia 
infections. The collected dataset is adopted to evaluate the proposed method. During the training 
scenario of CNN and LSTM networks, 70% of CT scans are used for the training phase, and the 
remaining 30% of the CT scans are used to assess the final classification performance. Figure 6 shows 
a sample of the CT lung images of normal, COVID-19 and pneumonia infected patients from the 
collected dataset. 

   
(a) (b) (c) 

Figure 6. CT scans of the lung from the collected dataset: (a) healthy lung, (b) COVID-19 infection and 
(c) pneumonia infection. 

The optimum number of convolutional layers, neurons, pooling layers, learning rate and a 
kernel size of CNN were determined experimentally. The proposed CNN consists of nine layers as 
summarized in Table 1, and trained with the following parameters that are set experimentally: the 
momentums are 0.9 with a learning rate of 0.0001, the maximum number of epochs is 20 with the 
minimum batch size of 128, and the maximum iteration number is 500. The code was developed using 
MATLAB 2019b. 
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Table 1. The proposed model of CNN (convolutional neural network). 

Layer Name Kernel Size Feature Map 
Input layer (256 × 256)  

Conv1 (3 × 3) (256 × 256 × 16) 
Max. Pooling1 (2 × 2) (128 × 128 × 16) 

Conv2 (5 × 5) (128 × 128 × 32) 
Max. Pooling2 (2 × 2) (64 × 64 × 32) 

Conv3 (5 × 5) (64 × 64 × 64) 
Max. Pooling3 (2 × 2) (32 × 32 × 64) 

Conv4 (7 × 7) (32 × 32 × 128) 
FC (1 × 3) (1 × 3) 

Figure 7 shows the weights learned at the four convolutional layers of CNN in an image form. 
Figure 8 shows how the training process with the number of iterations. This denotes that the 
proposed architecture of CNN has a good performance in extracting deep features (DF) from CT 
scans of lungs. The performance of the combined features (QDE–DF) is evaluated by comparing the 
true positive (TP) values of the three groups with the performance of each method (QDE and DF) 
when using them individually as demonstrated in Table 2. 

 
Figure 7. The images of learned weights of the CNN layers: (A) Conv1 (1 × 16), (B) Conv2 (1 × 32), (C) 
Conv3 (1 × 46), and (D) Conv4 (1 × 128). 

 
Figure 8. The training process of the proposed CNN. 

Table 2. Comparisons of QDE (Q-deformed entropy), deep features (DF) and the proposed QDE–DF 
using LSTM (long short-term memory). 

Method Accuracy 100% TP 100% COVID-19 TP 100% Healthy TP 100% Pneumonia 
QDE 97.50 95.70 100 96.80 
DF 98 97.40 100 96.80 

QDE–DF 99.68 100 100 98.90 
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The first row of Table 2 shows that the lowest classification accuracy result was 97.50%, which 
was obtained by using the QDE method (handcrafted) image features which proves that the proposed 
QDE has efficiently encoded the CT scan texture information. The second row of Table 2 illustrates 
98% classification accuracy using the DF image features. However, using the combination of QDE 
method (handcrafted) and deep features (DF) has further increased the classification accuracy to up 
to 99.68%. As indicated by these experimentation results, the classification accuracy produced by the 
combination of QDE–DF is slightly higher than that produced without the features’ combination. 
However, the combination of feature vectors has increased the dimensionality of the final image 
features. 

In detail, we extract a 14-component feature vector by using the QDE method and a 3-component 
feature vector by using the CNN method. As a result, the final feature vector is a vector with a 17-
dimensional space (14 + 3). 

Additionally, the performance of the LSTM classifier is compared with the achieved accuracy of 
other classifiers such as linear SVM, KNN and logistic regression, as demonstrated in Table 3. These 
results prove the superiority of LSTM network to classify MRI brain scans precisely. 

Table 3. Classification results obtained from SVM, KNN, logistic regression and LSTM. 

Method Accuracy 100% TP 100% COVID-19  TP 100% Healthy TP 100% Pneumonia 
Linear SVM 96.20 94.90 98.10 95.80 

KNN 95.30 93.20 97.20 95.80 
Logistic Regression 97.20 96.60 98.10 96.80 

LSTM 99.68 100 100 98.90 

The best accuracy of 99.68% is achieved by the combined QDE–DF features where the LSTM 
succeeds to classify all CT scans of infected patients with COVID-19 as well as healthy patients 
correctly with TP of 100% while only one infected patient with pneumonia failed to be classified by 
LSTM model with TP of 98.9%. 

Figure 9 shows that the performance of LSTM with the combined features QDE–DF outperforms 
its performance when using QDE and DF features individually. 

 
Figure 9. The training process of LSTM network with DF, LBP and LBP-DF features. 

In this study, the combined feature set QDE–DF and the robustness of the LSTM network 
increased the classification efficiency of CT scans of lung significantly. 

5. Conclusions 

In this study, we proposed a feature extraction method based on QDE–DF to improve the 
classification process for discriminating COVID-19 coronavirus, pneumonia and healthy CT lung 
scans. This feature set is based mainly on the proposed CNN architecture that is used to extract the 
spectral and spatial deep features of the scan. The best design of the CNN network that is used to 
extract DF depends essentially on how to choose parameters of the CNN network where the optimal 
parameters have an immediate effect on the classification accuracy and computational complexity. 
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The parameters of CNN such as the number of convolutional layers, convolution kernel size, 
padding, stride and number of neurons, are chosen experimentally; nine layers with (3 × 3), (5 × 5), (5 
× 5) and (7 × 7) convolution kernel sizes respectively and a (2 × 2) pooling kernel in each layer. One 
interesting direction for future work is to apply the proposed model on another CT scan modality. In 
summary, this study illustrates the usability of CNN as a feature extractor and of the LSTM network 
as a classifier to attain an accuracy of 99.68% of classifying CT scans of the lung. 
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