

MDPI

Article

Hausdorff Dimension and Topological Entropies of a Dynamical Solenoid

Andrzej Biś * and Agnieszka Namiecińska

 $Faculty\ of\ Mathematics\ and\ Computer\ Science,\ Banacha\ 22,90\text{-}235\ Ł\'od\'z,\ Poland;\ a.namiecinska@wp.pland and\ Computer\ Science,\ Banacha\ 22,90\text{-}235\ L\'odz,\ Poland;\ a.namiecinska@wp.pland and\ Computer\ Science,\ Banacha\ 22,90\text{-}235\ L\'odz,\ Poland;\ a.namiecinska@wp.pland and\ Computer\ Science,\ Banacha\ 22,90\text{-}235\ L\'odz,\ Poland;\ a.namiecinska@wp.pland and\ Computer\ Science,\ Computer\ Science,\$

* Correspondence: andrzej.bis@wmii.uni.lodz.pl

Received: 17 March 2020; Accepted: 23 April 2020; Published: 28 April 2020

Abstract: The purpose of this paper is to elucidate the interrelations between three essentially different concepts: dynamical solenoids, topological entropy, and Hausdorff dimension, where by a dynamical solenoid we mean a sequence of continuous epimorphisms of a compact metric space. For this purpose, we describe a dynamical solenoid by topological entropy-like quantities and investigate the relations between them. For L-Lipschitz dynamical solenoids and locally λ -expanding dynamical solenoids, we show that the topological entropy and fractal dimensions are closely related. For a locally λ -expanding dynamical solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension of X multiplied by the logarithm of λ .

Keywords: entropy; Hausdorff measure; Hausdorff dimension; box dimension; dynamical solenoid; locally expanding map

1. Introduction

A solenoid, which was introduced to mathematics by Vietoris [1] as the topological object, can be presented either in an abstract way as an inverse limit or in a geometric way as a nested intersection of a sequence of tori. The classical construction of Vietoris was modified by McCord [2], Williams [3], and others. Since the publication of William's paper on expanding attractors [3], inverse limit spaces have played a key role in dynamical systems and in continuum theory. Smale [4] introduced the solenoid to dynamical systems as a hyperbolic attractor.

In the paper, a sequence $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ of continuous epimorphisms of a compact metric space (X, d) is called a dynamical solenoid while the inverse limit

$$X_{\infty} = \lim_{\longleftarrow} (X, f_k) := \{(x_k)_{k=0}^{\infty} : x_{k-1} = f_k(x_k)\}.$$

is called a classical solenoid. Since the paper is not about classical solenoids, the term dynamical solenoid is sometimes abbreviated as solenoid.

In mathematical literature, one can also find a more restrictive definition of the solenoid as a finite-dimensional, connected, compact abelian group. These solenoids generalize torus groups, and their entropic properties have been studied by Berg [5], Lind and Ward [6], Einsiedler and Lindenstrauss [7], and others. A less restrictive definition of the solenoid was considered in [8–10].

A dynamical solenoid is a natural generalization of a classical dynamical system. In contrast with the classical dynamical systems, the properties of solenoid entropies have not been fully investigated. In the paper, we consider several different definitions of entropy-like quantities for a dynamical solenoid f_{∞} :

Entropy 2020, 22, 506 2 of 16

topological entropy $h_{top}(f_{\infty})$, topological cover entropy $h_{top-cov}(f_{\infty})$, and topological dimensional entropy $h_{top-dim}(f_{\infty})$.

Both nonautonomous dynamical systems and dynamical solenoids are determined by compositions of continuous self-maps; therefore, in both cases, the entropy-like quantities that capture complexities of these generalized dynamical systems can be similar. For example, the topological entropy of a dynamical solenoid coincides with the topological entropy of a nonautonomous dynamical system defined in [11]. In this paper, we derive the following relations between the entropies of a dynamical solenoid which were previously known for continuous maps on compact metric spaces, and we obtained the following results.

Theorem 1. $h_{top-dim}(f_{\infty}) \leq h_{top-cov}(f_{\infty})$.

Theorem 2. $h_{top}(f_{\infty}) = h_{top-cov}(f_{\infty}).$

In 2002, Milnor [12] stated two questions related to the classical dynamical system: "Is entropy of it effectively computable?" "Given an explicit dynamical system and given $\epsilon > 0$, is it possible to compute the entropy with maximal error of ϵ ?" In most cases the answer is negative. For the recent results on computability of topological entropy, we recommend [13,14].

Therefore, in mathematical literature, there were many attempts to estimate entropy of dynamical systems by Lyapunov exponents, volume growth, Hausdorff dimension, or fractal dimensions.

The theory of Carathéodory structures, introduced by Pesin [15] for a single map, has been applied in [11] to get some estimations of the topological entropy of a nonautonomous dynamical system. To show a comprehensive picture and beauty of dynamics of dynamical solenoids, we rewrite the Theorem 3 in [11] to express complexity of so called L-Lipschitz dynamical solenoid. A dynamical solenoid $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ is called L-Lipschitz if it consists of L-Lipschitz epimorphisms; the following inequality holds.

Theorem 3. Assume that $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ is a L-Lipschitz dynamical solenoid with L > 1. Then, for any $Y \subset X$, we obtain

$$HD(Y) \ge \frac{h_{top-dim}((f_{\infty}), Y)}{\log(L)},$$

where HD(Y) is the Hausdorff dimension of Y.

Finally, we investigate so called locally λ -expanding dynamical solenoids, in the sense of Ruelle [16] (see Definition 6). We prove that the topological entropy of a λ -expanding dynamical solenoid, defined on the space X, is related to the upper box dimension of X multiplied by the logarithm of λ . We obtained the following inequalities.

Theorem 4. Given a locally λ -expanding dynamical solenoid $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$. Then,

$$h_{top}(f_{\infty}) \ge (\log \lambda) \cdot \overline{\dim_B(X)} \ge (\log \lambda) \cdot HD(X),$$

where $\overline{\dim}_B(X)$ is the upper box dimension of X.

The paper is organized as follows. In Section 2, we introduce several definitions of entropy-like quantities for a dynamical solenoid: topological entropy, topological cover entropy, and topological dimensional entropy. In Section 3, we prove the relations between them (Theorems 1 and 2). Section 4 is devoted to L-Lipschitz dynamical solenoids; we present Theorem 3. Finally, in Section 5, we investigate locally λ -expanding dynamical solenoids and prove Theorem 4.

Entropy 2020, 22, 506 3 of 16

2. Topological Entropies of a Dynamical Solenoid

In 1965, Adler, Konheim, and McAndrew [17] introduced a definition of topological entropy for the classical dynamical system (i.e., a pair (X, f), where X is a topological space and $f: X \to X$ is a continuous map) as a non-negative number assigned to an open cover of X. A different definition of entropy of a continuous self-map defined on a compact metric space was introduced by Bowen [18] and independently by Dinaburg [19]. In [20], Bowen proved that the definitions are equivalent. Nowadays, topological entropy is a main notion in topological dynamics. In the paper, we present a few generalizations of the classical topological entropy of a single map to dynamical solenoids.

In the paper, we consider a dynamical solenoid determined by a sequence $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ of continuous epimorphisms of a compact metric spaces (X, d). Thus, the dynamical solenoid is a generalized dynamical system. Its complexity and chaos can be measured by several entropy-like quantities. First, we introduce topological entropy via (n, ϵ) —separated sets.

2.1. Topological Entropy of a Dynamical Solenoid via (n, ϵ) – Separated or (n, ϵ) – Spanning Sets

Let $B(x,r) = \{y \in X : d(x,y) \le r\}$ denote a closed ball in the metric space (X,d) centered at $x \in X$ and with radius r.

Definition 1. Fix $\epsilon > 0$, $n \in \mathbb{N}$. A subset $F \subset X$ is called (n, ϵ) -spanning if for any $x \in X$ there exists $y \in F$ such that

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x), f_i \circ f_{i+1} \circ ... \circ f_n(y)) : i \in \{1, ..., n\}\} \le \epsilon.$$

Let $r(n, \epsilon) := \min\{card(F) : F \text{ is } (n, \epsilon)\text{-spanning set}\}.$

A set $E \subset X$ is called (n, ϵ) -separated if for any pair of distinct points $x, y \in E$ we have

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x), f_i \circ f_{i+1} \circ ... \circ f_n(y)) : i \in \{1, ..., n\}\} > \epsilon.$$

Let $s(n, \epsilon) := \max\{card(E) : E \text{ is } (n, \epsilon)\text{-separated}\}.$

The following two lemmas are a reformulation of Definition 1.

Lemma 1. A set $F \subset X$ is (n, ϵ) —spanning if and only if

$$X = \bigcup_{y \in F} \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(y), \epsilon].$$

Proof. (\Rightarrow) Assume that a subset $F \subset X$ is (n, ϵ) —spanning. Then for any point $x \in X$ there exists a point $y \in F$ such that

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x), f_i \circ f_{i+1} \circ ... \circ f_n(y)) : i \in \{1, ..., n\}\} \le \epsilon.$$

For any $i \in \{1, ..., n\}$ we obtain

$$f_i \circ f_{i+1} \circ ... \circ f_n(x) \in B[f_i \circ f_{i+1} \circ ... \circ f_n(y), \epsilon]$$

and

$$x \in (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(y), \epsilon].$$

Entropy 2020, 22, 506 4 of 16

So

$$x \in \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(y), \epsilon].$$

Since *x* is an arbitrary point of *X* we conclude

$$X \subset \bigcup_{y \in F} \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ ... \circ f_n)(y), \epsilon] \subset X.$$

 (\Leftarrow) Now assume that the following equality

$$X = \bigcup_{y \in F} \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(y), \epsilon]$$

holds for a subset $F \subset X$. Then, for any $x \in X$ there exists $y \in F$ such that

$$x \in \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(y), \epsilon]$$

which is equivalent to

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x), f_i \circ f_{i+1} \circ ... \circ f_n(y)) : i \in \{1, ..., n\}\} \le \epsilon.$$

Thus the set *F* is (n, ϵ) —spanning and the proof is finished. \Box

Lemma 2. A set $E \subset X$ is (n, ϵ) -separated if and only if for any $x \in E$ the set $\bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ ... \circ f_n)(x), \epsilon]$ contains no other points of E.

Proof. (\Rightarrow) Assume that a set $E \subset X$ is (n, ϵ) —separated and choose two distinct points $x_1, x_2 \in E$. For any $i \in \{1, ..., n\}$ we get

$$x_1 \in (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x_1), \epsilon]$$

so

$$x_1 \in \bigcap_{i=1}^n (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x_1), \epsilon].$$

Assume that

$$x_2 \in \bigcap_{i=1}^n (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x_1), \epsilon]$$

then we obtain the following inequality

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x_1), f_i \circ f_{i+1} \circ ... \circ f_n(x_2)) : i \in \{1, ..., n\}\} \le \epsilon$$

which gives a contradiction with the assumption that x_1, x_2 are (n, ϵ) —separated. Thus the intersection

$$(*) E \cap \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x_1), \epsilon] = \{x_1\}.$$

Entropy **2020**, 22, 506 5 of 16

(\Leftarrow) Now assume that for a given subset *E* ⊂ *X* the condition (*) holds. For two distinct points $x_1, x_2 \in E$ we have

$$x_2 \notin \bigcap_{i=1}^n (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x_1), \epsilon].$$

Therefore, there exists $i \in \{1, ..., n\}$ such that

$$d(f_i \circ f_{i+1} \circ ... \circ f_n)(x_1), f_i \circ f_{i+1} \circ ... \circ f_n)(x_2) > \epsilon.$$

We have proved that the set $E \subset X$ is (n, ϵ) -separated. \square

Modifying slightly the classical Bowen's definition [18] of the topological entropy of a single map (for details see also Chapter 7 in [21]), we present the definition of topological entropy of a dynamical solenoid as follows.

Definition 2. *The quantity*

$$h_{top}(f_{\infty}) := \lim_{\epsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log s(n, \epsilon)$$

is called the topological entropy of f_{∞} .

Remark 1. The topological entropy of a dynamical solenoid can also be expressed in the language of (n, ϵ) -spannings sets. Using arguments similar to remarks on page 169 in [21], we get estimations

$$r(n,\epsilon) \le s(n,\epsilon) \le r(n,\epsilon/2)$$
.

Indeed, for any two distinct points x_1, x_2 of an (n, ϵ) -separated set E with cardinality $card(E) = s(n, \epsilon)$ we have

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(x_1), f_i \circ f_{i+1} \circ ... \circ f_n(x_2)) : i \in \{1, ..., n\}\} > \epsilon.$$

Since E is (n, ϵ) —separated set with maximal cardinality, for any $y \in X \setminus E$ there exists $x_3 \in E$ such that

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n(y), f_i \circ f_{i+1} \circ ... \circ f_n(x_3)) : i \in \{1, ..., n\}\} \le \epsilon.$$

It means that E is (n, ϵ) -spanning and

$$r(n,\epsilon) < card(E) = s(n,\epsilon).$$

To show the other inequality for the set E and an $(n, \frac{\epsilon}{2})$ – spanning set $F \subset X$ with cardinality $card(F) = r(n, \epsilon/2)$ define $\phi : E \to F$ by choosing, for each point $x \in E$ some point $\phi(x) \in E$ with

$$\max\{d(f_i\circ f_{i+1}\circ...\circ f_n(x),f_i\circ f_{i+1}\circ...\circ f_n(\phi(x))):i\in\{1,...,n\}\}\leq \frac{\epsilon}{2}.$$

The map $\phi: E \to F$ is injective and therefore $card(E) \leq card(F)$. Hence $s(n, \epsilon) \leq r(n, \epsilon/2)$. Applying the inequalities

$$r(n,\epsilon) \le s(n,\epsilon) \le r(n,\epsilon/2)$$

and passing to the suitable limits, we obtain the equality

$$h_{top}(f_{\infty}) = \lim_{\epsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log r(n, \epsilon).$$

Entropy 2020, 22, 506 6 of 16

Remark 2. Assume that all maps of the sequence $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ coincide with a fixed continuous map $f : X \to X$ of a compact metric space (X, d). Then, the topological entropy of f_{∞} is equal to the topological entropy of f. For example, the topological entropy of a dynamical solenoid coincides with the topological entropy of a nonautonomous dynamical system defined in [11].

2.2. Topological Entropy of a Dynamical Solenoid via Open Covers

It is a well-known fact that topological entropy of a single continuous map $f: X \to X$ can be defined by open covers of the compact metric space (X,d). We intend to show that similar approach can be applied to a dynamical solenoid. For this purpose, notice that for two open covers \mathcal{A} , \mathcal{B} of X, the family

$$\mathcal{A} \vee \mathcal{B} := \{ A \cap B : A \in \mathcal{A}, B \in \mathcal{B} \}$$

is an open cover of X. Moreover, for a continuous map $f_i \circ f_{i+1} \circ ... \circ f_n : X \to X$ and an open cover A of X the family

$$(f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{A} := \{ (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} A : A \in \mathcal{A} \}$$

is an open cover of X. Thus, for the open cover A of X, the family

$$\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{A} :=$$

$$(f_1 \circ f_2 \circ \dots \circ f_n)^{-1}(\mathcal{A}) \vee (f_2 \circ f_3 \circ \dots \circ f_n)^{-1}(\mathcal{A}) \vee \dots \vee (f_n)^{-1}(\mathcal{A})$$

is an open cover of X.

For an open cover \mathcal{B} of X let us denote by $N(\mathcal{B})$ the number of sets in a finite subcover of \mathcal{B} covering X, with the smallest cardinality.

Definition 3. The topological cover entropy of f_{∞} , relative to an open cover A of X, is defined as

$$h_{top-cov}(f_{\infty},\mathcal{A}) := \limsup_{n \to \infty} \frac{1}{n} \log N \left(\bigvee_{i=1}^{n} (f_{i} \circ f_{i+1} \circ ... \circ f_{n})^{-1} \mathcal{A} \right),$$

whereas the topological cover entropy of f_{∞} is the quantity

$$h_{top-cov}(f_{\infty}) := \sup_{A} h(f_{\infty}, A),$$

where A ranges over all open covers of X.

2.3. Topological Entropy as a Dimension Theory Quantity

Here, we modify the Bowen's definition [20] of the topological entropy of a continuous single map, which is similar to the construction of the Hausdorff measure, to obtain the topological dimensional entropy of f_{∞} .

2.3.1. The Hausforff Measure and the Hausdorff Dimension

For the convenience of the reader, we recall briefly the classical construction of the Hausdorff measure and the Hausdorff dimension.

For a metric space (X, d) and a subset $Y \subset X$, let us denote by $Cov_{\epsilon}(Y)$ the family of open covers \mathcal{B} of Y with $diam(B) < \epsilon$, for any $B \in \mathcal{B}$. Here, diam(B) denotes the diameter of B.

Entropy 2020, 22, 506 7 of 16

For any $\lambda > 0$ the classical Hausdorff λ -measure $\mu_{\lambda}(Y)$ of a subset $Y \subset X$ is defined as follows,

$$\mu_{\lambda}(Y) := \lim_{\epsilon \to 0} \inf \{ \sum_{B \in \mathcal{B}} [diam(B)]^{\lambda} : \mathcal{B} \in Cov_{\epsilon}(Y) \}.$$

The function $\lambda \to \mu_{\lambda}(Y)$ has a unique critical point, where it jumps from ∞ to 0. The Hausdorff dimension HD(Y) of Y is defined as the critical point of the function $\lambda \to \mu_{\lambda}(Y)$, i.e.,

$$HD(Y) = \sup\{\lambda : \mu_{\lambda}(Y) = \infty\} = \inf\{\lambda : \mu_{\lambda}(Y) = 0\}.$$

2.3.2. Generalized Hausdorff Measure and Generalized Hausdoff Dimension

Arguments similar to the construction of the classical Hausdorff λ -measure and the Hausdorff dimension lead to another entropy-like quantity for $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$. Denote by \mathcal{A} a finite open cover of X. For a subset $B \subset X$, we write $B \prec \mathcal{A}$ if there exists $A_i \in \mathcal{A}$ such that $B \subset A_i$. Denote by $n_{\mathcal{A}}(B)$ the largest non-negative integer n such that $f_k \circ f_{k+1} \circ ... \circ f_n(B) \prec \mathcal{A}$ for k = 1, ..., n. If there is no element $A_i \in \mathcal{A}$ such that $B \subset A_i$, then we write $n_{\mathcal{A}}(B) = 0$. Let us introduce the following notations.

$$diam_A(B) := exp(-n_A(B)),$$

$$diam_{\mathcal{A}}(\mathcal{B}) := \sup\{diam_{\mathcal{A}}(B) : B \in \mathcal{B}\}$$

and

$$\mathcal{D}_{\mathcal{A}}(\mathcal{B},\lambda) := \sum_{B \in \mathcal{B}} [diam_{\mathcal{A}}(B)]^{\lambda}$$

for a family \mathcal{B} of subsets of X and a real number, $\lambda > 0$. For a subset $Y \subset X$ and $\epsilon > 0$, let $Cov_{\epsilon}^{\mathcal{A}}(Y)$ denote the family of open covers \mathcal{B} of Y with $diam_{\mathcal{A}}(\mathcal{B}) < \epsilon$. Now we set

$$\mu_{\mathcal{A},\lambda}(Y) := \lim_{\epsilon \to 0} \inf \{ \mathcal{D}_{\mathcal{A}}(\mathcal{B},\lambda) : \mathcal{B} \in \mathit{Cov}_{\epsilon}^{\mathcal{A}}(Y) \}.$$

The behavior of the function $\lambda \to \mu_{\mathcal{A},\lambda}(Y)$ is very similar to the behavior of $\lambda \to \mu_{\lambda}(Y)$: it has a unique critical point, where it jumps from ∞ to 0. More precisely.

Lemma 3. For the function $\lambda \to \mu_{\mathcal{A},\lambda}(Y)$, there exists a unique critical number λ_0 such that $\mu_{\mathcal{A},\lambda}(Y) = \infty$, for $0 \le \lambda < \lambda_0$ and $\mu_{\mathcal{A},\lambda}(Y) = 0$, for $\lambda_0 < \lambda$.

Proof. For any $\epsilon \in (0,1)$ there exists a cover \mathcal{B} of Y with $\exp(-n_{\mathcal{A}}(B)) < 1$, for any $B \in \mathcal{B}$. Therefore, the inequality $0 < \beta < \alpha$ implies

$$\sum_{B \in \mathcal{B}} \exp(-n_{\mathcal{A}}(B) \cdot \alpha) \le \sum_{B \in \mathcal{B}} \exp(-n_{\mathcal{A}}(B) \cdot \beta),$$

so

$$\mu_{\mathcal{A},\alpha}(Y) = \lim_{\epsilon \to 0} \inf \{ \sum_{B \in \mathcal{B}} \exp(-n_{\mathcal{A}}(B) \cdot \alpha) : \mathcal{B} \in Cov_{\epsilon}^{\mathcal{A}}(Y) \} \le$$

$$\lim_{\epsilon \to 0} \inf \{ \sum_{B \in \mathcal{B}} \exp(-n_{\mathcal{A}}(B) \cdot \beta) : \mathcal{B} \in Cov_{\epsilon}^{\mathcal{A}}(Y) \} = \mu_{\mathcal{A},\beta}(Y).$$

Therefore,

(**)
$$0 < \beta < \alpha \Rightarrow \mu_{\mathcal{A},\alpha}(Y) \leq \mu_{\mathcal{A},\beta}(Y)$$
.

Entropy 2020, 22, 506 8 of 16

First assume that $\mu_{\mathcal{A},\delta}(Y) = \infty$ for some $\delta > 0$ and that $\beta < \delta$. By (**) we conclude that

$$\infty = \mu_{\mathcal{A},\delta}(Y) \le \mu_{\mathcal{A},\beta}(Y).$$

In a similar way, we prove that if $\mu_{\mathcal{A},\lambda}(Y) = 0$, then for $\lambda_1 > \lambda$ we obtain the equality $\mu_{\mathcal{A},\lambda_1}(Y) = 0$. \square

Definition 4. Denote by λ_0 the critical point of the function $\lambda \to \mu_{\mathcal{A},\lambda}(Y)$. Let $\lambda_0 = h_{top-dim}((f_{\infty}), Y, \mathcal{A})$. In other words, let

$$h_{top-dim}((f_{\infty}), Y, \mathcal{A}) := \sup\{\lambda : \mu_{\mathcal{A},\lambda}(Y) = \infty\} = \inf\{\lambda : \mu_{\mathcal{A},\lambda}(Y) = 0\}.$$

The number

$$h_{top-dim}(f_{\infty}, Y) := \sup\{h_{top-dim}((f_{\infty}), Y, A) : A \text{ finite open cover of } Y\}$$

is called the topological dimensional entropy of f_{∞} restricted to Y. If Y = X, we write $h_{top-dim}(f_{\infty}, X) = h_{top-dim}(f_{\infty})$.

Remark 3. Our definition of topological dimension entropy of a dynamical solenoid is an extension of Bowen's entropy [20]. Moreover, the topological dimensional entropy of a dynamical solenoid is similar to Bowen's topological entropy of nonautonomous dynamical systems in [22].

3. Relations between Topological Entropies of a Dynamical Solenoid

In the previous section, we introduced three entropy-like quantities for a dynamical solenoid. Now, we relate the topological dimensional entropy of a dynamical solenoid to its topological covering entropy. We obtain the following result.

Theorem 1. $h_{top-dim}(f_{\infty}) \leq h_{top-cov}(f_{\infty})$.

Proof. Choose a finite open cover A of X and let

$$\mathcal{A}_n = \{ \bigcap_{i=1}^n (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} (A_i) : A_i \in \mathcal{A} \}.$$

Denote by \mathcal{B}_n a finite subcover of \mathcal{A}_n with cardinality $|\mathcal{B}_n| = N(\mathcal{A}_n)$. Then, for any $B \in \mathcal{B}_n$, we obtain that $n_{\mathcal{A}}(B) \geq n$, so

$$diam_{\mathcal{A}}(B) \leq \exp(-n)$$

and for any $\lambda > 0$ we get

$$\mathcal{D}_{\mathcal{A}}(\mathcal{B}_n,\lambda) = \sum_{B \in \mathcal{B}_n} [diam_{\mathcal{A}}(B)]^{\lambda} = \sum_{B \in \mathcal{B}_n} exp(-\lambda \cdot n_{\mathcal{A}}(B)) \le |\mathcal{B}_n| \cdot \exp(-\lambda \cdot n).$$

As $|\mathcal{B}_n| = N(\mathcal{A}_n)$, we have

$$|\mathcal{B}_n| \cdot \exp(-\lambda \cdot n) = \exp(-\lambda \cdot n + \log |\mathcal{B}_n|) = \exp(-n(\lambda - \frac{1}{n} \log N(\mathcal{A}_n))).$$

Consequently,

$$\mathcal{D}_{\mathcal{A}}(\mathcal{B}_n,\lambda) \leq \exp(-n \cdot (\lambda - \frac{1}{n} \log N(\mathcal{A}_n))).$$

Entropy 2020, 22, 506 9 of 16

Fix $\epsilon > 0$ and an arbitrary small $\gamma > 0$. Choose λ^* such that $\lambda^* > h_{top-cov}(f_{\infty}, \mathcal{A}) > \lambda^* - \gamma$. For sufficiently large $n \in \mathbb{N}$, we obtain the inequalities

$$\lambda^* - \frac{1}{n} \log N(\mathcal{A}_n)) > 0,$$

$$diam_{\mathcal{A}}(B) < \exp(-n) < \epsilon$$
, for $B \in \mathcal{B}$, and

$$\mathcal{D}_{\mathcal{A}}(\mathcal{B}_n, \lambda^*) \leq \exp(-n \cdot (\lambda^* - \frac{1}{n} \log N(\mathcal{A}_n))) < \epsilon.$$

As $\epsilon > 0$ is arbitrarily small, the above two inequalities yield $\mu_{\mathcal{A},\lambda^*}(X) = 0$. Therefore,

$$h_{top-dim}(f_{\infty}, Y, A) \leq \lambda^* \leq h_{top-cov}(f_{\infty}, A) + \gamma.$$

As A is an arbitrary finite open cover of X, we obtain

$$h_{top-dim}(f_{\infty}) = \sup\{h_{top-dim}((f_{\infty}), X, A) : A - finite open cover of X\}$$

$$\leq \sup\{h_{top-cov}(f_{\infty}, A) : A - finite open cover of X\} + \gamma = h_{top-cov}(f_{\infty}) + \gamma.$$

Finally, passing with γ to zero, we get

$$h_{top-dim}(f_{\infty}) \leq h_{top-cov}(f_{\infty}).$$

Lemma 4. For an open cover A of X with the Lebegue number $Leb(A) = \delta$, we get

$$N\left(\bigvee_{i=1}^{n}(f_{i}\circ f_{i+1}\circ...\circ f_{n})^{-1}\mathcal{A}\right)\leq r(n,\frac{\delta}{2}).$$

Proof. Fix $n \in \mathbb{N}$ and $\delta > 0$. Choose an $(n, \frac{\delta}{2})$ -spanning set F with cardinality $card(F) = r(n, \frac{\delta}{2})$. As $Leb(A) = \delta$, we obtain that any ball $B[(f_i \circ f_{i+1} \circ ... \circ f_n)(x), \frac{\delta}{2}]$ of radius $\delta/2$, where $x \in F$ and $i \in \{1, ..., n\}$, is included in some set $A_i \in \mathcal{A}$, so

$$\bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x), \frac{\delta}{2}] \subset \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} A_i,$$

for some $A_1, A_2, ... A_n \in A$. It means that the set

$$\bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B[(f_i \circ f_{i+1} \circ \dots \circ f_n)(x), \frac{\delta}{2}]$$

is a subset of some member of the covering

$$\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} \mathcal{A}.$$

On the other hand, applying Lemma 1, we get

$$X = \bigcup_{x \in F} \bigcap_{i=1}^{n} (f_i \circ f_{i+1} \circ \dots \circ f_n)^{-1} B((f_i \circ f_{i+1} \circ \dots \circ f_n)(x), \frac{\delta}{2}),$$

so

$$N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{A}) \leq card(F) = r(n, \frac{\delta}{2}).$$

Lemma 5. Assume that $\epsilon > 0$ and \mathcal{B} is an open cover of X, with $diam(\mathcal{B}) \leq \epsilon$. Then,

$$s(n,\epsilon) \leq N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{B}).$$

Proof. Choose an (n, ϵ) -separated set E with cardinality $card(E) = s(n, \epsilon)$. Assume that two distinct points $x_1, x_2 \in E$ belong to the same member of the cover $\bigvee_{i=1}^n (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{B}$. Therefore, there exist sets $B_i \in \mathcal{B}$ such that $(f_i \circ f_{i+1} \circ ... \circ f_n)(x_1), (f_i \circ f_{i+1} \circ ... \circ f_n)(x_2) \in B_i$ for any $i \in \{1, ..., n\}$. On the other hand, as the set E is (n, ϵ) -separated, there exists $j \in \{1, ..., n\}$ such that

$$d((f_j \circ f_{j+1} \circ ... \circ f_n)(x_1), (f_j \circ f_{j+1} \circ ... \circ f_n)(x_2)) =$$

$$\max\{d(f_i \circ f_{i+1} \circ ... \circ f_n)(x_1), (f_i \circ f_{i+1} \circ ... \circ f_n)(x_2) : i \in \{1,..,n\}\} > \epsilon.$$

Thus, we get a contradiction with $diam(B_i) \le \epsilon$. Therefore,

$$s(n,\epsilon) \leq N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{B}).$$

Now, we are ready to prove that the topological entropy of a dynamical solenoid is equivalent to its topological covering entropy.

Theorem 2. $h_{tov}(f_{\infty}) = h_{tov-cov}(f_{\infty}).$

Proof. Fix $\epsilon > 0$. Let \mathcal{A}_{ϵ} be the cover of X by all open balls of radius $2 \cdot \epsilon$ and denote by \mathcal{B}_{ϵ} the cover of X by all open balls of radius $\frac{\epsilon}{2}$. Due to Lemma 4, we obtain

$$N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{A}_{\epsilon}) \leq r(n, \epsilon),$$

so

$$\limsup_{n\to\infty}\frac{1}{n}\log N(\bigvee_{i=1}^{n}(f_{i}\circ f_{i+1}\circ...\circ f_{n})^{-1}\mathcal{A}_{\epsilon})\leq \limsup_{n\to\infty}\frac{1}{n}\log r(n,\epsilon)$$

and

$$h_{top-cov}(f_{\infty}) \leq h_{top}(f_{\infty}).$$

Applying Lemma 5, we get

$$s(n,\epsilon) \leq N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{B}_{\epsilon}),$$

so

$$\limsup_{n\to\infty} \frac{1}{n} \log s(n,\epsilon) \leq \limsup_{n\to\infty} \frac{1}{n} \log N(\bigvee_{i=1}^{n} (f_i \circ f_{i+1} \circ ... \circ f_n)^{-1} \mathcal{B}_{\epsilon})$$

and finally we get the second inequality

$$h_{top}(f_{\infty}) \leq h_{top-cov}(f_{\infty}).$$

The theorem is proved. \Box

4. Topological Entropy of L-Lipschitz Dynamical Solenoids

Dai, Zhou, and Geng [23] proved the following result. If X is a metric compact space and $f: X \to X$ a Lipschitz continuous map, then the Hausdorff dimension of X is lower estimated by the topological entropy of f divided by the logarithm of its Lipschitz constant. In 2004, Misiurewicz [24] provided a new definition of topological entropy of a single transformation, which was a kind of hybrid between the Bowen's definition and the original definition of Adler, Konheim, and McAndrew [17]. The main theorem in [24] is similar to the result in [23]. In this section, we consider a special class of dynamical solenoids called *L-Lipschitz dynamical solenoids*. We say that a dynamical solenoid $f_{\infty} = (f_n: X \to X)_{n=1}^{\infty}$ is a *L-Lipschitz* if there exists L > 0 such that each map $f_n: X \to X$ is an Lipschitz epimorphism with Lipschitz constant L, i.e., for any $x, y \in X$ and arbitrary $n \in \mathbb{N}$

$$d(f_n(x), f_n(y)) \le L \cdot d(x, y).$$

Let us start with the following example.

Example 1. Consider the dynamical solenoid $f_{\infty} = (f_n : \mathbb{T}^2 \to \mathbb{T}^2)_{n=1}^{\infty}$, where $\mathbb{T}^2 = \frac{\mathbb{R}^2}{\mathbb{Z}^2}$ is two-dimensional torus and each $f_n : \mathbb{T}^2 \to \mathbb{T}^2$ is the doubling map, i.e., $f_n(x_1, x_2) = 2 \cdot (x_1, x_2)$, for any $(x_1, x_2) \in \mathbb{T}^2$. Then,

$$\frac{h_{top}(f_{\infty}, \mathbb{T}^2)}{\log(2)} = HD(\mathbb{T}^2) = \frac{h_{top-dim}(f_{\infty}, \mathbb{T}^2)}{\log(2)}.$$

Indeed, the Hausdorff dimension of the two dimensional torus is equal to two (see page 23 in [25]). Due to Remarks 2 and 3, we get $h_{top}(f_{\infty}, \mathbb{T}^2) = h_{top}(f_2) = h_{top-dim}(f_{\infty}, \mathbb{T}^2)$. On the other hand, the doubling map $f_2: \mathbb{T}^2 \to \mathbb{T}^2$ can be considered as the Cartesian product of two doubling maps $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = 2 \cdot x \mod 1$, for $x \in \mathbb{R}$. Moreover, $h_{top}(g) = \log(2)$ (see Example on page 29 in [26]). Consequently, $h_{top}(f_{\infty}, \mathbb{T}^2) = 2 \cdot \log(2) = h_{top-dim}(f_{\infty}, \mathbb{T}^2)$.

To show the comprehensive picture of dynamics of L-Lipschitz dynamical solenoids, we rewrite the Theorem 3 published in [11], written for nonautonomous dynamical systems, in the set up of dynamical solenoids as follows.

Theorem 3. Assume that $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ is a L-Lipschitz dynamical solenoid with L > 1. Then, for any $Y \subset X$, we obtain

$$HD(Y) \ge \frac{h_{top-dim}((f_{\infty}), Y)}{\log(L)}.$$

For the convenience of the reader and to make the paper self-contained, we write the proof of Theorem 3 which is essentially the same as the proof of Theorem 3 in [11].

Proof. Choose a finite open cover \mathcal{A} of Y and denote by $\delta = Leb(\mathcal{A})$ its Lebesgue number. It means that for an open subset $C \subset Y$ with diameter $diam(C) < \delta$, there exists $A \in \mathcal{A}$ such that $C \subset A$. Choose an open set B with $\frac{\delta}{L^n} \leq diam(B) < \frac{\delta}{L^{n-1}}$, for some $n \in \mathbb{N}$. We obtain that

$$diam(f_k \circ f_{k+1} \circ \dots \circ f_{n-1}(B)) < \delta$$

for any k = 1, 2, ...n - 1, so $n_A(B) \ge n - 1$. From the inequality

$$\frac{\delta}{L^n} \leq diam(B)$$

we conclude that

$$n \geq \frac{\log(\delta) - \log(diam(B))}{\log(L)}.$$

Consequently,

$$\frac{\log(\delta) - \log(diam(B))}{\log(L)} \le n_{\mathcal{A}}(B) + 1$$

and

$$\begin{aligned} diam_{\mathcal{A}}(B) &= \exp(-n_{\mathcal{A}}(B)) \leq \exp(1 - \frac{\log(\delta) - \log(diam(B))}{\log(L)}) = \\ &= \exp[1 - (\frac{\log(\delta)}{\log(L)})] \cdot (diam(B))^{\frac{1}{\log(L)}}. \end{aligned}$$

Therefore, for an open cover \mathcal{B} of Y consisting of open sets B with $\frac{\delta}{L^n} \leq diam(B) < \frac{\delta}{L^{n-1}}$ and $\lambda > 0$, we get

$$\mathcal{D}_{\mathcal{A}}(\mathcal{B},\lambda) \leq \exp[\lambda - \lambda \cdot (\frac{\log(\delta)}{\log(L)})] \cdot \sum_{B \in \mathcal{B}} (diam(B))^{\frac{\lambda}{\log(L)}}.$$

Fix $\gamma > 0$ and choose λ_1 such that

$$\frac{\lambda_1}{\log(L)} > HD(Y) \ge \frac{\lambda_1}{\log(L)} - \gamma.$$

By definition of the Hausdorff measure, the equality $\mu_{\frac{\lambda_1}{\log(L)}}(Y)=0$ holds. Therefore, for any $\epsilon>0$ there exists and an open cover \mathcal{B}_ϵ of Y such that for any $B\in\mathcal{B}_\epsilon$

$$\epsilon > \exp[1 - (\frac{\log(\delta)}{\log(L)})] \cdot (diam(B))^{\frac{1}{\log(L)}} > diam_{\mathcal{A}}(B)$$

and

$$\epsilon > \exp[\lambda_1 - \lambda_1 \cdot (\frac{\log(\delta)}{\log(L)})] \cdot \sum_{B \in \mathcal{B}_{\epsilon}} (diam(B))^{\frac{\lambda_1}{\log(L)}} > D_{\mathcal{A}}(\mathcal{B}_{\epsilon}, \lambda_1).$$

The inequalities

$$\mu_{\mathcal{A},\lambda_1}(Y) \leq \mathcal{D}_{\mathcal{A}}(\mathcal{B}_{\epsilon},\lambda_1) < \epsilon$$

yield $\mu_{A,\lambda_1}(Y) = 0$. According to Definition 4, we get

$$h_{top-dim}((f_{\infty}), Y, A) = \inf\{\lambda : \mu_{A,\lambda}(Y) = 0\} \le \lambda_1.$$

Taking supremum over all open finite covers of Y, we obtain

$$h_{top-dim}((f_{\infty}), Y) =$$

$$\sup\{h_{top-dim}((f_{\infty}), Y, \mathcal{A}) : \mathcal{A} - finite \ open \ cover \ of \ Y\} \leq$$

$$\lambda_1 \leq \log(L) \cdot (HD(Y) + \gamma).$$

Finally,

$$h_{tov-dim}((f_{\infty}), Y) \leq \log(L) \cdot HD(Y),$$

as γ is an arbitrarily small positive number. \square

In particular, taking Y = X, we obtain the following corollary.

Corollary 1. Assume that $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ is a L-Lipschitz dynamical solenoid. Then, the inequality

$$HD(X) \ge \frac{h_{top-dim}((f_{\infty}))}{\log(L)}$$

holds.

In the special case, for $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$ being a L-Lipschitz dynamical solenoid such that all maps $f_n : X \to X$ coincide with a continuous map $f : X \to X$, we get that

$$h_{top}(f_{\infty}) = h_{top}(f),$$

where $h_{top}(f)$ is the classical topological entropy of $f: X \to X$. Bowen proved (Proposition 1 in [20]) that $h_{top-dim}(f) = h_{top}(f)$. Consequently, as a corollary of Theorem 3, we get the result of Misiurewicz [24].

Corollary 2 (Theorem 2.1 in [24]). *If* $f: X \to X$ *is a continuous L-Lipschitz map of a compact metric space* (X, d), *then*

$$HD(X) \ge \frac{h_{top}(f)}{\log(L)}.$$

5. Topological Entropy of Locally Expanding Dynamical Solenoids

In this section, we investigate locally expanding dynamical solenoids. Ruelle [16] introduced the notion of a locally expanding map in the following way.

Definition 5. Let (X,d) be a compact metric space and $f: X \to X$ a continuous selfmap. If for $\lambda > 1$ there exists $\epsilon > 0$ such that for every pair of distinct points $x,y \in X$

$$d(x,y) < \epsilon \Rightarrow d(f(x),f(y)) > \lambda \cdot d(x,y),$$

then we say that f is a locally (ϵ, λ) -expanding map and λ is an expanding coefficient of f.

Notice that any finite composition of locally (ϵ_i, λ_i) -expanding maps is an (ϵ, λ) -locally expanding map for some $\epsilon > 0$ and $\lambda > 1$. We extend the notion of locally expanding map to a dynamical solenoid as follows.

Definition 6. Given a dynamical solenoid $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$. If there exists $\epsilon > 0$ such that all maps $f_n : X \to X$ are locally (ϵ, λ_n) -expanding and $\lambda := \inf\{\lambda_n : n \in \mathbb{N}\} > 1$, then we say that f_{∞} is locally λ -expanding.

Lemma 6. Given a locally λ -expanding dynamical solenoid $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$. Then, there exists $\epsilon > 0$ such that for any $x \in X$, $k \in \mathbb{N}$, and $\gamma \in (0, \epsilon)$ we get

$$\bigcap_{i=1}^{k} (f_i \circ f_{i+1} \circ \dots \circ f_k)^{-1} B(f_i \circ f_{i+1} \circ \dots \circ f_k(x), \gamma) \subset B\left(x, \frac{\gamma}{\lambda^k}\right).$$

Proof. Choose $\epsilon > 0$ such that for any $k \in \mathbb{N}$ and for every pair of distinct points $x, y \in X$, we get

$$d(x,y) < \epsilon \Rightarrow d(f_k(x), f_k(y)) \ge \lambda_k \cdot d(x,y).$$

Fix $\gamma \in (0, \epsilon)$ and let

$$y \in \bigcap_{i=1}^{k} (f_i \circ f_{i+1} \circ \dots \circ f_k)^{-1} B(f_i \circ f_{i+1} \circ \dots \circ f_k(x), \gamma).$$

Then, we get inequalities

$$\epsilon > \gamma > d(f_1 \circ f_2 \circ \dots \circ f_k(x), f_1 \circ f_2 \circ \dots \circ f_k(y)) \ge$$
$$\lambda_1 \cdot d(f_2 \circ \dots \circ f_k(x), f_2 \circ \dots \circ f_k(y)) \ge \lambda_1 \cdot \dots \cdot \lambda_k \cdot d(x, y) \ge$$
$$\lambda^k \cdot d(x, y).$$

Therefore, $d(x,y) < \frac{\gamma}{\lambda^k}$ and $y \in B(x,\frac{\gamma}{\lambda^k})$. The lemma is proved. \square

The notion of the box dimension is an example of fractal dimension which belongs to fractal geometry. It was defined independently by Minkowski and Bouligard for a subset of Euclidean space. For modern presentation of fractal dimensions see the classical books of Falconer [25,27] or the monograph written by Przytycki and Urbański [28].

Definition 7 (Chapter 2 in [25]). *Recall that the upper box dimension of a closed subset* Z *of a compact metric space* X *is*

$$\overline{\dim_B(Z)} := \limsup_{\gamma \to 0} \frac{\log N(Z, \gamma)}{-\log \gamma},$$

where $N(Z, \gamma)$ denotes the smallest number of balls $B(x, \gamma)$ of radius $\gamma > 0$ needed to cover Z.

Lemma 7 ([28]). For a compact metric space X, the Hausdorff dimension HD(X) of X and the upper box dimension $\overline{\dim}_B(X)$ of X are interrelated

$$HD(X) \leq \overline{\dim_B(X)}$$
.

In the proof of Theorem 4 we need the following lemma.

Lemma 8 (Lemma 6.2 in [29]). Let $\phi: R \to R_+$ be a decreasing function. If $\delta \in (0,1)$ and $\gamma > 0$, then

$$\limsup_{r\to 0} \frac{\log \phi(r)}{\log r} = \limsup_{n\to \infty} \frac{\log \phi(\delta^n \gamma)}{\log(\delta^n \gamma)}.$$

Theorem 4. Given a locally λ -expanding dynamical solenoid $f_{\infty} = (f_n : X \to X)_{n=1}^{\infty}$. Then,

$$h_{top}(f_{\infty}) \ge (\log \lambda) \cdot \overline{\dim_B(X)} \ge (\log \lambda) \cdot HD(X).$$

Proof. In the first part of the proof we intend to show that

$$h_{top}(f_{\infty}) \ge (\log \lambda) \cdot \overline{\dim_B(X)}.$$
 (1)

Fix $\epsilon > 0$ such that for every pair of distinct points $x, y \in X$ and for every $n \in \mathbb{N}$,

$$d(x,y) < \epsilon \Rightarrow d(f_n(x), f_n(y)) \ge \lambda \cdot d(x,y).$$

By Lemma 6 and Lemma 1, for any $\gamma \in (0, \epsilon)$ and an arbitrary $n \in \mathbb{N}$, we have

$$N\left(X, \frac{\gamma}{\lambda^n}\right) \le r(n, \gamma),\tag{2}$$

consequently, applying Lemma 8 for the first equality and (2) for the subsequent inequality, we get

$$\overline{\dim_{B}(X)} = \limsup_{n \to \infty} \frac{\log N(X, \frac{\gamma}{\lambda^{n}})}{-\log \frac{\gamma}{\lambda^{n}}} \leq \limsup_{n \to \infty} \frac{\log r(n, \gamma)}{-\log \frac{r}{\lambda^{n}}} = \frac{1}{\log \lambda} \cdot \limsup_{n \to \infty} \frac{\log r(n, \gamma)}{n}.$$

Therefore,

$$h_{top}(f_{\infty}) = \lim_{\gamma \to 0} \limsup_{n \to \infty} rac{\log r(n,\gamma)}{n} \geq (\log \lambda) \cdot \overline{\dim_B(X)}.$$

According to the Lemma 7, we finally get

$$h_{top}(f_{\infty}) \geq (\log \lambda) \cdot \overline{\dim_B(X)} \geq (\log \lambda) \cdot HD(X).$$

Author Contributions: The authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the referees for their very careful reading and helpful comments. **Conflicts of Interest:** The authors declare no conflict of interest.

References

- 1. Vietoris, L. Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. *Math. Ann.***1927**, *97*, 454–472. [CrossRef]
- 2. McCord, C. Inverse limit sequences with covering maps. Trans. Am. Math. Soc. 1965, 209, 114–197. [CrossRef]
- 3. Williams, R.F. Expanding attractors. Publ. Math. IHES 1974, 43, 169–203. [CrossRef]
- 4. Smale, S. Differentiable dynamical systems. Bull. AMS 1967, 73, 747–817. [CrossRef]
- 5. Berg, K. Convolution of invariant measure, maximal entropy. *Math. Syst. Theory* **1969**, *3*, 146–150. [CrossRef]
- 6. Lind, D.; Ward, T. Automorphisms of solenoids and p-adic entropy. *Ergod. Theory Dyn. Syst.* **1988**, *8*, 411–419. [CrossRef]

7. Einsiedler, M.; Lindenstrauss, E. Rigidity properties of Z^d – actions on tori and solenoids. *Electron. Res. Annoucements Am. Math. Soc.* **2003**, *9*, 99–109. [CrossRef]

- 8. Biś, A.; Namiecińska, A. Topological entropy and homogeneous measure for a solenoid. *Bull. Soc. Sci. Lett. Łódź* **2017**, *67*, 21–32.
- 9. Biś, A.; Kozłowski, W. Some Remarks on Dynamical Systems of Solenoids. *Taiwan. J. Math.* **2018**, 22, 1463–1478. [CrossRef]
- 10. England, J.; Martin, F. On the topological entropy of a solenoid. J. Math. Mech. 1969, 19, 139–142. [CrossRef]
- 11. Biś, A. Topological and measure-theoretical entropies of nonautonomous dynamical systems. *J. Dyn. Differ. Equ.* **2018**, *30*, 273–285. [CrossRef]
- 12. Milnor, J. Is Entropy Effectively Computable? 2002. Available online: https://www.math.iupui.edu/~mmisiure/open/JM1.pdf (accessed on 15 March 2020).
- 13. Spandl, C. Computing the Topological Entropy of Shifts. *Electron. Notes Theor. Comput. Sci.* **2007**, *167*, 131–155. [CrossRef]
- 14. Gangloff, S.; Herrera, A.; Rojas, C.; Sablik, M. Computability of topological entropy; from general systems to transformatins on Cantor sets and the interval. *Discret. Contin. Dyn. Syst.* **2020**, *40*, 4259–4286. [CrossRef]
- 15. Pesin, Y. *Dimension Theory in Dynamical Systems: Contemporary Views and Applications*; The University of Chicago Press: Chicago, IL, USA, 1997.
- Ruelle, D. Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications; Addison-Wesley: Reading, MA, USA, 1978; Volume 5.
- 17. Adler, R.L.; Konheim, A.G.; McAndrew, M.H. Topological entropy. *Trans. Am. Math. Soc.* **1965**, 114, 309–319. [CrossRef]
- 18. Bowen, R. Entropy for group endomorphisms and homogeneous spaces. *Trans. Am. Math. Soc.* **1971**, 153, 401–414. [CrossRef]
- 19. Dinaburg, E.I. The relation between topological entropy and metric entropy. *Dokl. Akad. Nauk SSSR* **1970**, 190, 19–22.
- 20. Bowen, R. Topological entropy for noncompact sets. Trans. Am. Math. Soc. 1973, 184, 125–136. [CrossRef]
- 21. Walters, P. An Introduction to Ergodic Theory; Springer: Berlin/Heidelberg, Germany, 1982.
- 22. Leiye, X.; Xiaomin, Z. Variational principles for entropies of nonautonomous dynamical systems. *J. Dyn. Differ. Equ.* **2018**, *30*, 1053–1062.
- 23. Dai, X.; Zhou, Z.; Geng, X. Some relations between Hausdorff dimensions and entropies. *Sci. China Math.* **1998**, 41, 1068–1075. [CrossRef]
- 24. Misiurewicz, M. On Bowen's definition of topological entropy. *Discrete Contin. Dyn. Syst.* **2004**, *10*, 827–833. [CrossRef]
- 25. Falconer, K. Techniques in Fractal Geometry; John Wily and Sons: Hoboken, NJ, USA, 1997.
- 26. Pollicott, M.; Yuri, M. *Dynamical Systems and Ergodic Theory*; Cambridge University Press: Cambridge, MA, USA; Cambridge, UK, 1998.
- Falconer, K. Fractal Geometry: Mathematical Foundatins and Aplications. Second Editions; Wiley: Hoboken, NJ, USA, 2003.
- 28. Przytycki, F.; Urbański, M. Conformal Fractals: Ergodic Theory Methods; London Mathematical Society Lecture Notes 371; Cambridge University Press: Cambridge, MA, USA; Cambridge, UK, 2010.
- 29. Fathi, A. Some compact invariant sets for hyperbolic linear automorphisms of tori. *Ergod. Theory Dyn. Syst.* **1988**, 8, 191–204. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).