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Abstract: The purpose of this paper is to elucidate the interrelations between three essentially different
concepts: dynamical solenoids, topological entropy, and Hausdorff dimension, where by a dynamical
solenoid we mean a sequence of continuous epimorphisms of a compact metric space. For this purpose,
we describe a dynamical solenoid by topological entropy-like quantities and investigate the relations
between them. For L-Lipschitz dynamical solenoids and locally λ−expanding dynamical solenoids, we
show that the topological entropy and fractal dimensions are closely related. For a locally λ−expanding
dynamical solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension
of X multiplied by the logarithm of λ.

Keywords: entropy; Hausdorff measure; Hausdorff dimension; box dimension; dynamical solenoid;
locally expanding map

1. Introduction

A solenoid, which was introduced to mathematics by Vietoris [1] as the topological object, can be
presented either in an abstract way as an inverse limit or in a geometric way as a nested intersection
of a sequence of tori. The classical construction of Vietoris was modified by McCord [2], Williams [3],
and others. Since the publication of William’s paper on expanding attractors [3], inverse limit spaces have
played a key role in dynamical systems and in continuum theory. Smale [4] introduced the solenoid to
dynamical systems as a hyperbolic attractor.

In the paper, a sequence f∞ = ( fn : X → X)∞
n=1 of continuous epimorphisms of a compact metric

space (X, d) is called a dynamical solenoid while the inverse limit

X∞ = lim
←−

(X, fk) := {(xk)
∞
k=0 : xk−1 = fk(xk)}.

is called a classical solenoid. Since the paper is not about classical solenoids, the term dynamical solenoid
is sometimes abbreviated as solenoid.

In mathematical literature, one can also find a more restrictive definition of the solenoid as a finite-
dimensional, connected, compact abelian group. These solenoids generalize torus groups, and their entropic
properties have been studied by Berg [5], Lind and Ward [6], Einsiedler and Lindenstrauss [7], and others.
A less restrictive definition of the solenoid was considered in [8–10].

A dynamical solenoid is a natural generalization of a classical dynamical system. In contrast with the
classical dynamical systems, the properties of solenoid entropies have not been fully investigated. In the
paper, we consider several different definitions of entropy-like quantities for a dynamical solenoid f∞:
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topological entropy htop( f∞), topological cover entropy htop−cov( f∞), and topological dimensional entropy
htop−dim( f∞).

Both nonautonomous dynamical systems and dynamical solenoids are determined by compositions
of continuous self-maps; therefore, in both cases, the entropy-like quantities that capture complexities of
these generalized dynamical systems can be similar. For example, the topological entropy of a dynamical
solenoid coincides with the topological entropy of a nonautonomous dynamical system defined in [11].
In this paper, we derive the following relations between the entropies of a dynamical solenoid which were
previously known for continuous maps on compact metric spaces, and we obtained the following results.

Theorem 1. htop−dim( f∞) ≤ htop−cov( f∞).

Theorem 2. htop( f∞) = htop−cov( f∞).

In 2002, Milnor [12] stated two questions related to the classical dynamical system: “Is entropy of it
effectively computable?” “Given an explicit dynamical system and given ε > 0, is it possible to compute
the entropy with maximal error of ε?” In most cases the answer is negative. For the recent results on
computability of topological entropy, we recommend [13,14].

Therefore, in mathematical literature, there were many attempts to estimate entropy of dynamical
systems by Lyapunov exponents, volume growth, Hausdorff dimension, or fractal dimensions.

The theory of Carathéodory structures, introduced by Pesin [15] for a single map, has been applied
in [11] to get some estimations of the topological entropy of a nonautonomous dynamical system. To show a
comprehensive picture and beauty of dynamics of dynamical solenoids, we rewrite the Theorem 3 in [11] to
express complexity of so called L-Lipschitz dynamical solenoid. A dynamical solenoid f∞ = ( fn : X → X)∞

n=1
is called L-Lipschitz if it consists of L-Lipschitz epimorphisms; the following inequality holds.

Theorem 3. Assume that f∞ = ( fn : X → X)∞
n=1 is a L-Lipschitz dynamical solenoid with L > 1. Then, for any

Y ⊂ X, we obtain

HD(Y) ≥
htop−dim(( f∞), Y)

log(L)
,

where HD(Y) is the Hausdorff dimension of Y.

Finally, we investigate so called locally λ−expanding dynamical solenoids, in the sense of Ruelle [16]
(see Definition 6). We prove that the topological entropy of a λ−expanding dynamical solenoid, defined
on the space X, is related to the upper box dimension of X multiplied by the logarithm of λ. We obtained
the following inequalities.

Theorem 4. Given a locally λ−expanding dynamical solenoid f∞ = ( fn : X → X)∞
n=1. Then,

htop( f∞) ≥ (log λ) · dimB(X) ≥ (log λ) · HD(X),

where dimB(X) is the upper box dimension of X.

The paper is organized as follows. In Section 2, we introduce several definitions of entropy-like
quantities for a dynamical solenoid: topological entropy, topological cover entropy, and topological
dimensional entropy. In Section 3, we prove the relations between them (Theorems 1 and 2). Section 4 is
devoted to L-Lipschitz dynamical solenoids; we present Theorem 3. Finally, in Section 5, we investigate
locally λ−expanding dynamical solenoids and prove Theorem 4.
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2. Topological Entropies of a Dynamical Solenoid

In 1965, Adler, Konheim, and McAndrew [17] introduced a definition of topological entropy for the
classical dynamical system (i.e., a pair (X, f ), where X is a topological space and f : X → X is a continuous
map) as a non-negative number assigned to an open cover of X. A different definition of entropy of a
continuous self-map defined on a compact metric space was introduced by Bowen [18] and independently
by Dinaburg [19]. In [20], Bowen proved that the definitions are equivalent. Nowadays, topological entropy
is a main notion in topological dynamics. In the paper, we present a few generalizations of the classical
topological entropy of a single map to dynamical solenoids.

In the paper, we consider a dynamical solenoid determined by a sequence f∞ = ( fn : X → X)∞
n=1 of

continuous epimorphisms of a compact metric spaces (X, d). Thus, the dynamical solenoid is a generalized
dynamical system. Its complexity and chaos can be measured by several entropy-like quantities. First,
we introduce topological entropy via (n, ε)−separated sets.

2.1. Topological Entropy of a Dynamical Solenoid via (n, ε)−Separated or (n, ε)−Spanning Sets

Let B(x, r) = {y ∈ X : d(x, y) ≤ r} denote a closed ball in the metric space (X, d) centered at x ∈ X
and with radius r.

Definition 1. Fix ε > 0, n ∈ N. A subset F ⊂ X is called (n, ε)-spanning if for any x ∈ X there exists y ∈ F
such that

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}} ≤ ε.

Let r(n, ε) := min{card(F) : F is (n, ε)-spanning set}.
A set E ⊂ X is called (n, ε)-separated if for any pair of distinct points x, y ∈ E we have

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}} > ε.

Let s(n, ε) := max{card(E) : E is (n, ε)-separated}.

The following two lemmas are a reformulation of Definition 1.

Lemma 1. A set F ⊂ X is (n, ε)−spanning if and only if

X =
⋃

y∈F

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε].

Proof. (⇒) Assume that a subset F ⊂ X is (n, ε)−spanning. Then for any point x ∈ X there exists a point
y ∈ F such that

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}} ≤ ε.

For any i ∈ {1, ..., n} we obtain

fi ◦ fi+1 ◦ ... ◦ fn(x) ∈ B[ fi ◦ fi+1 ◦ ... ◦ fn(y), ε]

and
x ∈ ( fi ◦ fi+1 ◦ ... ◦ fn)

−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε].
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So

x ∈
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε].

Since x is an arbitrary point of X we conclude

X ⊂
⋃

y∈F

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε] ⊂ X.

(⇐) Now assume that the following equality

X =
⋃

y∈F

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε]

holds for a subset F ⊂ X. Then, for any x ∈ X there exists y ∈ F such that

x ∈
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(y), ε]

which is equivalent to

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(y)) : i ∈ {1, ..., n}} ≤ ε.

Thus the set F is (n, ε)−spanning and the proof is finished.

Lemma 2. A set E ⊂ X is (n, ε)-separated if and only if for any x ∈ E the set
⋂n

i=1( fi ◦ fi+1 ◦ ... ◦ fn)−1B[( fi ◦
fi+1 ◦ ... ◦ fn)(x), ε] contains no other points of E.

Proof. (⇒) Assume that a set E ⊂ X is (n, ε)−separated and choose two distinct points x1, x2 ∈ E. For any
i ∈ {1, ..., n} we get

x1 ∈ ( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ε]

so

x1 ∈
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ε].

Assume that

x2 ∈
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ε]

then we obtain the following inequality

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x1), fi ◦ fi+1 ◦ ... ◦ fn(x2)) : i ∈ {1, ..., n}} ≤ ε

which gives a contradiction with the assumption that x1, x2 are (n, ε)−separated. Thus the intersection

(∗) E ∩
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ε] = {x1}.
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(⇐) Now assume that for a given subset E ⊂ X the condition (∗) holds. For two distinct points
x1, x2 ∈ E we have

x2 6∈
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ε].

Therefore, there exists i ∈ {1, ..., n} such that

d( fi ◦ fi+1 ◦ ... ◦ fn)(x1), fi ◦ fi+1 ◦ ... ◦ fn)(x2)) > ε.

We have proved that the set E ⊂ X is (n, ε)−separated.

Modifying slightly the classical Bowen’s definition [18] of the topological entropy of a single map (for
details see also Chapter 7 in [21]), we present the definition of topological entropy of a dynamical solenoid
as follows.

Definition 2. The quantity

htop( f∞) := lim
ε→0+

lim sup
n→∞

1
n

log s(n, ε)

is called the topological entropy of f∞.

Remark 1. The topological entropy of a dynamical solenoid can also be expressed in the language of (n, ε)-spannings
sets. Using arguments similar to remarks on page 169 in [21], we get estimations

r(n, ε) ≤ s(n, ε) ≤ r(n, ε/2).

Indeed, for any two distinct points x1, x2 of an (n, ε)−separated set E with cardinality card(E) = s(n, ε)

we have
max{d( fi ◦ fi+1 ◦ ... ◦ fn(x1), fi ◦ fi+1 ◦ ... ◦ fn(x2)) : i ∈ {1, ..., n}} > ε.

Since E is (n, ε)−separated set with maximal cardinality, for any y ∈ X \ E there exists x3 ∈ E such that

max{d( fi ◦ fi+1 ◦ ... ◦ fn(y), fi ◦ fi+1 ◦ ... ◦ fn(x3)) : i ∈ {1, ..., n}} ≤ ε.

It means that E is (n, ε)−spanning and

r(n, ε) ≤ card(E) = s(n, ε).

To show the other inequality for the set E and an (n, ε
2 )− spanning set F ⊂ X with cardinality card(F) = r(n, ε/2)

define φ : E→ F by choosing, for each point x ∈ E some point φ(x) ∈ E with

max{d( fi ◦ fi+1 ◦ ... ◦ fn(x), fi ◦ fi+1 ◦ ... ◦ fn(φ(x))) : i ∈ {1, ..., n}} ≤ ε

2
.

The map φ : E→ F is injective and therefore card(E) ≤ card(F). Hence s(n, ε) ≤ r(n, ε/2).
Applying the inequalities

r(n, ε) ≤ s(n, ε) ≤ r(n, ε/2)

and passing to the suitable limits, we obtain the equality

htop( f∞) = lim
ε→0+

lim sup
n→∞

1
n

log r(n, ε).
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Remark 2. Assume that all maps of the sequence f∞ = ( fn : X → X)∞
n=1 coincide with a fixed continuous

map f : X → X of a compact metric space (X, d). Then, the topological entropy of f∞ is equal to the topological
entropy of f . For example, the topological entropy of a dynamical solenoid coincides with the topological entropy of a
nonautonomous dynamical system defined in [11].

2.2. Topological Entropy of a Dynamical Solenoid via Open Covers

It is a well-known fact that topological entropy of a single continuous map f : X → X can be defined
by open covers of the compact metric space (X, d). We intend to show that similar approach can be applied
to a dynamical solenoid. For this purpose, notice that for two open covers A, B of X, the family

A∨ B := {A ∩ B : A ∈ A, B ∈ B}

is an open cover of X. Moreover, for a continuous map fi ◦ fi+1 ◦ ... ◦ fn : X → X and an open cover A of
X the family

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A := {( fi ◦ fi+1 ◦ ... ◦ fn)

−1 A : A ∈ A}

is an open cover of X. Thus, for the open cover A of X, the family

n∨
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A :=

( f1 ◦ f2 ◦ ... ◦ fn)
−1(A) ∨ ( f2 ◦ f3 ◦ ... ◦ fn)

−1(A) ∨ ...∨ ( fn)
−1(A)

is an open cover of X.
For an open cover B of X let us denote by N(B) the number of sets in a finite subcover of B covering

X, with the smallest cardinality.

Definition 3. The topological cover entropy of f∞, relative to an open cover A of X, is defined as

htop−cov( f∞,A) := lim sup
n→∞

1
n

log N

(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A

)
,

whereas the topological cover entropy of f∞ is the quantity

htop−cov( f∞) := sup
A

h( f∞,A),

where A ranges over all open covers of X.

2.3. Topological Entropy as a Dimension Theory Quantity

Here, we modify the Bowen’s definition [20] of the topological entropy of a continuous single map,
which is similar to the construction of the Hausdorff measure, to obtain the topological dimensional
entropy of f∞.

2.3.1. The Hausforff Measure and the Hausdorff Dimension

For the convenience of the reader, we recall briefly the classical construction of the Hausdorff measure
and the Hausdorff dimension.

For a metric space (X, d) and a subset Y ⊂ X, let us denote by Covε(Y) the family of open covers B of
Y with diam(B) < ε, for any B ∈ B. Here, diam(B) denotes the diameter of B.
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For any λ > 0 the classical Hausdorff λ−measure µλ(Y) of a subset Y ⊂ X is defined as follows,

µλ(Y) := lim
ε→0

inf{∑
B∈B

[diam(B)]λ : B ∈ Covε(Y)}.

The function λ→ µλ(Y) has a unique critical point, where it jumps from ∞ to 0. The Hausdorff dimension
HD(Y) of Y is defined as the critical point of the function λ→ µλ(Y), i.e.,

HD(Y) = sup{λ : µλ(Y) = ∞} = inf{λ : µλ(Y) = 0}.

2.3.2. Generalized Hausdorff Measure and Generalized Hausdoff Dimension

Arguments similar to the construction of the classical Hausdorff λ-measure and the Hausdorff
dimension lead to another entropy-like quantity for f∞ = ( fn : X → X)∞

n=1. Denote by A a finite open
cover of X. For a subset B ⊂ X, we write B ≺ A if there exists Ai ∈ A such that B ⊂ Ai. Denote by nA(B)
the largest non-negative integer n such that fk ◦ fk+1 ◦ ... ◦ fn(B) ≺ A for k = 1, ..., n. If there is no element
Ai ∈ A such that B ⊂ Ai, then we write nA(B) = 0. Let us introduce the following notations.

diamA(B) := exp(−nA(B)),

diamA(B) := sup{diamA(B) : B ∈ B}

and
DA(B, λ) := ∑

B∈B
[diamA(B)]λ

for a family B of subsets of X and a real number, λ > 0. For a subset Y ⊂ X and ε > 0, let CovAε (Y) denote
the family of open covers B of Y with diamA(B) < ε. Now we set

µA,λ(Y) := lim
ε→0

inf{DA(B, λ) : B ∈ CovAε (Y)}.

The behavior of the function λ→ µA,λ(Y) is very similar to the behavior of λ→ µλ(Y): it has a unique
critical point, where it jumps from ∞ to 0. More precisely.

Lemma 3. For the function λ → µA,λ(Y), there exists a unique critical number λ0 such that µA,λ(Y) =

∞, f or 0 ≤ λ < λ0 and µA,λ(Y) = 0, f or λ0 < λ.

Proof. For any ε ∈ (0, 1) there exists a cover B of Y with exp(−nA(B)) < 1, for any B ∈ B. Therefore,
the inequality 0 < β < α implies

∑
B∈B

exp(−nA(B) · α) ≤ ∑
B∈B

exp(−nA(B) · β),

so
µA,α(Y) = lim

ε→0
inf{∑

B∈B
exp(−nA(B) · α) : B ∈ CovAε (Y)} ≤

lim
ε→0

inf{∑
B∈B

exp(−nA(B) · β) : B ∈ CovAε (Y)} = µA,β(Y).

Therefore,
(∗∗) 0 < β < α⇒ µA,α(Y) ≤ µA,β(Y).
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First assume that µA,δ(Y) = ∞ for some δ > 0 and that β < δ. By (∗∗) we conclude that

∞ = µA,δ(Y) ≤ µA,β(Y).

In a similar way, we prove that if µA,λ(Y) = 0, then for λ1 > λ we obtain the equality µA,λ1(Y) = 0.

Definition 4. Denote by λ0 the critical point of the function λ → µA,λ(Y). Let λ0 = htop−dim(( f∞), Y,A).
In other words, let

htop−dim(( f∞), Y,A) := sup{λ : µA,λ(Y) = ∞} = inf{λ : µA,λ(Y) = 0}.

The number
htop−dim( f∞, Y) := sup{htop−dim(( f∞), Y,A) : A f inite open cover o f Y}

is called the topological dimensional entropy of f∞ restricted to Y. If Y = X, we write htop−dim( f∞, X) =

htop−dim( f∞).

Remark 3. Our definition of topological dimension entropy of a dynamical solenoid is an extension of Bowen’s
entropy [20]. Moreover, the topological dimensional entropy of a dynamical solenoid is similar to Bowen’s topological
entropy of nonautonomous dynamical systems in [22].

3. Relations between Topological Entropies of a Dynamical Solenoid

In the previous section, we introduced three entropy-like quantities for a dynamical solenoid. Now,
we relate the topological dimensional entropy of a dynamical solenoid to its topological covering entropy.
We obtain the following result.

Theorem 1. htop−dim( f∞) ≤ htop−cov( f∞).

Proof. Choose a finite open cover A of X and let

An = {
n⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1(Ai) : Ai ∈ A}.

Denote by Bn a finite subcover of An with cardinality |Bn| = N(An). Then, for any B ∈ Bn, we obtain that
nA(B) ≥ n, so

diamA(B) ≤ exp(−n)

and for any λ > 0 we get

DA(Bn, λ) = ∑
B∈Bn

[diamA(B)]λ = ∑
B∈Bn

exp(−λ · nA(B)) ≤ |Bn| · exp(−λ · n).

As |Bn| = N(An), we have

|Bn| · exp(−λ · n) = exp(−λ · n + log |Bn|) = exp(−n(λ− 1
n

log N(An))).

Consequently,

DA(Bn, λ) ≤ exp(−n · (λ− 1
n

log N(An))).
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Fix ε > 0 and an arbitrary small γ > 0. Choose λ∗ such that λ∗ > htop−cov( f∞,A) > λ∗−γ. For sufficiently
large n ∈ N, we obtain the inequalities

λ∗ − 1
n

log N(An)) > 0,

diamA(B) < exp(−n) < ε, f or B ∈ B, and

DA(Bn, λ∗) ≤ exp(−n · (λ∗ − 1
n

log N(An))) < ε.

As ε > 0 is arbitrarily small, the above two inequalities yield µA,λ∗(X) = 0. Therefore,

htop−dim( f∞, Y,A) ≤ λ∗ ≤ htop−cov( f∞,A) + γ.

As A is an arbitrary finite open cover of X, we obtain

htop−dim( f∞) = sup{htop−dim(( f∞), X,A) : A− f inite open cover o f X}

≤ sup{htop−cov( f∞,A) : A− f inite open cover o f X}+ γ = htop−cov( f∞) + γ.

Finally, passing with γ to zero, we get

htop−dim( f∞) ≤ htop−cov( f∞).

Lemma 4. For an open cover A of X with the Lebegue number Leb(A) = δ, we get

N

(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A

)
≤ r(n,

δ

2
).

Proof. Fix n ∈ N and δ > 0. Choose an (n, δ
2)-spanning set F with cardinality card(F) = r(n, δ

2). As Leb(A) =
δ, we obtain that any ball B[( fi ◦ fi+1 ◦ ... ◦ fn)(x), δ

2 ] of radius δ/2, where x ∈ F and i ∈ {1, ..., n},
is included in some set Ai ∈ A, so

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x),

δ

2
] ⊂

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1 Ai,

for some A1, A2, ...An ∈ A. It means that the set

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B[( fi ◦ fi+1 ◦ ... ◦ fn)(x),

δ

2
]

is a subset of some member of the covering

n∨
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A.
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On the other hand, applying Lemma 1, we get

X =
⋃

x∈F

n⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B(( fi ◦ fi+1 ◦ ... ◦ fn)(x),

δ

2
),

so

N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1A) ≤ card(F) = r(n,

δ

2
).

Lemma 5. Assume that ε > 0 and B is an open cover of X, with diam(B) ≤ ε. Then,

s(n, ε) ≤ N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B).

Proof. Choose an (n, ε)-separated set E with cardinality card(E) = s(n, ε). Assume that two distinct
points x1, x2 ∈ E belong to the same member of the cover

∨n
i=1( fi ◦ fi+1 ◦ ... ◦ fn)−1B. Therefore, there exist

sets Bi ∈ B such that ( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ( fi ◦ fi+1 ◦ ... ◦ fn)(x2) ∈ Bi for any i ∈ {1, .., n}. On the other
hand, as the set E is (n, ε)-separated, there exists j ∈ {1, ..., n} such that

d(( f j ◦ f j+1 ◦ ... ◦ fn)(x1), ( f j ◦ f j+1 ◦ ... ◦ fn)(x2)) =

max{d( fi ◦ fi+1 ◦ ... ◦ fn)(x1), ( fi ◦ fi+1 ◦ ... ◦ fn)(x2) : i ∈ {1, .., n}} > ε.

Thus, we get a contradiction with diam(Bj) ≤ ε. Therefore,

s(n, ε) ≤ N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1B).

Now, we are ready to prove that the topological entropy of a dynamical solenoid is equivalent to its
topological covering entropy.

Theorem 2. htop( f∞) = htop−cov( f∞).

Proof. Fix ε > 0. Let Aε be the cover of X by all open balls of radius 2 · ε and denote by Bε the cover of X
by all open balls of radius ε

2 . Due to Lemma 4, we obtain

N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1Aε) ≤ r(n, ε),

so

lim sup
n→∞

1
n

log N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1Aε) ≤ lim sup

n→∞

1
n

log r(n, ε)

and
htop−cov( f∞) ≤ htop( f∞).
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Applying Lemma 5, we get

s(n, ε) ≤ N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1Bε),

so

lim sup
n→∞

1
n

log s(n, ε) ≤ lim sup
n→∞

1
n

log N(
n∨

i=1

( fi ◦ fi+1 ◦ ... ◦ fn)
−1Bε)

and finally we get the second inequality

htop( f∞) ≤ htop−cov( f∞).

The theorem is proved.

4. Topological Entropy of L-Lipschitz Dynamical Solenoids

Dai, Zhou, and Geng [23] proved the following result. If X is a metric compact space and f : X → X
a Lipschitz continuous map, then the Hausdorff dimension of X is lower estimated by the topological
entropy of f divided by the logarithm of its Lipschitz constant. In 2004, Misiurewicz [24] provided a
new definition of topological entropy of a single transformation, which was a kind of hybrid between
the Bowen’s definition and the original definition of Adler, Konheim, and McAndrew [17]. The main
theorem in [24] is similar to the result in [23]. In this section, we consider a special class of dynamical
solenoids called L-Lipschitz dynamical solenoids. We say that a dynamical solenoid f∞ = ( fn : X → X)∞

n=1
is a L-Lipschitz if there exists L > 0 such that each map fn : X → X is an Lipschitz epimorphism with
Lipschitz constant L, i.e., for any x, y ∈ X and arbitrary n ∈ N

d( fn(x), fn(y)) ≤ L · d(x, y).

Let us start with the following example.

Example 1. Consider the dynamical solenoid f∞ = ( fn : T2 → T2)∞
n=1, where T2 = R2

Z2 is two-dimensional torus
and each fn : T2 → T2 is the doubling map, i.e., fn(x1, x2) = 2 · (x1, x2), for any (x1, x2) ∈ T2. Then,

htop( f∞,T2)

log(2)
= HD(T2) =

htop−dim( f∞,T2)

log(2)
.

Indeed, the Hausdorff dimension of the two dimensional torus is equal to two (see page 23 in [25]). Due
to Remarks 2 and 3, we get htop( f∞,T2) = htop( f2) = htop−dim( f∞,T2). On the other hand, the doubling
map f2 : T2 → T2 can be considered as the Cartesian product of two doubling maps g : R

Z →
R
Z defined by

g(x) = 2 · x mod 1, for x ∈ R
Z . Moreover, htop(g) = log(2) (see Example on page 29 in [26]). Consequently,

htop( f∞,T2) = 2 · log(2) = htop−dim( f∞,T2).
To show the comprehensive picture of dynamics of L-Lipschitz dynamical solenoids, we rewrite the

Theorem 3 published in [11], written for nonautonomous dynamical systems, in the set up of dynamical
solenoids as follows.

Theorem 3. Assume that f∞ = ( fn : X → X)∞
n=1 is a L-Lipschitz dynamical solenoid with L > 1. Then, for any

Y ⊂ X, we obtain

HD(Y) ≥
htop−dim(( f∞), Y)

log(L)
.
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For the convenience of the reader and to make the paper self-contained, we write the proof of Theorem
3 which is essentially the same as the proof of Theorem 3 in [11].

Proof. Choose a finite open cover A of Y and denote by δ = Leb(A) its Lebesgue number. It means that
for an open subset C ⊂ Y with diameter diam(C) < δ, there exists A ∈ A such that C ⊂ A. Choose an
open set B with δ

Ln ≤ diam(B) < δ
Ln−1 , for some n ∈ N. We obtain that

diam( fk ◦ fk+1 ◦ .... ◦ fn−1(B)) < δ

for any k = 1, 2, ...n− 1, so nA(B) ≥ n− 1. From the inequality

δ

Ln ≤ diam(B)

we conclude that

n ≥ log(δ)− log(diam(B))
log(L)

.

Consequently,
log(δ)− log(diam(B))

log(L)
≤ nA(B) + 1

and

diamA(B) = exp(−nA(B)) ≤ exp(1− log(δ)− log(diam(B))
log(L)

) =

exp[1− (
log(δ)
log(L)

)] · (diam(B))
1

log(L) .

Therefore, for an open cover B of Y consisting of open sets B with δ
Ln ≤ diam(B) < δ

Ln−1 and λ > 0, we get

DA(B, λ) ≤ exp[λ− λ · ( log(δ)
log(L)

)] · ∑
B∈B

(diam(B))
λ

log(L) .

Fix γ > 0 and choose λ1 such that

λ1

log(L)
> HD(Y) ≥ λ1

log(L)
− γ.

By definition of the Hausdorff measure, the equality µ λ1
log(L)

(Y) = 0 holds. Therefore, for any ε > 0 there

exists and an open cover Bε of Y such that for any B ∈ Bε

ε > exp[1− (
log(δ)
log(L)

)] · (diam(B))
1

log(L) > diamA(B)

and

ε > exp[λ1 − λ1 · (
log(δ)
log(L)

)] · ∑
B∈Bε

(diam(B))
λ1

log(L) > DA(Bε, λ1).

The inequalities
µA,λ1(Y) ≤ DA(Bε, λ1) < ε

yield µA,λ1(Y) = 0. According to Definition 4, we get
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htop−dim(( f∞), Y,A) = inf{λ : µA,λ(Y) = 0} ≤ λ1.

Taking supremum over all open finite covers of Y, we obtain

htop−dim(( f∞), Y) =

sup{htop−dim(( f∞), Y,A) : A− f inite open cover o f Y} ≤

λ1 ≤ log(L) · (HD(Y) + γ).

Finally,
htop−dim(( f∞), Y) ≤ log(L) · HD(Y),

as γ is an arbitrarily small positive number.

In particular, taking Y = X, we obtain the following corollary.

Corollary 1. Assume that f∞ = ( fn : X → X)∞
n=1 is a L-Lipschitz dynamical solenoid. Then, the inequality

HD(X) ≥
htop−dim(( f∞))

log(L)

holds.

In the special case, for f∞ = ( fn : X → X)∞
n=1 being a L-Lipschitz dynamical solenoid such that all

maps fn : X → X coincide with a continuous map f : X → X, we get that

htop( f∞) = htop( f ),

where htop( f ) is the classical topological entropy of f:X → X. Bowen proved (Proposition 1 in [20]) that
htop−dim( f ) = htop( f ). Consequently, as a corollary of Theorem 3, we get the result of Misiurewicz [24].

Corollary 2 (Theorem 2.1 in [24]). If f : X→ X is a continuous L-Lipschitz map of a compact metric space (X, d), then

HD(X) ≥
htop( f )
log(L)

.

5. Topological Entropy of Locally Expanding Dynamical Solenoids

In this section, we investigate locally expanding dynamical solenoids. Ruelle [16] introduced the
notion of a locally expanding map in the following way.

Definition 5. Let (X, d) be a compact metric space and f : X → X a continuous selfmap. If for λ > 1 there exists
ε > 0 such that for every pair of distinct points x, y ∈ X

d(x, y) < ε⇒ d( f (x), f (y)) ≥ λ · d(x, y),

then we say that f is a locally (ε, λ)-expanding map and λ is an expanding coefficient of f .

Notice that any finite composition of locally (εi, λi)-expanding maps is an (ε, λ)-locally expanding map
for some ε > 0 and λ > 1. We extend the notion of locally expanding map to a dynamical solenoid as follows.
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Definition 6. Given a dynamical solenoid f∞ = ( fn : X → X)∞
n=1. If there exists ε > 0 such that all maps

fn : X→ X are locally (ε, λn)-expanding and λ := inf{λn : n ∈ N} > 1, then we say that f∞ is locally λ-expanding.

Lemma 6. Given a locally λ-expanding dynamical solenoid f∞ = ( fn : X → X)∞
n=1. Then, there exists ε > 0

such that for any x ∈ X, k ∈ N, and γ ∈ (0, ε) we get

k⋂
i=1

( fi ◦ fi+1 ◦ ... ◦ fk)
−1B( fi ◦ fi+1 ◦ ... ◦ fk(x), γ) ⊂ B

(
x,

γ

λk

)
.

Proof. Choose ε > 0 such that for any k ∈ N and for every pair of distinct points x, y ∈ X, we get

d(x, y) < ε⇒ d( fk(x), fk(y)) ≥ λk · d(x, y).

Fix γ ∈ (0, ε) and let

y ∈
k⋂

i=1

( fi ◦ fi+1 ◦ ... ◦ fk)
−1B( fi ◦ fi+1 ◦ ... ◦ fk(x), γ).

Then, we get inequalities

ε > γ > d( f1 ◦ f2 ◦ ... ◦ fk(x), f1 ◦ f2 ◦ ... ◦ fk(y)) ≥

λ1 · d( f2 ◦ . . . ◦ fk(x), f2 ◦ . . . ◦ fk(y)) ≥ λ1 · ... · λk · d(x, y) ≥

λk · d(x, y).

Therefore, d(x, y) < γ
λk and y ∈ B(x, γ

λk ). The lemma is proved.

The notion of the box dimension is an example of fractal dimension which belongs to fractal geometry.
It was defined independently by Minkowski and Bouligard for a subset of Euclidean space. For modern
presentation of fractal dimensions see the classical books of Falconer [25,27] or the monograph written by
Przytycki and Urbański [28].

Definition 7 (Chapter 2 in [25]). Recall that the upper box dimension of a closed subset Z of a compact metric
space X is

dimB(Z) := lim sup
γ→0

log N(Z, γ)

− log γ
,

where N(Z, γ) denotes the smallest number of balls B(x, γ) of radius γ > 0 needed to cover Z.

Lemma 7 ([28]). For a compact metric space X, the Hausdorff dimension HD(X) of X and the upper box dimension
dimB(X) of X are interrelated

HD(X) ≤ dimB(X).

In the proof of Theorem 4 we need the following lemma.

Lemma 8 (Lemma 6.2 in [29]). Let φ : R→ R+ be a decreasing function. If δ ∈ (0, 1) and γ > 0, then

lim sup
r→0

log φ(r)
log r

= lim sup
n→∞

log φ(δnγ)

log(δnγ)
.
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Theorem 4. Given a locally λ-expanding dynamical solenoid f∞ = ( fn : X → X)∞
n=1. Then,

htop( f∞) ≥ (log λ) · dimB(X) ≥ (log λ) · HD(X).

Proof. In the first part of the proof we intend to show that

htop( f∞) ≥ (log λ) · dimB(X). (1)

Fix ε > 0 such that for every pair of distinct points x, y ∈ X and for every n ∈ N,

d(x, y) < ε⇒ d( fn(x), fn(y)) ≥ λ · d(x, y).

By Lemma 6 and Lemma 1, for any γ ∈ (0, ε) and an arbitrary n ∈ N, we have

N
(

X,
γ

λn

)
≤ r(n, γ), (2)

consequently, applying Lemma 8 for the first equality and (2) for the subsequent inequality, we get

dimB(X) = lim sup
n→∞

log N(X, γ
λn )

− log γ
λn

≤ lim sup
n→∞

log r(n, γ)

− log r
λn

=

1
log λ

· lim sup
n→∞

log r(n, γ)

n
.

Therefore,

htop( f∞) = lim
γ→0

lim sup
n→∞

log r(n, γ)

n
≥ (log λ) · dimB(X).

According to the Lemma 7, we finally get

htop( f∞) ≥ (log λ) · dimB(X) ≥ (log λ) · HD(X).
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