
entropy

Article

On Training Neural Network Decoders of Rate
Compatible Polar Codes via Transfer Learning

Hyunjae Lee 1, Eun Young Seo 2, Hyosang Ju 1 and Sang-Hyo Kim 1,*
1 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea;

dlguswo77@skku.edu (H.L.); johoo1120@skku.edu (H.J.)
2 Samsung Electronics, Hwaseong 18448, Korea; eunyoung.ccl@gmail.com
* Correspondence: iamshkim@skku.edu; Tel.: +82-31-299-4586

Received: 3 March 2020; Accepted: 22 April 2020; Published: 25 April 2020
����������
�������

Abstract: Neural network decoders (NNDs) for rate-compatible polar codes are studied in this
paper. We consider a family of rate-compatible polar codes which are constructed from a single polar
coding sequence as defined by 5G new radios. We propose a transfer learning technique for training
multiple NNDs of the rate-compatible polar codes utilizing their inclusion property. The trained
NND for a low rate code is taken as the initial state of NND training for the next smallest rate code.
The proposed method provides quicker training as compared to separate learning of the NNDs
according to numerical results. We additionally show that an underfitting problem of NND training
due to low model complexity can be solved by transfer learning techniques.

Keywords: polar codes; deep learning; neural network decoder; transfer learning

1. Introduction

Polar codes, proposed by Arikan in [1], are the first error correcting codes to provably achieve
the symmetric capacity with low complexity in binary-input discrete memoryless channels (B-DMCs).
This result means that Shannon’s random codes, which achieve channel capacity, are replaced by a
practical code with a low-complexity decoding algorithm [1]. Due to its better performance compared
to turbo and low-density parity-check (LDPC) codes at short lengths, it has been adopted as the error
correcting code for control signals in the enhanced mobile broadband (eMBB) scenario of the third
generation partnership project (3GPP) 5G standard [2].

Decoding schemes of polar codes are commonly used with successive cancellation (SC) [1] and
belief propagation (BP) algorithms [1]. SC decoding has a relatively low computational complexity and
high latency, while BP decoding has a high throughput and computational complexity [3]. In addition,
both schemes perform poorly at finite lengths, e.g., hundreds to thousands of bits. SC list (SCL)
decoding with concatenated a cyclic redundancy check (CRC) code was proposed later [4], and it
was proved that similar performance can be obtained as compared to turbo and LDPC codes in finite
lengths. That is, polar codes have been shown to be practically available. Recently, decoders using
deep learning (DL) have been proposed to replace traditional decoders of polar codes [5–11].

DL has made a great success in computer vision [12], machine translation [13], speech and
image recognition [14], and many other fields. Its influence has become widespread and has reached
communication systems, where analytic solutions have been preferred. There have been a number
of DL approaches [5,15,16] to physical layer communications. Among them, we have got a special
interest in deep neural networks (DNN)-based decoding of channel codes. As a pioneering work,
Gruber et al. employed feedforward deep neural networks to learn the maximum a posteriori (MAP)
decoding of polar codes [5]. That approach was extended to convolutional neural networks (CNN)
and recurrent neural networks (RNN) and it was shown that better performance can be obtained by

Entropy 2020, 22, 496; doi:10.3390/e22050496 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e22050496
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/5/496?type=check_update&version=2

Entropy 2020, 22, 496 2 of 13

the advanced structures of DNN [6]. Such small neural network decoders (NNDs) are used to form
a decoder for longer polar codes in combination with BP processing [7]. Nachmani et al. designed
an NND called the ‘neural BP decoder’ that basically performs weighted BP decoding with variable
weights [8]. A proper training finds the weight values that compensate finite length impairments of the
BP algorithm and the performance is therefore improved for high density parity check codes such as
Bose, Chaudhuri, and Hocquenghem (BCH) codes. Bennatan et al. proposed a syndrome-based NND
for linear block codes [9]. For CRC-polar codes, a neural BP algorithm was proposed by Doan et al. [10].
In [17], Tandler et al. proposed an ordering of data for efficient training of the decoder of convolutional
codes. Unlike the problems of applying general deep learning, NND has an advantage that it is very
easy to generate a training data set. In addition, the NNDs are capable of one-shot decoding because
the received signal is decoded only once through the hidden layers, and can approach the optimal
decoding performance with low latency.

Previous studies [5–11,17] considered learning an NND for a specific code of fixed length and rate.
However, wireless standards normally use a class of codes of multiple parameter sets, since a receiver
is required to have either multiple decoders each of which is specialized to a code or a decoder which
is flexible to decode many codes. For NND, a decoder is determined by the values of the weights.
To support multiple codes, the same number of sets of weight values should be stored even though
the NND hardware is commonly used. Because the supervised learning method [5,6] trains a decoder
with data from a specific code and channel, a straightforward approach is to train all the decoders
separately. However, we thought if codes are closely related, then decoder training can be aided by the
results of the training of another decoder.

In this paper, we consider the problem of training a set of rate-compatible polar codes that are
expurgated from the same mother code. Exploiting the inclusion property of rate-compatible polar
codes which are defined by a single polar coding sequence as adopted in a 5G New Radio (NR) [2],
we propose an efficient decoder training method via transfer learning. We compare the complexity
and performance of the proposed method with conventional separate learning. We also tackle an
underfitting problem where the given model complexity is not sufficiently high to be well trained by
conventional training methods. It is shown that transfer learning from low to high-rate codes can train
a high-rate code decoder better than the conventional training methods.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the NND
framework, basics of polar codes, and the conventional NND for polar codes. The characteristics
of rate-compatible polar codes and their training data are investigated and the proposed transfer
learning-based training method of NNDs for the rate-compatible polar codes is then presented in
Section 3. Performance comparison with the conventional separate learning is given in Section 4.
Section 5 concludes the paper.

2. DL Based Decoders for Polar Codes

In this section, we introduce the conventional decoding of polar codes and the system framework
of NND for polar codes. We consider an implementation of an NND of polar codes based on the work
in [6].

2.1. System Framework

Artificial neural networks are a network of many artificial neurons that pass signals with variable
weights so as to approximate an arbitrary nonlinear function. The weights for the signals can be
trained by a set of data to mimic a desired function that minimizes a cost function [18]. In this paper,
we consider the problem of training NND of rate-compatible polar codes based on the previous setting
in [6]. Our system model that comprises an NND is depicted in Figure 1. Let N , K , and R be the code
length, message size and code rate, respectively and then R = K/N . At the transmitter, a message
m = (m1, . . . , mK) ∈ {0, 1}K is encoded to a codeword c = (c1, . . . , cN) ∈ {0, 1}N . Then, c is modulated
by the binary phase shift keying (BPSK) modulation and the transmitted signal x = (x1, x2, . . . , xN)

Entropy 2020, 22, 496 3 of 13

with xi = (−1)ci , 1 ≤ i ≤ N , is sent through the additive white Gaussian noise (AWGN) channel. At the
receiver, y = (y1, . . . , yN) = x + z is received, where z = (z1, . . . , zN) is the Gaussian noise vector with
zero mean and variance σ2. Since E[x2] = 1, the noise variance is determined as σ2 = 1

2R
1

(Eb/N0)
for a

given Eb/N0 value. Then, the NND outputs the estimated message m̂ = (m̂1, . . . , m̂K) by decoding y.

Figure 1. System model with a neural network decoder.

2.2. Polar Codes

Polar codes are the first family of provably capacity-achieving codes with low decoding complexity
in B-DMCs based on the channel polarization phenomenon [1]. Channel polarization consists of two
phases: channel combining and channel splitting. Through this process, N independent copies of
a channel W having the same channel capacity are transformed to N synthetic split channels with
different channel capacities. The capacity polarizes to either 0 or 1 as N goes to a very high value.
Let Sα be the sequence of the indices of split channels sorted in the descending order of capacity for a
finite N , where α denotes the parameter of the channel. A polar code of dimension K is defined by the
index set IK which is composed of the best K channels, the elements of Sα[1 : K]. The set IK is said
to be the ‘information set’ and IcK = {1, 2, . . . , N} \ IK is called the ‘frozen set’ whose corresponding
bits are preset with known values, e.g., zero. The source vector u = (u1, . . . , uN) ∈ {0, 1}N is formed by
the subvectors, uIK = m and frozen uI cK

. The codeword c is encoded by c = uGN , where the generator
matrix GN is defined by GN = F⊗n, F =

[
1 0
1 1

]
, and ⊗n denotes the n-th Kronecker power.

Polar codes achieve capacity asymptotically under SC decoding [1]. However, its finite length
performance was not impressive in comparison to turbo or LDPC codes. SCL decoder was later
proposed for better performance in finite length [3,4]. SCL decoding chooses the best of L surviving
decoding paths whereas SC decoding maintains only one path during a decoding. SCL decoding
converges to the MAP decoding as L increases. However, it is hard to fully parallelize the entire
decoding procedure due to the sequential nature of the decoding algorithm.

2.3. NNDs for Polar Codes

Since NNDs can show near MAP performance at extremely low latency for short codes, they have
been studied as a new solution to low latency applications for polar codes [5–11]. In [5,6], it was shown
that various neural networks are able to learn polar decoding algorithms for short codes and when
fully learned, they perform closely to MAP decoding.

In this section, we review the system model, the neural network (NN) models for NNDs, and the
training method of a single polar NND with a fixed rate proposed in [6]. We consider the transmission of
BPSK modulated signals of polar code codewords over AWGN channels. We consider only multi-layer
perceptron (MLP) and long short-term memory (LSTM) [19] models for NND structure. The NNDs are
trained via supervised learning.

Supervised learning is one of the training methods of DL, which uses training data consisting of
inputs and desired labels for those inputs where the decoding function is regarded as a multi-class
classification. The training data set is a set of data points, each of which consists of y and m; an input
and its label. Unlike many typical supervised learning problems, data can be collected as much as
desired since the system model is a natural data generator of this problem. First, m is randomly
selected from 2K messages and is encoded, modulated, and transmitted through the AWGN channel
in the probabilistic model. The received vector y and the corresponding message m form a training
data point. First, the MLP model under consideration is introduced. The MLP is a fully connected
feed-forward NN model which is composed of the input and output layers along with several hidden
layers. For MLP, we employ the same structure as in [6]. The numbers of the nodes of the input and

Entropy 2020, 22, 496 4 of 13

output layers are N and K , respectively. We only consider polar codes of lengths 16 and 32 because it is
hard to learn a long block code decoder by this general NNDs. Three hidden layers of 128-64-32 nodes
are commonly used. The rectified linear unit (ReLU) is used in hidden layers and the sigmoid function
is adopted for the output layer. We also use the LSTM model based on the structure proposed in [6].
A single LSTM cell is used for the LSTM model in this paper. The output dimension of the LSTM cell is
256 and each node uses the sigmoid function. The input vector is sequentially fed symbol by symbol.
After N time steps, K nodes are selected as the output nodes from the 256 nodes.

Training is conducted so as to minimize the average loss. As loss function, we use the mean
squared error (MSE) defined as

L =
1
K

K∑
i=1

(mi − m̂i)
2, (1)

where mi and m̂i are symbols of the label and the output, respectively. Weights and biases are updated
via stochastic gradient descent (SGD) in batches. Because of the characteristics of the system model,
noisy transmission can take on infinitely many values. This makes the concept of ‘epoch’ obscure,
because an ‘epoch’ originally indicates a single round of training with an entire finite data set. In [5],
the pair of a message m and its modulated codeword x was considered as a data point. The size of
data set is then 2K and one data point exists for each class of the decoding problem. To reflect the noisy
transmission, a noise layer was included at the input of the NN model to be trained. Training through
the entire set of code was counted as a single epoch. On the other hand, in [6], the noisy received
vector y is paired with its message m to form a data point. A set of data points of a fixed size was used
as a batch for parameter update. As random noise is added in each transmission, data points can be
generated unlimitedly, which can make the definition of epoch pointless. However, the weight update
with a batch was interpreted as an epoch in [6].

In this paper, we follow the interpretation of [6] for the definition of a data point. However,
the concept of epoch is ignored because the size of available data can be infinite. Instead, we evaluate
the complexity and speed of training in the number of mini-batches of a fixed size lb. The number of
mini-batches or weight updates in a training session is denoted by Mb.

The eventual goal of the decoder training is obviously to obtain a decoder performing close to the
MAP decoder. The trained NND is evaluated in terms of bit error rate (BER) between m and m̂ via
Monte Carlo simulation.

3. Training of NNDs via Transfer Learning

Since the decoding function for the NND [5,6] is a classification into all codewords, the number of
classes (i.e., the size of the code) grows exponentially with the code dimension K . Naturally, the training
data should be sufficiently larger than the number of classes. Therefore, the training complexity is a
major bottleneck for a long code although the generation of a data set is easy. This limits the training
problem to only codes of a small K . Even though the code is short, training complexity increases when
we need to support rate-compatible codes.

If a set of polar codes is constructed based on expurgation that uses a single polar coding
sequence [2], a low rate code is included in a higher rate code within the family of codes. In this section,
we introduce a method of generating training data using the inclusion relationship between codewords
according to the code rate of polar codes. Then, we propose an efficient training method for the NNDs
of multiple polar codes in the context of transfer learning. We also suggest to train a single decoder via
transfer learning method to solve an underfitting problem due to low model complexity.

3.1. Inclusion Relation of Training Data

In this subsection, we investigate the inclusion relation of the polar codes defined by a single polar
coding sequence. To support rate-compatibility of polar codes, multiple codes with rate R = {Ri =

Ki/N}, 1 ≤ i ≤ T should be used. Assume without loss of generality Ri < Rj for i < j. Because the

Entropy 2020, 22, 496 5 of 13

polarization is channel-sensitive, the optimal construction for Ri requires the optimal channel parameter
αi and the corresponding order Sαi . However, to reduce the complexity of description, a unified
sequence S can be used for multiple rate-compatible codes with small performance penalty as adopted
in 5G NR [2]. Let us define such a set of codes as follows.

Definition 1. Let C = {Ci}, 1 ≤ i ≤ T be a rate-compatible set of polar codes supporting R where Ci = C(N , Ki)

and C(N , Ki) is the polar code of dimension Ki defined by the unified polar coding sequence S.

It is manifest that the inclusion relation IKi ⊂ IK j for i < j holds because IK = S[1 : K] for
rate-compatible polar codes based on a single polar coding sequence. Let GIKi

be the submatrix of G.

Proposition 1. Polar code Ci is linear if the frozen vector uI cKi
= 0.

Proof. Assume uI cKi
= 0 and for c(i) ∈ Ci ,

c(i) = uG

= uIKi
GIKi

+ uI cKi
GI cKi

= uIKi
GIKi

,

which proves that Ci is a binary linear code with the generator matrix GIKi
. �

Proposition 2. Assume all Ci ∈ C, 1 ≤ i ≤ T , are linear by setting uI cKi
= 0. For i < j, we have Ci ⊂ Cj .

Proof. For a codeword c(j) ∈ Cj

c(j) = uIKj
GIKj

+ uI cKj
GI cKj

= uIKj
GIKj

= uIKi
GIKi

+ uIKj
\IKi

GIKj
\IKi

, (2)

since uI cKj
= 0. Due to (2) for a codeword c(i) ∈ Ci ,

c(i) = uIKi
GIKi

+ 0GIKj
\IKi

=
(
[uIKi

0]P
)

GIKj
∈ Cj ,

where 0 is the zero vector of length Kj − Ki and there exists a permutation matrix P satisfying the last
equality. It has been proved that codeword c(i) corresponding to message uIKi

is the codeword of Cj

for message [uIKi
0]P. �

Figure 2 exhibits an example of the inclusion relationship of polar codes C(8, 2), C(8, 3), and C(8, 4)
with generator matrix G8 = F⊗3 and S = (8, 7, 6, 4, 5, 3, 2, 1). Note that C(8, 2) ⊂ C(8, 3) ⊂ C(8, 4).
Since Ci ⊂ Cj holds for i < j and IKi ⊂ IK j , data points generated for the code of dimension Ki can be
valid data points for the code of Kj . The set of training data for C can be made to have an inclusion
relation between the data for individual codes. The data used to train the NND for Ci is a valid subset
of data for training the NND for Cj . Therefore, we apply transfer learning to train an NND for Ci+1 by
adopting the NND trained for Ci as the initial state. Transfer learning can be applied recursively to
the sequence of NND training in the increasing order of rate. In the next subsection, we describe the
procedure of transfer learning for training NNDs of rate-compatible polar codes in detail.

Entropy 2020, 22, 496 6 of 13

Figure 2. Sets of messages and corresponding codes, C(8, 2), C(8, 3) and C(8, 4) and their
inclusion relationship.

3.2. Transfer Learning for NNDs of Rate Compatible Polar Codes

Our problem is to train |C| = M NNDs where the elements in C are equally long rate-compatible
polar codes as defined in Section 3.1. A naive approach is to train them independently, but a more
efficient way can be considered. Complexity of NND training is counted in the number of mini-batches.
Let M tot

b =
∑T

i M (i)b be the total complexity, where M (i)b is the complexity used for training the Ci-NND.
We set the size of the mini-batch lb to 128 throughout the paper. We consider the application of transfer
learning [20,21] for decoder training, which has been used when similar problems and solutions exist
on an NN model, where a trained model can be reused to boost the training of another problem. For a
given M tot

b , we pursue a more efficient training in terms of performance of the NNDs.
As noted in the previous section, each data point used to train the decoder for Ci is a valid data

point for Ci+1. So we assume that the decoder for Ci may be a good initial state of the training phase
of Ci+1. In other words, the learned state of an NND is transferred to the NND for a code of a higher
dimension at the beginning of a training session. If transfer learning is effective, the overall complexity
of the training may be reduced by this approach. In order to reduce the complexity, the training should
be planned well. We train the NNDs in increasing order of rate. So we start from the code of the lowest
rate and the training procedure is described in detail below.

In Algorithm 1, the training procedure of NNDs via transfer learning is described. NNDs are
trained in increasing order of rate using a single NN model. The NN model used is either the MLP or
the LSTM described in Section 2.3. The NN model is initialized with random weights first. Let Ci-NND
be the decoder for code Ci . The training data is generated for training of Ci-NND and the decoder is
then trained M (i)b mini-batches. How to generate data is described in Algorithm 2. The learned state of
Ci-NND is stored and transferred to the training of Ci+1-NND as its initial state. MSE is used for the
cost function and SGD is used as the optimizer. For the training of a low rate code NND where Ki < KT ,
redundant output nodes are labeled as 0.5 which remains neutral between 0 and 1. This procedure
is repeated until the last decoder, CT -NND training is finished. The entire procedure can viewed
as a multi-step training of an NN toward a good CT -NND, during that the state of NN is sampled
as Ci-NND.

Each NND can be tested concurrently along with its training. A test evaluates the BER of the
decoder where a bit error is counted when the message mismatches with the output truncated to the
message length Ki . When data is generated, the CollectData(·) function defined in Algorithm 2 collects
Nsample data points each of which is a pair of a message m and a received signal y or the output of
an AWGN channel. A message is randomly generated from the entire set of messages. The message
is encoded by Ci and modulated with BPSK, and then sent through an AWGN channel where a
Gaussian noise vector z is added to the transmitted vector x. Random sampling of the received vector
is repeated without replacement Nsample times. For the AWGN channel, the channel parameter Eb/N0

is chosen empirically.

Entropy 2020, 22, 496 7 of 13

Algorithm 1 Train NNDs via transfer learning for rate-compatible polar codes.

Input: Rate R=(R1, . . . , RT), code length N , numbers of mini-batches M (i)b ’s, polar coding sequence S
1: Initialize the C1-NND with random weights
2: for i = 1 : T do

3: Xi ← CollectData (i)
4: Train Ci-NND with M (i)b mini-batches random-sampled from Xi
5: Store Ci-NND
6: if i < T then

7: Initialize Ci+1-NND with Ci-NND
8: end if
9: end for

10: return All NNDs

Algorithm 2 CollectData (i).

Input: index i, code length N , polar coding sequence S, training Eb/N0, data size Nsample

1: Generate all messagesM = (m1, . . . , m2Ki) of length Ki

2: Empty data set X
3: for j = 1 : Nsample do

4: Initialize u as the zero vector
5: Select a message m‘ randomly fromM
6: Determine the information and frozen vectors (Ik ← S[1 : K] and uIK ← m‘)
7: Make the transmitted signal (c← uGN , x← (x1, x2, . . . , xN)with xk = (−1)ck)
8: Channel operation (y← x + z where z is iid Gaussian with variance σ2 = 1

2R
1

(Eb/N0)
)

9: Add Xj = (y, m′) to X
10: end for
11: return X

The benefit of transfer learning lies in the efficiency of training. In order to get a well trained
set of NNDs, the total complexity M tot

b should be properly distributed among the M (i)b , i = 1, . . . , T .
Faster learning due to transfer learning saves training complexity for small K so that NNDs for a
larger K can be trained more. To show the advantage of the proposed learning method effectively,
the uniform allocation M (i)b = Mb, is considered for the conventional separate learning.

3.3. Training of Individual NND via Transfer Learning

In this subsection, we consider the training problem of a single NND with a limited model.
According to previous results [5], polar NNDs have been well trained from the MLP model when N is
16 or smaller. Similar performance was achieved on LSTM models with a lower model complexity but
higher training complexity [6]. Assume we want to train a Ck-NND individually from an NN model.
If the model complexity is not sufficiently high, the model might underfit even though the data size
and Mb are large. We propose to use transfer learning to solve the underfitting problem. It will be
shown that multi-step training with a proper sequential application of data sets can train the Ck-NND
better at the same complexity. We simply run Algorithm 1 with a given total training complexity M tot

b .
However, training data Xi’s and M (i)b are sequentially applied from a certain value of i < k.

4. Numerical Results

In this section, we numerically evaluate our proposed transfer learning technique for
rate-compatible polar codes. The training results are compared with those of separate learning in
terms of performance. We assume the BPSK modulation and the AWGN channel for all simulations.

Entropy 2020, 22, 496 8 of 13

Codes with parameters (N , K) = (16, 3 − 8) and (32, 7 − 16) were used. The polar coding sequence
defined in [2] was used in the construction of such codes. As mentioned an MLP and an LSTM
model is used for the corresponding NNDs. The structures of the NN models were specified in
Section 2.3. The detailed parameter setting is shown in Table 1. A 64-32-16 MLP and an LSTM have
similar complexities in terms of the number of trainable parameters. For the training, the dropout and
learning rate are set to 0.1 and 0.0009, respectively. As noted, MSE is used for the loss function as in
Section 2. The SGD method with ADAM optimizer [22] is used. The training is implemented using
TensorFlow. The hyper-parameters of NN training are listed in Table 2. Polar codes of parameter
sets (N , K) = (16, 3 − 8), (32, 7 − 12), and (32, 11 − 16) are used for training multiple MLP and
LSTM-based NNDs.

Table 1. Total number of parameters in NN models.

N K
MLP LSTM N K

MLP LSTM N K
MLP LSTM(128-64-32) (128-64-32) (64-32-16)

16

3 12,384 1796

32

7 14,560 2820

32

11 4784 3844

4 12,416 2052 8 14,592 3076 12 4800 4100

5 12,448 2308 9 14,624 3322 13 4816 4356

6 12,480 2564 10 14,656 3588 14 4832 4612

7 12,512 2820 11 14,688 3844 15 4848 4868

8 12,544 3076 12 14,720 4100 16 4864 5124

Table 2. Hyper-parameters of NND training.

Size of training data per Eb/N0 1, 000, 000

Training Eb/N0 of separate learning [dB] (−2.0, 0.0, 2.0, 4.0, 6.0)

Training Eb/N0 of proposed learning [dB] 4.0

Size of test data per Eb/N0 100, 000

Test Eb/N0 [dB] (0.0, 0.5, . . ., 6.0)

Dropout probability 0.1

Learning rate 0.0009

Optimization method Adam optimization

lb 128

Mb
5000 (N = 16),

50,000 (N = 32)

We generate Nsample = 106 training data points for each training session. The training data of
the proposed method is generated at Eb/N0 = 4 dB according to Algorithm 2. We did not rigorously
optimize the training Eb/N0 to simplify comparison. On the other hand, the separate learning generates
data with the training ratio p [6], which is the portion of codewords used to generate training data,
compared to the entire code. In this simulation, we set p = (0.4, 0.6, 0.8, 1.0). That is, the selecting from
all messages in Algorithm 2 is changed from the selecting a smaller message set to p. For each p, we took
5 different training Eb/N0 points from −2.0 to 6.0 dB. We train the NND using the total of 20 training
data and select the parameters that show the best test performance. We assume the complexity of
training with a mini-batch of a fixed size is similar among the codes of the same length. To train the
NNDs for a given set of rate-compatible codes, uniform allocation of complexity or the number of
weight updates is considered. For both the proposed and separate learning methods, the numbers
of weight updates are assigned as M (i)b = 5000 for N = 16 and M (i)b = 50, 000 for N = 32. Note that we
are interested in a training setting with constrained computing resources. The trained decoders are

Entropy 2020, 22, 496 9 of 13

evaluated in terms of BER for the considered communication system. A test set has 105 data points for
each Eb/N0 point ranging from 0 to 6 dB.

The NNDs trained by separate learning perform closely to MAP decoding for N = 16 and all
rates if M (i)b are sufficiently large without training ratio adjustment (p = 1.0). However, the proposed
method trains the NNDs quicker. Figure 3 shows the BER of MLP and LSTM-based decoders for
(N , K) = (16, 3 − 8) polar codes. At low rates, both learning methods perform similarly. However,
as the code rate increases, the proposed method shows better decoding performance than the separate
leaning. Especially, when K = 8, MLP attains a coding gain of 0.6 dB and LSTM gets 0.5 dB with the
proposed learning method. Via transfer learning, good performance can be achieved with smaller
M (i)b , i.e., less learning complexity, as the code rate increases. If M (i)b is increased at all code rates,
the decoding performances of all NNDs come close to MAP decoder.

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(a) K=3

B
it

 E
rr

o
r

R
at

e

(16,3) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(b) K=4

B
it

 E
rr

o
r

R
at

e

(16,4) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(c) K=5

B
it

 E
rr

o
r

R
at

e

(16,5) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(d) K=6

B
it

 E
rr

o
r

R
at

e

(16,6) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(e) K=7

B
it

 E
rr

o
r

R
at

e

(16,7) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(f) K=8

B
it

 E
rr

o
r

R
at

e

(16,8) MAP

MLP separate

MLP proposed

LSTM separate

LSTM proposed

Figure 3. BER versus Eb/N0 of MLP (128-64-32) and LSTM based NNDs for (N , K) = (16, 3 − 8) polar
codes. Comparison between the proposed and separate learning.

Figures 4 and 5 show the BER performance of different learning methods for polar codes of
N = 32. Unlike the case of N = 16, NNDs are not trained to achieve MAP performances. The BER of
the MLP and LSTM-based decoders for (N , K) = (32, 7− 12) is shown in Figure 4. Separate learning can
achieve a better performance with an adjustment of p down to 0.4. while the NND underfits for p = 1.0.
For low rates, performances are similar between the proposed and the separate learning methods as

Entropy 2020, 22, 496 10 of 13

for N = 16. However, as the code rate increases, the proposed method outperforms the conventional
one. The MLP-based decoder with proposed method achieves a performance gain of 0.5 dB for K = 8,
0.7 dB for K = 9, 0.9 dB for K = 10, and 1.0 dB for K = 11 at a BER of 10−3 over the separate learning.
For K = 12, the separate learning fails to train the decoder well even for large M (6)b = 300, 000. On the
other hand, the proposed method shows a much better error performance already at M (6)b = 50, 000.
The performance gain of LSTM-based decoder with the proposed method is 0.2 dB for K = 8, 0.2 dB
for K = 9, 0.3 dB for K = 10, 0.5 dB for K = 11, and 0.5 dB for K = 12. For K = 12, the performance
of the separate learning does not improve as M (6)b increases even to 300, 000 from 50, 000. As a result,
we confirm that the proposed method mitigates the underfitting problem of the separate learning.

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(a) K=7

B
it

 E
rr

o
r

R
at

e

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(b) K=8

B
it

 E
rr

o
r

R
at

e

0 2 4 6
10

−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(c) K=9

B
it

 E
rr

o
r

R
at

e

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(d) K=10

B
it

 E
rr

o
r

R
at

e

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(e) K=11

B
it

 E
rr

o
r

R
at

e

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

 E
b
/N

0
 [dB]

(f) K=12

B
it

 E
rr

o
r

R
at

e

(32,7) MAP

MLP separate (p=1.0)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

(32,8) MAP

MLP separate (p=1.0)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

(32,9) MAP

MLP separate (p=0.8)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

(32,10) MAP

MLP separate (p=0.6)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

(32,11) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

(32,12) MAP

MLP separate (p=0.4)

MLP sepa. (p=0.4,M
b
=3e5)

MLP proposed

LSTM separate (p=0.8)

LSTM sepa. (p=0.8,M
b
=3e5)

LSTM proposed

Figure 4. BER versus Eb/N0 of MLP (128-64-32) and LSTM based NNDs for (N , K) = (32, 7 − 12) polar
codes: Comparison between the proposed and separate learning. Training ratio p is optimized to show
the best performance. In (f), M(i)b = 50, 000 for all cases except for MLP and LSTM with separate learning

for which M(6)b = 300, 000 .

Entropy 2020, 22, 496 11 of 13

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(a) K=11

B
it

 E
rr

o
r

R
at

e

(32,11) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=1.0)

LSTM proposed

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(b) K=12

B
it

 E
rr

o
r

R
at

e

(32,12) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=0.8)

LSTM proposed

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(c) K=13

B
it

 E
rr

o
r

R
at

e

(32,13) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=0.6)

LSTM proposed

0 2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(d) K=14

B
it

 E
rr

o
r

R
at

e

(32,14) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=0.4)

LSTM proposed

0 2 4 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(e) K=15

B
it

 E
rr

o
r

R
at

e

(32,15) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=0.4)

LSTM proposed

0 2 4 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

(f) K=16

B
it

 E
rr

o
r

R
at

e

(32,16) MAP

MLP separate (p=0.4)

MLP proposed

LSTM separate (p=0.4)

LSTM sepa. (p=0.4, M
b
=3e5)

LSTM proposed

Figure 5. BER versus Eb/N0 of MLP (64-32-16) and LSTM based NNDs for (N , K) = (32, 11 − 16) polar
codes: Comparison between the proposed and separate learning. Training ratio p is optimized to show
the best performance. In (f), M(i)b = 50, 000 for all cases except for LSTM with separate learning for

which M(6)b = 300, 000 .

Figure 5 exhibits the BER performance of MLP and LSTM-based decoders for (N , K) = (32, 11− 16).
We employ a smaller 64-32-16 MLP whose number of parameters is similar to that of the LSTM-based
decoder with single cell of 256 units for fair comparison. For K ≤ 12, there is no difference in
performance of the LSTM-based decoder between the two learning methods. The proposed method
performs better for K ≥ 13. For K = 16, separate learning does not train the LSTM-based decoder well at
rather small M (6)b = 50, 000 although the performance eventually improves up to M (6)b = 300, 000. On the
other hand, the proposed method trains the NND faster without showing error floor at M (6)b = 50, 000,
already. It has been confirmed that NNDs can be trained by the proposed transfer learning method in a
lower complexity than the separate learning method. As you can see, the MLP-based decoder does not
learn at all for both the proposed and separate learning methods, whereas the LSTM-based decoder
performs fairly well. It seems that the lower triangular structure of the generator matrix GN induces a
desired but hidden sequential processing that is better learnable by the LSTM model under the model
complexity constraint than the MLP model.

Entropy 2020, 22, 496 12 of 13

5. Conclusions

In this study, we proposed a method of training NNDs for a family of rate-compatible polar codes.
It was indicated first that the inclusion property of rate-compatible polar codes allows the training
of multiple corresponding NNDs to share data points so that transfer learning is possible. A training
procedure of multiple NNDs via transfer learning was proposed and it was empirically verified that
the proposed method speeds up the training of NNDs. When the model complexity is not sufficiently
large, it was observed that even an underfitting problem can be solved by the multi-step transfer
learning method. However, the proposed method has been verified only for very short codes. As future
work, an extension of transfer learning to more advanced DL methods for longer rate-compatible
codes can be studied. For instance, transfer learning technique can be applied to train the neural BP
decoders [8] by gradually pruning check node neurons for augmented linear codes.

Author Contributions: H.L. and E.Y.S. developed the main idea, conducted simulations and wrote the manuscript.
H.J. designed the deep learning experiments and analyzed data. S.-H.K. designed the entire procedure of the
study and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by basic science research program through the national research foundation
of Korea (NRF-2018R1A2B6004195) funded by the ministry of science and ICT.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [CrossRef]

2. 3GPP TS 38.212 v15.2.0. Multiplexing and Channel Coding. Available online: https://panel.castle.cloud/
view_spec/38212-f11/ (accessed on 15 June 2018).

3. Tal, I.; Vardy, A. List decoding of polar codes. In Proceedings of the IEEE International Symposium on
Information Theory, St. Petersburg, Russia, 31 July–5 August 2011; pp. 1–5.

4. Tal, I.; Vardy, A. List decoding of polar codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [CrossRef]
5. Gruber, T.; Cammerer, S.; Hoydis, J.; Brink, S.T. On deep learning-based channel decoding. In Proceedings of

the IEEE Conference on Information Sciences and Systems, Baltimore, MD, USA, 22–24 March 2017; pp. 1–6.
6. Lyu, W.; Zhang, Z.; Jiao, C. ; Qin, K. ; Zhang, H. Performance evaluation of channel decoding with deep

neural networks. In Proceedings of the IEEE International Conference on Communications, Kansas city, MO,
USA, 20–24 May 2018; pp. 1–6.

7. Cammerer, S.; Gruber, T.; Hoydis, J.; Brink, S.T. Scaling deep learning-based decoding of polar codes via
partitioning. In Proceedings of the IEEE Global Communications Conference, Singapore, 4–8 December 2017;
pp. 1–6.

8. Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W.J.; Burshtein, D.; Be’ery, Y. Deep learning methods for
improved decoding of linear codes. IEEE J. Sel. Top. Signal Process. 2018, 12, 119–131. [CrossRef]

9. Bennatan, A.; Choukroun, Y.; Kisilev, P. Deep learning for decoding of linear codes—A syndrome-based
approach. arXiv 2018, arXiv:1802.04741.

10. Doan, N.; Hashemi, S.A.; Mambou, E.N.; Tonnellier, T.; Gross, W.J. Neural belief propagation decoding of
CRC-polar concatenated codes. arXiv 2018, arXiv:1811.00124.

11. Doan, N.; Hashemi, S.A.; Gross, W.J. Neural successive cancellation decoding of polar codes. In Proceedings
of the IEEE International Workshop on Signal Processing Advances in Wireless Communications, Kalamata,
Greece, 25–28 June 2018; pp. 1–5.

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las vegas, NV, USA, 27–30 June 2016; pp. 770–778

13. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation.
arXiv 2015, arXiv:1508.04025.

http://dx.doi.org/10.1109/TIT.2009.2021379
https://panel.castle.cloud/view_spec/38212-f11/
https://panel.castle.cloud/view_spec/38212-f11/
http://dx.doi.org/10.1109/TIT.2015.2410251
http://dx.doi.org/10.1109/JSTSP.2017.2788405

Entropy 2020, 22, 496 13 of 13

14. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 6645–6649

15. O’Shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw.
2017, 3, 563–575. [CrossRef]

16. Simeone, O. A very brief introduction to machine learning With applications to communication systems.
IEEE Trans. Cogn. Commun. Netw. 2018, 4, 648–664. [CrossRef]

17. Tandler, D.; Dörner. S.; Cammerer, S., Brink, S.T. On recurrent neural networks for sequence-based processing
in communications. arXiv 2019, arXiv:1905.09983.

18. McCulloch, W.S.; Pitts, W. Logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

19. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

20. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
21. Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review.

Neural Comput. 2017, 29, 2352–2449. [CrossRef] [PubMed]
22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCCN.2017.2758370
http://dx.doi.org/10.1109/TCCN.2018.2881442
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1162/neco_a_00990
http://www.ncbi.nlm.nih.gov/pubmed/28599112
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	DL based Decoders for Polar Codes
	System Framework
	Polar Codes
	NNDs for Polar Codes

	Training of NNDs via Transfer Learning
	Inclusion Relation of Training Data
	Transfer Learning for NNDs of Rate Compatible Polar Codes
	Training of Individual NND via Transfer Learning

	Numerical Results
	Conclusions
	References

