
entropy

Article

On the Structure of the World Economy:
An Absorbing Markov Chain Approach

Olivera Kostoska 1,2 , Viktor Stojkoski 2,3 and Ljupco Kocarev 2,4,*
1 Faculty of Economics-Prilep, “St. Kliment Ohridski” University, 7000 Bitola, Macedonia;

olivera.kostoska@uklo.edu.mk
2 Macedonian Academy of Sciences and Arts, 1000 Skopje, Macedonia; vstojkoski@manu.edu.mk
3 Faculty of Economics, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
4 Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, 1000 Skopje, Macedonia
* Correspondence: lkocarev@manu.edu.mk

Received: 10 March 2020; Accepted: 21 April 2020; Published: 23 April 2020
����������
�������

Abstract: The expansion of global production networks has raised many important questions about
the interdependence among countries and how future changes in the world economy are likely to
affect the countries’ positioning in global value chains. We are approaching the structure and lengths
of value chains from a completely different perspective than has been available so far. By assigning
a random endogenous variable to a network linkage representing the number of intermediate
sales/purchases before absorption (final use or value added), the discrete-time absorbing Markov
chains proposed here shed new light on the world input/output networks. The variance of this
variable can help assess the risk when shaping the chain length and optimize the level of production.
Contrary to what might be expected simply on the basis of comparative advantage, the results
reveal that both the input and output chains exhibit the same quasi-stationary product distribution.
Put differently, the expected proportion of time spent in a state before absorption is invariant to
changes of the network type. Finally, the several global metrics proposed here, including the
probability distribution of global value added/final output, provide guidance for policy makers when
estimating the resilience of world trading system and forecasting the macroeconomic developments.

Keywords: world economy; global production networks; discrete-time absorbing Markov chain;
quasi-stationary product distribution; global metrics

1. Introduction

The ideas of networked economy, pervasive transmission channels, systemic risk and complexity
have become increasingly important after the 2008 financial crisis, but nowadays they are major
concern on the impact of global trade tensions. Over the last decades, international fragmentation
of production has made a huge transformation in geography and dynamics of international trade.
Such fragmentation of production activities has given rise to the global value chains (GVCs) and
greatly contributed to reinforce the structural interdependence worldwide. The global production
networks are very complex, with flows of value-added representing a final outcome of the complex
linkages that exist between firms in different industries and countries over time. The evaluation of
these linkages calls for developing new tools that go well beyond the appraisal of bilateral gross trade
flows. The network analysis and related metrics are extremely important in assessing the complexity
of the whole structure of interactions (direct and indirect linkages) in the world economy, whilst the
current research is still in its infancy.

So far, various macroeconomic models have been developed, ranging from dynamic stochastic
general equilibrium modeling to agent-based macroeconomic models. The former assumes, in a
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standard setting, an economy that is populated by both an infinitely-lived representative household
and a representative firm, with homogeneous production technology that is hit by exogenous shocks.
The latter, on the other hand, considers an economy populated by heterogeneous agents, whose far
from equilibrium interactions continuously change the structure of the system. Most of the models are,
to some extent, descended from the Leontief’s work on input–output tables [1], in which firm/agent
interactions are mainly characterized by the global production networks. The latter are typically
described with the so-called multi-regional input–output (MRIO) models that combine, in a coherent
framework, national input–output and trade flow tables. In addition to tracking GVCs, together with
other methodologies, such as life cycle assessment and material flow analysis, MRIO models have been
used for sustainability analysis addressing a wide range of policy and research questions regarding
the impacts of global production networks [2]. There are several independently constructed global
MRIO databases. In this paper, all theoretical results are accompanied with numerical computations of
the World Input–Output Database (WIOD) [3].

Basically, our approach was motivated by the recent observations in two strands of theoretical
and empirical literature: shock propagation in economic networks and value chain positioning.
The production network can work as a channel for propagating shocks throughout the economy.
The possibility that substantial aggregate fluctuations may originate from microeconomic shocks has
long been abandoned in the literature (see for example [4]). This is mainly due to the ‘diversification
argument’, which states that, in an economy consisting of n industries hit by independent shocks,
aggregate fluctuations would have a magnitude that is roughly proportional to 1/

√
n, a minor effect at

high levels of disaggregation. This argument, however, disregards the input–output linkages between
different firms and industries operating as a propagation channel of idiosyncratic microeconomic
shocks throughout the economy [5–10]. The other main question of interest is the representation of
network-originated macro fluctuations in terms of the economy’s structural parameters. In line with
the key observations of [5,11], different roles various sectors play as input suppliers to others may
generate sizable aggregate volatility when compared against the standard diversification argument
rate. Microeconomic shocks may propagate over the network, but if propagated symmetrically,
they would average out, and thus, would have minimal aggregate effects (hence the diversification
argument remains applicable). The diversification argument would not hold, however, if intersectoral
input–output linkages do not display such symmetries. Put differently, when sectors are highly
asymmetric as input suppliers, even with a large number of industries, shocks to sectors that are more
important suppliers propagate strongly to the rest of the economy producing significant aggregate
fluctuations. Similarly, an industry will take a more ‘central’ position in the network if it plays a more
important role as an input supplier to other central industries, and thus, it will be more influential in
determining the aggregate output (see for example the Bonacich centrality). This statement goes in line
with the intuition that productivity shocks to an industry with more direct or indirect downstream
customers should have sizable aggregate effects.

The second strand of the literature pays particular attention to quantifying the relative
production line position of industries/countries (or country—industry pairs) in (global) value chains.
By dramatically changing the organization of world production, the rise of GVCs has laid in focus
the specialization of countries within the global value chains. In point of fact, if shocks propagate
downstream (to customer industries, supply-side shocks) or upstream (to input-supplying industries,
demand-side shocks), the economic condition of a certain industry/country/country—industry pair is
largely dependent on its relative position along the global output supply chain and the global input
demand chain. The positions are usually measured relative to final consumers and primary inputs as
downstream and upstream ends of value chains. The “upstreamness from final consumption” and
“downstreamness from primary factors” are two numerical estimates (based on the length of output
supply/input demand chains, respectively) that measure the country‘s/industry‘s/country—industry
pair‘s position in global production processes [12–15]. However, two limitations, as argued by [16] may
possibly reduce the reliability of ‘upstreamness’ and ‘downstreamness’: first, they all begin with an
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industry’s gross output, whilst the production chain should begin with the industry’s primary inputs
(or the sources of value added). Second, these measures do not imply each other and might suggest
inconsistent positions for the same country—industry pairs. Besides, there is hardly any systematic
empirical research on the firms’ decisive factors about controlling different segments of their production
processes. A rare exemption is the study of [17] who try to build firm-level measures of upstreamness
of integrated and non-integrated inputs by combining detailed data on production activities of firms
around the world with the standard input–output tables. Following this intuition, the most recent work
of [18] proposes a measure of the input rank to examine the organization of global supply networks at
firm level. The supplier’s input rank persists (as an important predicting tool of the firm’s decision
to integrate), even “after controlling for the relative positions on upstreamness/downstreamness
segments” [18].

Our work concentrates on absorbing Markov chains and their applications on ever growing topic
of economic networks. The first theoretical linkage between Markov chain and Leontief input–output
models was derived by Solow in 1952 [19]. In spite of the great variety of mathematical properties, so
far, however, world economic networks have not been fully examined with Markov chain formalism.
An exemption is the recent attempt of [20] who try to examine the evolution of world economic
network by a series of finite state Markov chains and the work of [21], where the random walk Markov
chain approach is employed to detect and evaluate the importance of communities in the world
input–output network. Unlike our approach, both papers examine a closed input–output system that
can be translated naturally into a regular Markov chain with no absorbing states. The resource-specific
network approach of [22] that is based on an absorbing Markov chain and intended for use with
an open input–output model is probably more closely related to our work. Yet, the paper describes
the relationship between the absorbing Markov chain and input–output model with a focus on the
Ghosh matrix and treats only the consumption goods as absorbing states [22]. Moreover, the authors
themselves emphasize that absorbing Markov chain analysis should be applied to more elaborated
models (or “a model of the world economy is required, because material cycles are global in scope” [22])
than the input–output framework implemented in their illustrative numerical example.

Given the importance of the distinctive features of output supply chain and input demand chain,
in this paper, using the most recent world input–output database, we propose and investigated some
novel properties of two (input and output) discrete-time absorbing Markov chains and set them against
the prevailing approaches of output upstreamness and input downstreamness. Our main contribution
to existing literature lies in the introduction of three newly established theorems and several related
metrics characterizing the positions, length of chains and structural interdependence of the world
economy (especially in regard to propagation and effects of economic shocks). Given the importance
for policy makers to identify the most appropriate targets (industries) for economic stimulation
purposes, we first provide a mathematical framework for ordering (ranking) the country—industry
pairs according to values of ‘upstreamness’ and ‘downstreamness’ (as indicators pointing to the
prominence or ‘keyness’ of a certain industry). Further, we propose a random endogenous variable
pointing to the number of intermediate sales/purchases before absorption (final demand or primary
inputs/sources of value added). The variance of this variable can serve as a useful guide for policy
creators when determining the “optimal level of fragmentation” and hence, developing better models
of production. The proof of our second theorem points to exactly the same quasi-stationary product
distribution of both chains, that is, the product distribution does not depend on the type of the
network (world input or world output network). This rather puzzling finding is probably at odds
with the intuition of country’s positioning in specific segments of GVCs in line with their comparative
advantage. Finally, the proposed global metrics (global domestic value-added, global import-export
value-added, global domestic final use and global import-export final use) and our measures about
the probability distribution of value added (global value added matrix) or final output (global final
demand matrix) across countries provide some new insights for the analysis of trade in value added,



Entropy 2020, 22, 482 4 of 24

or novel proxies of participation in global value chains than those currently available (e.g., backward
and forward GVC participation).

The rest of the paper is organized as follows. Section 2 describes context of the paper and data
collection instruments and outlines the major analysis methods. Section 3 presents the main findings
and discusses results with reference to preceding research, as well as to their practical and policy
implications. The last section provides the main conclusions of the research.

2. Materials and Methods

2.1. World Input–Output Database

The analyses performed here are based on data from 2016 release of the World Input–Output
Database (WIOD). The latter contains annual time-series of world input–output tables. A world
input–output table (WIOT) can be viewed as a set of national input–output tables that are linked
together through detailed bilateral international trade statistics. In short, WIOT provides a
comprehensive summary of all international transactions between industries and final consumers.
The columns in the WIOT contain information about production processes. When expressed as ratios
to gross output, the cells in a column deliver information on the shares of inputs in total costs. Such a
vector of cost shares in gross output is commonly referred to as a production technology. Products can
be purchased by final users, or final demand expenditures (households consumption, government
consumption, gross fixed capital formation and change in inventories) or integrated into other goods
and services (intermediates). The distribution of the output of industries over user categories is
indicated in the rows of the table. An important accounting identity in the WIOT is that gross output
of each industry (given in the last element of each column) is equal to the sum of all uses of the output
from that industry (given in the last element of each row).

The 2016 release covers forty-three countries, including 28 EU member states and 15 other major
economies, for the period from 2000 to 2014. The countries are selected on the basis of both data quality
and aspirations to include a major part of the world economy. These countries together cover more
than 85% of the world GDP; a model was estimated for the remaining non-covered part of the world
economy, or the ‘rest of the world’ region. The WIOD is structured according to the recent industry
and product classification ISIC Rev. 4 (or equivalently NACE Rev. 2), with the underlying WIOTs
covering 56 industries. Further information about the included countries and industries can be found
in [3,23]. The dataset is available at http://www.wiod.org/home.

As the data has more than two dimensions, it should be arranged as multidimensional arrays,
which are often called tensors. The order of a tensor is the number of dimensions. Vectors (tensors
of order one) are denoted by boldface lowercase letters, e.g., a. Matrices (tensors of order two)
are indicated by boldface capital letters, e.g., A. Higher-order tensors (order three or higher) are
symbolized by math calligraphy letters, e.g., X . Scalars are designated by lowercase or uppercase
letters, e.g., a or A. The i-th entry of a vector a is denoted by ai, element (i, r) of a matrix A is denoted
by air or ar

i , element (i, j, r) of a third-order tensor X is indicated by xijr or xr
ij and element (i, j, r, s) of

a forth-order tensor Z is represented by zijrs (Zijrs) or zrs
ij (Zrs

ij ).

The WIOD includes detailed data for J countries (indexed by î or ĵ) and S sectors (indexed by r or
s) organized as two tensors: 4-order tensor Z ∈ RJ×J×S×S with entries zrs

î ĵ
describing the intermediate

purchases (input flows) by industry s in country ĵ from sector r in country î; and 3-order tensor
F ∈ RJ×J×S with entries f r

î ĵ
denoting the final use in each country ĵ of output originating from sector r

http://www.wiod.org/home
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in country î. In addition, the WIOD includes matrices F, X and W, uniquely determined by the tensors
Z and F . The entries of these matrices are given as follows:

f r
î =

J

∑̂
j=1

f r
î ĵ, (1)

xr
î =

S

∑
s=1

J

∑̂
j=1

zrs
î ĵ + f r

î , (2)

ws
ĵ = xs

ĵ −
S

∑
r=1

J

∑̂
i=1

zrs
î ĵ . (3)

where xr
î

represents the value of gross output originating from sector r in country î; the element f r
î

stands for the value of output from sector r in country î intended for final consumers worldwide; ws
ĵ

indicates the country’s ĵ value-added employed in the production of an industry s.
An N th-order tensor is an element of the tensor product of N vector spaces, each of which has its

own coordinate system. Slices are two-dimensional sections of a tensor, defined by fixing all but two
indices. Matricization, also known as unfolding or flattening, is the process of reordering the elements
of an N-th order array into a matrix. For instance, a 2× 2× 3× 3 tensor can be arranged as a 6× 6
matrix or a 2× 18 matrix, and so on. It is also possible to vectorize a tensor; for example, 2× 2× 3× 3
tensor can be arranged as a 36 dimensional vector.

The world input–output table is obtained by unfolding the tensors Z and F into JS× JS and
JS× S matrices respectively and by unfolding the matrices F, X and W into JS vectors. Therefore,
WIOT consists of the following elements:

• n× n matrix Z = [zij] with i = (î, r) and j = ( ĵ, s) and n = JS, so that ij element of the matrix
describes the sales of intermediates from country—industry pair i to country—industry pair j

Z =

z11 . . . z1n
...

. . .
...

zn1 . . . znn

 . (4)

• n dimensional final demand vector f = [ f1, . . . , fn]
T with the i-th entry describing the sales from

country—industry pair i to final users.
• n dimensional gross-output vector x = [x1, . . . , xn]

T , where xi = ∑j zij + fi.

• n dimensional value-added vector w = [w1, . . . , wn]
T , where wi = xi −∑j zji.

2.2. World-Input and World-Output Networks

Consider a world economy with J ≥ 1 countries (economies): country-1, . . . , country-J and
S ≥ 1 sectors (industries): sector-1, . . . , sector-S as a network G = (V, E) of n = JS nodes in which
each node represents a country—industry pair, where V = {1, . . . , n} is the set of nodes and E is the
set of edges to be defined shortly. Country–industry pairs (î, r) are mapped to the nodes in V with
(î, r) → (î− 1)S + r, for î = 1, . . . , J and r = 1, . . . , S. Note that the nodes 1, . . . , S correspond to the
country-1, the nodes S + 1, . . . , 2S are related to the country-2 and so on.

Let us first define i = (î, r) and j = ( ĵ, s), so that the country—industry pairs are indexed by
i and j, i, j = 1, . . . , n. Next, we associate two networks (world-input network and world-output
network) with the vertex set V = {1, 2, . . . , n}. World-input network is represented by the adjacency
input matrix A = [aij] for which aij ≡ zij/xj. This normalization will be called “world-input” network,
since, along the output supply chain, the country—industry pair i sells intermediate inputs to other
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country—industry pairs j’s in the world economy (the corresponding links are denoted by the input
coefficients aij).

For the world-output network, B = [bji] represents an adjacency output matrix of the second
normalization with a typical element bji ≡ zji/xj. This specification will be called (is known
as) “world-output” network, since, along the input demand chain, the country—industry i buys
intermediate inputs worldwide (the corresponding links from all country—industry pairs j’s to i are
denoted by the output coefficients bji). Note that the matrices A and B are similar, (B = X−1

dg AXdg,

where Xdg is the diagonal matrix with elements of x = [x1, . . . , xn]T along its diagonal and zeros
otherwise), share the same eigenvalues and their largest eigenvalue, λ, is real with λ < 1.

The world production here is modeled linearly, that is (A, f) or (B, w), where f = [ f1, . . . , fn]T

and w = [w1, . . . wn]T . Let L = (I − A)−1 and G = (I − B)−1 be the Leontief-inverse matrix and
Ghosh-inverse matrix, respectively. Then Equations (2) and (3) can be rewritten in a compact form
as [12,13],

x = L f (5)

x = GTw (6)

The two well-established metrics in input–output economics indicating the country—industry’s
(weighted) average position in global value chains [12,13], the output upstreamness (or upstreamness)
(OU), u = [u1, . . . , un]T , and the input downstreamness (or downstreamness) (ID), d = [d1, . . . , dn]T ,
are defined as u = G 1 and d = LT1, where 1 is a length-n column vector whose entries are all 1.
In the world-output network, the country—industry pairs with large values of di will produce complex
and strong intermediate input demand edges with similar pairs (and vice versa for small values).
In world-input network, on the other hand, the country—industry pairs with large ui values will
produce complex and strong intermediate output supply edges with similar pairs (and vice versa for
small values).

2.3. Absorbing Markov Chains

We next turn to proposing alternative measures of the country—industry’s average position
in global value chains. These measures can be estimated for both the output supply chain (hence
relative to final consumption) and the input demand chain (thus relative to primary inputs). In order to
understand the structure and organization of the world production, the input and output networks here
are associated with two homogeneous discrete-time absorbing Markov chains, that is the input-chain
and the output-chain. The state space of both chains is V ∪ {0} = {0, 1, 2, . . . , n}, while the vertex set V
is considered as a set of transient states. For the world-input network, the absorbing state 0 represents
final use of output. On the other hand, for world-output network, the absorbing state 0 represents
primary factors of production (or sources of value added). If we define

γi =
fi
xi

(7)

δi =
wi
xi

(8)

the transition matrix Pin of the absorbing Markov input-chain reads

Pin =

[
1 0T

δ AT

]
, (9)
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while the transition matrix Pout of the absorbing Markov output-chain is

Pout =

[
1 0T

γ B

]
, (10)

where T denotes transpose operator, γ = [γ1, . . . , γn]T , δ = [δ1, . . . , δn]T , and 0 is a length-n column
vector whose entries are all 0. Both matrices Pin and Pout are row stochastic. The column stochastic
matrix A and row stochastic matrix B are the one-step transition probabilities of the (sub)Markov
chain on V and δi and γi are the one-step transition probabilities of absorption into the state 0.

Let us analyze the world input/output network with a Markov process (input-chain or
output-chain). Assume that the process starts in state i ∈ V at time 0, and let Y(t)

ij = 1 (or 0) if

the process is (or is not) in the state j at time t. Further, let Xij = ∑∞
t=0 Y(t)

ij be a random variable
representing the number of visits to state j before absorption and Xi = ∑j∈V Xij be another random
variable—the time to absorption. To simplify notation, we write P for both matrices Pin and Pout and
allow for Q to be either AT or B. From the standard theory of absorbing Markov chains, the following
equations can be derived [24]:

L ≡
[
E[Xij]

]
= (I−Q)−1 (11)

L2 ≡
[
Var[Xij]

]
= L(2Ldg − I)− Lsq (12)

g ≡ g(Q) ≡ [E[X1], . . . ,E[Xn]]
T = L1 (13)

h ≡ h(Q) ≡ [Var[X1], . . . , Var[Xn]]
T = (2L− I)g− gsq (14)

where E[X] and Var[X] are expectation and variance of the random variable X, respectively, Ldg = [`ii]

is a diagonal matrix, Lsq = [`2
ij], 1 is a length-n column vector whose entries are all 1, and gsq =

[g2
1, . . . , g2

n]
T .

When Q = AT , the transpose of the matrix defined with Equation (11) coincides with the
Leontief-inverse matrix L. For Q = B, Equation (11) reduces to the Ghosh-inverse matrix G. Moreover,
from Equation (13), it follows that the expected number of steps before absorption is characterized
with vectors (for the output and input networks) u and d. The metric u is a measure of distance of a
country—industry pair from the final demand. Therefore, ui describes “how far” (in expected number
of steps) the production of a country—industry pair is from the final use (or “average production
line position”). The second quantity d is a measure of distance of a country—industry pair from the
primary factors of production (or sources of value-added). In another words, di measures “average
distance from primary inputs suppliers”. Not all products, however, need to have their production
split into multiple stages. Services, for example, are less inclined to vertical specialization when
supplier is required to have a close contact with the consumer. The variance (of the number of steps
before absorption) can help measure the volatility (or the risk) a country—industry pair assumes
when determining the production chain lengths. It could therefore permit the country—industry pairs
to develop better models of production by optimizing the level of fragmentation (that is a trade-off
between higher transaction/coordination costs and lower costs of production).

For both absorbing Markov chains, the input-chain and the output-chain, the set of transient state
V is irreducible. In terms of the world-input network, it means that for arbitrary two country—industry
pairs i and j, even for those directly not connected (aij = 0), the country—industry pair i, after finite
number of jumps (hops/steps), sells intermediate inputs to the country—industry pair j. Similarly,
irreducibility of the world-output network implies that an arbitrary country—industry pair, after finite
number of purchases, buys intermediate inputs from all other country—industry pairs worldwide.
However, since the Markov chains are absorbing, eventually, intermediate output sales and input
purchases reach the absorbing state—the state from which further jumps are impossible (e.g., final
consumers and primary factors or sources of value added).
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Next, we consider two quasi-stationary distributions which are derived, roughly speaking,
from observing only those realizations in which the time to absorption is long. Assume that the
process starts in state i with probability πi. Let Pt = [p(t)ij ]. The probability that the process has

been absorbed by time t is given as ∑i∈V πi p
(t)
i0 . Provided that the process is not absorbed at time t,

the conditional probability that the process is in state j at time t is computed as follows [25]:

Pr [in state j at time t | not absorbed by time t] =

∑i∈V πi p
(t)
ij

∑i∈V πi

[
1− p(t)i0

] = ρl
j + O

((
|λ2|

λ

)t
)

(15)

where ρl = [ρl
1, . . . , ρl

n]
T is the left dominant eigenvector of the matrix Q, λ2 is the second largest

eigenvalue of the matrix Q, and we have assumed, for simplicity only, that its multiplicity is 1.
This vector is normalized, ∑i ρl

i = 1, so it represents a quasi-stationary distribution of the absorbing
Markov chain. In other words, the quasi-stationary distribution represents the proportion of time
the process spends in a transient state, that is the number of times a particular country—industry
pair contributes to its own production stages, or becomes an intermediate in its own supply/demand
chains before absorption (given that the time to absorption is long). Note that the limit as t→ ∞ is ρl

j

which is independent of the probability distribution π = [π1, . . . , πn]T . Equation (15) can be further
generalized as [25]:

Pr [in state j at time τ | not absorbed by time t] =

ρl
jρ

r
j + O

((
|λ2|

λ

)τ)
+ O

((
|λ2|

λ

)(t−τ)
)

(16)

where ρr = [ρr
1, . . . , ρr

n]
T is the right dominant eigenvector of the matrix Q. This vector is normalized,

∑i ρl
iρ

r
i = 1 and therefore,

ρprod =
[
ρl

1ρr
1, . . . , ρl

nρr
n

]T
(17)

represents a quasi-stationary distribution of the absorbing Markov chain, which will be referred to as
product distribution. The left hand side of Equation (16) converges to ρl

jρ
r
j as τ → ∞ and t− τ → ∞.

Note that {ρl
iρ

r
i } may be described as the distribution of the random variable at time τ (τ large), given

that absorption has not yet taken place and will not take place for a long time. The product distribution
is more relevant than {ρl

i} in the sense that the Equation (15) is a “degenerate” case of the Equation (16).
Further, we look attentively at the structure of the global production network from the “final use

perspective” and “final value added perspective”. Here, we provide some basic definitions only for
the final demand. A more detailed discussion for both perspectives will be presented in the Section 3.
Let mi ĵ, where i = 1, . . . , n and ĵ = 1, . . . , J be the probability that production from country—industry

pair i ends up as output purchased by the final users of country ĵ. We arrange the elements mi ĵ as

n× J matrix M, which is called a global final demand matrix. Let ηi ĵ =
fi, ĵ
xi

and define n× J matrix Dη

with elements ηi ĵ. In this case, Markov absorbing chain has J absorbing states. The transition matrix,
Equation (10), now reads

Pout =

[
IJ×J 0J×n
Dη B

]
, (18)

where IJ×J is identity matrix and 0J×n zero matrix. A simple example for illustrating all quantities
proposed in this subsection is provided in Figure 1.
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Figure 1. A simple example with three countries C1, C2, C3 and one industry I. The world economy
includes three pairs: 1 ≡ (C1, I), 2 ≡ (C2, I) and 3 ≡ (C3, I). The first pair produces intermediate
products in amount of p percentage of the total output for the second pair, and final products in amount
of a1 percentage of the total output for the country C1. The second pair produces intermediate products
in amount of q percentage of the total output for the first pair, intermediate products in amount of
p percentage of the total output for the third pair and final products in amount of a2 percentage of
the total output for the country C2. The third pair produces intermediate products in amount of q
percentage of the total output for the second pair and final products in amount of a3 percentage of the
total output for the country C3. (a) The world economy is represented as an absorbing Markov chain
with one absorbing state. In this case γ = [a1, a2, a3]

T . (b) The world economy is represented as an
absorbing Markov chain with three absorbing states. In this case, Dη , Equation (18), is a 3× 3 diagonal
matrix with elements a1, a2, and a3. (c) The Ghosh-inverse matrix L = (I− B)−1 = G, Equation (11),
the output upstreamness, g, Equation (13) and the matrix M. The largest eigenvalue of the matrix B
is λ =

√
2pq. The left and right eigenvectors are also shown with A = p + q + λ. For this example,

the product distribution does not depend on p and q and is equal to {1/4, 1/2, 1/4}.

3. Results and Discussion

The organization of world production is characterized by the structure of the input/output
networks. Let us rewrite the Z matrix, Equation (4), as follows:

Z =

Z11 . . . Z1J
...

. . .
...

ZJ1 . . . ZJ J

 . (19)

where each Zij is S × S matrix. Diagonal block matrices in Equation (19) represent domestic
inter-industry transactions, while off-diagonal blocks show the inter-country flows of intermediates
via exports and imports. The adjacency matrices A and B are also rearranged in this way and their
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mean values are shown in Figure 2. The latter shows a growing fragmentation of production across
countries worldwide. From 2000 onwards, the global production networks became more complex and
increasingly interconnected as a result of massively increased trade in intermediates (goods or services)
among countries, both as buyers of foreign intermediate inputs (off-diagonal blocks of matrix B) or
sellers of intermediate products to third countries for further processing and export (off-diagonal blocks
of matrix A). It is noteworthy, however, that international fragmentation of production seems to have
lost momentum in recent years, at least compared to 2000s, especially when it comes to forward GVC
participation (many companies are probably less agile in responding to changing consumer demands).
The consolidation of some value chains has been observed even during the 2008–2009 financial crisis,
with some country—industry pairs switching back to domestic suppliers (slight increase in the mean
values of the diagonal block in Figure 2) in the context of difficult access to trade finance and risks
connected with international suppliers. Nevertheless, the recent slowdown may also point to a number
of potential structural shifts facing the world economy (with many companies deciding to reexamine
their outsourcing and production strategies), which could dramatically change the configuration of
global production landscape and determine the future of globalization in a systemic way.

Figure 2. Mean values for the off-diagonal blocks of A and B (in blue). Mean values for the diagonal
blocks of A and B (in orange).

In input–output analysis, as mentioned before, upstreamness (ui) and downstreamness (di) are
used as measures of the importance of a certain country—industry pair i. In essence, larger ui
values are related to relatively higher level of upstreamness of the particular country—industry pair
i. The latter thus provides little to final consumers worldwide and instead sells disproportionately
large share of its output (as intermediate inputs) to other producing industries in the world economy.
Conversely, larger di values are related to relatively higher level of downstreamness of a certain
country—industry pair i. Clearly, the production process here relies disproportionately on intermediate
inputs relative to the value-added from primary factors of production, and especially if purchases are
made from those country—industry pairs which themselves use intermediate inputs intensively. That
is, other things being equal, country—industry pairs with large ui or di values are being more proper
targets for economic stimulation because they will bring much greater benefits to the entire world
economy (by extending more of its resources to other country—industry pars in the former case, or by
triggering other country—industry pairs to increase their outputs in the latter). It should also be noted,
however, that a country—industry with higher levels of downstreamness exhibit greater productivity
fluctuations, because “upstream supply-side shocks accumulate while propagating downstream” [26].
Given the importance for policy makers, the next theorem provides mathematical framework for
ordering (ranking) the country—industry pairs according to values of these measures (see Appendix A
for the proof of the theorem).
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Theorem 1. The following approximations hold:

u ≈
{

1 + B1 for λ→ 0+

∑i ρl
i(B)

1−λ ρr(B) for λ→ 1−
(20)

d ≈
{

1 + AT1 for λ→ 0+
∑i ρr

i (A)
1−λ ρl(A) for λ→ 1−

(21)

where ρl(·) and ρr(·) are the left and the right dominant eigenvectors of the matrices A and B.

Note that in Equations (20) and (21), B1 and AT1 are vectors of out-degree and in-degree of the
nodes of the output-network and input-network, respectively. Therefore, when λ→ 0, it follows that
the ordering (or the ranking) of the country—industry pairs depends only on the out-degree (in-degree)
centrality, and thus, high-degree nodes are important, that is, the most important suppliers of value
added in world GVCs (or the general-purpose country—industry pairs whose value added contained
in intermediate inputs is sent to a wide range of country—industry pairs for further processing) and the
country—industry pairs that import intermediates from many sources (or the most important recipients
of foreign value added in global production networks). On the other hand, when λ→ 1, the ordering
(ranking) depends only on the right (left) dominant eigenvector of the matrix B (A). Therefore,
in this case, it could happen that a low-degree country—industry pair has greater influence (i.e., it is
a more relevant player in the global production networks) than the high-degree hub. Put differently,
the centrality of a country—industry pair here is recurrently related to the pairs to which it is connected,
that is a node’s position depends on the importance of its neighbors (a node eigenvector centrality).

Figure 3 shows the dominant eigenvalue of the world input/output network as well as the
country dominant eigenvalues of the input/output networks of all countries versus time. The mean
value of dominant eigenvalues of the input/output networks of all countries, 〈λ1i〉, is almost constant
in time, while the dominant eigenvalue of the world input/output network, λ1, increases in time.
Moreover, Figure 4 depicts Spearman’s rank correlation between upstreamness (downstreamness)
and the out-degree (in-degree) centrality and right dominant eigenvector of the adjacency matrix
B (A) for the WIOD. In the limits κ → 0+ and κ → (1/λ)− (that correspond to the limits λ → 0+

and λ → 1−, respectively, see the Appendix A), the orderings of u and d are perfectly matched
with the ordering of the vectors from the right-hand side of the Equations (20) and (21), respectively.
When κ = 1, the ordering of u and d is 95% correlated with the ordering of degree centrality and 80%
with eigenvectors’ ordering.

Figure 3. The dominant eigenvalue of the world input/output network versus time.
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Figure 4. Spearman’s rank correlation for the World Input–Output Database (WIOD), year 2014.
Upstreamness u(κ) and downstreamness d(κ) are computed as u(κ) = (I − κB)−11 and d(κ) =

(I− κAT)−11, respectively, where κ is a parameter. κ = 1 corresponds to the values of the u and d of
the world networks and the year 2014. The limits κ → 0+ and κ → (1/λ)− correspond to λ→ 0+ and
λ→ 1−, respectively (see Appendix A).

Two random variables have been proposed in the previous section. Assume that the process
starts in state i. As already stated, the first random variable, Xij, represents the number of visits to
state j before absorption, while the second, Xi is the time to absorption. Expectation and variance
of these random variables are provided by Equations (11), (12), (13) and (14), respectively. Figure 5
provides a visual display of summarizing a distribution of data, or comparative boxplots that can be
used to compare the distributions of expectation and variance of the time to absorption for both the
world-input and world-output networks. The most noticeable feature is that expectation, or expected
number of steps before absorption, and variance of the number of steps before absorption for the
output network (and the respective upstreamness) are generally higher than those for the input
network (and the respective downstreamness). Put differently, the median and the upper quartile for
the former sample are all above the corresponding values for the latter sample (the lower quartiles
are roughly similar). The dispersion is also greater for the output network, that is the interquartile
range, as revealed by the box lengths, is reasonably longer and so is the overall range of dataset (with
or without ‘outliers’).

Figure 5. Comparative boxplots of g and h. Expectation, panels a) and b), and standard deviation,
panels c) and d) of the random variable time to absorption for both the world-input and world-output
networks.
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The next result unveils that both the input chain and the output chain have exactly the same
quasi-stationary product distribution (for the proof of the theorem, see Appendix B).

Theorem 2. The World input/output network is characterized with

ρl
i(A)ρr

i (A) = ρl
i(B)ρ

r
i (B) for all i ∈ V. (22)

Note that although ρl
i(A) 6= ρl

i(B) and ρr
i (A) 6= ρr

i (B), their products are equal to each other.
Therefore, the product distribution does not depend on the type of network (input/output). In order
to explain this result, we interpret the probability ρl

jρ
r
j as limiting conditional mean ratios. It can be

shown that:

∑
i∈V

πiE
[ Xij

Xi

∣∣∣∣Xi = t
]

= ρl
jρ

r
j + O

(
1
t

)
(23)

∑
i∈V

πiE

 ∑t
k=0 Y(k)

ij

t

∣∣∣∣∣∣Xi > t

 = ρl
jρ

r
j + O

(
1
t

)
(24)

The left hand side of Equation (23) is the expected proportion of time spent in the state j before
absorption. Since the transaction flows of intermediates coming from (or sold by) the pair j (world
input network) are, at the same time, equal to flows of intermediates purchased by the pair j (world
output network), the expected proportion of time spent in the state j before absorption for the input
network is equal to the expected proportion of time spent in the state j before absorption for the output
network. Moreover, note that ∑t

k=0 Y(k)
ij , see Equation (24), equals the number of visits to state j up

to time t. Therefore, the expected proportion of time spent in the state j before absorption is equal to
ρl

jρ
r
j and does not depend on the type of the network (world input/world output network). Figure 6

depicts the histograms of the product distribution ρl
jρ

r
j , the output upstreamness u and the input

downstreamness d for the WIOD and the year 2014.
These findings would indicate that country—industry pairs appearing to be upstream

according to their distance from final output users (output upstreamness) are at the same time
downstream according to their distance from primary inputs (input downstreamness). Put differently,
the country—industry pairs that sell a small share of their output to final consumers, or sell a large
amount of intermediates to other pairs in the world economy (hence, appear to be upstream in GVCs)
are also inclined to embody little value added relative to intermediate inputs in their production
processes (hence, appear to be downstream in GVCs). This rather surprising fact runs counter to what
might be imagined at a time of global production fragmentation. As global production networks rise
in importance, one would expect that countries may possibly position themselves in those segments
of GVCs in which they have comparative advantage. For example, countries with comparative
advantage in basic parts or natural resources would specialize in early phases of production processes.
Accordingly, they would exhibit a decrease in the share of gross output that is sold to final consumers
and upward shift in the value added from primary inputs. On the contrary, countries with comparative
advantage in production phases near to final assembly are expected to encounter a rise in the shares sold
to final users and a decrease in their value added employed in the production processes. Our results,
however, are surprisingly at variance with this prior intuition. Similar findings are documented in the
study of [27], although based on puzzling positive correlations (that increase over time) between the
upstreamness and downstreamness. A full discussion of these developments is, however, beyond the
scope of this paper.
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Figure 6. Histograms (WIOD, year 2014) of (a) the product distribution, (b) the output upstreamness
and (c) the input downstreamness. The product distribution does not depend on the type of network
(input/output).

The next result is actually a combination of the classical results in respect of the absorbing Markov
chains [24] and some new insights (for the proof, see Appendix C).

Theorem 3. (i) The global final demand matrix M can be computed as

M = (I− B)−1Dη (25)

such that M is a row stochastic matrix.
(ii)

(I−AT)−1δ = 1 (26)

(iii) For an economy for which the row sums of AT are all equal to c, the input downstreamness is constant
d = 1

1−c 1. If the row sums of B are all equal to c, then the the output upstreamness is constant u = 1
1−c 1.

Note that the matrix Dη is the one-step transition matrix, while the vector (for a fixed i)

mi = [mi1, . . . , mi J ]
T (27)

is a probability distribution showing how the final output of country—industry pair i is distributed
among different countries. For a fixed industry r we arrange the elements m(î,r), ĵ in a J × J matrix,

PP =
[
m(î,r), ĵ

]
, (28)
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which we call a global final demand matrix of the industry r, showing the global patterns of final demand
for any given industry. Similarly, if we write L = [`ij] ≡ (I−AT)−1 and define ζi ĵ = ∑S

r=1 `i( ĵr)δĵr, it
follows from Equation (26) that the vector (for a fixed i)

ζi = [ζi1, . . . , ζi J ]
T (29)

is the probability distribution showing how the value added of country—industry pair i is distributed
among different countries. Again, for a fixed industry r we arrange the elements ζ(î,r), ĵ in a J× J matrix,

WP =
[
ζ(î,r), ĵ

]
, (30)

which we call a global value added matrix of the industry r, capturing the final impact after all stages
of production have circulated throughout the world economy and showing the global patterns of
value added for any given industry. This metric, which breaks down the distribution of gross
trade flows along the sources and destinations of value added, provides a coherent answer to
many important questions about the interconnections among countries, especially with regard to
the aggregate impact and propagation of shocks. For example, the important role that particular
countries play in international flows of value added raises the questions about the resilience of the
world trading system if they suffer a large-scale economic shock. All of this has a major impact on
forecasting the macroeconomic developments and on monetary policy decisions. Figure 7 shows
global demand matrix for the warehousing and support activities for transportation in 2014. Each row
(a horizontal line) is a probability distribution: the j element of the row i shows the probability that
a good/service produced in the country i has been delivered to final consumers in country j. On the
other, the column j (a vertical line) represents the final consumer buying patterns for a particular
product (e.g., warehousing and support activities for transportation) in country j.

Figure 7. Global patterns of final demand for the warehousing and support activities for transportation
in 2014.

Finally, the availability of global input–output matrices has paved the way to several
methodological contributions on measures of trade in value added, or proxies of GVC participation
(see [28] for a review). In view of diagonal and off-diagonal blocks of our global value-added and
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global final demand matrices, the proposed metrics below provide some new insights or novel proxies
for the analysis of global production chains:

GDVA =
J

∑̂
i=1

S

∑
r=1

ζ î,r;î (31)

GIEVA =
J

∑̂
i=1

J

∑
ĵ=1, ĵ 6=î

S

∑
r=1

ζ î,r; ĵ (32)

GDFU =
J

∑̂
i=1

S

∑
r=1

mî,r;î (33)

GIEFU =
J

∑̂
i=1

J

∑
ĵ=1, ĵ 6=î

S

∑
r=1

mî,r; ĵ (34)

The first indicator, which we call global domestic value-added (GDVA), refers to all domestic
value-added flows within a given country—industry pair, irrespective of the number of steps along the
chain (see Equation (31)). Hence, the measure includes both, direct and indirect domestic value-added
contents. The former denotes the income of primary inputs directly involved in production (one
stage), while the latter encompasses both the domestic flows of intermediate goods and services across
industries (hence, the magnitude only depends on the density of domestic intersectoral linkages) and
domestic value-added that is re-imported in the economy of origin as a part of other intermediates
(hence, the magnitude of value added depends on the density of intersectoral linkages between two or
more countries). The second metric we call global import-export value-added (GIEVA) indicates the
extent to which a country—industry pair is connected to global production networks for its foreign
trade (see Equation (32)). Hence, this measure refers to inter-country transaction flows of intermediate
products (goods and services) through exports and imports. The third indicator, or global domestic
final use (GDFU), indicates the final use of domestic output by the country itself (see Equation (33)).
The last indicator, which we call global import-export final use (GIEFU), refers to all imports and
exports destined for final consumers worldwide (see Equation (34)). The evidence suggests that global
production networks have provided a great impulse to globalization during the past decades (Figure 8).
After the marked growth during the early 2000s, international fragmentation of production has become
a cornerstone of the global economy, with products effectively being “made in the world”. Growing
fragmentation, with a short disruption during the 2008 financial crisis, is typically associated with
more trade in intermediate inputs via exports and imports (an overall upward trend in GIEVA) and
less domestic value added (noticeable decline in GDVA) (Figure 8). Nevertheless, global production
networks, at least compared to early 2000s, seem to have lost momentum during the last years
(Figure 8). In point of fact, the world production has been made more expensive since the economic
crisis, mainly due to increasing trade costs and protectionism. Moreover, the recent steady state in
GDFU and GIEFU (Figure 8) points to a somewhat greater attractiveness of localized production and
potentials for shortening the production chain lengths which means that individual parts and products
would increasingly be manufactured in proximity to final users. It is clear that such dynamics in
international fragmentation will promptly have impact on the world economy and probably give rise
to a certain re-configuration of the global production networks.
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Figure 8. Global quantities over the years.

4. Conclusions

In this paper, we aimed to contribute to our understanding of global production networks
and international transmission of economic shocks. Here, by virtue of recently available world
input–output database, we propose discrete-time absorbing Markov chains to model the structure
and interdependence among country—industry pairs of the world economy. The examination of
various novel properties of the constructed Markov chains allows for a more in-depth analysis of the
underlying dynamical system than any currently available. In this context, we have introduced three
random variables and set them against the existing approaches (upstreamness and downstreamness)
to measure the positioning of countries and industries in GVCs: (1) The time to absorption from the
seller perspective (output supply chain) or supply side in global production networks, that is the
number of times a particular country—industry pair contributes (domestic value added contained in
intermediates sent to a partner economy for further processing and export) along the route of each unit
of value added in the global economy before reaching the final consumers; (2) the time to absorption
from the buyer perspective (input demand chain) or sourcing side in global production networks, that
is the expected number of steps it takes primary inputs to reach a certain country—industry pair or
number of times the intermediate country—industry pair(s) contribute(s) in total input of a particular
country—industry pair that incorporates foreign value added (or imports intermediate inputs to
produce goods/services that are subsequently exported for final consumption or intermediate use);
(3) the time spent in a state before absorption or the number of times a certain country—industry
pair becomes an intermediate in its own supply or demand chains before absorption. Based on these
variables, we have proposed several quantities that are summarized in Table 1. More specifically, our
measure of the variance of time to absorption can help the policy makers to evaluate the volatility (or
the risk) when shaping the production chain lengths and thus to develop better models of production.
Besides, we have shown that both the input and output chains exhibit exactly the same quasi-stationary
product distribution. This rather surprising fact contradicts the prevailing expectations that countries
would steadily position themselves in certain segments of global value chains in which they have
comparative advantage. Next, our probability distributions and the related global final demand/global
value-added matrices provide valuable information about the global patterns of final demand or the
trade in value-added and interconnections among countries, especially with regard to the propagation
of economic shocks. Finally, on the basis of these matrices, we have proposed several novel proxies for
participation and analysis of world production chains. The application of these measures can help
assess the structural shifts in the world economy that may possibly change the configuration of global
production landscape and shape the future of globalization.
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Table 1. Novel quantities proposed in the manuscript.

Quantity Computed with Equation

g(B) n-dim vector B (13)
g(A) n-dim vector A (13)
h(B) n-dim vector B (14)
h(A) n-dim vector A (14)
ρprod n-dim vector A or B (17)
mi J-dim vector B and Dη (27)
ζi J-dim vector A and δ (29)
PP J × J matrix B and Dη (28)
WP J × J matrix A and δ (30)

GDVA scalar A and δ (31)
GIEVA scalar A and δ (32)
GDFU scalar B and Dη (33)
GIEFU scalar B and Dη (34)
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Appendix A. Proof of the Theorem 1

Let u(κ) = (I− κB)−11 and d(κ) = (I− κAT)−11, where κ > 0 is a parameter such that κ < 1/λ.
The first main result states that the vectors u(κ) and d(κ) can be approximated as

u(κ) ≈
{

1 + B1, for κ → 0+,
ρl(B)T1

1−κλ ρr(B), for κ → 1
λ

−
,

(A1)

d(κ) ≈
{

1 + AT1, for κ → 0+,
1Tρr(A)

1−κλ ρl(A) for, κ → 1
λ

−
,

(A2)

where ρl(M) and ρr(M) are the left and right eigenvectors associated with the largest eigenvalue of
M, respectively. In what follows, we first provide a detailed background on relevant properties of
positive matrices and functions of matrices. Afterwards, we give a full proof of the theorem.

Appendix A.1. Perron–Frobenius Theorem for Positive Matrices

Recall some known properties of positive matrices. Let M = [Mij] be an N × N positive matrix:
aij > 0 for 1 ≤ i, j ≤ N. Then the following statements hold.

• There is a positive real number λ1, (called the Perron root, the Perron–Frobenius eigenvalue,
the leading eigenvalue or the dominant eigenvalue), such that λ1 is an eigenvalue of M and any
other eigenvalue (possibly, complex) in absolute value is strictly smaller than λ1,

| λi |< λ1, (A3)

for i = 2, . . . , N.
• λ1 is a simple root of the characteristic polynomial of M.
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• There exists a right eigenvector ρr = [ρr
1, . . . , ρr

N ]
T of M with eigenvalue λ1 such that Mρr = λ1ρr,

ρr
i > 0 for i = 1, . . . , N. Respectively, there exists a positive left eigenvector ρl =

[
ρl

1, . . . , ρl
N

]T

such that
[
ρl
]T

M = λ1

[
ρl
]T

and ρl
i > 0 for all i.

Appendix A.2. Spectral Theorem for Diagonalizable Matrices

An N × N matrix M with spectrum σ(M) = {λ1, λ2, . . . , λN} is said to diagonalizable if and only
if there exist matrices {G1, G2, . . . , GN} such that

M = λ1G1 + λ2G2 + . . . + λNGN , (A4)

where the Gi’s have the following properties: (i) Gi is the projector onto K(M− λiI) along R(M− λiI);
(ii) GiGj = 0 whenever i 6= j; and (iii) G1 + G2 + . . . + GN = I. The expansion in Equation (A4) is
known as the spectral decomposition of M and the Gi’s are called the spectral projectors associated
with M. Moreover, if ρr and ρl are the respective right-hand and left-hand eigenvectors associated
with a simple eigenvalue λ, then spectral projector associated with λ is:

G =
ρr
[
ρl
]T

[
ρl
]T

ρr
. (A5)

If M is a diagonalizable matrix, then it is also similar to a diagonal matrix D. Note that two N × N
matrices M and D are said to be similar whenever there exists a non-singular matrix P such that
P−1MP = D.

Appendix A.3. Functions of Matrices

Let M = PDP−1 be a diagonalizable matrix where the eigenvalues in D = diag (λ1I, λ2I, . . . , λNI)
are grouped by repetition. For a function f (z) that is defined at each λi, define

f (M) = P f (D)P−1

= P


f (λ1)I 0 0 . . . 0

0 f (λ2)I 0 . . . 0
. . . . . . . . . . . . . . . . .

0 0 0 . . . f (λN)I

 P−1

= f (λ1)G1 + f (λ2)G2 + . . . + f (λN)GN . (A6)

We now briefly discuss functions of nondiagonalizable matrices following Ref. [29]. For an
arbitrary matrix M ∈ CN×N with σ(M) = {λ1, . . . , λs} where s is the number of distinct eigenvalues
of M, let ki be the index of the eigenvalue λi (that is, the order of the largest Jordan block associated
with λi in the Jordan canonical form of M). A function f : C → C is said to be defined (or to exist)
at M when f (λi), f ′(λi), . . . , f (ki−1)(λi) exist for each λi. If f exists at M, then the value of f at M is
defined to be

f (M) =
s

∑
i=1

ki−1

∑
j=0

f (j)(λi)

j!
(M− λiI)

j Gi. (A7)

For an arbitrary square matrix M, as a particular example of f we consider the geometric series
f (z) = 1 + z + z2 + . . . also known as the Neumann series

f (M) =
∞

∑
k=0

Mk.
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Let ρ(M) be the spectral radius of M defined as ρ(M) = maxλ∈σ(M) | λ |. The following statements
are equivalent: (i) The Neumann series converges. (ii) ρ(M) < 1, and (iii) limk→∞ Mk = 0. In which
case, (I−M)−1 exists and

∞

∑
k=0

Mk = (I−M)−1.

Appendix A.4. Proof of the Theorem

Let us now consider an arbitrary positive matrix M. Let λ1, . . . , λN ∈ C be its eigenvalues.
From the Perron–Frobenius theorem it follows that λ1 >| λ2 |≥ . . . ≥| λN |, we consider the
parameterized vector g defined as

g(κ) = f (κM)1 = (I− κM)−1 1. (A8)

where κ > 0 is a real parameter such that κ < 1/λ1. Let ρr(M) be the dominant right eigenvector
of M and let ρl(M) be the dominant left eigenvector of M. Assume that M is diagonalizable matrix.
Then by combining Equations (A6) and (A5) we have

g(κ) = [ f (κλ1)G1 + f (κλ2)G2 + . . . + f (κλN)GN ] 1

=

 f (κλ1)
ρr
[
ρl
]T

[
ρl
]T

ρr
+ f (κλ2)G2 + . . . + f (κλN)GN

 1.

Assuming
[
ρl
]T

ρr = 1 (normalization) and since f (κλ1) > 0, ρl > 0 and β > 0 from the last equation
it follows that

g(κ)

f (κλ1)
[
ρl
]T

β
= ρr +

f (κλ2)

f (κλ1)
[
ρl
]T 1

G21 + . . . +
f (κλN)

f (κλ1)
[
ρl
]T 1

GN1.

Let us examine the two limiting cases as κ → 1
λ1

and κ → 0.

First, since for z = 1, the series f (z) diverges, as κ → 1
λ1

, the denominator of the right-hand

side of the last equation approaches infinity. On the other hand, each derivative f (j)(z) of f (z) can be
expressed by a power series having the same radius of convergence as the power series expressing
f (z). From Equation (A3), it follows that

∣∣ f (j)
(

λi
λ1

)∣∣ < ∞, and hence,

lim
κ→ 1

λ1

−

g(κ)

f (κλ1)
[
ρl
]T 1

= ρr.

More generally, for nondiagonalizable matrices, from Equation (A7) it follows

g(κ) = f (κλ1)ρ
r
[
ρl
]T

1 +
s

∑
i=2

ki−1

∑
j=0

f (j)(κλi)

j!
(M− λiI)

j Gi1

g(κ)

f (κλ1)
[
ρl
]T 1

= ρr +
s

∑
i=2

ki−1

∑
j=0

1[
ρl
]T 1

f (j)(κλi)

j! f (κλ1)
(M− λiI)

j Gi1 (A9)

lim
κ→ 1

λ1

−

g(κ)

f (κλ1)
[
ρl
]T 1

= ρr. (A10)

Since
[
ρl
]T

1 > 0, as κ → 1
λ1

−
the rankings produced by g(κ) converge to those produced by the

entries of ρr.
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For the behavior as κ → 0 we have

g(κ) = I1 + κM1 + κ2M21 + . . .
g(κ)− 1

κ
= M1 + κM21 + κ2M31 . . .

lim
κ→0+

[
g(κ)− 1

κ

]
= M1. (A11)

Therefore, it follows that as κ → 0+ the rankings produced by g(κ) converge to those produced by the
vector M1.

Finally, by substituting M with B and AT , we get the results in Equations (A1) and (A2). In the
special case, when we transform κλ1 → λ1 we are looking at the non-parameterized versions of the
OU and ID. Then, Equations (A1) and (A2) reduce to

u ≈
{

1 + B1 for λ→ 0+,
[ρl(B)]

T
1

1−λ ρr(B) for 1
λ

− → 1,

d ≈
{

1 + AT1 for λ→ 0+,
[ρr(A)]T1

1−λ ρl(A) for 1
λ

− → 1.

where λ = λ1(A) = λ1(B). Summarizing, we have proved that (i) for an economy with λ → 0,
ranking (ordering) of country—industry pairs depends on out-degree centrality; (ii) for an economy
with λ→ 1, the ranking of sectors depends solely on the network structure.

Appendix B. Proof of Theorem 2

Let us study the quasi-stationary product distribution of the Markov input-chain and the Markov
output-chain. This distribution describes the evolution of the state-space of the Markov chain in the
regime before the random walker becomes absorbed. Formally for an arbitrary absorbing Markov
chain described with a transition matrix Ω =

[
Ωij
]
, the quasi-stationary product distribution π is

defined as

π = x̂� ŷ,

where x̂ and ŷ are correspondingly the right and left eigenvector associated with the largest eigenvalue
λ of Ω and � is the Hadamard (element-wise) product. The eigenvectors are normalized in a way
such that ∑i ŷi = 1 and ŷT x̂ = 1.

We claim that the quasi-stationary product distributions π(A) and π(B) of the input and output
chains are the same. This can be proven in the following way. First, notice that the matrices A and B
can be written as

A = ZX−1,

B = X−1Z,

where X is a diagonal matrix with entries xij = xi if i = j and 0 otherwise. It is widely known that such
matrices are similar since we can write A = XBX−1.
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Let x̂(A) = [x̂1(A), . . . , x̂N(A)]T and y(A = [ŷ1(A), . . . , ŷN(A)]T be the right and the left
dominant eigenvector of the matrix A, respectively. Then.

Ax̂(A) = λx̂(A)

ZX−1x̂(A) = λx̂(A)

X−1ZX−1x̂(A) = λX−1x̂(A)

BX−1x̂(A) = λX−1x̂(A)

Bx̂(B) = λx̂(B),

where,
x̂(B) = X−1x̂(A), (A12)

is the right dominant eigenvector of the matrix B. In a similar way,

ŷT(A)A = λŷT(A)

ŷT(A)XBX−1 = λŷT(A)

ŷT(A)XBX−1X = λŷT(A)X

ŷT(A)XB = λŷT(A)X

ŷT(B)B = λŷT(B),

where,
ŷT(B) = ŷ(A)TX, (A13)

is the left dominant eigenvector of the matrix B. Combining Equations (A12) and (A13) we obtain

x̂(A)� ŷ(A) = x̂(B)� ŷ(B),

thus concluding the proof.

Appendix C. Proof of the Theorem 3

Consider a Markov absorbing chain with J absorbing states and a transition matrix:

Pout =

[
IJ×J 0J×n
Dη B

]
,

where IJ×J is identity matrix, 0J×n zero matrix and B = [bij] is the n× n adjacency output matrix.
Let V = {1, 2, . . . , n} be the set of transition states—this is the set of all country—industry pairs.
Let S = {s1, s2, . . . , sJ} be the set of all absorbing states. Starting in i, the process may be absorbed in
s ĵ ∈ S in one or more steps. The probability of absorption in a single step is ηi ĵ. If this does not happen,
the process may move either to another absorbing state (in which case it is impossible to reach s ĵ), or to
a transient state k. In the latter case there is probability mkĵ of being absorbed in the state s ĵ). Therefore,
we have

mi ĵ = ηi ĵ + ∑
k∈V

bikmkĵ

which can be written in matrix form as M = Dη + BM. Thus,

M = (I− B)−1Dη (A14)
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Note that

lim
t→∞

[Pout]
t =

[
IJ×J 0J×n
M 0n×n

]
,

hence the matrix M is row stochastic. Consider now an absorbing Markov chain with one absorbing
state and a transition matrix P given by:

P =

[
1 0T

α Q

]
,

where α and Q are δ and AT , respectively, for the input chain and γ and B, respectively, for the output
chain. In this case, it follows from Equation (A14) that

(I−AT)−1δ = 1

(I− B)−1γ = 1

Assume now that the row sums of Q are all equal to a common value c < 1. In this case α = (1− c)1.
The last two equations can be rewritten as

(I−AT)−11 =
1

1− c
1

(I− B)−11 =
1

1− c
1,

thus concluding the proof of the theorem.
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