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Abstract: The promoter state of a gene and its expression levels are modulated by the amounts of
transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network
as a communicating system in which the state of the promoter of a gene (the source) is communicated
by the amounts of transcription factors that it expresses (the message) to modulate the state of the
promoter and expression levels of another gene (the receptor). The reliability of the gene network
dynamics can be quantified by Shannon’s entropy of the message and the mutual information
between the message and the promoter state. Here we consider a stochastic model for a binary gene
and use its exact steady state solutions to calculate the entropy and mutual information. We show
that a slow switching promoter with long and equally standing ON and OFF states maximizes the
mutual information and reduces entropy. That is a binary gene expression regime generating a high
variance message governed by a bimodal probability distribution with peaks of the same height.
Our results indicate that Shannon’s theory can be a powerful framework for understanding how
bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern
formation of developing organisms.

Keywords: noise in gene networks; binary gene regulation; bursty gene expression; Shannon theory;
stochastic modeling

1. Introduction

The remarkable spatio-temporal precision observed during development of metazoa is the result
of well-orchestrated gene networks regulating the expression of proteins that determine cell fate.
That contrasts with the unavoidable fluctuations of intracellular environment caused by low copy
numbers of reactants [1] as detected in expression of genes of prokaryotic [2] and eukaryotic cells [3]
and high precision experiments demonstrating the pulsed transcription of developmental genes of
social amoeba Dyctiostelium [4], stochastic gene activation [5] and transcriptional bursting [6,7] in
Drosophila embryos, or the bursty transcription of mammal genes [8]. Such features may lead one to
ask whether in the due course of evolution there emerged mechanisms equipping biological systems
with the capacity of modulating noise to exploit it functionally [9–12]. One example is the ubiquitous
bursty gene expression [13,14] taking place during Drosophila embryogenesis when the gene networks
govern multiple proteins to have proper amounts within proper spatial and temporal ranges during
pattern formation [15–17]. For such patterns to be achieved, the activation and inactivation of the
promoters of the genes of developmental networks should be modulated with sufficient precision.
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Hence, one may ask how the promoters, and transcription factors regulating the expression of these
gene networks, contribute to the emergence of such a reliable dynamics.

Here we approach those questions considering a gene network as a communicating system in
which a gene (the source) expresses transcription factors (the message) that regulate another gene
(the receptor). That enables the application of information theory for investigating the transduction
of an input signal into a functional output by a gene network [18–20]. As opposed to the common
consideration of gene activation/inactivation as completely random events, here we assign to them
information content originating, for example, from upstream regulators. Data for nascent transcripts
in Drosophila embryos indicates that the position of activated promoters is in good agreement with
that of their corresponding proteins during embryogenesis [13,14,21,22]. Therefore, we assume the
information content of the input message to be the promoter state as the source, since the binding and
unbinding of transcription factors to the enhancer induces the state of the promoter of the receptor
gene [23,24]. The processing of all information arriving at the receptor is not considered here [25–28],
as we are interested on the reliability of the information content of the message.

Shannon’s information theory is employed to compute the entropy of the message and the mutual
information between the message and the promoter state of the source [29]. Previous applications of
information theory to biological problems employed a parameter-less analysis of experimental data
to investigate optimal limits of information flow [19,30,31]. The absence of an underlying effective
model, however, makes it difficult to biologically interpret the obtained results because of a lack of a
mechanistic description of how optimal or near optimal information flow is achieved. The application
of information theory to an exactly solvable stochastic model with a simple biological interpretation
might help to fulfill that lacuna. Such an analysis may provide good guidance to synthetic biologists
on designing gene circuits to behave as reliable (or unreliable) messaging devices. It can also be
used as a basic building block useful to understand biological phenomena being described within the
framework of information transmission [32,33], such as embryogenesis [34–36], carcinogenesis [37,38],
or cell phenotype adaptation to fluctuating environments [39–41].

We investigate how unavoidable intracellular noise can be exploited by living organisms to
produce reliable information exchange. We use the exact solutions of the stochastic binary model
for gene expression formulated for coupled transcription-translation [42,43]. Although the binary
model was later enhanced to describe transcription and translation as separate processes [44–46],
its preliminary interpretation is sufficient to provide useful insights on the workings of a gene
network. Our approximation implies, considering that, e.g., post-transcriptional regulation is absent,
that translation delay is short in comparison with the relevant time scales governing the whole protein
synthesis process, and that there is an approximately linear relation between the mRNA and protein
numbers [47]. Experimental data for Drosophila embryos showing a good agreement between spatial
patterns of transcripts and transcription factors [13,21] justify our approximation.

The remaining parts of this manuscript are organized as follows. Section 2 presents our picture of
a gene network as a communicating system, and the equations used to compute the probabilities, noise,
average values, entropy and mutual information for the binary gene. Our results are presented
at Section 3 as a set of graphs relating the entropy and mutual information to gene expression
noise, promoter switching speeds, average number of transcription factors and their corresponding
probability distributions. A discussion of how our results relate to a non-exhaustive set of previous
experimental or theoretical analysis related with our investigation is presented at Section 4. The results
and analysis presented here contribute to the understanding of the detrimental role of noise for the
proper development of an organism, or its benefits for the adaptation and robustness of living systems
challenged by an ever changing environment.

2. Model and Methods

To set a reference value for a comparative analysis, we will evaluate the entropy of the message
sent by a constitutive and by a binary gene at the steady state regime. The promoter of the constitutive
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gene is always ON while it switches between ON and OFF states on the latter [48]. We assume
coupled transcription-translation for a clearer interpretation of our results. Our analysis focus on
understanding: i. the entropy of a message sent by both the constitutive and binary sources; ii. the
mutual information between the promoter state and the number of transcription factors sent by
the binary source. These enable the investigation of the conditions for a binary source to send a
reliable or non-reliable message about its state being ON or OFF. In this section, we present the
formulas used to perform our calculation and their biological interpretation. The codes for performing
the numerical calculations presented in this manuscript are available online (https://github.com/
amphybio/stochastic-gene-expression).

2.1. Qualitative Model and Noise Quantification

Figure 1 shows the effective set of reactions that we used to interpret a gene network as a
communicating system. It depicts the symbols for: synthesis rate of the transcription factors when
the promoter is ON, k; transcription factor degradation rate, ρ; promoter switching rate from ON to
OFF state and vice-versa, h and f , respectively; the number of transcription factors available, n. No
synthesis happens when the promoter is OFF. The curved lines indicate the interaction of the protein
encoded in one gene with the enhancer of the receptor.

A gene network as a communicating system
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h f

Encoding region

Encoding region
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Encoding region
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Figure 1. Two elements of an arbitrary gene network are depicted as a communicating system.
The continuation of the network is represented by the dashed lines. A source gene communicates with
a receptor gene through transcription factors and the information is the promoter state of the source.

The number of transcription factors is a random variable and the noise of the message can be
computed using the Fano factor, defined as the ratio between the variance of n to its average value.
The average number of transcription factors (or expected message from the source) is denoted by 〈n〉,
and the Fano factor by F , such that:

F =
〈n2〉 − 〈n〉2
〈n〉 . (1)

The Fano factor is a measure of how similar to Poissonian a probability distribution is. The Poisson
distribution has F = 1 while F < 1 characterizes a sub-Poisson distribution. A super-Poissonian
distribution has F > 1.

2.2. A Stochastic Model for a Constitutive Gene

We model a constitutive gene as a Poissonian birth and death process. The random variable n
indicates the number of transcription factors available for regulating a receptor gene. The probability
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of finding n transcription factors is indicated by φn. The synthesis and degradation rates are denoted
by k and ρ, respectively. The probability φn is given by

φn =
e−N

n!
Nn , (2)

where
N =

k
ρ

, (3)

is the average number of transcription factors produced from a constitutive gene at the steady state
regime. The variance of the Poissonian process is also N.

2.3. A Stochastic Model for the Binary Gene

We model the binary gene as two Poissonian birth and death processes coupled by a random
telegraph process. The random telegraph process describes the switching of the promoter between
ON and OFF states. When the promoter is ON (or OFF) proteins are synthesized at a rate k (or 0) and
degradation happens at rate ρ. There are two random variables, (m, n), where m indicates the state of
the promoter as ON or OFF and n the number of proteins. The probability of finding the promoter
ON (or OFF) and n proteins is indicated by αn (or βn). Using the exact solutions for this model [42,43]
we have:

αn = pα
Nn

n!
(1 + εpα)n

(1 + ε)n
M(1 + εpα + n, 1 + ε + n,−N), (4)

βn = (1− pα)
Nn

n!
(εpα)n

(1 + ε)n
M(εpα + n, 1 + ε + n,−N), (5)

φn =
Nn

n!
(εpα)n

(ε)n
M(εpα + n, ε + n,−N), (6)

where the constants pα, ε and N are defined as:

pα =
f

f + h
, pβ =

h
f + h

, ε =
f + h

ρ
, N =

k
ρ

. (7)

φn indicates the marginal probability of finding n proteins, namely φn = αn + βn, and M(a, b, x)
denotes the KummerM function, defined as a power series:

M(a, b, x) =
∞

∑
n=0

(a)n

(b)n

xn

n!
,

where (a)n = a(a + 1) . . . (a + n− 1) denotes the Pochhammer symbol [49].

2.3.1. Interpretation of the Parameters Pα, ε, and N.

The parameters pα and pβ are the steady state marginal probabilities for the promoter to be at
the ON and OFF states, namely pα = ∑∞

n=0 αn and pβ = ∑∞
n=0 βn with pα + pβ = 1. pα (or pβ) give the

average fraction of a time interval T that the promoter will be ON (or OFF) while switching at random
between these states.

For the promoter being exclusively ON the source would become constitutive (see Section 2.2)
with average number of transcription factors being N (see Equation (3) or Equation (7)).

The parameter ε is the ratio of the promoter switching rate to the transcription factors degradation
rate. It can also be interpreted as the ratio of the transcription factor’s lifetime to the average period
of a complete cycle of promoter switching (see Equation (7)) for a fixed pα. For simplicity, we may
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assume TD = 1
ρ as the protein lifetime, and TS = f+h

f h as the average time for the promoter to complete
one switching cycle. Using the definitions at Equation (7) we obtain

ε =
1

pα pβ

TD
TS

.

When ε� 1 the switching cycle is long and the protein’s lifetime is shorter than the time spent by
the promoter at ON or OFF state if pα ∼ 1/2. When ε� 1 the switching cycle is very short compared
to the transcription factors lifetime and multiple switchings will happen while a transcription factor
remains functional.

The parameter N is the average number of transcription factors if the binary gene remains ON all
the time as if it was a constitutive gene.

2.3.2. The Mean Number and the Conditional Mean Number of the Stochastic Model for a Binary Gene

The average number of transcription factors synthesized from the binary gene (〈n〉), and the
average number of transcription factors given that the promoter is ON or OFF (denoted by 〈nα〉 or
〈nβ〉) are

〈n〉 = Npα, 〈nα〉 = N
1 + pα ε

1 + ε
, 〈nβ〉 = N

pα ε

1 + ε
. (8)

The mean number of transcription factors of the binary gene depends on the proportion of time
that the promoter of the gene is ON. Hence, the average amount of transcription factors will range from
zero to N accordingly with pα. The conditional mean number of transcription factors is obtained using
〈nα〉 = 1

pα
∑∞

n=0 nαn and 〈nβ〉 = 1
pβ

∑∞
n=0 nβn which can be obtained using the generating function

technique [43,45]. The mean number of transcription factors can be written as 〈n〉 = pα〈nα〉+ pβ〈nβ〉.
For very small values of ε, 〈nα〉 → N and 〈nβ〉 → 0. The binary gene behaves as a constitutive

one when its promoter is ON and as a silenced one when its promoter is OFF. The average number is a
quantity between these two values that does not provide a useful information about the instantaneous
state of the system. However, measurement of the instantaneous number of transcription factors is
useful to understand the promoter state.

For large values of ε we have 〈nα〉, 〈nβ〉 ∼ 〈n〉. The state of the promoter is indistinguishable
by simply measuring the number of transcription factors. At that limit, the source approaches the
behavior of a constitutive one.

2.3.3. The Variance and Bursting Noise of N on the Stochastic Model for a Binary Gene

The variance of n, denoted by σ2, and the Fano factor (F ) when the transcription factors are
produced from a binary gene are, respectively,

σ2 = 〈n〉
(

1 +
N (1− pα)

1 + ε

)
, F = 1 +

N (1− pα)

1 + ε
= 1 + δ . (9)

Since the discussion about the noise is similar for both σ2 andF we focus on the second. Because of
the promoter switching, the value of F is larger than that of a constitutive one by a quantity δ =

N (1− pα)/(1 + ε).
The Fano factor is computed using the marginal probability φn, the probability of finding n

transcription factors independently of the promoter state. The increment δ helps to understand the
hyper-Poissonian nature of the message sent by the binary source. A Poissonian distribution describing
the constitutive source has δ = 0 while in a super-Poissonian distribution describing the message sent
by the binary source we have δ > 0. The super-Poissonian distribution describes multiple qualitatively
distinct gene expression regimes.

For pα = 1 the promoter is fully ON, the binary source becomes constitutive and δ = 0. For pα = 0
we have a fully repressed gene. Additionally, when ε approaches infinity the noise of the message sent



Entropy 2020, 22, 479 6 of 18

by the binary gene is similar to that of a constitutive one if N and pα are finite constants. For (N, pα)

being finite constants and ε approaching zero we have δ→ N(1− pα).
For instance, a bursty expression characterized by k, h � ρ and h � f or N, ε � 1 and pα � 1

(see Equation (7)) has δ ≈ k/h or δ ≈ N/ε which is called the burst size. This is a mathematical
entity with interpretation as transcriptional or translational dependent on the meaning of the random
variable n, which in here denotes the number of transcription factors. Hence, we interpret this limit as
the translational bursting and δ as the translational burst size. Note, however, that in literature it has
also been interpreted as the transcriptional bursting size [44,46,50–52]. Here, the burst size δ ∼ k/h
coincides with the noise increment in relation to the noise in the expression of the constitutive gene.
In that case, the promoter remains OFF for a long interval, and switches ON for a brief time interval
during which a burst takes place. Once the promoter switches OFF the amount of gene products
decays exponentially until the next burst.

The binary expression, on the other hand, is characterized by f + h� ρ or ε� 1. The number
of synthesized transcription factors is governed by a bimodal distribution which peaks are centered
around 0 and N weighted by the probabilities pβ and pα, respectively. During steady state regime,
the trajectories of the number of transcription factors governed by a bimodal distribution can be
described approximately as follows. Initially, we set the promoter OFF and no transcription factors,
then there will be, at random instants: an increase of n towards a finite value 〈nα〉 ≈ N after the
promoter switching ON; fluctuations of n around 〈nα〉 corresponding to a Poissonian process while the
promoter remains ON; a sharp reduction towards zero after the promoter switching OFF; then n = 0
while the promoter remains OFF; and the cycle repeats. Let us set pα = 1/2 and take the limit of ε� 1
such that F → 1 + N/2. We set the promoter OFF and zero transcription factors at the initial instant.
Once the promoter switches ON, n increases towards ∼ N as if it were a time-dependent Poissonian
process because the promoter state remains stable for a sufficiently long time interval. For the case of a
fast growth of n in comparison with the remaining time scales of the system, one might take it as a
burst which size would not correspond to the increment in noise, δ, but to 2δ, and an analysis of the
full trajectory would be necessary to understand this noise regime [22,52].

The two examples above points to the necessity of a more precise classification of noise and its
biological implications. Information theory constitutes a useful toolbox for that purpose.

2.4. Analyzing the Information Content of the Message

The information content of the message is quantified in the framework of Shannon’s
communication theory, where the variance of binary signals correlates with their information content.
Hence, the average information content of the message is given by Shannon’s entropy; the coupling
between the message and the state of the promoter of the source is given by the mutual information;
the average information content of the message given the promoter being ON is measured by the
conditional entropy.

2.4.1. Entropy for the Constitutive Source

The Shannon’s entropy of a probability distribution φn is denoted by H(n) and defined as
H(n) = −∑∞

n=0 φn log φn, with the logarithm taken to base 2. For a Poissonian distribution with
average value N the entropy is given by

H(n) = N − N log (N) + e−N
∞

∑
n=0

Nn

n!
log (n!) . (10)

The entropy of the constitutive gene will be considered here as a reference value to be compared
with that of the binary one.
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2.4.2. Entropy, Conditional Entropy and Mutual Information for the Binary Source

Since it is not trivial to find a closed form to compute the logarithm of a KummerM function,
we obtained the entropy and mutual information for the binary gene by computing their formulas
numerically. The entropy of the message sent by the binary gene is:

H(n) = −
∞

∑
n=0

φn log φn , (11)

where φn is given by Equation (6) and computed setting numerical values to its parameters given at
Equation (7).

The conditional entropy of n given the promoter being ON or OFF is denoted by Hα(n) or Hβ(n),
respectively, which are written as:

Hα(n) = log (pα)−
1
pα

∞

∑
n=0

αn log (αn) , (12)

Hβ(n) = log (pβ)−
1
pβ

∞

∑
n=0

βn log (βn) . (13)

These formulas are obtained from the definition of the conditional entropy of X given Y = y,
namely H(X|Y = y) = −∑x∈X p(X|Y = y) log p(X|Y = y), where we assume X being the number of
transcription factors and Y the promoter state. Here αn, βn, and (pα, pβ) are, respectively, given by
Equation (4), Equation (5), and Equation (7).

The mutual information between the message n and the source state being ON or OFF is given by

I(n; m) = H(n)− pα Hα(n)− pβ Hβ(n) , (14)

where H(n), Hα(n), and Hβ(n) are, respectively, given by Equation (11), Equation (12), and
Equation (13).

3. Results

We investigate the reliability of the information transfer considering the unavoidability of noise
by characterizing the dynamics of the promoter and the distributions governing the message (gene
product) generated by the source gene. Section 3.1 shows an analysis of the entropy and mutual
information as a function of the Fano factor to motivate the hypothesis that noise properties are actively
regulated by cells. Section 3.2 presents a characterization of the promoter switching dynamics to enable
the condition of reduced entropy and increased mutual information of the message. Since the reliability
of the signal is evaluated by means of the average signal, in Section 3.3 we investigate the behavior
of the entropy and mutual information as functions of the average message. We also analyze the
conditional entropy as a function of the average conditional message and determine the corresponding
probability distributions for three distinctive switching dynamics: fast, slow, and intermediary.

Each subsection is structured with a set of graphs displaying the results obtained for a set of
parameter values (see Equation (7)) indicated inside the graphs and on the figures’ titles. We also
present a description of the graphs and the data obtained using the corresponding equations
(see Section 2). A final paragraph is dedicated to discussing and interpret the results using the
qualitative picture at Figure 1.

3.1. Binary Expression Enables Entropy Reduction and Mutual Information Increase

The horizontal axis of both graphs of Figure 2 shows the bursting quantified by the Fano factor
(see Equation (1)). The vertical axis of graphs A and B shows, respectively, the entropy of the message
(see Equation (11)) and the mutual information between the message and the state of the promoter
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of the source (see Equation (14)). Each continuous line is associated with a specific value of the
promoter switching rate, ε (see Equation (7)). The dashed curves are isolines for fixed values of the
probability for the promoter to be ON, pα. The color scheme for the curves is given at the caption.
The black solid diamond gives the entropy of the message when it is sent by a Poissonian source
which is usually employed on the description of a constitutive gene. Please note that we have no
mutual information for the constitutive gene because we assume that its promoter will be always ON.
A condition of equivalence between the binary gene to the constitutive one can be devised for ε >> N
which corresponds to a switching cycle being much faster than the protein synthesis rate. In that case,
the mutual information approaches zero.

Figure 2. Entropy (or mutual information) and Fano factor were obtained varying N for fixed pα and ε.
All curves have the same value for the average number of gene products (〈n〉 = 50 such that for each
curve we have N = 50/pα). Graph (A) shows the entropy of the message sent by the gene versus the
noise of the message. Graph (B) shows the mutual information between the message and the source
state as a function of the noise. Continuous lines refer to fixed values of ε and fixed values of pα are
indicated by the dashed ones.

Graph A shows that the constitutive gene sets a reference value for the entropy for a fixed 〈n〉.
The binary source at the small noise regime (F ∼ 1) generates a message which entropy is greater
than that sent by the constitutive gene. As the noise increases, however, the entropy of the message
sent by the binary source reaches a maximum and then starts decreasing. Then the entropy of the
message sent by the binary source becomes smaller than that of the constitutive source and decays
towards arbitrarily small values. Moreover, for a fixed value of F , the message with minimal entropy
is generated by a process with the smallest ε.

Graph B shows that the mutual information between the message and the source state reaches a
maximum for values of the Fano factor being ∼ 1 + 〈n〉 and ε� 1. For a fixed value of F the mutual
information becomes minimal for the greatest values of ε. As the switching rate becomes slower,
i.e. ε � 1, the mutual information is maximal for pα ∼ 1/2. Furthermore, one may set an interval
at which the mutual information has higher, significant values, by arbitrarily fixing the probability
for the promoter to be ON within a range 1/L ≤ pα ≤ 1− 1/L such that the corresponding noise is
(L− 1)〈n〉 ≥ F ≥ 〈n〉/(L− 1), where L > 1 and F � 1 such that (F − 1)(1 + ε) ∼ F .

The results presented here show that one may increase the expression noise of a binary gene to
generate messages with arbitrarily small entropy. The reduction of the entropy and of its maximal
value depends both on the message’s noise and on the probabilities governing the promoter states.
Hence, reducing the entropy of the message is not sufficient for optimizing its reliability, so an analysis
of the mutual information between the message and the promoter state is necessary. Indeed, the mutual
information has a maximum when the probability for the promoter to be ON is 1/2 and the noise
increment δ is approximately the average number of gene products. Therefore, besides promoter
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state probabilities, the noise in gene expression must also be regulated for the maximization of the
information content of the message sent by the binary source.

3.2. the Slow Switching Genes Generate Reduced Entropy and Increased Values for Mutual Information

The horizontal axis of both graphs of Figure 3 indicates the values of the transcription factor’s
lifetime relative to the ON and OFF switching cycle of the source’s promoter. The vertical axis of
graphs A and B shows, respectively, the entropy of the message (see Equation (11)) and the mutual
information between the message and the source state. To each continuous line we associate a specific
value of the probability for the source to be ON, pα (see Equation (7)). The dashed black curve indicates
the entropy for the constitutive gene. This value is given as a reference since there is no switching on a
constitutive promoter and, additionally, there is no mutual information between the promoter state
and the message. The color scheme for the curves is given at the caption.

Figure 3. The entropy (and mutual information) was obtained fixing pα and N. All curves have the
same average number of transcription factors (〈n〉 = 50 such that for each line we have N = 50/pα).
The horizontal axis of both graphs indicates the transcription factor’s lifetime relative to the source’s
ON and OFF promoter switching duration. Graph (A) shows the entropy of the message and Graph (B)
shows the mutual information between the message and the source’s promoter state. Each continuous
line corresponds to a given value of pα and the entropy value for a constitutive gene producing 〈n〉 = 50
proteins is shown by the horizontal dashed black line. Values of ε used to construct Figure 4, Figure 5,
and Figure 6 appear in bold at the horizontal axis label.

Graph A shows that the entropy for a given pα is minimal when the switching is slow. As the
switching rate increases, the entropy reaches a maximum value (Hm) for an εm which is greater as
the probability for the promoter to be ON is reduced. For ε > εm and a given pα, the entropy of the
message decreases and asymptotically approaches that of a constitutive source. A source with ε� 1
generates a message for which the entropy increases with pα while the opposite happens for large
values of ε. Furthermore, for ε� 1 and pα = 1/2 the entropy is smaller than that of the constitutive
source, but not minimal.

Graph B shows the mutual information as a function of ε with each line being related to a specific
value of pα. The similarity of the mutual information for complementary values of pα as the switching
rate increases relates to the bell-shaped curves (in semi-log scale) shown on Figure 2 (graph B). For a
given value of pα the mutual information decreases monotonically with the increase of ε. For ε� 1
the mutual information is maximal when pα = 1/2, and for pα � 1 the message will have minimal
entropy and minimal mutual information with the promoter state.

Equation (9) shows that the increment δ on the noise of the message sent by the binary gene can
be regulated by three distinct parameters. The value of N is determined by the capacity of the cell of
synthesizing transcription factors while pα is given by the enhancer’s state. Therefore, minimizing ε
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may be a useful method for increasing δ. Indeed, here we have obtained reduced entropy and maximal
mutual information for the slow switching genes. As expected, a very fast switching gene will generate
a message with entropy approaching that of the constitutive gene with the same average expression
levels. An additional regime is the bursting that takes place when we have ε, N � 1 and pα � 1 [52].
This regime leads to a strong reduction on the entropy of the message but its mutual information is
low. Hence, it would not be reliable in the context of a gene network in which the information content
of the message is the promoter state.

3.3. the Distributions of the Slow Switching Bursty Regime with Reduced Entropy and Maximal Mutual
Information Are Bimodal

Figures 4–6 have four graphs each where: graph A shows the entropy on vertical axis and the
average number of gene products (〈n〉) on the horizontal; graph B shows the entropy conditional to
the promoter being ON versus 〈nα〉 (see Equation (8)); graph C shows the mutual information versus
〈n〉; graph D shows the probability distribution of n. Each continuous line corresponds to a given pα

with color code given at the key of graph B. The values of the entropy (vertical axis of graph A); entropy
conditional to the source being ON (vertical axis of graph B); mutual information (vertical axis of graph
C) are obtained fixing a given pα and varying N to generate the values of 〈n〉 at the horizontal axis.
The probability distributions of graph D are obtained by also fixing 〈n〉 = 50, such that N = 50/pα.
For each pα we compute the values of φn (continuous lines) and αn (dashed lines). In each set of graphs,
the value of ε is fixed and given at graph A’s title. Results for the constitutive gene are shown by a
black line on graphs A, B, and D.

Figure 4. The switching rate of the promoter of the source is 0.01. The vertical axis of
Graph’s (A–C) shows, respectively, entropy versus 〈n〉, entropy conditional to the source being ON
versus 〈nα〉, and the mutual information versus 〈n〉. Graph (D) shows the probability distribution of n.
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Figure 4. Graph A shows that the entropy of the message increases monotonically with 〈n〉 for both
the constitutive and binary sources. As pα approaches one the entropy of the binary sources approaches
that of a constitutive. A source with smaller values of pα will send messages with significantly reduced
entropy which growth with 〈n〉 is much slower. Graph B shows the entropy of the message under the
condition of the source being ON. In that case the conditional entropy of all messages approaches
that of a constitutive source for all values of pα. That is observed by introducing the entropy for the
constitutive source as a reference value (black curve). Graph C shows that the mutual information
between the source’s promoter state and the message increases monotonically until it reaches a limit at
a value that depends on pα. The mutual information for two complementary values of pα approximate
each other for a sufficiently large value of 〈n〉. For pα = 1/2 the mutual information reaches its
maximum with its plateau being reached when 〈n〉 ∼ 30. Graph D shows the probability distribution
for 〈n〉 = 50. The black curve shows the probability distribution of n when emitted by a constitutive
source. The distributions generated by the binary source are all bimodal, with one mode centered
around zero and the other around N (where N = 〈n〉/pα). As the value of pα approaches zero the
second peak has its height lowered and its center displaced to the right. The opposite happens when pα

approximates unity with the taller peak approaching that of the constitutive source for the same mean.

Figure 5. The switching rate of the promoter of the source is 2. The Graph’s (A–C) shows, respectively,
entropy versus 〈n〉, entropy conditional to the source being ON versus 〈nα〉, and the mutual information
versus 〈n〉. Graph (D) shows the probability distribution of n.

Figure 5. Graph A shows that the entropy of the message increases monotonically with 〈n〉 for
both the constitutive and the binary sources. For larger values of pα, the entropies of the binary
sources are greater than that of a constitutive. Entropy of the message from the binary source is a bit
smaller than that of a constitutive for small values of pα. Graph B shows the entropy of the message
given the promoter of the source being ON. In that case the conditional entropy of all messages is
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greater than that of a constitutive source. Graph C shows that the mutual information also increases
monotonically until it reaches a limit value that depends on pα. The mutual information for two
complementary values of pα approximate each other for a sufficiently large value of 〈n〉. For pα = 1/2
the mutual information reaches its maximum with its plateau being reached when 〈n〉 ∼ 30. Note,
however, that the maximal value for the mutual information is smaller than that for ε = 0.01. Graph D
shows the probability distributions for the binary source. The distributions generated by the binary
source have significant probability values spread along a large range of values of n. For pα = 1/2 the
distribution is table shaped. As pα → 1 the distribution forms a peak that gets closer to that of the
distribution of a constitutive source while the distributions have a sector governed by a power law
when pα approaches zero.

Figure 6. The switching rate of the promoter of the source is 10. The vertical axis of
Graph’s (A–C) shows, respectively, entropy versus 〈n〉, entropy conditional to the source being ON
versus 〈nα〉, and the mutual information versus 〈n〉. Graph (D) shows the probability distribution of n.

Figure 6. Graph A shows that the entropy of the message increases monotonically with 〈n〉 for
both the constitutive and the binary sources. The entropy of the message emitted by the binary
source is larger than that of a constitutive gene for all values of pα. Graph B shows the entropy of the
message given the promoter being ON. The conditional entropies of all messages are greater than
that of a constitutive source. Graph C shows that the mutual information also increases monotonically
until it reaches a limit value that depends on pα and that this maximal value is smaller than that for
ε = 0.01 or ε = 2. Graph D shows the probability distributions for the binary and the constitutive
sources. The distributions generated by the binary source are spread along a large range of values of n.
The distributions of n emitted by the binary source approach that of a constitutive gene as pα → 1.

The graphs of Section 3.3 show that at maximal mutual information and reduced entropy,
the distributions governing the message are bimodal. That implies the slow switching and
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average duration of the ON or OFF states of the promoter being large enough for the number of
transcription factors to reach steady state before the next switching. Hence, if we consider the
conditional entropy given the promoter is ON, it will behave as a constitutive source. In other words,
that regime permits the transcription factors to be a read out of the state of the promoter of the gene.
As the parameter ε increases, the super-Poissonian distributions change their shapes, e.g., becoming
uniform-like, negative-binomial like, or Poissonian-like. Those regimes will have decreasing maximal
mutual information and reduced quality on the information content of the message.

4. Discussion

The advent of fluorescence techniques generating precise molecular level data has encouraged the
use of theoretical approaches on the search for general principles underpinning biological processes.
Here we contribute to these efforts by means of an information theoretic analysis of the well-known
stochastic binary model for gene expression. The bimodal probability distribution obtained from this
model, characterized by large noise, optimizes the mutual information (see Figure 2 or [19,30,31]).
Because our results are derived using an exactly solvable master equation modeling a small set of
effective reactions, they provide guidance for the interpretation and description of experimental
results. Though we are not claiming that we have a model for expression of the Drosophila embryo
developmental gene hunchback, we use its expression as an example. The histogram of the levels of
Hunchback protein along the AP axis of a Drosophila embryo at cycle 14 is also bimodal, and characterize
a near optimal information flow in transcriptional regulation [19]. Expression of hunchback is modulated
by self-activation, repression by Knirps and Kruppel transcription factors, and activation by the
maternal protein Bicoid [53]. In a “first order” approximation, however, one may assume Bicoid
as a major regulator of hunchback gene such that with some precision [53], its promoter state is a
readout of the concentration of Bicoid—low concentration of Bicoid implies on the promoter being
OFF and vice-versa [36]. In that case, the bimodality of the distribution of Hunchback suggests that
its promoter has a slow switching dynamics and, since the state of the promoter is regulated by
multiple transcription factors [54], we assume that their binding and unbinding holds its promoter
at either ON and OFF states for a relatively long interval. This incipient analysis is important
to be completed because of the similar kinetics of the gap genes despite their distinctive spatial
patterns [14]. Furthermore, the number of elongating transcripts in a gene with promoter controlled
by distinct developmental enhancers of Drosophila exhibit trajectories consistent with the bimodal
distributions [22]. Hence, mapping the biological systems in which binary expression occurs may
provide useful general principles to understand the functioning of gene networks in the context
of development.

A major challenge in Biology is to classify noise in gene expression accordingly with the role of its
products in a functional network or a cell. For example, self-repression has long been recognized as
the mechanism responsible for noise reduction or homeostasis in gene expression [55–58]. Our results
indicate that in a gene network in which the relevant information is the promoter state, the binary
expression is the proper regime to increase the reliability and information content of the message
for a wide range of the noise amplitudes. Another noise regime of gene expression is the bursting,
which generates a message with minimal entropy and low mutual information (Figure 2). The bursts
have been reported in many recent publications, e.g., see Table 1 [59] for a compilation showing average
values of burst size and frequency among ∼ 4k and ∼ 2k genes of, respectively, mouse and human
fibroblasts cells [8,60–64], or two genes in yeast [51]. The recurrence of observations of burstings
indicates the necessity of additional analysis using more general models [59,65] to understand the flow
of information in gene networks with bursty components. One may consider that the bursty genes
are participants of networks in which the relevant information is not the promoter state, and they
may even not need to operate at a near optimal regime of promoter state information transmission.
These three examples, self-repression, binary and bursty expression, lead us to conjecture that evolution
of living systems do not necessarily select or avoid selecting gene networks for maximal information
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flow, but for near optimal operation under the necessity of sufficiently reliable function and near
minimal energy consumption.

Information transfer in biological systems also play a role on phenotypic switching for adaptation
to constantly changing environments. When the environment fluctuates, two strategies (and their
combinations) are possible [40]: (i) sensing and response; and (ii) blind, random switching. In case
(i) we a assume a cell which survival in a given environment depends on the presence of a specific
protein. The occurrence of the environment leads to the expression of the specific protein by activation
of its corresponding promoter. The optimal response regime would require the protein numbers to
be a readout of the promoter state and, for a fluctuating environment, the trajectories of the protein
numbers would be similar to those described for bimodal distributions (see Section 2.3.3). The duration
of the high concentrations of the responding protein would be similar to duration of the demanding
environment. Note, however, that the chemicals responsible for activating the responding gene may
have a specific production regime optimized for detection of environmental changes. In case (ii) there
is a random switching that does not respond to the environment [39,41]. How do the cells implement
the optimal switching rates? For instance, they could just have a randomly switching gene with
arbitrary, optimal ON→OFF and OFF→ON rates. However, the phenotype comes from the protein
level, not from the gene. So, if the randomly switching gene’s ON/OFF states are not faithfully
followed by the protein, the phenotypic switching will not be optimal, even though the gene switching
is optimal. So, for optimal random phenotypic switching, there should be optimal information transfer
from the gene’s state to the protein levels.

Our results may also help unravel why transcription factors are present in lower copy numbers
inside the cells when compared with, e.g.glycolytic or elongating proteins (see the online book http:
//book.bionumbers.org/what-are-the-copy-numbers-of-transcription-factors/ related to BioNumbers
webpage—[66]. Assume that the transcription factors are the carriers of information about the
promoter state and that their interaction with the regulatory regions of the receptor gene depends
on their quantity. One may wonder whether there is a threshold above which the amount of
transcription factors is an unnecessary burden for the cell because of lack of additional information
and their near certainty of binding to the DNA. Indeed, Section 3.3 shows that the mutual information
between the message and promoter state saturates for a finite value of the average number of
transcription factors while entropy grows monotonically. It would be interesting to connect this
result with the functioning of specific gene networks. As previously discussed, gene networks may or
may not function transmitting information about promoter states and further analysis is necessary to
understand additional possibilities relating a gene network function and its noise regime.

For example, there have been long term characterization of the enhancers as the gene structures
responsible for regulating the promoter exposure for transcription and, consequently, average levels
of gene products. Assuming that all gene expression noise regimes have a functional role, one may
wonder whether there exist a DNA structure surrounding a promoter that regulates its switching rates
and, consequently, whether its expression will be binary, bursty, constitutive-like accordingly with its
context necessities. That would be interesting to investigate experimentally to relate an expression
regime with its functional role. Additionally, one might also test the mutual information between a
transcription factor and its target protein, or their promoters. Another interesting question is to test
the information transfer between an external signal and genes involved in its processing.
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