
entropy

Article

Residue Cluster Classes: A Unified Protein
Representation for Efficient Structural and
Functional Classification

Fernando Fontove 1 and Gabriel Del Rio 2,*
1 C3 Consensus, Miguel Hidalgo, CDMX, Mexico City 11510, Mexico; fernando.fontove@c3consensus.com
2 Department of Biochemistry and Structural Biology, Instituto de Fisiología Celular, UNAM,

Mexico City 04510, Mexico
* Correspondence: gdelrio@ifc.unam.mx

Received: 1 March 2020; Accepted: 7 April 2020; Published: 20 April 2020
����������
�������

Abstract: Proteins are characterized by their structures and functions, and these two fundamental
aspects of proteins are assumed to be related. To model such a relationship, a single representation
to model both protein structure and function would be convenient, yet so far, the most effective
models for protein structure or function classification do not rely on the same protein representation.
Here we provide a computationally efficient implementation for large datasets to calculate residue
cluster classes (RCCs) from protein three-dimensional structures and show that such representations
enable a random forest algorithm to effectively learn the structural and functional classifications of
proteins, according to the CATH and Gene Ontology criteria, respectively. RCCs are derived from
residue contact maps built from different distance criteria, and we show that 7 or 8 Å with or without
amino acid side-chain atoms rendered the best classification models. The potential use of a unified
representation of proteins is discussed and possible future areas for improvement and exploration
are presented.

Keywords: residue cluster class; structural classification; functional classification

1. Introduction

Proteins are molecules found in living organisms and participate in many diverse cellular and
molecular functions. It is generally recognized that the three-dimensional (3D) structures of proteins
are related to their functions, yet the relationship remains to be elucidated, since many attempts to
predict the correct functions of proteins based on their 3D structures still result in false predictions [1].

Different approaches have been described to account for such a relationship, including those
based on physical and chemical forces [2,3], protein sequence and phylogenies [4–6] and others.
Machine-learning (ML) based models are currently the best models for predicting 3D protein
structures [7] and protein functions [8]. ML models require object representations in the form of
a set of features; these features are numeric values; hence, objects are represented by vectors. Yet, while
protein structure and function are indeed related (both observations are derived from the same object,
the protein, and hence are related), it is questionable whether at the model level these are actually
related. For instance, the features used so far to predict the 3D structure are different from those used
to predict protein function [9,10]; hence, the reliability of ML methods when predicting a protein’s
structure or function may be simply the consequence of having better representations for each aspect
of the protein (i.e., 3D structure or function). We believe having a unique protein representation
with which to efficiently predict 3D protein structure and function would provide a mathematical
framework to explore the relationship between these two fundamental aspects of proteins, 3D structure
and function.

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-8118-4985
http://dx.doi.org/10.3390/e22040472
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/4/472?type=check_update&version=2

Entropy 2020, 22, 472 2 of 12

We have previously described a representation of 3D structure that is learnable (that is, it displays
a pattern that any ML heuristic model should be able to detect); such a representation allowed us to
identify structural neighbors and classify the protein’s 3D structure with the best performance and
reliability reported so far [11]. The representation is based on counting the 26 different maximal clique
classes that are derived from the 3D structure and protein sequence given a contact distance threshold
of 5 Å, including atoms of the side chains; we referred to these maximal cliques as residue cluster
classes or RCCs (see Figure 1 and Materials and Methods). In that previous work, we tested two
ML algorithms (random forest and support vector machine) that were adequate for the structural
classification of the data. In the present work, we developed a computationally efficient implementation
for computing RCCs on large datasets of 3D protein structures. This allowed us to further explore the
protein structure classification and distribute this implementation freely (see Supplementary Materials);
this implementation incorporates some variations in the contact definition (different distances and the
exclusion of the side-chain atoms). Here we also explored in a systematic way for dozens of ML models
to identify the optimal model and corresponding hyper-parameters for such tasks, and corroborated
that random forest rendered the best algorithm. Furthermore, we showed that ML models built from
RCCs were able to efficiently learn protein functions, yet there is plenty of room for improvement.
Hence, our results provide the first unified, high-dimensional description of proteins useful for learning
both 3D structure classification and protein function using ML methods.Entropy 2020, 22, 472 3 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

Figure 1. Residue Cluster Classes. Folded proteins (represented by blue lines) highlighting residues
(black circles) in contact forming different classes of maximal cliques; a clique is a set of nodes (in the
case of proteins, nodes are amino acid residues) wherein all nodes are in contact with each other; a
maximal clique is that clique that is not part of another clique. A) Maximal clique of class [4], where
four sequence adjacent residues form a clique; these four residues are indicated on the top of the
image connected by red lines (edges) and cannot be extended to form a clique of size five with another
residue. B) Maximal clique of class [2,2], where two sequence adjacent residues form a clique with
other two adjacent residues; the four residues are not adjacent. C) Maximal clique of class [1,2], where
two sequence adjacent residues form a clique with a separated third residue. D) Maximal clique of
class [1,1,1] where three sequence non-adjacent residues form a clique. The regions separating these
non-adjacent residues in the protein sequence could include different secondary structure elements
(e.g., loops, helices).

2. Materials and Methods

2.1. RCC Calculation Implementation

The pseudo code to obtain the RCC from PDB entries is depicted in
Algorithm 1:

Algorithm 1: RCC calculation

Input: Cartesian coordinates of protein atoms
Output: RCC coordinates

1: Generate graph with the contacts of all residues. Two residues are

in contact if they are within a distance threshold.
2: Calculate maximal cliques using Tomita algorithm (see below)
3: Calculate RCC from maximal cliques.

2.1.1. Contact Map Calculation

We accelerated the calculation of all contacts given a distance threshold d with
the use of several geometric restrictions:

i) The hashing approach using a 3D grid over the space. We generated a grid
over the 3D space of width d that corresponded with the contact threshold distance;
thus, given a residue we can identify the cube that contains it by using a hashing
function; every cube in the grid has a list of all the residues that are inside of it. Given

Figure 1. Residue Cluster Classes. Folded proteins (represented by blue lines) highlighting residues
(black circles) in contact forming different classes of maximal cliques; a clique is a set of nodes (in the
case of proteins, nodes are amino acid residues) wherein all nodes are in contact with each other; a
maximal clique is that clique that is not part of another clique. (A) Maximal clique of class [4], where
four sequence adjacent residues form a clique; these four residues are indicated on the top of the
image connected by red lines (edges) and cannot be extended to form a clique of size five with another
residue. (B) Maximal clique of class [2,2], where two sequence adjacent residues form a clique with
other two adjacent residues; the four residues are not adjacent. (C) Maximal clique of class [1,2], where
two sequence adjacent residues form a clique with a separated third residue. (D) Maximal clique of
class [1,1,1] where three sequence non-adjacent residues form a clique. The regions separating these
non-adjacent residues in the protein sequence could include different secondary structure elements
(e.g., loops, helices).

2. Materials and Methods

2.1. RCC Calculation Implementation

The pseudo code to obtain the RCC from PDB entries is depicted in Algorithm 1:

Entropy 2020, 22, 472 3 of 12

Algorithm 1: RCC calculation

Input: Cartesian coordinates of protein atoms
Output: RCC coordinates

1: Generate graph with the contacts of all residues. Two residues are in contact if they are within a
distance threshold.

2: Calculate maximal cliques using Tomita algorithm (see below)

3: Calculate RCC from maximal cliques.

2.1.1. Contact Map Calculation

We accelerated the calculation of all contacts given a distance threshold d with the use of several
geometric restrictions:

(i) The hashing approach using a 3D grid over the space. We generated a grid over the 3D space
of width d that corresponded with the contact threshold distance; thus, given a residue we can identify
the cube that contains it by using a hashing function; every cube in the grid has a list of all the residues
that are inside of it. Given a residue r and the cube in the grid where it is found, Gr, we know that
any other residue inside Gr must be in contact with r. Additionally, if a residue s is in contact with r,
it must be that the cubes Gr and Gs are neighbors in the grid (if they were not, then r and s must be at a
distance greater than d). This way we reduced the search space dramatically (see Figure 2), which
turns the complexity of the algorithm to 2*n (n is the number of amino acids in a protein) in the linear
portions of the protein and 16*n on average (given that at 5 Å a residue is in contact with four other
residues on average).

Entropy 2020, 22, 472 4 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

a residue r and the cube in the grid where it is found, Gr, we know that any other
residue inside Gr must be in contact with r. Additionally, if a residue s is in contact
with r, it must be that the cubes Gr and Gs are neighbors in the grid (if they were not,
then r and s must be at a distance greater than d). This way we reduced the search
space dramatically (see Figure 2), which turns the complexity of the algorithm to 2*n
(n is the number of amino acids in a protein) in the linear portions of the protein and
16*n on average (given that at 5 Å a residue is in contact with four other residues on
average).

Figure 2. Hash-like approach to build a contact map. A grid is placed on top of the protein; its width
is the contact distance. At the center, the residue of interest and the red lines connecting the residue
of interest with the close by residues. Any residue in contact with the residue of interest must be in a
neighboring cube; if it is inside the same cube, it must be in contact. The image was generated using
CMView (version 1.1.1) [12], and the PyMol script DrawGridBox [13].

ii) Rules for quick evaluation (see Figure 3). For a residue r we enveloped it in a
sphere of radius rd and center rc. For two residues r and s, let D be the distance
between rc and sc,. They must be in contact if

D < d, (1)

and cannot be in contact if

minimum {D – rd, D – sd} > d. (2)

Finally, they must be in contact if a sphere of radius d and center rc overlaps half
the volume of the sphere enveloping s or vice versa (though this last rule was turned
off in the final implementation due to the overhead of the calculation being too

Figure 2. Hash-like approach to build a contact map. A grid is placed on top of the protein; its width
is the contact distance. At the center, the residue of interest and the red lines connecting the residue of
interest with the close by residues. Any residue in contact with the residue of interest must be in a
neighboring cube; if it is inside the same cube, it must be in contact. The image was generated using
CMView (version 1.1.1) [12], and the PyMol script DrawGridBox [13].

Entropy 2020, 22, 472 4 of 12

(ii) Rules for quick evaluation (see Figure 3). For a residue r we enveloped it in a sphere of radius
rd and center rc. For two residues r and s, let D be the distance between rc and sc,. They must be in
contact if

D < d, (1)

and cannot be in contact if
minimum {D − rd, D − sd} > d. (2)

Entropy 2020, 22, 472 5 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

similar to the time saved by it). Any pair of residues that do not fulfill one of these
rules needs the explicit computation of the distance between its pair of atoms to be
performed (with an early stop if a contact is found).

Figure 3. Contact map algorithm. r and s are two residues potentially in contact; each is enveloped in
a sphere with center rc or sc, and radius rd or sd, respectively. The contact distance is d and the distance
between rc and sc is D. For each sphere, the center is calculated as the geometric center for all the atoms
in the residue, including the side-chain atoms (the center does not necessarily overlap with any atom),
and the radius is the distance between the center and the farthest atom, which may vary depending
on the length and structure of the side chain. In the case in which the side chain is ignored, the spheres
may still be not identical due to the elasticity of the bonds between the atoms (i.e., the distance
between the nitrogen and carbon alpha atoms is not exactly constant, just like the internal angles of
the backbone).

In the scenario in which the side chains are ignored, the spheres are calculated
with the remaining atoms of the residue. The geometric restrictions work in the same
way as if the spheres were calculated with all the atoms in the residue, and similarly,
when a pair of residues does not meet the criteria for quick evaluation, the explicit
computation of the distances between their pair of atoms is performed exclusively
with the atoms in the backbone. The pseudo-code for this calculation is detailed in
Algorithm 2:

Algorithm 2: Contact map calculation
 Input: Cartesian coordinates of protein atoms
 Output: Contact graph

 For each residue r in the protein:

Figure 3. Contact map algorithm. r and s are two residues potentially in contact; each is enveloped in
a sphere with center rc or sc, and radius rd or sd, respectively. The contact distance is d and the distance
between rc and sc is D. For each sphere, the center is calculated as the geometric center for all the atoms
in the residue, including the side-chain atoms (the center does not necessarily overlap with any atom),
and the radius is the distance between the center and the farthest atom, which may vary depending on
the length and structure of the side chain. In the case in which the side chain is ignored, the spheres may
still be not identical due to the elasticity of the bonds between the atoms (i.e., the distance between the
nitrogen and carbon alpha atoms is not exactly constant, just like the internal angles of the backbone).

Finally, they must be in contact if a sphere of radius d and center rc overlaps half the volume of
the sphere enveloping s or vice versa (though this last rule was turned off in the final implementation
due to the overhead of the calculation being too similar to the time saved by it). Any pair of residues
that do not fulfill one of these rules needs the explicit computation of the distance between its pair of
atoms to be performed (with an early stop if a contact is found).

In the scenario in which the side chains are ignored, the spheres are calculated with the remaining
atoms of the residue. The geometric restrictions work in the same way as if the spheres were calculated
with all the atoms in the residue, and similarly, when a pair of residues does not meet the criteria for
quick evaluation, the explicit computation of the distances between their pair of atoms is performed
exclusively with the atoms in the backbone. The pseudo-code for this calculation is detailed in
Algorithm 2:

Entropy 2020, 22, 472 5 of 12

Algorithm 2: Contact map calculation

Input: Cartesian coordinates of protein atoms
Output: Contact graph
For each residue r in the protein:

Calculate its cube in the grid Gr using the hash function.
Get the list of residues L inside the cubes neighboring Gr.
For each residue s in L:

Calculate D distance between rc and sc.
Quick inclusion if D < d and continue.
Quick exclusion if minimum {D–rd, D–sd} > d and continue.
Perform contact check for each pair of atoms from r and s.

2.1.2. Maximal Cliques Calculation

Calculating the maximal cliques from a graph is a classical problem in computer science presented
by Tomita [14], and the fastest implementation to our knowledge by Eppstein and Strash [15] was used
in our method. To use said implementation, we converted the residue identifier to an index starting at
0; hence, the first residue in a 3D protein structure is labeled 0, the second 1 and so on.

2.1.3. RCC Calculation

We only considered maximal cliques containing at least three residues and at most six residues,
which are grouped in 26 cluster classes. This grouping for a given protein produces different frequencies
for each of these 26 clusters, wherein the first 3 frequencies correspond with maximal cliques with 3
residues ([1,1,1], [1,2] and [3]); the next 5 frequencies are maximal cliques with 4 residues ([1,1,1,1],
[1,1,2], [2,2], [1,3] and [4]); the next 7 frequencies are maximal cliques containing 5 residues ([1,1,1,1,1],
[1,1,1,2], [1,1,3], [1,4], [1,2,2], [2,3] and [5]); and the last 11 frequencies include maximal cliques with
6 residues ([1,1,1,1,1,1], [1,1,1,1,2], [1,1,1,3], [1,1,2,2], [1,1,4], [1,2,3], [1,5], [2,2,2], [2,4], [3,3] and [6]).
The number of residues that are adjacent in the protein sequence define the class of a residue cluster.
For instance, an RCC with 3 residues in which all residues are not adjacent in the protein sequence is
referred to as [1,1,1]; an RCC with 4 residues in which 2 residues are adjacent in the protein sequence,
and other 2 residues are also adjacent in the protein sequence (e.g., residues 45 and 46, and residues
101 and 102) is represented as [2,2] (see Figure 1). The regions separating these non-adjacent residues
in the protein sequence could include different secondary structure elements (e.g., loops, helices).
The maximum size of cliques is limited to 6 due to larger numbers being extremely rare at 5 Å and was
kept as is in all the runs in order to keep the results comparable and avoid potential over-fitting.

2.2. RCC Database

For the 3D structural classification, we obtained the RCC for every protein domain reported in
CATH (version 4.2.0) using 7 different distance cut-off values (5, 6, 7, 8, 9, 10 and 15 Å) and including
or not the atoms of the amino acid side chain; hence, for each protein domain, 16 RCC representations
were obtained. Our RCC dataset includes 354,079 different proteins (we noted that CATH 4.2 included
434,857 different domains, yet for several of these there was no PDB associated, so not all CATH
domains are included in our dataset). A total of 2,831,584 different RCCs corresponding to those
representations with amino acid side-chains or without side (see Supplementary Materials).

For the functional classification, we used the Gene Ontology (GO) database (version 2.0, generated
on October 2017) and calculated the RCCs for every protein in the PDB database [16]. Similarly to the 3D
structure, we used the 7 cut-off values and inclusion or exclusion of the side chains. By cross-referencing
the 869,535 functions reported in GO (C: 176,437; F: 422,681; P: 270,416) with the 354,079 protein
domains in the PDB, we obtained a database of 4,991,252 annotated proteins (C: 1,192,742; F: 2,2,85,509;
P: 1,513,001) with their corresponding RCCs and known protein functions. The total number of
annotated proteins is higher than the PDB protein domain because several proteins have multiple

Entropy 2020, 22, 472 6 of 12

annotated functions, and a single protein sequence may have multiple chains in a single PDB file.
To calculate the RCCs for all these PDB entries, we used our code and execute it on a 64-bit Intel-Xeon
linux-based server with 24 cores and 256 GB of RAM.

2.3. Model Training and Testing

For identifying a model to classify protein structures, the full set of RCCs was labeled according
to the annotated CATH classification in each of its 2 levels: 4 Classes (all alpha; all beta; a mixture
of alpha and beta; or little secondary structure) and 41 Architectures. This full set was used to
train models explored using the AutoWeka plugin [17], which performs an optimization over the
ML models included in Weka (J48, DecisionTable, GaussianProcess, M5P, Kstar, LMT, PART, SMO,
BayesNet, NaiveBayes, JRip, SimpleLogistic, LinearRegression, VotedPerceptron, SGD, Logistic, OneR,
MultilayerPerceptron, REPTree, IBk, M5Rules, RandomForest, RandomTree and SMOreg; and the
meta classifiers, which combine the previous models in different ways: Vote, Stacking, Bagging,
RandomSubSpace, AttributeSelectedClassifier and RandomCommittee), their hyper-parameters and
their select attributes (BestFirst, GreedyStepwise and CfsSubsetEval); AutoWeka was executed first for
20 minutes and identified as the best models those built using RCC at 7 or 8 Å with our without side
chains. These same models were further analyzed under AutoWeka for 24 hours. In all these cases,
random forest with hyper-parameters unlimited tree depth, no attribute selection and 100 iterations
rendered the best results. The rest of the training datasets were run using this algorithm and
hyper-parameters on a 64-bit Intel-Xeon linux-based server with 24 cores and 128 GB of RAM. Finally,
10-fold cross validation using the WEKA package was also performed to all these training sets [18].

The statistical parameters (accuracy, precision, correctly classified instances) reported by Weka
and AutoWeka were used to evaluate the learning performance of the classifiers.

3. Results

The code implementing an efficient computation of residue cluster classes (RCCs) is freely (see
Supplementary Materials); the computational efficiency of this implementation is reported in Table 1.

Table 1. Computer efficiency of our RCC implementation.

PDB ID* Length** Reading***
(ms)

Graph Calculation
(ms)

Maximal Cliques
(ms)

Total Time
(ms)

1ORN (A) 214 39 19 6 64
2HOX (A) 425 110 37 6 153
3GVK (A) 644 202 47 6 255
1F8N (A) 818 329 67 6 402

* The letter in parentheses corresponds with the chain used for the listed PDB entries. ** Number of amino acid
residues in the protein analyzed. *** Time taken in milliseconds (ms) reading the PDB file.

This computational efficiency allowed us to compute RCC values for all protein structures in the
PDB database (354,079 protein domains [19]) in less than 1 hour (see Figure 4) on a 64-bit Intel-Xeon
linux-based server with 24 cores and 128 GB of RAM. Considering that the PDB database includes
about 10,000 new entries every year, which tend to include 200 residues each, this implementation
would be able to compute these new entries in 11 minutes on average.

Entropy 2020, 22, 472 7 of 12

Entropy 2020, 22, 472 8 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

3. Results

The code implementing an efficient computation of residue cluster classes
(RCCs) is freely available at https://github.com/C3-Consensus/RCC; the
computational efficiency of this implementation is reported in Table 1.

Table 1. Computer efficiency of our RCC implementation.

PDB ID*
Length

**

Reading

(ms)

Graph
calculation

(ms)

Maximal
cliques

(ms)

Total
time
(ms)

1ORN (A) 214 39 19 6 64
2HOX (A) 425 110 37 6 153
3GVK (A) 644 202 47 6 255
1F8N (A) 818 329 67 6 402

* The letter in parentheses corresponds with the chain used for the listed PDB entries. ** Number of
amino acid residues in the protein analyzed. *** Time taken in milliseconds (ms) reading the PDB file.

This computational efficiency allowed us to compute RCC values for all protein
structures in the PDB database (354,079 protein domains [19]) in less than 1 hour (see
Figure 4) on a 64-bit Intel-Xeon linux-based server with 24 cores and 128 GB of RAM.
Considering that the PDB database includes about 10,000 new entries every year,
which tend to include 200 residues each, this implementation would be able to
compute these new entries in 11 minutes on average.

Figure 4. Time to compute RCC in PDB dataset. Computing 354,079 protein domains as annotated in
CATH database including (black) or excluding (red) the atoms of the amino acid residue side-chains.

3.1. Protein Structural Classification

We built different RCC representations of protein structures to identify the best
distance criterion to classify 3D protein structures. These included distances at 5, 6,
7, 8, 9, 10 and 15 Å; we originally used only a distance of 5 Å [11]; hence, this exercise
allowed us to compare the efficiency of RCCs previously reported. In addition, we
also included a variant in the construction of RCCs: the inclusion or exclusion of the

Figure 4. Time to compute RCC in PDB dataset. Computing 354,079 protein domains as annotated in
CATH database including (black) or excluding (red) the atoms of the amino acid residue side-chains.

3.1. Protein Structural Classification

We built different RCC representations of protein structures to identify the best distance criterion
to classify 3D protein structures. These included distances at 5, 6, 7, 8, 9, 10 and 15 Å; we originally
used only a distance of 5 Å [11]; hence, this exercise allowed us to compare the efficiency of RCCs
previously reported. In addition, we also included a variant in the construction of RCCs: the inclusion
or exclusion of the amino acid side-chain atoms. This variation reproduces the preponderant role of the
backbone in visual protein structure classification and consequently would allow for testing whether
this representation is sufficient to learn 3D protein structure classification. Finally, we searched for
the best model using an automatic approach based on the optimization algorithm implemented in
AutoWeka, and to test the reliability of our model’s classification, we conducted cross-validations;
the labels of structural classes of proteins were derived from the CATH database (see Methods
and Methods).

We observed that the best models were obtained using RCC representations with a contact distance
threshold of 7 or 8 Å without side chains (see Figure 5). Table 2 summarizes the best model performance
compared with previous results by Corral and collaborators.

Table 2. Parameters for best 3D protein classification.

CATH Level Mean Cross-Validation Accuracy *
(Corral et al)

Mean Cross-Validation Accuracy **
(Current)

C 0.96 0.98
A 0.88 0.89

* This accuracy was reported using a random forest implementation in Sklearn in Python language. **This accuracy
was obtained using a random forest implementation in Weka in Java language.

Entropy 2020, 22, 472 8 of 12

Entropy 2020, 22, 472 9 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

amino acid side-chain atoms. This variation reproduces the preponderant role of the
backbone in visual protein structure classification and consequently would allow for
testing whether this representation is sufficient to learn 3D protein structure
classification. Finally, we searched for the best model using an automatic approach
based on the optimization algorithm implemented in AutoWeka, and to test the
reliability of our model’s classification, we conducted cross-validations; the labels of
structural classes of proteins were derived from the CATH database (see Methods
and Methods).

We observed that the best models were obtained using RCC representations
with a contact distance threshold of 7 or 8 Å without side chains (see Figure 5). Table
2 summarizes the best model performance compared with previous results by Corral
and collaborators.

Figure 5. Best classifier performance on the structural classification of proteins. The average
accuracy (y axis) achieved by the best classifiers after a 10-fold cross-validation test (see Methods and
Methods) is shown for the different distance cutoff values used to build RCC (x axis), in the task of
annotating the CATH structural classification of proteins. RCCs built using side-chain atoms are
shown in red circles; RCCs built without side-chain atoms are shown in black circles. A) Shows the
performance when learning the class annotation from CATH classification, and B) the class-
architecture annotation from CATH classification.

Table 2. Parameters for best 3D protein classification.

CATH level
Mean cross-validation

Accuracy *
(Corral et al)

Mean cross-validation
Accuracy **

(current)
C 0.96 0.98
A 0.88 0.89

* This accuracy was reported using a random forest implementation in Sklearn in Python language.
**This accuracy was obtained using a random forest implementation in Weka in Java language.

3.2. Protein Functional Classification

Figure 5. Best classifier performance on the structural classification of proteins. The average accuracy
(y axis) achieved by the best classifiers after a 10-fold cross-validation test (see Methods and Methods)
is shown for the different distance cutoff values used to build RCC (x axis), in the task of annotating the
CATH structural classification of proteins. RCCs built using side-chain atoms are shown in red circles;
RCCs built without side-chain atoms are shown in black circles. (A) Shows the performance when
learning the class annotation from CATH classification, and (B) the class-architecture annotation from
CATH classification.

3.2. Protein Functional Classification

We used the same protein structure representations described for structural classification for
protein function classification; to include or not the side-chain atoms here represent an exploration of
the relevance of side-chain contacts for protein function. For the functional annotation, we used the
Gene Ontology (GO) annotations, consisting of three main classes: molecular function (F), biological
process (P) and cellular localization (C). As described before, AutoWeka and cross-validation were
used to identify the best models to learn GO functional annotation from RCC representations.

The best models were again observed with 7 or 8 Å of distance between the atoms of residues
with or without side-chain atoms (see Figure 6). Table 3 summarizes the best model performance
compared with the statistics reported for the second version of the Critical Assessment of protein
Function Annotation contest (CAFA2) for the best models [20]. Fmax is the maximum harmonic
representation of the precision and recall achieved by a set of models; Fmax = 1 is for a perfect
predictor. It is important to note that the CAFA experiment attempts to unify the prediction of protein
function, but does not use 3D protein structure; hence, 15% of all sequences included in CAFA2 were
included in our datasets (data not shown). The best models in CAFA2 used sequence alignments and
ML models that incorporated diverse proteins features, while our models only used RCCs—features
derived exclusively from the protein structure. The purpose of this comparison is not to show better
performance than CAFA2 models, but to note the level of reliability of our predictions in comparison
with the function predictors known to be the best; that is, the best predictors in CAFA2 were close to
Fmax = 0.5, so to our models. Hence, these results show that RCC achieved reliable classifications in
both protein structure and protein function.

Entropy 2020, 22, 472 9 of 12

Entropy 2020, 22, 472 10 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

We used the same protein structure representations described for structural
classification for protein function classification; to include or not the side-chain
atoms here represent an exploration of the relevance of side-chain contacts for
protein function. For the functional annotation, we used the Gene Ontology (GO)
annotations, consisting of three main classes: molecular function (F), biological
process (P) and cellular localization (C). As described before, AutoWeka and cross-
validation were used to identify the best models to learn GO functional annotation
from RCC representations.

The best models were again observed with 7 or 8 Å of distance between the
atoms of residues with or without side-chain atoms (see Figure 6). Table 3
summarizes the best model performance compared with the statistics reported for
the second version of the Critical Assessment of protein Function Annotation contest
(CAFA2) for the best models [20]. Fmax is the maximum harmonic representation of
the precision and recall achieved by a set of models; Fmax=1 is for a perfect predictor.
It is important to note that the CAFA experiment attempts to unify the prediction of
protein function, but does not use 3D protein structure; hence, 15% of all sequences
included in CAFA2 were included in our datasets (data not shown). The best models
in CAFA2 used sequence alignments and ML models that incorporated diverse
proteins features, while our models only used RCCs—features derived exclusively
from the protein structure. The purpose of this comparison is not to show better
performance than CAFA2 models, but to note the level of reliability of our
predictions in comparison with the function predictors known to be the best; that is,
the best predictors in CAFA2 were close to Fmax=0.5, so to our models. Hence, these
results show that RCC achieved reliable classifications in both protein structure and
protein function.

Figure 6. Best functional classification of proteins. The average accuracy (y axis) achieved by the
best classifiers after a 10-fold cross-validation test (see Methods) is shown for the different distance
cutoff values used to build RCCs (x axis), in the task of annotating the GO functional classifications
of proteins. Results obtained with RCC built using side chains are in red and those without side chains
in black; circle symbols indicate that functional annotation was done for all proteins; triangle symbols

Figure 6. Best functional classification of proteins. The average accuracy (y axis) achieved by the
best classifiers after a 10-fold cross-validation test (see Methods) is shown for the different distance
cutoff values used to build RCCs (x axis), in the task of annotating the GO functional classifications of
proteins. Results obtained with RCC built using side chains are in red and those without side chains in
black; circle symbols indicate that functional annotation was done for all proteins; triangle symbols
are for proteins with single domains. (A) Presents the results for predictions of cellular localization;
(B) molecular function; (C) biological process, as annotated in GO.

Table 3. Parameters for best protein functional classification.

GO Function CAFA2*
Fmax Fmax** Fmax***

C 0.46 0.44 0.58
F 0.59 0.24 0.48
P 0.37 0.41 0.54

* This accuracy was obtained from the reported Fmax values of the second version of CAFA [20]. ** This Fmax value
corresponds to all proteins with an RCC computed in this study. *** This Fmax value considered only proteins with
a single chain in PDB or single domain proteins.

An important aspect in functional annotation is the biased compositions of different classes; such a
bias may cause predictors to classify proteins according to the most abundant functional classification.
To rule out the possibility that such a bias may have affected the reliability of our predictions, we
conduced a set of calculations using the ZeroR classifier in Weka; this classifier only predicts the most
frequent class; hence, any machine-learning algorithm must achieve a performance better than this
value to be reliable. In Figure 7 (A: cellular localization; B: molecular function and C: biological process)
we show the percentages of correctly classified instances by the ZeroR classifier (square symbols) in
comparison with those achieved by the best models (circle symbols) using RCCs built with different
distance criteria. All the best models were above the baseline ZeroR predictions.

Entropy 2020, 22, 472 10 of 12

Entropy 2020, 22, 472 11 of 14

Entropy 2020, 22, 472; doi:10.3390/e22040472 www.mdpi.com/journal/entropy

are for proteins with single domains. A) Presents the results for predictions of cellular localization; B)
molecular function; C) biological process, as annotated in GO.

Table 3. Parameters for best protein functional classification.

GO
function

CAFA2*
Fmax

Fmax** Fmax***

C 0.46 0.44 0.58
F 0.59 0.24 0.48
P 0.37 0.41 0.54

* This accuracy was obtained from the reported Fmax values of the second version of CAFA [20]. **
This Fmax value corresponds to all proteins with an RCC computed in this study. *** This Fmax value
considered only proteins with a single chain in PDB or single domain proteins.

An important aspect in functional annotation is the biased compositions of
different classes; such a bias may cause predictors to classify proteins according to
the most abundant functional classification. To rule out the possibility that such a
bias may have affected the reliability of our predictions, we conduced a set of
calculations using the ZeroR classifier in Weka; this classifier only predicts the most
frequent class; hence, any machine-learning algorithm must achieve a performance
better than this value to be reliable. In Figure 7 (A: cellular localization; B: molecular
function and C: biological process) we show the percentages of correctly classified
instances by the ZeroR classifier (square symbols) in comparison with those
achieved by the best models (circle symbols) using RCCs built with different
distance criteria. All the best models were above the baseline ZeroR predictions.

Figure 7. Baseline performance for the best models. The percentage of correctly classified instances
(CCI (%)) is plotted for every model built from RCCs without side chains at different distances (x
axis). The baseline performance achieved by ZeroR classifier (square symbols) is compared with that
observed for the best models (circle symbols). A) The comparison for cellular localization (red
symbols), B) for molecular function (black symbols) and C) for biological process (blue symbols).

Figure 7. Baseline performance for the best models. The percentage of correctly classified instances
(CCI (%)) is plotted for every model built from RCCs without side chains at different distances (x axis).
The baseline performance achieved by ZeroR classifier (square symbols) is compared with that observed
for the best models (circle symbols). (A) The comparison for cellular localization (red symbols), (B) for
molecular function (black symbols) and (C) for biological process (blue symbols).

4. Discussion

Including the efficient implementation of Tomita’s algorithm into the RCC calculation rendered a
constant time performance independent of the protein lengths analyzed; we also noted that the time
required to compute the contacting distances and get the RCCs was less than reading the input file.
In terms of computing time, assuming these calculations would be done on a single central processing
unit or CPU, the global time required to compute a given RCC is divided in the time required to
load the protein’s 3D structure or PDB file (elapsed time) and the time to obtain the RCC (CPU
time), which includes constructing the contact map of residues and identifying the maximal cliques.
Our results indicate that most of the time is taken by reading the PDB file; this may be improved by
implementing a non-serial reading function [21]. This in turn would benefit from the improvement of
current CPU technologies [22]. Additionally, considering that computing RCCs from a large database
is an embarrassingly parallel problem and our current code has been implemented to deal only with
concurrent computing (local computing, as opposed to distributed computing), we anticipate that
there is still room for improvement in terms of using a distributed computing scheme, such as the
ACTOR formalism [23].

The latest Critical Assessment for Structure Prediction (CASP) competition for the first time
showed that ML (AlphaFold) improved on previous methods using protein sequence features [24], yet
the features used by AlphaFold are not the same used by the best models of protein function reported
in CAFA contest [8]. Thus, RCC is the first representation of proteins that allows for the efficient
modeling of both fundamental aspects of proteins.

Our screening to build RCCs reveals that the backbone contains enough information to represent
both 3D structure and function. This does not imply that side chains are not relevant for 3D protein
structure or function; after all the backbone conformation depends on the side chains. The relevance
of building RCCs without side chains is that on the one hand, such a representation does not need
high-resolution structures to build a useful model; this would be relevant to further exploration:
what is the range of protein structure resolution that renders a reliable model for protein structural

Entropy 2020, 22, 472 11 of 12

and functional classification? On the other hand, having a model that concerns only on the protein
backbone may facilitate the development of methods to predict 3D protein structure based on RCCs.

Having the same representation of proteins to model 3D structure and function would allow one
to analyze the possible co-localization of structural and functional classes in the 26-dimensional space
of RCCs, for instance; this would eventually lead to a better understanding of the structure–function
relationship of proteins. RCCs would allow exploring for regions in this 26-dimensional space where
no examples of 3D protein structure or function are known, and potentially, designing new proteins.

In summary, in this work we distribute a computationally efficient implementation with which
to compute RCCs from a 3D protein structure—a representation of proteins that allows for effective
modeling of both 3D protein structure and functional classification.

Supplementary Materials: The code and datasets described in this work are available online at https://github.
com/C3-Consensus/RCC.

Author Contributions: Conceptualization, G.D.R. and F.F.; methodology, G.D.R. and F.F.; software, G.D.R. and
F.F.; validation, F.F.; resources, G.D.R.; data curation, F.F.; writing—original draft preparation, G.D.R. and F.F.;
writing—review and editing, G.D.R. and F.F.; visualization, G.D.R.; supervision, G.D.R.; funding acquisition,
G.D.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by CONACyT (CB252316) and PAPIIT (IN208817).

Acknowledgments: To Maria Teresa Lara Ortiz for her technical assistance required for the development of
this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Baker, D. Protein Structure Prediction and Structural Genomics. Science 2001, 294, 93–96. [CrossRef]
[PubMed]

2. Nagarajan, R.; Archana, A.; Thangakani, A.M.; Jemimah, S.; Velmurugan, D.; Gromiha, M.M. PDBparam:
Online Resource for Computing Structural Parameters of Proteins. Bioinform. Boil. Insights 2016, 10, 73–80.
[CrossRef] [PubMed]

3. Walker, J.M. The Proteomics Protocols Handbook; Humana Press, Inc.: Totowa, NJ, USA, 2005. [CrossRef]
4. Zhang, Y.; Wen, J.; Yau, S.S.-T. Phylogenetic analysis of protein sequences based on a novel k-mer natural

vector method. Genomics 2019, 111, 1298–1305. [CrossRef] [PubMed]
5. Juan, D.; Pazos, F.; Valencia, A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 2013, 14, 249–261.

[CrossRef] [PubMed]
6. Sahraeian, S.M.; Luo, K.R.; Brenner, S.E. SIFTER search: A web server for accurate phylogeny-based protein

function prediction. Nucleic Acids Res. 2015, 43, W141–W147. [CrossRef] [PubMed]
7. AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35, 4862–4865. [CrossRef]
8. Zhou, N.; Jiang, Y.; Bergquist, T.R.; Lee, A.J.; Kacsoh, B.Z.; Crocker, A.W.; Lewis, K.A.; Georghiou, G.;

Nguyen, H.N.; Hamid, N.; et al. The CAFA challenge reports improved protein function prediction and new
functional annotations for hundreds of genes through experimental screens. Genome Boil. 2019, 20, 1–23.
[CrossRef] [PubMed]

9. Kulmanov, M.; Hoehndorf, R. DeepGOPlus: Improved protein function prediction from sequence.
Bioinformatics 2019, 36, 422–429. [CrossRef] [PubMed]

10. Yang, J.; Yan, R.; Roy, A.; Xu, N.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function
prediction. Nat. Methods 2014, 12, 7–8. [CrossRef] [PubMed]

11. Corral, R.C.; Chávez, E.; Del Rio, G. Machine Learnable Fold Space Representation based on Residue Cluster
Classes. Comput. Boil. Chem. 2015, 59, 1–7. [CrossRef] [PubMed]

12. Vehlow, C.; Stehr, H.; Winkelmann, M.; Duarte, J.M.; Petzold, L.; Dinse, J.; Lappe, M. CMView: Interactive
contact map visualization and analysis. Bioinformatics 2011, 27, 1573–1574. [CrossRef] [PubMed]

13. Geng, C. DrawGridBox-PyMOLWiki. 2016. Available online: https://pymolwiki.org/index.php/DrawGridBox
(accessed on 26 February 2020).

https://github.com/C3-Consensus/RCC
https://github.com/C3-Consensus/RCC
http://dx.doi.org/10.1126/science.1065659
http://www.ncbi.nlm.nih.gov/pubmed/11588250
http://dx.doi.org/10.4137/BBI.S38423
http://www.ncbi.nlm.nih.gov/pubmed/27330281
http://dx.doi.org/10.1385/1592598900
http://dx.doi.org/10.1016/j.ygeno.2018.08.010
http://www.ncbi.nlm.nih.gov/pubmed/30195069
http://dx.doi.org/10.1038/nrg3414
http://www.ncbi.nlm.nih.gov/pubmed/23458856
http://dx.doi.org/10.1093/nar/gkv461
http://www.ncbi.nlm.nih.gov/pubmed/25979264
http://dx.doi.org/10.1093/bioinformatics/btz422
http://dx.doi.org/10.1186/s13059-019-1835-8
http://www.ncbi.nlm.nih.gov/pubmed/31744546
http://dx.doi.org/10.1093/bioinformatics/btz595
http://www.ncbi.nlm.nih.gov/pubmed/31350877
http://dx.doi.org/10.1038/nmeth.3213
http://www.ncbi.nlm.nih.gov/pubmed/25549265
http://dx.doi.org/10.1016/j.compbiolchem.2015.07.010
http://www.ncbi.nlm.nih.gov/pubmed/26366526
http://dx.doi.org/10.1093/bioinformatics/btr163
http://www.ncbi.nlm.nih.gov/pubmed/21471016
https://pymolwiki.org/index.php/DrawGridBox

Entropy 2020, 22, 472 12 of 12

14. Tomita, E.; Tanaka, A.; Takahashi, H. The worst-case time complexity for generating all maximal cliques and
computational experiments. Theor. Comput. Sci. 2006, 363, 28–42. [CrossRef]

15. Eppstein, D.; Löffler, M.; Strash, D. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. In
Computer Vision; Springer Science and Business Media LLC: Berlin, Germany, 2010; Volume 6506, pp. 403–414.

16. Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]
17. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic Model Selection

and Hyperparameter Optimization in WEKA. The NIPS ’17 Competition Build. Intell. Syst. 2019, 18, 81–95.
18. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software.

ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
19. Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.;

Duarte, J.M.; Dutta, S.; et al. RCSB Protein Data Bank: Biological macromolecular structures enabling
research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res.
2018, 47, D464–D474. [CrossRef] [PubMed]

20. Jiang, Y.; Oron, T.R.; Clark, W.T.; Bankapur, A.R.; D’Andrea, D.; Lepore, R.; Funk, C.S.; Kahanda, I.;
Verspoor, K.M.; Ben-Hur, A.; et al. An expanded evaluation of protein function prediction methods shows
an improvement in accuracy. Genome Boil. 2016, 17, 184. [CrossRef] [PubMed]

21. Ching; Choudhary; Liao, W.-K.; Ross; Gropp, W. Efficient structured data access in parallel file systems.
In Proceedings of the IEEE International Conference on Cluster Computing CLUSTR-03, Hong Kong, China,
1–4 December 2003; pp. 326–335. [CrossRef]

22. Markov, I.L. Limits on fundamental limits to computation. Nature 2014, 512, 147–154. [CrossRef] [PubMed]
23. Hewitt, C. Actor Model of Computation. 2010. Available online: http://arxiv.org/abs/1008.1459http:

//carlhewitt.info (accessed on 3 February 2020).
24. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.;

Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020,
577, 706–710. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1093/nar/gky1004
http://www.ncbi.nlm.nih.gov/pubmed/30357411
http://dx.doi.org/10.1186/s13059-016-1037-6
http://www.ncbi.nlm.nih.gov/pubmed/27604469
http://dx.doi.org/10.1109/CLUSTR.2003.1253331
http://dx.doi.org/10.1038/nature13570
http://www.ncbi.nlm.nih.gov/pubmed/25119233
http://arxiv.org/abs/1008.1459http://carlhewitt.info
http://arxiv.org/abs/1008.1459http://carlhewitt.info
http://dx.doi.org/10.1038/s41586-019-1923-7
http://www.ncbi.nlm.nih.gov/pubmed/31942072
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	RCC Calculation Implementation
	Contact Map Calculation
	Maximal Cliques Calculation
	RCC Calculation

	RCC Database
	Model Training and Testing

	Results
	Protein Structural Classification
	Protein Functional Classification

	Discussion
	References

