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Abstract: A non-Hermitian operator H defined in a Hilbert space with inner product 〈·|·〉 may serve
as the Hamiltonian for a unitary quantum system if it is η-pseudo-Hermitian for a metric operator
(positive-definite automorphism) η. The latter defines the inner product 〈·|η·〉 of the physical Hilbert
space Hη of the system. For situations where some of the eigenstates of H depend on time, η becomes
time-dependent. Therefore, the system has a non-stationary Hilbert space. Such quantum systems, which
are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a
conflict between the unitarity of time evolution and the unobservability of the Hamiltonian. Their proper
treatment requires a geometric framework which clarifies the notion of the energy observable and leads to
a geometric extension of quantum mechanics (GEQM). We provide a general introduction to the subject,
review some of the recent developments, offer a straightforward description of the Heisenberg-picture
formulation of the dynamics for quantum systems having a time-dependent Hilbert space, and outline
the Heisenberg-picture formulation of dynamics in GEQM.

Keywords: Pseudo-Hermitian operator; time-dependent Hilbert space; energy observable; Heisenberg
picture

1. Introduction

The fact that a non-Hermitian operator can have a real spectrum is by no means unusual or surprising.
For example, consider the operator H : C2 → C2 that is represented in the standard basis of C2 by the
matrix

H := ε

[
0 1
4 0

]
,

where ε is a positive real parameter. It is easy to check that H and consequently H have a pair of real
eigenvalues namely ±2ε. In particular, they are diagonalizable and have a real spectrum, but does this
mean that we can identify H with an observable or the Hamiltonian of a quantum system? The answer
to this question cannot be given unless we specify the inner product we wish to use for computing the
expectation values of the observables of the system. If we adopt the standard Euclidean inner product
〈·|·〉, the answer is No. To see this, we recall that by definition, 〈ξ|ζ〉 := ξ∗1 ζ1 + ξ∗2 ζ2, where ξ := (ξ1, ξ2)

and ζ := (ζ1, ζ2) are arbitrary elements of C2, use H to label the Hilbert space obtained by endowing C2

with the Euclidean inner product, and calculate the expectation value of H in the state determined by the
state vector χ := 1√

2
(1,−i). This gives

〈χ|Hχ〉
〈χ|χ〉 =

3iε
2

. (1)
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Because this quantity is purely imaginary, we cannot interpret it as the average value of measurement
outcomes ±2ε which are real. This disqualifies H to represent an observable of a quantum system
with Hilbert space H , if we are to respect the measurement (projection) axiom of quantum mechanics
(QM) [1,2].

The fact that H can have a complex expectation value is a manifestation of a basic result of linear
algebra [3,4] which says: “A linear operator is Hermitian if and only if all its expectation values are real.”
Because the reality of the expectation values is an indispensable ingredient of the measurement axiom,
the claim that observables of a quantum system need not be Hermitian is false (Throughout this article
we distinguish between operators and their matrix representations, for the latter depends on the choice
of a basis. In particular, following von Neumann [2], we use the term “Hermitian operator” to mean
“self-adjoint operator”, i.e., H satisfies 〈·, H·〉 = 〈H·, ·〉, where 〈·, ·〉 denotes the inner product of the Hilbert
space. For a more precise definition see [5].)

Another better known problem arises, if we try to identify H with the Hamiltonian of a quantum
system with Hilbert space H , i.e., demand that it generates the dynamics of the system via the Schrödinger
equation,

i∂tψ(t) = Hψ(t). (2)

According to this equation,

∂t〈ψ(t)|ψ(t)〉 = 〈∂tψ(t)|ψ(t)〉+ 〈ψ(t)|∂tψ(t)〉
= 2 Re [〈ψ(t)|∂tψ(t)〉] (3)

= 2 Im [〈ψ(t)|Hψ(t)〉] ,

where “Re” and “Im” denote the real and imaginary part of their argument. Because H has non-real
expectation values the right-hand side of this equation can be nonzero. For example, letting ψ(0) := χ and
using (1) and (4), we find ∂t〈ψ(t)|ψ(t)〉

∣∣
t=0 = 3ε 6= 0. This shows that the norm of the evolving state does

change in time. Hence, H does not generate a unitary time evolution.
The apparent conflicts with the measurement and unitarity axioms were responsible for the

unpopularity of non-Hermitian operators among physicists interested in basic aspects of QM. For many
decades their application was confined to effective theories which did not respect all of the Dirac-von
Neumann axioms of QM. This situation drastically changed in the early 2000’s after it was realized that a
certain class of non-Hermitian operators can actually be made Hermitian upon a redefinition of the inner
product of the Hilbert space [6–12]. The operator H we considered above is a particular example. Let
η : C2 → C2 and 〈ζ, ξ〉η : C2 ×C2 → C be defined by

η ξ = η(ξ1, ξ2) := (ξ1,
ξ2

4
), (4)

〈ζ, ξ〉η := 〈ζ|η ξ〉 := ζ∗1 ξ1 +
ζ∗2 ξ2

4
. (5)

Then, 〈·, ·〉η defines a genuine (positive-definite) inner product [5] in C2, and for every nonzero element
ξ = (ξ1, ξ2) of C2, we have

〈ξ, Hξ〉η
〈ξ, ξ〉η

=
8 ε Re(ξ∗1 ξ2)

4|ξ1|2 + |ξ2|2
.

This calculation shows that the expectation values of H computed using the inner product 〈·, ·〉η are real.
Therefore, if we view H as a linear operator acting in the Hilbert space Hη defined by endowing C2 with
the inner product 〈·, ·〉η , then it becomes Hermitian, i.e.,
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〈ζ, Hξ〉η = 〈Hζ, ξ〉η .

This in turn implies the unitarity of the dynamics generated by the Schrödinger Equation (2) in the Hilbert
space Hη , i.e., for each pair, φ(t) and ψ(t), of solutions of this equation,

∂t 〈φ(t), ψ(t)〉η = 0.

The operator η given by (4) is an example of a metric operator acting in the Hilbert space H . We
use the term “metric operator” to mean a positive-definite authomorphism (a positive-definite one-to-one
linear operator mapping all of H onto H .) This property ensures 〈·, ·〉η to be a genuine positive-definite
inner product. The requirement that H is a Hermitian operator acting in Hη is equivalent to demanding
that it acts in H as an η-pseudo-Hermitian operator, i.e.,

H† = η H η−1, (6)

where H† is the adjoint of H viewed as an operator acting in H . The latter is defined by the condition:
〈ζ|H†ξ〉 = 〈Hζ|ξ〉. We can also view H as an operator acting in Hη and introduce its adjoint H] through
the requirement: 〈ζ, H]ξ〉η = 〈Hζ, ξ〉η . It is not difficult to see that this is equivalent to

H] := η−1H†η.

In light of this relation, we can identify (6) with H] = H, [6]. Therefore, η-pseudo-Hermitian operators
acting in H coincide with Hermitian operators acting in Hη . These constitute the observables of the
quantum system determined by the Hilbert space-Hamiltonian operator pair (Hη , H), [12].

The notion of a pseudo-Hermitian operator as defined by (6) extends to situations where η is a
pseudo-metric operator, i.e., it is a Hermitian automorphism that needs not be positive-definite. In this
more general setting and under the assumption that H acts in a given Hilbert space H , has a discrete
spectrum, and is diagonalizable (i.e., has a complete and bounded biorthonormal system [5] formed out of
its eigenvectors and those of its adjoint), one can prove that the following statements are equivalent [8].

(1) H is η-pseudo-Hermitian for a pseudo-metric operator η, i.e., it satisfies (6).
(2) The eigenvalues of H are either real or come in complex-conjugate pairs.
(3) There is an antilinear operator X that squares to identity and commutes with H.

For situations where H is expected to play the role the Hamiltonian of a quantum system the latter
statement means that X generates an antilinear symmetry of the system [13]. This in turn clarifies the
spectral consequences of PT -symmetry [14–17].

With the stronger requirement that η be positive-definite one can establish the reality of the spectrum
of H, its quasi-Hermiticity (existence of a positive-definite automorphsim ρ such that h := ρ−1H ρ is
Hermitian [18]), and the exactness of the antilinear symmetry X . More precisely the following statements
are equivalent [8,11].

(1′) H is η-pseudo-Hermitian for a metric operator η.
(2′) H acts as a Hermitian operator in Hη .
(3′) The eigenvalues of H are real.
(4′) The operator h := ρ−1H ρ with ρ :=

√
η acts as a Hermitian operator in H , where

√
η stands for

the positive square root of η. In particular as an operator acting in H , H is quasi-Hermitian.
(5′) There is an antilinear operator X that squares to identity, and there is a complete set of common

eigenvectors of H and X .
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Suppose that the statement 1′ holds, so that H : Hη → Hη is Hermitian. Then we can identify Hη

and H with the Hilbert space and Hamiltonian of a quantum system S . Being a Hermitian operator acting
in Hη , H determines an observable of S . Furthermore, because Hermitian operators have real expectation
values, a calculation similar to the one leading to (4) implies that H generates unitary evolutions. Hence S
is a unitary quantum system. An alternative way of arriving at this conclusion is to note that the Hilbert
space-Hamiltonian operator pair (H , h) also describes the same quantum system S . To see this first we
recall the definition of a unitary operator.

In standard texts on quantum mechanics, a unitary operator U is defined as a linear mapping that
maps a given Hilbert space onto the same Hilbert space and preserves the inner product of vectors. There
is a standard generalization of this notion to the case that the operator U maps a Hilbert space H1 with
inner product 〈·, ·〉1 onto another Hilbert space H2 with inner product 〈·, ·〉2. If the domain of U is H1,
and for all ψ1, φ1 ∈H1 we have 〈ψ1, φ1〉1 = 〈U ψ1, U ψ2〉2, we say that U is a unitary operator. According
to this definition, ρ defines a unitary operator mapping Hη to H , [11], because

〈ρ ζ|ρ ξ〉 = 〈ζ|ρ2ξ〉 = 〈ζ|η ξ〉 = 〈ζ, ξ〉η .

This in turn implies that if ψ ∈Hη and O : Hη →Hη respectively describe a state and an observable of S ,
Ψ := ρ ψ ∈ H and o := ρ Oρ−1 : H → H describe the same state and observable of S . This is simply
because both choices lead to the same expectation values;

〈ψ, Oψ〉η
〈ψ, ψ〉η

=
〈ψ|ηOψ〉
〈ψ|ηψ〉 =

〈ψ|ρ2Oψ〉
〈ψ|ρ2ψ〉 =

〈ρψ|oρψ〉
〈ρψ|ρψ〉 =

〈Ψ|o Ψ〉
〈Ψ|Ψ〉 .

This shows that (Hη , H) and (H , h) provide different mathematical representations of the same quantum
system [12]. In particular, we can use either of them to determine the physical properties of this system.

The initial work on pseudo-Hermitian operators [6–8] was motivated by the need for a careful
evaluation of the prospects of PT -symmetric QM [15] and the possible relevance of these operators to
certain constructions arising in the two-component formulation of the mini-superspace Wheeler-DeWitt
equation [19].

The results reported in Refs. [11,12,20] showed that indeed certain PT -symmetric Hamiltonian
operators were capable of defining unitary quantum systems, but these systems also admitted a description
in terms of Hermitian Hamiltonian operators. Therefore, the use of PT -symmetric (and more generally
pseudo-Hermitian) Hamiltonians do not actually yield a generalization of QM. It rather gives rise to
previously unexplored equivalent representations of quantum mechanics [5].

An important by-product of the study of pseudo-Hermitian operators was the introduction of new
technologies for the construction of inner products [6,7,21]. For certain physically interesting quantum
cosmological models, these could be employed for the purpose of endowing the solution space of the
Wheeler-DeWitt equation with the structure of a genuine Hilbert space [22,23]. This meant solving the
infamous Hilbert-space problem [24] for these models. The same approach allowed for a complete and
consistent formulation of QM of a first-quantized free Klein-Gordon field [25–27], a Proca field [28],
and more recently a free photon [29,30].

Quantum cosmological applications of pseudo-Hermitian operators require dealing with
time-dependent metric operators [22,23]. For a quantum system represented by the Hilbert
space-Hamiltonian operator pair (Hη , H), the proof of the unitarity of time-evolution encounters a major
difficulty whenever η depends on time. More precisely, the requirement of unitarity of dynamics conflicts
with the η-pseudo-Hermiticity and hence observability of the Hamiltonian. Since its announcement [31]
in 2007, there have appeared different proposals for resolving this conflict in the literature [32–37]. A
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careful assessment of the geometric aspects of this problem has recently led to a comprehensive resolution
that not only clarifies the role of the energy operator for quantum systems having a dynamical Hilbert
space, but also paves the way towards a geometric extension of quantum mechanics (GEQM) [38]. In the
present article, we provide a brief review of these developments, discuss their conceptual implications,
and outline a Heisenberg-picture formulation of the dynamics for systems with a time-dependent state
space and systems considered in the framework of GEQM.

2. Time-Dependent Pseudo-Hermiticity

Consider a quantum system S represented by the Hilbert space-Hamiltonian operator pair (Hη , H),
where η is a time-dependent metric operator, and let ψ and φ be arbitrary solutions of the Schrödinger
Equation (2). Then,

∂t〈φ|ψ〉η = ∂t〈φ|η ψ〉
= 〈φ̇|η ψ〉+ 〈φ|η ψ̇〉+ 〈φ|η̇ ψ〉
= 〈−iHφ|η ψ〉+ 〈φ| − iη Hψ〉+ 〈φ|η̇ ψ〉 (7)

= i〈φ|(H†η − η H − iη̇)ψ〉
= i〈φ, (H] − H − iη−1η̇)ψ〉η ,

where an overdot labels a time derivative. In order for H to generate a unitary evolution, the right-hand
side of (8) must vanish for every choice of the solutions φ and ψ. This happens if and only if

H] = H + iη−1η̇. (8)

Because η is time-dependent and η−1 is invertible, this equation implies, H] 6= H, i.e., H is not a Hermitian
operator acting in Hη . Therefore, if H generates a unitary dynamics, it does not correspond to an observable
of the quantum system S ! This is the content of the conflict between the unitarity of the time evolution
generated by the Schrödinger Equation (2) in Hη and the observability of the Hamiltonian H, [31].

The initial work on the construction of the most general metric operator η for a diagonalizable
Hamiltonian H with a real and discrete spectrum [6,7] revealed the following spectral expansion of η.

η = ∑
n
|φn〉〈φn|, (9)

where φn are eigenvectors of H† that constitute a (Riesz) basis of the Hilbert space [5], and for every ζ ∈H ,
the symbol |ζ〉〈ζ| stands for the linear operator that maps state vectors ξ to 〈ζ|ξ〉ζ. A simple consequence
of (9) is that unless H and therefore H† have a complete set of time-independent eigenvectors, every
metric operator η that renders H pseudo-Hermitian is necessarily time-dependent. This underlines the
significance of addressing the conflict between the observability of generic time-dependent Hamiltonians
and the unitarity of the dynamics they generate.

There are essentially three different ways of dealing with this conflict:

(i) Modifying the Schrödinger equation to avoid this conflict.
(ii) Upholding unitarity at the expense of unobservability of the Hamiltonian.

(iii) Abandoning the requirement of unitarity in favor of the observability of the Hamiltonian.

To the best of our knowledge option iii was never considered as viable, while there appeared a number of
publications [32–37] advocating options i or ii. The developments reported in these publications rest on
the following premises:
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(a) There is a representation of S defined by the Hilbert space H and a generally time-dependent
Hermitian Hamiltonian operator h acting in H . This operator generates the dynamics of the state
vectors in H via the standard Schrödinger equation,

i∂tΨ(t) = h(t)Ψ(t), (10)

and identifies an observable of the system which is customarily called the energy observable.
(b) Given a possibly time-dependent metric operator η, we can represent S using the Hilbert space

Hη and an operator H that generates time evolutions in Hη , such that the unitary transformation
ρ−1 : H → Hη maps the solutions of the Schrödinger Equation (10) defined by h to those of the
Schrödinger Equation (2) defined by H. It is easy to show that this condition is equivalent to the
requirement:

H = ρ−1hρ− iρ−1ρ̇. (11)

(c) In the representation (Hη , H), the observables of S , which are represented by Hermitian operators O
acting in Hη , are obtained from their representatives o in the representation (H , h) via O = ρ−1oρ.
In particular, in the representation (Hη , H), the energy observable is represented by

HE := ρ−1hρ. (12)

If we insist that the Hamiltonian and the energy observable must coincide in both of the
representations, (H , h) and (Hη , H), we have no choice but to agree that, in the representation (Hη , H),
the dynamical evolution of the state vectors is determined by the modified Schrödinger equation [32,34],

iDtψ = HE ψ, (13)

where
Dt := ∂t + ρ−1ρ̇. (14)

This provides a resolution of the unitarity versus observability conflict via a modification of the Schrödinger
equation. Note, however, that this approach stems from a particular choice of terminology. We could
simply refrain from using the term “Hamiltonian” for the “energy operator”, but instead take the former
to mean the “generator of time evolutions” determined by the usual Schrödinger Equation (2). We are
then led to the inevitable conclusion that the Hamiltonian is not an observable unless ρ and consequently
η are time-independent [36]. This is in line with the resolution ii of the above-mentioned conflict.

3. Dynamical Inner Products Realizing Unitarity

In specific applications in quantum cosmology [22,23], the generator of time evolutions is the only
input of the problem, and the aim is to determine an appropriate Hilbert space in which the time evolution
is realized via a one-parameter family of unitary operators. If one can identify a Hilbert space H in which
the generator of time evolutions acts as a linear operator with a real and discrete spectrum and there
is complete and bounded biorthonormal system [5] consisting of the eigenvectors of this operator and
its adjoint, then there are metric operators η such that this operator is η-pseudo-Hermitian. However,
for cases where all the metric operators η with this property are time-dependent, we cannot establish
the unitarity of the time evolution by working in the Hilbert space Hη . Ref. [22] offers a solution for this
problem that involves finding metric operators η that achieve the unitarity of the time evolutions, not the
η-pseudo-Hermiticity of their generator.
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Let H(t) label the generator of time evolutions, and U(t, t0) be the corresponding evolution operator
for the initial time t0, so that i∂tU(t, t0) = H(t)U(t, t0) and U(t0, t0) = I, where I is the identity operator
acting in H . We can express the unitarity of dynamical evolutions in Hη(t) in the form

〈φ(t), ψ(t)〉η(t) = 〈φ(t0), ψ(t0)〉η(t0)
.

This relation implies that for every choice of initial state vectors φ(t0) := φ0 and ψ(t0) := ψ0,

〈φ0|η(t0)ψ0〉 = 〈ψ(t)|η(t)ψ(t)〉
= 〈U(t, t0)φ0|η(t)U(t, t0)ψ0〉
= 〈φ0|U(t, t0)

†η(t)U(t, t0)ψ0〉.

This is true for every φ0, ψ0 ∈H if and only if

η(t) = U(t, t0)
†−1

η0 U(t, t0)
−1, (15)

where η0 := η(t0). Equation (15) determines the metric operator η(t) and consequently Hη(t) up to the
choice of η0. A suitable choice, which is however not dictated by the details of the problem at hand, is
to identify η0 with a metric operator so that H(t0) is η0-pseudo-Hermitian [22,23]. This in turn implies
that H(t0) is an observable of the system represented by (Hη(t), H(t)) at time t0, but for t 6= t0 the same
does not generally apply to H(t). Notice however that there is a priori no reason to assume that H(t0)

is η0-pseudo-Hermitian for some metric operator η0. According to (8) whenever such a metric operator
exists, the choice η(t0) = η0 is equivalent to η̇(t0) = 0.

An important observation regarding (15) is that it provides the general solution of (8) when we view
the latter as an equation for η. Using this equation, we can actually check that

h(t) := ρ(t)H(t)ρ(t)−1 + iρ̇(t)ρ(t)−1 (16)

is a Hermitian operator acting in H . Furthermore, because it satisfies (11), ρ(t) :=
√

η(t) maps the
solutions of the Schrödinger Equation (2) for the Hamiltonian H(t) to those of the Schrödinger Equation (10)
for the Hamiltonian h(t). By virtue of the fact that ρ(t) : Hη(t) → H is a unitary operator, this shows
that (H , h(t)) and (Hη(t), H(t)) represent the same quantum system. A rather unexpected aspect of the
latter representation is that not only H(t) fails to be η(t)-pseudo-Hermitian, but indeed it may happen not
to be a pseudo-Hermitian operator at all, i.e., there may exist no metric operator η̃(t) such that H(t) is
η̃(t)-pseudo-Hermitian.

As a simple example, consider the situation where H is the Hilbert space of square-integrable
functions and

H(t) := H0(t) + f(t)P , (17)

where H0 := P2/2m + mω2X2/2 is the standard Hamiltonian for a simple harmonic oscillator with mass
m and angular frequency ω, X and P are the standard position and momentum operators acting in H ,
f : R→ C is a piecewise continous complex-valued function of time, and P is the parity operator defined
by (Pψ)(x) := ψ(−x).

Because H0 and P act in H as commuting Hermitian operators, the spectrum of H(t) consists of the
eigenvalues of the form ω(n + 1/2)± f(t), where n is a nonnegative integer. This shows that for the cases
where f(t) is neither real nor imaginary, H(t) is not pseudo-Hermitian. Yet we can compute its evolution
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operator and use (15) to determine a metric operator that makes the time evolution generated by H(t)
unitary. Setting η0 = I, so that Hη(t0)

= H , we find

U(t, t0) = U0(t, t0)e−iF (t)P , η(t) = e−2 Im[F (t)]P , ρ(t) = e− Im[F (t)]P , (18)

where U0(t, t0) := exp[−i(t− t0)H0] is the time-evolution operator for the simple harmonic oscillator,
and F (t) :=

∫ t
t0
f(t′)dt′. Substituting (17) in (16) and using the last relation in (18), we have

h(t) = H0 + Re[f(t)]P .

This shows that the quantum system represented by (Hη(t), H(t)) also admits the representation (H , h(t)).
If we identify h(t) with the energy observable of the system in the representation (H , h(t)), then in

view of (12) and (18) the operator HE (t) representing this observable in (Hη(t), H(t)) coincides with
h(t). This is not generally true for other observables. For example, in the representation (Hη(t), H(t)),
the position and momentum operators are given by [39]:

xη := ρ(t)−1Xρ(t) = e2Im[F (t)]PX, pη := ρ(t)−1Pρ(t) = e2Im[F (t)]PP.

If we insist on using the term “Hamiltonian” for the energy operator HE and demand that this
operator generates the dynamics via a first-order linear differential equation involving HE , we are led to
the modified Schrödinger Equation (13) with HE (t) = h(t) and

Dt := ∂t − Im[f(t)]P .

4. Heisenberg Picture of Dynamics

The description of the dynamics of a quantum system in the Heisenberg picture has many advantages.
The study of the Heisenberg picture for a unitary quantum system defined by a time-independent
pseudo-Hermitian Hamiltonian or a Hamiltonian acting in a time-dependent Hilbert space has been
considered in Refs. [35,40]. In this section we provide our approach for addressing this problem.

Consider the representation (H , h(t)) of our generic quantum system S where observables are given
by Hermitian operators o(t) : H →H , and the dynamics of state vectors is generated by the Hermitian
Hamiltonian operator h(t). In the Heisenberg picture, the state vectors are stationary while the operators
corresponding to observables evolve in time according to

o(t0) −→ o(H)(t) := u(t, t0)
−1o(t)u(t, t0). (19)

Here u(t, t0) is the time-evolution operator corresponding to the Hamiltonian h(t) and the initial time t0,
i.e., the operator satisfying

i∂tu(t, t0) = h(t)u(t, t0), u(t0, t0) = I. (20)

If we differentiate both sides of (19) and use (20) to simplify the result, we obtain the Heisenberg equation
of motion in the representation (H , h(t)):

i∂to(H)(t) = [o(H)(t), h(H)
(t)] + iu(t, t0)

−1ȯ(t)u(t, t0), (21)

where h(H)
(t) := u(t, t0)

−1h(t)u(t, t0) is the Heisenberg-picture Hamiltonian.
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Next, we examine the Heisenberg equation in the representation (Hη(t), H(t)). To derive this equation,
we use the fact that if an observable is given by the operator o(t) in the representation (H , h(t)) of the
system S , then it is given by

O(t) := ρ(t)−1o(t)ρ(t), (22)

in the representation (Hη(t), H(t)), [12]. We also recall that the Heisenberg-picture operator corresponding
to (22) has the form

O(H)(t) := U(t, t0)
−1O(t)U(t, t0). (23)

In particular,
H(H)(t) := U(t, t0)

−1H(t)U(t, t0), (24)

gives the expression for the Heisenberg-picture Hamiltonian in the representation (Hη(t), H(t)).
Furthermore, because ρ(t) : Hη(t) → H maps the solutions of the Schrödinger for the Hamiltonian
H(t) to those for h(t),

U(t, t0) = ρ(t)−1u(t, t0)ρ(t0). (25)

Equations (19) and (22)–(24) imply

O(H)(t) = ρ(t0)
−1o(H)(t)ρ(t0). (26)

Differentiating both sides of this equation with respect to t and making use of (21), (25), and the identity,

ρ(t0)
−1h(H)

(t)ρ(t0)− iU(t, t0)
−1ρ(t)−1ρ̇(t)U(t, t0) = H(H)(t),

which follows from (16) and (25), we arrive at the Heisenberg equation in the representation (Hη(t), H(t)):

i∂tO(H)(t) = [O(H)(t), H(H)(t)] + iU(t, t0)
−1Ȯ(t)U(t, t0). (27)

Observe that because ρ(t0) : Hη(t0)
→H is a unitary operator and o(H)(t) : H → H is Hermitian,

(26) shows that O(H)(t) acts as a Hermitian operator in Hη(t0)
. This is consistent with the basic requirement

that for an evolving state vector ψ(t),

〈ψ(t), O(t)ψ(t)〉η(t)
〈ψ(t), ψ(t)〉η(t)

=
〈ψ(t0), O(H)(t)ψ(t0)〉η(t0)

〈ψ(t0), ψ(t0)〉η(t0)
. (28)

Comparing (21) and (27), we see that there is no structural difference between the Heisenberg
equations for the representations (H , h(t)) and (Hη(t), H(t)).

5. Identification of the Energy Operator

The conflict between the unitarity of dynamics and the observability of the Hamiltonian that appears
in the representations of quantum system with a time-dependent Hilbert space shows that the Hamiltonian
operator appearing in the standard Schrödinger equation does not coincide with the operator associated
with the energy observable in these representations. The distinction between theses operators seems to
disappear when the Hilbert space is static, simply because we are accustomed to follow the convention
of identifying them. The above conflict provides a clear indication that this convention is not generally
consistent. In the following, we argue that it is misleading even when the Hilbert space is time-independent.

Consider a quantum system S that is represented using a Hilbert space H with a constant inner
product 〈·|·〉 and a Hermitian Hamiltonian operator h acting in H . The observables of S correspond to
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the Hermitian operator o acting in H . Now, consider a time-dependent unitary operator U (t) that maps
H onto H . As is well-known, such an operator induces a quantum analog of a time-dependent classical
canonical transformation. To see this, we recall that U (t) induces the following transformations on the
state vectors Ψ ∈H and the Hermitian operators o : H →H :

Ψ→ Ψ̃ := U (t)Ψ, o → õ := U (t) o U (t)−1. (29)

These together with the fact that U (t)† = U (t)−1 ensure that the expectation values, 〈Ψ|oΨ〉/〈Ψ|Ψ〉, are
invariant under these transformations. Therefore we can compute the kinematic properties of the system
at any instant of time using either of Ψ and o or Ψ̃ and õ. The same applies for the dynamical properties of
the system provided that we postulate the following rule for the transformation of the Hamiltonian

h→ h̃ := U (t) hU (t)−1 + i U̇ (t)U (t)−1. (30)

This ensures that Ψ(t) is a solution of the Schrödinger equation for the Hamiltonian h if and only if
Ψ̃(t) := U (t)Ψ(t) solves the Schrödinger equation for the Hamiltonian h̃.

Comparing (29) and (30), we see that under time-dependent quantum canonical transformations,
the operators marking the observables of the system do not transform like the Hamiltonian operator (This is
also true about the transformation property of the observables and the Hamiltonian in classical mechanics.)
In particular, if we employ the convention of identifying the Hamiltonian h with the energy operator
hE , i.e., set hE = h, we cannot do the same after we perform the time-dependent quantum canonical
transformation induced by U (t); h→ h̃ while hE → h̃E = h̃− i U̇ (t)U (t)−1 6= h̃. This argument shows
that we cannot consistently use this convention. In fact there seems to be no way of determining the energy
operator, if we only know the Hamiltonian operator.

The additional structure that together with the Hamiltonian operator provide a consistent
identification of the energy operator turns out to have a purely geometric nature [38]. The subtlety
of dealing with time-dependent Hilbert spaces that we have examined in the preceding sections provides
an important clue for uncovering this structure. The differential operator Dt appearing on the left-hand
side of the modified Schrödinger Equation (13) resembles a covariant time derivative with the term ρ−1ρ̇
reflecting the contribution of a local connection (gauge potential). According to (11) and (12) subtracting
this term from the Hamiltonian operator gives the energy operator. Therefore, it seems that in order
to identify a unique energy operator, we should look for an underlying vector (or principal) bundle E
endowed with a connection [41–43]. Such a vector bundle has been constructed in Ref. [38] and used
to formulate a geometric extension of quantum mechanics. The standard QM corresponds to situations
where this bundle has a trivial topology. It is however important to recognize that topologically trivial
vector bundles can possess nontrivial geometries. Indeed, it turns out that the determination of the
energy observable is equivalent to the choice of a certain geometric structure, namely a metric-compatible
connection, on this vector bundle.

6. Geometric Formulation of Quantum Dynamics

6.1. Vector Bundles

A vector bundle is a manifold E equipped with another manifold M, a function π mapping E onto M,
and a vector space V such that the following conditions hold.
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- There are open coordinate patches Oα covering M such that the subsets of E that are mapped into
each of these patches, i.e.,

Eα := {p ∈ E |π(p) ∈ Oα } ,

have the same topological structure as Oα ×V. This means that for each Oα, there is a continuous and
invertible function fα with a continuous inverse that maps Eα onto Oα ×V.

- For each R ∈ M, the points of E that are mapped to R by the function π form a vector space VR.
- For each R ∈ M and p ∈ VR, let v be the element of V such that fα(p) = (R, v). Then the function,

φα,R : VR → V,

that is defined by φα,R(p) := v is a vector-space isomorphism, i.e., it is an invertible linear operator
mapping VR onto V. In particular, VR and V are isomorphic vector spaces.

The manifolds E and M are called the total and base spaces, and the vector spaces V and VR are called
the typical fiber and the fiber over R, respectively.

The basic motivation for the above definition of a vector bundle is actually very simple. Consider a
pair of coordinate patches, Oα and Oα̃, with a nonempty intersection. Then for each R ∈ Oα ∩Oα̃, we can
use the so-called transition functions,

gα̃α,R := φα̃,R ◦ φ−1
α,R, (31)

to construct a one-to-one correspondence between the points of Oα ×V and Oα̃ ×V:

Oα ×V 3 (R, v)
g

α̃α,R←−−−→ (R, ṽ) ∈ Oα̃ ×V if ṽ = gα̃α,R(v). (32)

This correspondence allows us to reconstruct the total space of the vector bundle using the knowledge
of the patches Oα of M and the transition functions gα̃α,R. To see this, we associate to each patch Oα and
R ∈ Oα a vector space Vα,R that is an identical copy of V and suppose that Vα,R’s with different (α, R) do
not intersect, i.e., there is an isomorphism χα,R : Vα,R → V, and Vα,R ∩Vα′ ,R′ 6= ∅ if and only if Oα = Oα′

and R = R′. We also introduce

Vα :=
⋃

R∈Oα

Vα,R,

Eα := {(R, vα) ∈ Oα × Vα | vα ∈ Vα,R } ,

and note that because Eα is an identical copy of Oα × V, we can use χα,R to identify Eα with Eα.
This observation together with the fact that E =

⋃
α Eα suggests us to compare E with E :=

⋃
α Eα.

These differ, because if R ∈ Oα ∩ Oα̃ for some α̃ 6= α, then to the fiber VR in E there corresponds two
identical copies in E , namely Vα,R and Vα̃,R. This shows that we can obtain E from E provided that we glue
Vα,R and Vα̃,R along the intersections of the coordinate patches of M. Transition functions gα̃α,R provide the
missing gluing rule; we can use them to introduce the functions,

ǧα̃α,R := χ−1
α̃,R ◦ gα̃α,R ◦ χα,R : Vα,R → Vα̃,R,

and glue Vα,R and Vα̃,R according to the following prescription:

Vα,R 3 (R, vα) is to be glued to (R, vα̃) ∈ Vα̃,R if vα̃ = ǧα̃α,R(v).
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Because the transition functions are automorphisms of V, they belong to a subgroup G of the
general linear group GL(V) of all automorphisms of V. The group G is called the structure group of the
vector bundle.

If the fibers of E are complex (respectively real) vector spaces, E is called a complex (respectively
real) vector bundle. If, as a manifold, E coincides with M × V, it is said to be a trivial vector bundle.
For example Eα is a trivial vector bundle with base space Oα, because it has the same topological structure
as Oα ×V. This shows that every vector bundle is locally trivial, for it can be expressed as the union of
trivial vector bundles.

A smooth function ψ : M→ E that maps every point R of M to a point in the fiber VR over R is called
a global section of the bundle E . It turns out that if there are global sections ψ1, ψ2, · · · , ψN such that for
each R ∈ M, {ψ1(R), ψ2(R), · · · , ψN(R)} is a basis of VR, then E is a trivial bundle. The converse is also
true if V is an N-dimensional vector space. For example, we can always construct such a collection of basis
sections for the vector bundles Eα. Because the domain of definition of these sections are not the whole
base manifold but only one of its coordinate patches, namely Oα, they are called local sections of E .

6.2. Parallel Transportation and Energy Operator

The geometry of a vector bundle E refers to a well-defined notion of parallel transportation of its
points along curves in its base space M. This is achieved by an additional structure called a “connection.”
We can reduce the problem of defining parallel transformation along curves in M to that for the segments
of the curve that lie in particular patches of M. If we know how do define the parallel transportation of the
points along each of these segments, we can pass from one patch to the adjacent one using the transition
functions of the bundle. In the following we describe parallel transportation in a single patch.

Consider a coordinate patch Oα of M, and identify the points R of Oα with its real coordinates
(R1, R2, · · · , Rd). To characterize the points of the fibers we also introduce a fiber coordinate system.
Suppose that V is a finite-dimensional complex vector space. Then without loss of generality we can
identify it with CN for some N ∈ Z+. Let B := {e1, e2, · · · , eN} be the standard basis of CN , i.e., em :=
(δm1, δm2, · · · , δmN) where δmn is the Kronecker delta symbol. Because φα,R : VR → V = CN is an
isomorphism, φ−1

α,R(em) form a basis of VR. The functions ψm : Oα → Eα defined by

ψm(R) := φ−1
α,R(em) (33)

are examples of local sections of E that yield a basis of VR for each R ∈ Oα, namely

BR := {ψ1(R), ψ2(R), · · · , ψN(R)}.

Given an element vR of VR, we can expand it in this basis and use the coefficients of this expansion as
the coordinates of vR. In particular, if ψ : M → E is a global section of E , there are smooth functions
Ψn : Oα → C fulfilling

ψ(R) =
N

∑
n=1

Ψn(R)ψn(R).

We may view the coefficient functions Ψn as the components of a smooth vector-valued function
Ψ : Oα → CN defined by

Ψ(R) := (Ψ1(R), Ψ2(R), · · · , ΨN(R)).

Let us now consider a basis transformation,

ψm(R)→ ψ′m(R), (34)
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such that ψ′m : Oα → E are also local sections whose values form a basis of VR for each R ∈ Oα.
If Ψ′m : Oα → C are coefficients functions associated with the expansion of the global section ψ in the basis
B′R := {ψ′1(R), ψ′2(R), · · · , ψ′N(R)}, then (34) induces a linear coordinate transformation,

Ψm(R)→ Ψ′m(R) =
N

∑
n=1

gmn(R)Ψn(R), (35)

where gmn : Oα → C are smooth functions whose values form the entries of an invertible matrix.
Let Ψ′ : Oα → CN be the analog of Ψ that has Ψ′m as its components. Then the coordinate transformation
(35) is equivalent to

Ψ(R)→ Ψ′(R) = g(R)[Ψ(R)], (36)

where g : Oα → GL(n,C) is a smooth function, and GL(N,C) := GL(CN) is the general linear group of
automorphisms of CN . The functions Ψ provide local representations of the global sections ψ in Oα. In the
applications of vector bundles in particle physics, these describe the matter fields while the coordinate
transformations (36) correspond to (local) gauge transformations.

Now, consider a smooth curve γ : [t0, t1] → Oα lying in Oα, and identify γ(t) with its coordinates
R(t). The parallel transportation of a point ψ0 ∈ VR(t0)

along γ is a particular assignment of a point of VR(t)
for each t ∈ [t1, t2]. This defines a smooth curve ΓA : [t0, t1]→ Eα. Because π(ΓA(t)) = γ(t), ΓA is a lift of
γ from Oα to Eα. It is called the horizontal lift of γ. To determine it, we expand ΓA(t) in the basis BR(t), use
Ψn(t) to label the coefficients of this expansion, so that

ΓA(t) =
N

∑
n=1

Ψn(t)ψn[R(t)],

and identify Ψn(t) with the solution of a homogeneous linear system of first-order differential equations.
We can express this system in the form

DtΨ(t) = 0, (37)

where

Dt := ∂t + i
d

∑
a=1

Ṙa(t)Aa(R(t)), (38)

and Aa(R) are linear operators acting in V = Cn, i.e., they belong to the Lie algebra G`(N,C) of the group
GL(N,C). In physics literature, they are identified with the components of a gauge potential.

We can view Aa(R) as the value of a smooth function Aa : Oα → G`(n,R) and introduce a
G`(n,C)-valued one-form A := ∑d

a=1 AadRa called a local connection one-form. Different choices of
A determine different notions of parallel transformation in Eα. Demanding that Equation (37) preserves
its form under a gauge transformation (36), we are led to the following gauge transformation rule for
local connection one-forms: A → A′ = g A g−1 − ig dg−1, where dg := ∑d

a=1 ∂ag dRa and ∂a stands for
partial derivative with respect to Ra. Let us also note that the extension of the above procedure for parallel
transformation to curves in M that do not lie in a single local coordinate patch requires patching together
the horizontal lifts computed in adjacent patches, say Oα and Oα̃, at an arbitrary point of the curve that
lies in Oα ∩Oα̃. We can achieve this provided that at each R ∈ Oα ∩Oα̃ the local connection one-forms A
and Ã, that are respectively associated with Oα and Oα̃, are related via [41]

Ã(R) = g−1
αα̃,R A(R)gαα̃,R − ig−1

αα̃,R dgαα̃,R. (39)
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If we can make a consistent assignment of local connection one-forms to all the patches Oα so that this
equation holds in their intersection, we say that the vector bundle E is endowed with a connection A.

It is easy to see that we can express Equation (37) as the Schrödinger equation,

i∂tΨ(t) = HA(t)Ψ(t), (40)

for a Hamiltonian of the form

HA(t) :=
d

∑
a=1

Aa[R(t)] ∂tRa(t), (41)

and identify its solution with
Ψ(t) = UA(t, t0)Ψ(t0), (42)

where UA(t, t0) is the evolution operator for HA(t).
An important property of the Hamiltonian (41) is that under smooth reparametrizations of t, i.e., t→

t′ = τ(t) for smooth monotonically increasing functions τ : [t0, t1] → R, it transforms according to
HA(t)→ HA(t′) = [τ̇(t)]−1HA(t). This implies that such reparametrizations of time leave the Schrödinger
Equation (40) and hence its solutions invariant. We can express the time-reparametrization invariance
of solutions of (37) by expressing the time-ordered exponential yielding UA(t, t0) as a path-ordered
exponential along γ;

UA(t, t0) = T

{
exp

∫ t

t0

ds [−iHA(s)]
}

= I +
∞

∑
`=1

(−i)`
∫ t

t0

ds`
∫ s`

t0

ds`−1 · · ·
∫ s2

t0

ds1HA(s`)HA(s`−1) · · ·HA(s1)

= I +
∞

∑
`=1

(−i)`
∫ R(t)

R(t0)
A(R`)

∫ R`

R(t0)
A(R`−1) · · ·

∫ R2

R(t0)
A(R1)

= P

{
exp

∫ R(t)

R(t0)
[−iA(R)]

}
,

where T and P respectively denote time-ordering and path-ordering operations, and the integrals over
the G`(n,C)-valued one-forms A(Rj) are to be performed along the segments of the curve γ.

The time-reparametrization invariance of the evolution operator for HA shows that the dynamics
generated by this Hamiltonian in the typical fiber CN of the bundle Eα depends only on the shape of
the curve γ and not on how fast this curve is traversed in time. In other words, it determines a purely
geometrical evolution. Because this evolution yield a horizontal lift of γ, we call it a “horizontal evolution.”

We can also envisage more general lifts of γ that are associated with non-horizontal evolutions in the
typical fiber. These would be determined by Hamiltonians H(t) : CN → CN whose evolution operator
does depend on the parameterization of the curve γ. The extreme situation is that of evolutions that take
place in a single fiber of Eα, i.e., when γ is a constant curve; γ(t) = R0 for all t ∈ [t0, t1] and some R0 ∈ Oα.
In this case, the evolution of a point ψ0 ∈ VR0 maps it to

ψE (t) :=
N

∑
n=1

Ψn(t)ψn(R0), (43)

where Ψn(t) are components of the solution of the Schrödinger Equation (2) for a Hamiltonian HE (t) :
CN → CN . Because ψE (t) ∈ VR0 , we call the time-evolution generated by HE (t) a “vertical evolution.”



Entropy 2020, 22, 471 15 of 24

The more general time-reparametrization non-invariant dynamics corresponds to an evolution
generated by a Hamiltonian of the form,

H(t) = HA(t) + HE (t). (44)

In this case we can use (38) and (41) to express the Schrödinger equation,

i∂tΨ(t) = H(t)Ψ(t), (45)

in the form
DtΨ(t) = HE (t)Ψ(t). (46)

The modified Schrödinger Equation (13) that is proposed in Refs. [32,34] to circumvent the conflict
between unitarity and the observability of time-dependent pseudo-Hermitian Hamiltonians is a special
case of (46). If we consider the realistic situations where the time-dependence of the Hamiltonian and
the energy operator is governed through their dependence on a set of real dynamical control parameters,
which we can identify with coordinates R of points of a parameter space M, then η = η(R), ρ = ρ(R),
and for R = R(t) we have ρ̇ = ∑N

a=1 ∂aρ Ṙa. With the help of this relation, we can identify (14) with the
special case of (38) that is given by the following choice for the local connection one-form.

A = −iρ−1dρ, (47)

where dρ := ∑N
a=1 ∂aρ dRa. It is this choice that identifies the energy observable HE with the “Hamiltonian”

for the modified Schrödinger Equation (13).
The above analysis suggests that we can keep using the term “Hamiltonian” for the generator of time

evolutions H in the Schrödinger Equation (45), and identify the energy operator with the generator of
vertical evolutions HE . It is then clear that the knowledge of H is not sufficient to determine HE unless we
also know HA. Given that the latter is uniquely determined by the connection one-form A, we are led to a
geometric formulation of quantum dynamics where we can identify the evolution of state vectors with
certain trajectories in a trivial vector bundle Eα endowed with a local connection-one form A. Each such
trajectory is a lift of a curve of control parameters of the system. It is determined by the choice of A and
the energy operator HE . We can relate the latter with an assignment of a linear operator H(R) : VR → VR

to each R ∈ Oα, because we can specify HE in the form

HE (t) = φα,R(t) ◦H(R(t)) ◦ φ−1
α,R(t). (48)

We can view H as a function mapping Oα into another vector bundle which we describe after we elucidate
the notion of “observable” in our vector bundle setting for QM.

We end this subsection by stressing that the choice (47) for A is not dictated by any basic physical
principle. This choice follows from the requirement of identifying the Hamiltonian h(t) with the energy
operator, but as we discussed above, this requirement violates the invariance of expectation values of the
energy observable under time-dependent quantum canonical transformations.

6.3. Hermitian Vector Bundles, Unitarity, and Observables

If each of the fibers VR of a complex vector bundle E is equipped with an inner product 〈·, ·〉R, we call
E a Hermitian vector bundle. This inner product makes the fibers of E into an inner-product space.
For cases where the fibers are finite-dimensional, they are Hilbert spaces parameterized by the points R of
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M. If the fibers VR are infinite-dimensional separable Hilbert spaces, E is called a Hilbert bundle. These
turn out to be topologically trivial [44,45], but they may possess nontrivial geometries.

If a Hermitian vector bundle is endowed with a connection, parallel transportations of a pair of points
belonging to a fiber may change their inner product. There are however a special class of connections on
Hermitian bundles where this does not happen, i.e., parallel transportation along all curves preserves the
inner product. Such a connection is called a metric-compatible or simply a metric connection.

Let us fix a coordinate patchOα of M and use the local sections ψm : Oα → Eα defined by (33) together
with the inner product on the fibers of Eα to construct an inner product on V = CN as follows.

First, we introduce
ηmn(R) := 〈ψm(R), ψn(R)〉R, (49)

and identify η(R) : CN → CN and 〈·, ·〉η(R) : CN ×CN → C with the linear operator and inner product
defined by

η(R)w :=
N

∑
m=1

ηmn(R)wn, 〈·, ·〉η(R) := 〈·|η(R)·〉, (50)

where w := (w1, w2, · · · , wN) is an arbitrary element of CN , and 〈·|·〉 is the Euclidean inner product on CN .
Then, for every v := (v1, v2, · · · , vN) ∈ CN , we have

〈v, w〉η(R) = 〈v|η(R)w〉 =
N

∑
m,n=1

v∗mηmn(R)wn

=
N

∑
m,n=1

v∗mwn〈ψm(R), ψn(R)〉R

=
N

∑
m,n=1

v∗mwn〈φ−1
α,R(em), φ−1

α,R(en)〉R

= 〈φ−1
α,R(v), φ−1

α,R(w)〉R. (51)

This calculation shows that 〈·, ·〉η(R) is a genuine inner product on CN , and η is a metric operator acting in
the Hilbert space H := (CN , 〈·|·〉). Furthermore, (51) implies that if we use Hη(R) to denote the Hilbert
space (CN , 〈·, ·〉η(R)), the isomorphisms φα,R : VR → Hη(R) are unitary operators. See Figure 1 for a
schematic representation of the related mathematical constructs.

Next, suppose that E is provided with a connection A, and A is the corresponding local connection
one-form on Eα. Let γ : [t0, t1]→ Oα be a smooth curve, R(t) label the coordinates of γ(t), and φ(t) and
ψ(t) be elements of VR(t) that are respectively obtained by the parallel transportation of points φ0 and ψ0

of VR(t0)
along γ. By definition, A is a metric connection if for all choices of Oα, γ, φ0, and ψ0,

〈φ(t), ψ(t)〉R(t) = 〈φ0, ψ0〉R(t0)
. (52)

If Φn(t) and Ψn(t) are the coefficients of the expansion of φ(t) and ψ(t) in the local sections ψn(R(t)), so
that

φ(t) =
N

∑
n=1

Φn(t)ψn(R(t)), ψ(t) =
N

∑
n=1

Ψn(t)ψn(R(t)),
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and Φ := (Φ1, Φ2, · · · , ΦN) and Ψ := (Ψ1, Ψ2, · · · , ΨN), we can use (49) and (50) to express (52) as

〈Φ(t), Ψ(t)〉η(t) = 〈Φ(t0), Ψ(t0)〉η(t0)
, (53)

where η(t) := η(R(t)). Equations (42) and (53) show that the evolution operator UA(t, t0) associated with
the Hamiltonian HA(t) acts in the Hilbert space Hη(t) as a unitary operator. That is horizontal evolutions
defined by a metric connection in HA(t) are unitary. In particular, HA(t) satisfies (8). Equivalently,

HA(t)† = η(t)HA(t)η(t)−1 + iη̇(t)η(t)−1. (54)

Now, consider a general lift of the curve γ that is determined by (44), (45), and (46). Then the evolution
operator U(t, t0) defines a unitary operator acting in Hη(t) if and only if the Hamiltonian H(t) satisfies (8).
In view of (54), we can express this condition in the form

HE (t)† = η(t)HE (t)η(t)−1, (55)

i.e., HE (t) acts as an η-pseudo-Hermitian operator in H and as a Hermitian operator in Hη(t). As a result,
its expectation values are real provided that we compute them using the inner product (50). This suggests
that we can safely identify it with an observable of a unitary quantum system S that is represented by the
pair (Hη(t), H(t)) and call it the energy operator.

Figure 1. Schematic diagram representing the base space M of the vector bundle E , a curve γ in M, a pair
of intersecting coordinate patches Oα and Oα̃ of M that cover γ. R is a point in Oα ∩ Oα̃. The function
π : E → M is the bundle projection map that maps the fiber VR over R to R, i.e., VR = π−1({R}). Hη and
H are respectively the typical fiber CN endowed with the inner products 〈·, ·〉η and the Euclidean inner
product 〈·|·〉. The isomorphisms ϕα,R : VR →Hη and ρ : Hη →H are unitary operators.

We can represent the quantum system S also using
(
H , h(t)

)
, where h(t) is given by (16). In view of

this relation and (44), h(t) admits the decomposition:

h(t) = hA(t) + hE (t),

where

hA(t) := ρ(t)HA(t)ρ(t)−1 + iρ̇(t)ρ(t)−1, (56)

hE (t) := ρ(t)HE (t)ρ(t)−1, (57)
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and ρ(t) :=
√

η(t). It is not difficult to show that both hA(t) and hE (t) act as Hermitian operators in H .

According to (57), hE (t) is the energy operator in this representation. Let us also note that the special
choice (47) for the local connection one form A implies HA(t) = −iρ(t)−1ρ̇(t). Substituting this equation
in (56), we find hA(t) = 0. Therefore, it is only for this choice of A that h(t) coincides with the energy
operator hE (t).

Next, we recall that the operator φα,R : VR →Hη(R) is unitary. Therefore, we can use it to construct
another representation of the quantum system S where the state vectors at time t belong to the fiber
VR(t), the observables measured at this time are given by Hermitian operators O : VR(t) → VR(t), and the
dynamics corresponds to the lifts of the curve γ traced by the control parameters R. In particular,
the evolving states ψ(t) are given by (43) with Ψn being components of a solution Ψ of (46). It is not
difficult to see that

ψ(t) = φ−1
α,R(t)(Ψ(t)). (58)

Solving this equation for Ψ(t) and substituting the result in (46), we can identify ψ : [t0, t] → Eα with a
solution of the evolution equation,

iDtψ(t) = H(t)ψ(t), (59)

where

Dt := φ−1
α,R(t) ◦Dt ◦ φα,R(t) (60)

is called the covariant time-derivative corresponding to the metric connection on E , and

H(t) := φ−1
α,R(t) ◦ HE (t) ◦ φα,R(t) (61)

is a Hermitian operator acting in VR(t) that represents the energy observable of S .
The existence of a representation of S that uses the fibers of Eα as the Hilbert space of state vectors and

identifies the Hermitian operators acting in these fibers with the observables suggests a natural extension
where the possibly nontrivial Hermitian vector bundle E plays the role of its trivial subbundle Eα. This
leads to a proposal for a geometric extension of quantum mechanics that we examine in the next section.

7. Geometric Extension of Quantum Mechanics

Any attempt at extending QM must address both its kinematic and dynamical aspects (By kinematic
aspects, we mean the definition of states, observables, and the meaning and implications of observing an
observable when the system is in a given state. By dynamical aspects, we mean the prescription according
to which the time-evolution of the states or observables of the system are determined.) In particular, it
should clarify how it affects or alters the projection axiom. Obviously, the most conservative approach is
to make sure this axiom holds in a more general setting. In trying to extend the description of a quantum
system using a trivial Hermitian vector bundle to situations that the bundle has a nontrivial topology, this
can be easily achieved, for a measurement of an observable takes place at a single instant of time. This
observation together with the developments we have reported above lead to a natural geometric extension
of quantum mechanics (GEQM) that we describe in the sequel.

The postulates of GEQM involve another vector bundle which we label by u(E). This is a real vector
bundle with base space M. Its fiber uR over the point R ∈ M is the real vector space of Hermitian operators
acting in the fiber VR of E . Its typical fiber is the vector space of Hermitian operators acting in CN , which we
can identify with the Lie algebra u(N) of the unitary group U(N) (Note that we can express the elements
of U(N) in the form eiX where X is an N × N Hermitian matrix. Therefore, the elements of the Lie algebra
u(N) are of the form iX. u(N) has the structure of a real vector space, because it is closed under matrix
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addition and scalar multiplication of matrices by real numbers. In physics literature, u(N) is identified
with the real vector space of N× N Hermitian matrices, because as real vector spaces they are isomorphic.)
The transition functions gαα̃,R : u(N)→ u(N) of u(E) are given by the following relations [38].

gα̃α,R(o) := Gα̃α,Ro G−1
α̃α,R, Gα̃α,R := ρ̃(R) gα̃α,R ρ(R)−1, (62)

where α and α̃ label pairs of intersecting coordinates charts, R belongs to their intersection, ρ(R) =
√

η(R),

ρ̃(R) =
√

η̃(R), η(R) : CN → CN is the metric operator associated with the coordinate chart Oα, which
we introduced in Section 6.3, η̃(R) is its analog for the coordinate chart Oα̃, and gαα̃,R are the transition
functions of E .

Having introduced u(E), we can present the postulates of GEQM as follows.

• A quantum system S is determined by a complex Hermitian vector bundle E endowed with a metric
connectionA, a global section H : M→ u(E) of the vector bundle u(E), and a smooth parameterized
curve γ : [t0, t1] → M, where the parameter of γ is time, [t0, t1] is the time interval in which we
wish to describe the system, and M is the base space of E whose points correspond to a collection of
classical external control parameters.

• The (pure) states of S at a time t are given by one-dimensional subspaces (rays) of the fiber VR(t) of
E , where R(t) labels the value of γ at t. These are uniquely determined by nonzero elements of VR(t)
which we identify with the state vectors of S at time t.

• The observables of S are represented by global sections O : M→ u(H) of u(E). For a measurement
of O at time t, one implements von-Neumann’s projection axiom for the operator O(R(t)), which
acts as a Hermitian operator in VR(t). In particular, if the system is in the state given by a state vector
ψ ∈ VR(t), the measurement yields a reading that is an eigenvalue ω(t) of O(R(t)) and causes an
abrupt change of the state of the system to one given by an eigenvector of O(R(t)) with eigenvalue
ω(t). The probability of reading ω(t) and the expectation value of O(R(t)) are computed using the
textbook prescription with VR(t) and O(R(t)) respectively playing the roles of the Hilbert space and
the operator representing the observable.

• The evolution of the state vectors ψ(t) are determined by the covariant Schrödinger equation,

iDtψ(t) = H(R(t))ψ(t), (63)

where Dt is the covariant time-derivative defined by the connection, and H is the global section of
u(E) that represents the energy observable.

It is not difficult to check that whenever the curve γ lies in a single coordinate patch of E , we can
describe the system using Eα. In this case we recover the representation of the system we outlined in
Section 6.3. In particular, we can represent the system in terms of the Hilbert space H and the Hamiltonian
h(t) using the standard rules of QM. This shows that GEQM reduces to QM locally. The same is the case if
E happens to be a trivial bundle. In general, however, E is nontrivial, and we find an extension of QM.
At present the physical implications of the structural differences between GEQM and QM are not clear.

It is a well-known mathematical fact that whenever the typical fiber of a vector bundle E is an
infinite-dimensional Hilbert space, it is necessarily trivial [44,45]. This suggests that GEQM and QM are
different only for systems with finite-dimensional state spaces (For a specific example of a class of toy
models with two-dimensional state spaces see [38].)

The assertion that GEQM and QM coincide for situations where E is trivial may seem as a negative
result, but we should realize that topologically trivial vector bundles can possess nontrivial geometries.
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This reveals a hidden geometric aspect of QM that is directly linked with the problem of identifying the
energy operator.

8. Heisenberg Picture of Dynamics in GEQM

In the preceding section we have offered a description of GEQM in which the state vectors undergo
dynamical evolutions. For a given observable represented by a global section O : M → u(H) of u(H),
the expectation value of O for a measurement conducted at time t is given by

〈ψ(t),O(R(t))ψ(t)〉R(t)
〈ψ(t), ψ(t)〉R(t)

,

where 〈·, ·〉R(t) is the inner product of the fiber VR(t) and ψ(t) ∈ VR(t) is the state vector at time t.
Suppose that the curve γ lies in a single coordinate patch Oα of M. Then we can use the unitary

transformation φα,R : Vα →Hη(R) to introduce the operator,

O(R) := φα,R O(R)φ−1
α,R, (64)

which acts as a Hermitian operator in Hη(R). Let us also recall that we determine ψ(t) from Ψ(t) :=
φα,R(t)ψ(t) and that Ψ(t) satisfies the Schrödinger equation defined by the Hamiltonian operator H(t) in
the Hilbert space Hη(t), where η(t) := η(R(t)).

Because φα,R : Vα →Hη(R) is unitary,

〈ψ(t),O(R(t))ψ(t)〉R(t)
〈ψ(t), ψ(t)〉R(t)

=
〈φα,R(t)ψ(t), φα,R(t) O(R(t))ψ(t)〉η(R(t))

〈φα,R(t)ψ(t), φα,R(t)ψ(t)〉η(R(t))

=
〈Ψ(t), O(t)Ψ(t)〉η(t)
〈Ψ(t), Ψ(t)〉η(t)

=
〈Ψ(t0), O(H)(t)Ψ(t0)〉η(t0)

〈Ψ(t0), Ψ(t0)〉η(t0)
(65)

=
〈φα,R(t0)

ψ(t0), O(H)(t)φα,R(t0)
ψ(t0)〉η(R(t0))

〈φα,R(t0)
ψ(t0), φα,R(t0)

ψ(t0)〉η(R(t0))

=
〈ψ(t0),O(H)(t)ψ(t0)〉R(t0)

〈ψ(t0), ψ(t0)〉R(t0)
,

where we have used (28) and (64), set O(t) := O(R(t)), and introduced:

O(H)(t) := φ−1
α,R(t0)

O(H)(t) φα,R(t0)
. (66)

This is a Hermitian operator acting in VR(t0)
, i.e., it belongs to uR(t0)

. In view of (23), we can express it in
the form,

O(H)(t) = U(t, t0)
−1O(R(t))U(t, t0), (67)

where U(t, t0) : VR(t0)
→ VR(t) is the linear operator defined by

U(t, t0) := φ−1
α,R(t)U(t, t0)φα,R(t0)

, (68)

and U(t, t0) is the evolution operator for the Hamiltonian H(t).
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It is easy to see that ψ(t) = U(t, t0)ψ(t0). This together with (66) and (67) suggest identifying O(H)(t)
with the Heisenberg-picture operator associated with the observable represented by the global section O.
According to (66), we can identify O(H)(t) with the solution of the Heisenberg Equation (27) that satisfies
the initial condition,

O(H)(t0) := O(t0) = φα,R(t0)
O(R(t0))φ

−1
α,R(t0)

. (69)

If the curve γ : [t0, t1] → M of the parameters of the system does not lie in a single coordinate
patch, we can dissect it into segments belonging to coordinate patches. We can then integrate (27) to
determine O(H)(t) and O(H)(t) for each segment and connect the solutions using the appropriate transition
functions. To see the details of this procedure, suppose that γ consists of segments γ0 : [t0, t̃0]→ Oα and
γ1 : [t̃0, t1]→ Oα̃ where Oα and Oα̃ are coordinate patches of M with R(t̃0) ∈ Oα ∩Oα̃, i.e.,

γ(t) =

{
γ0(t) for t ∈ [t0, t̃0],
γ1(t) for t ∈ (t̃0, t1],

and γ0(t̃0) = γ1(t̃0). Then an initial state vector ψ(t0) ∈ VR(t0)
evolves according to

ψ(t) =

{
U(t, t0)ψ(t0) for t ∈ [t0, t̃0],

Ũ(t, t̃0)U(t̃0, t0)ψ(t0) for t ∈ (t̃0, t1],
(70)

where U(t, t0) and Ũ(t, t̃0) are respectively given by (68) and

Ũ(t, t̃0) := φ−1
α̃,R(t)Ũ(t, t̃0)φα̃,R(t̃0)

,

Ũ(t, t̃0) is the evolution operator associated with the Hamiltonian,

H̃(t) := H̃Ã(t) + H̃E (t) =
d

∑
a=1

Ãa[R(t)]Ṙ
a(t) + φα̃,R(t)H(R(t))φ−1

α̃,R(t),

and the initial time t̃0, and Ãa are component of the local connection one-form Ã in the patch Oα̃ which
fulfills (39).

Equation (70) suggests that the Heisenberg-picture operator O(H)(t) : VR(t0)
→ VR(t0)

is to be given
by (67) for t ∈ [t0, t̃0], and by

O(H)(t) := [Ũ(t, t̃0)U(t̃0, t0)]
−1O(R(t)) Ũ(t, t̃0)U(t̃0, t0), (71)

for t ∈ (t̃0, t1]. Note also that

Ũ(t, t̃0)U(t̃0, t0) = φ−1
α̃,R(t)Ũ(t, t̃0) gα̃α,R(t̃0)

U(t̃0, t0)φα,R(t0)
. (72)

It is clear that for t ∈ [t0, t̃0], the operator O(H)(t) given by (23) satisfies (27). To determine the analog
of (27) for t ∈ [t̃0, t1], we let

O(H)(t) := φα,R(t0)
O(H)(t)φ−1

α,R(t0)
,

and use (71) and (72) to show that, for t ∈ [t̃0, t1],

O(H)(t) = U(t̃0, t0)
−1g−1

α̃α,R(t0)
Õ(H)(t)gα̃α,R(t0)

U(t̃0, t0), (73)
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where Õ(H)(t) := Ũ(t, t̃0)
−1Õ(t)Ũ(t, t̃0), Õ(t) := Õ(R(t)), and

Õ(R) := φα̃,R O(R)φ−1
α̃,R. (74)

Pursuing a similar approach as the one leading to (27), we can show that Õ(H)(t) satisfies the Heisenberg
equation,

i∂tÕ(H)(t) = [Õ(H)(t), H̃(H)(t)] + iŨ(t, t̃0)
−1 ˙̃O(t)Ũ(t, t̃0), (75)

and the initial condition Õ(H)(t̃0) := Õ(t̃0). According to (73), this implies that O(H)(t) satisfies (75) and
the initial condition:

O(H)(t̃0) = U(t̃0, t0)
−1g−1

α̃α,R(t0)
Õ(t̃0)gα̃α,R(t0)

U(t̃0, t0)

= U(t̃0, t0)
−1O(t̃0)U(t̃0, t0), (76)

where we have employed (31), (64), and (74). Notice that (76) is consistent with the fact that for t ∈ [t0, t̃0],
O(H)(t) satisfies (23). This in turn shows that O(H)(t) traces a smooth curve in the Hilbert space Hη(R(t0))

.
The procedure we have outlined for the cases where γ consists of a pair of segments each contained in

a coordinate patch trivially extends to situations where it consists of an arbitrary number of such segments.

9. Concluding Remarks

Pseudo-Hermitian operators were initially considered in an attempt to provide a mathematically more
careful assessment of some of the claims made by proponents of the importance of PT -symmetry, [6,7].
This clarified a number of issues of basic importance such as the spectral consequences of antilinear
symmetries [8], the idea of reviving the Hermiticity of certain non-Hermitian operators by modifying the
inner product of the Hilbert space [6,10,11], and a consistent definition of observables for PT -symmetric
systems [12,20]. These developments involved considering time-independent pseudo-Hermitian
Hamiltonian operators and led to various applications of these operators [5].

The study of time-dependent pseudo-Hermitian Hamiltonian operators was initially motivated by
certain basic problems of quantum cosmology [22,23]. An important outcome of this study is a curious
conflict between the unitarity of dynamics generated by such Hamiltonians and their observability [31].
This conflict has a more general domain of validity, for it applies to every quantum system whose state
space is time-dependent. A proper resolution of this conflict calls for a more careful examination of
the notion of energy operator for such systems. In this article, we have provided a geometric setting
for addressing this issue, described the geometric meaning of the energy operator as the generator of
vertical evolutions in a Hermitian vector bundle. A by-product of this approach is a consistent geometric
extension of quantum mechanics. We have offered a general description of this extension and outlined the
Heisenberg-picture formulation of its dynamical aspects.
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