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Abstract: We study the transport properties of multi-terminal Hermitian structures within the
non-equilibrium Green’s function formalism in a tight-binding approximation. We show that
non-Hermitian Hamiltonians naturally appear in the description of coherent tunneling and are
indispensable for the derivation of a general compact expression for the lead-to-lead transmission
coefficients of an arbitrary multi-terminal system. This expression can be easily analyzed, and a
robust set of conditions for finding zero and unity transmissions (even in the presence of extra
electrodes) can be formulated. Using the proposed formalism, a detailed comparison between three-
and two-terminal systems is performed, and it is shown, in particular, that transmission at bound
states in the continuum does not change with the third electrode insertion. The main conclusions
are illustratively exemplified by some three-terminal toy models. For instance, the influence of the
tunneling coupling to the gate electrode is discussed for a model of quantum interference transistor.
The results of this paper will be of high interest, in particular, within the field of quantum design of
molecular electronic devices.

Keywords: non-Hermitian Hamiltonians; open quantum systems; resonances; quantum conductor;
quantum interference

1. Introduction

Traditional treatment of quantum transport is based on the scattering theory [1]. A correspondence
between the scattering matrix (S-matrix) and Hamiltonian approaches is established within the
framework of Fano–Feshbach formalism [2–4]. In this formalism, an effective non-Hermitian
Hamiltonian is introduced, whose complex eigenvalues coincide with scattering matrix poles.
Non-Hermitian Hamiltonians are of great interest in modern quantum physics, as they can describe
various phenomena beyond the traditional paradigm of Hermitian operators in a very robust and
illustrative way [5]. Non-Hermitian Hamiltonians typically appear in the study of open quantum
systems (OQS), where the total Hermitian Hamiltonian of the whole system is projected on the states
of its subsystem of interest [2] resulting in a non-Hermitian effective Hamiltonian. OQS being a
part of a bigger system, does not have stationary eigenstates. Eigenstates of the projected effective
Hamiltonian are called resonant states, and corresponding eigenvalues are complex, with the real
part indicating the energy and the imaginary part showing the decay rate (outgoing momentum
flux [6]). However, incoming and outgoing (scattered) waves are characterized by real energies. Hence,
the connection between complex eigenvalues of an effective Hamiltonian (poles of S-matrix) with real
energies of transmission peaks/dips is of high importance. Usually, one associates energies of tunneling
transmission resonances with real parts of the S-matrix poles. This interpretation is adequate only in the
case of well-separated and narrow resonances. If perfect (unity-valued) resonances become wider and
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closer to each other, they can coalesce, resulting in a single transmission peak with amplitude smaller
than unity [7]. This phenomenon cannot be detected from the analysis of the S-matrix poles alone [8].
In complex systems, where destructive quantum interference (DQI) is possible, much more complicated
interference phenomena are expected, so the traditional S-matrix (or effective Hamiltonian) point of
view cannot handle all the variety of possible interference effects in quantum transport.

Recently, it has been shown that a stationary scattering problem within two channels
(two terminals) can be regarded from a different point of view, where some new non-Hermitian
Hamiltonian plays the role [9–11]. This new auxiliary non-Hermitian Hamiltonian turned to be
PT -symmetric in spatially symmetric systems [9,11]. Here, P stands for space inversion and
T for time reversal operations. It is known that such Hamiltonians have eigenvalues, which in
general, are complex conjugate to each other and can be real [12,13]. This is impossible for effective
Hamiltonian as its eigenvalues (S-matrix poles) are located in the lower half of a complex energy plane.
In our previous works [8,14,15], we have thoroughly studied PT -symmetric two-terminal quantum
conductors and have established a direct correspondence between perfect transmission peaks and real
eigenvalues of this non-Hermitian auxiliary Hamiltonian. Within this approach, resonance coalescence
can be described straightforwardly as a PT -symmetry breaking of the auxiliary Hamiltonian at its
exceptional point (EP) [16], where two real eigenvalues coalesce and turn into a complex conjugate
pair. Moreover, DQI and formation of bound states in the continuum (BIC) [17] can also be described
using our technique.

Physical properties of multi-terminal conductors are significantly richer than those of two-terminal
structures [18–20]. The scattering matrix approach for studying quantum transport has been
generalized to the description of multi-terminal conductors by Büttiker [21,22]. In particular, he
has shown that the insertion of extra electrodes can be considered as the emergence of additional
inelastic scattering channels, which results in dephasing [23]. It also destroys the perfect transparency
of the two-terminal quantum conductor at resonance. In the present paper, we propose a theory of
quantum transport in multi-terminal conductors, which generalizes the results of [15].

Using the developed formalism, we show the possibility of perfect transmission in three-terminal
configurations and present simple rules of how to design multi-terminal quantum conductors with
perfect transparency. Additionally, correspondence between three- and two-terminal configurations of
structures possessing BICs is discussed. The paper is organized as follows. In Section 2, we describe
the model of a quantum conductor and state some standard formulas for the transmission coefficient
calculation using the effective Hamiltonian approach. In Section 3, one can find the generalization of
the auxiliary Hamiltonian approach to the case of multi-terminal conductors. Properties of derived
transmission coefficients and conditions for perfect and zero transparency are discussed. Section 4
provides illustrative examples of three-terminal systems, including a model of quantum interference
transistor. In Section 5, we show correspondence between two- and three-terminal systems and discuss
transmission at BICs. Finally, there is a summary in Section 6.

2. Multi-Terminal Quantum Conductor

We consider an arbitrary N-site structure (a molecule or a quantum dot array) connected to M
semi-infinite leads. Each site has a single localized state with energy εi. The full Hamiltonian of this
system within the tight-binding approximation is the following

Ĥ = Ĥ0 + Ĥ1 + ... + ĤM + Ĥ1
int + ... + ĤM

int. (1)

The first term in Equation (1) is the bare Hamiltonian of the N-site structure:

Ĥ0 =
N

∑
i=1

εia†
i ai +

N

∑
i,j=1,i<j

(
τija†

j ai + h.c.
)

, (2)
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where a†
i (ai) is the creation (annihilation) operator of the electron on the i-th site and τij is the hopping

integral between the i-th and the j-th sites.
The α-th lead with the energy spectrum εα

lead = εα
lead(p) is described by the Hamiltonian Ĥα:

Ĥα = ∑
p

εα
lead(p)aα†

p aα
p. (3)

Operator aα
p in Equation (3) corresponds to the state in the α-th lead with momentum p. Term

Ĥα
int in Equation (1) describes the coupling between the state with momentum p in the α-th lead and

the i-th site of the structure for all p and i:

Ĥα
int = ∑

p,i

(
γα

p,ia
†
i aα

p + h.c.
)

. (4)

In general, matrix elements γα
p,i depend on energy and momentum.

Transmission probability from the lead α to the lead β (α, β ∈ {1, ..., M}) is given by the standard
expression [1]:

Tαβ = 4Tr
(

Γ̂βĜrΓ̂αĜa
)

. (5)

Here Ĝr and Ĝa = (Ĝr)† are correspondingly retarded and advanced Green’s functions of the system:

Ĝr =
(

EÎ − Ĥe f f

)−1
, (6)

where Î is the N × N identity matrix and Ĥe f f is the effective Hamiltonian [2] of the system:

Ĥe f f = Ĥ0 + Σ̂1 + ... + Σ̂M. (7)

Here Σ̂α is the self-energy of the α-th lead. The Hermitian matrix Γ̂α from Equation (5) is the
anti-Hermitian part of the corresponding lead self-energy:

Σ̂α = δ̂α − iΓ̂α. (8)

For semi-infinite single-channel leads one can derive self-energy in the tight-binding
approximation as follows [24]:

Σα
ij = ∑

p,p′
γα

p,i
(
Ĝr

α

)
pp′γ

α∗
p′ ,j (9)

where Ĝr
α is the retarded Green’s function of the isolated α-th lead, which is diagonal in the basis of

momentum eigenfucntions:(
Ĝr

α

)
pp′ =

[(
E− Ĥα

)−1
]

pp′
= [E− εα

lead(p) + i0]−1 δpp′ . (10)

Assuming that the matrix elements γα
p,i = γα

i (ε
α
lead) depend on the energy εα

lead = εα
lead(p) but not on

the momentum p, Hermitian and anti-Hermitian parts of the α-th lead self-energy can be written as follows:

δα
ij(E) = p.v.

∫ γα
i (E′)γα∗

j (E′)ρα(E′)

E− E′
dE′,

Γα
ij(E) = πγα

i (E)γα∗
j (E)ρα(E).

(11)
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Here ρα is the density of states for the α-th lead. Thus, the transmission coefficient Tαβ becomes

Tαβ =
4 ∑N

i,j,m,k=1 (−1)i+j+m+k M∗ij MmkΓβ
jkΓα

mi∣∣∣det
(

EÎ − Ĥe f f

)∣∣∣2 , (12)

where Mij are the minors of the (EÎ − Ĥe f f ) matrix.

3. Transmission Coefficient in Multi-Terminal Quantum Conductor

3.1. Formula for Transmission Coefficient

Using Equation (11) and the conventional approach to the description of decays (see, e.g., Ref. [25]),
matrix Γ̂α can be written as:

Γ̂α = uαu†
α, (13)

with uα,i =
√

πραγα
i being the i-th element of the column-vector uα. Using Equation (13) we can

rewrite Equation (5) in a new form, different from Equation (12), which enables one to provide clear
analysis of various interference phenomena. For brevity, we introduce a matrix

Âαβ = Â1 + iÂαβ
2 , (14)

where

Â1 = EÎ − Ĥ0 −
M

∑
σ=1

δ̂σ, Aαβ
2 =

M

∑
σ=1,

σ 6=α,β

Γ̂σ. (15)

The matrix Âαβ is non-Hermitian and Hermitian matrices Â1 and Âαβ
2 represent its Hermitian

and anti-Hermitian parts respectively. It should be noted that Hermitian part Â1 is independent of a
particular choice of α and β. The effective Hamiltonian (7) in this notation can be written as

Ĥe f f = EÎ − Âαβ − iΓ̂α − iΓ̂β = EÎ − Âαβ − iuαu†
α − iuβu†

β. (16)

Non-Hermiticity of the matrix Âαβ is the key difference between the case of multi-terminal
structures and two-terminal structures considered in Ref. [15]. Using Âαβ from Equation (14) one can
get for the transmission coefficient:

Tαβ = 4Tr

{
uβu†

β

(
Âαβ + iuαu†

α + iuβu†
β

)−1
uαu†

α

[(
Âαβ + iuαu†

α + iuβu†
β

)−1
]†
}

= 4
∣∣∣∣u†

β

(
Âαβ + iuαu†

α + iuβu†
β

)−1
uα

∣∣∣∣2 .

(17)

Utilizing the Sherman-Morrison formula [26] and matrix determinant lemma [27] to Equation (17)
we can derive the following:

Tαβ =
4
∣∣det Âαβ

∣∣2 ∣∣∣u†
β

(
Âαβ

)−1 uα

∣∣∣2∣∣∣det
(

Âαβ + iuαu†
α + iuβu†

β

)∣∣∣2 . (18)

According to the definitions in Equations (13), (14) and (16) the denominator of Equation (18) is
nothing more than the characteristic determinant of the effective Hamiltonian. From Equation (18)
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it follows that the numerator of the transmission coefficient is a square module of a certain
energy-dependent quantity Pαβ

0 , which is defined up to an arbitrary phase factor:

Pαβ
0 = 2u†

β

(
adj Âαβ

)
uα. (19)

Here adj Âαβ is the adjugate matrix of Âαβ.
Getting apart the term 4|det Âαβ|2|u†

β(Âαβ)−1uα|2 = |Pαβ
0 |2 in the denominator of Equation (18)

and simplifying the rest terms by the matrix determinant lemma, one can figure out that∣∣∣det
(

EÎ − Ĥe f f

)∣∣∣2 =
∣∣∣det

(
Âαβ + iΓ̂α + iΓ̂β

)∣∣∣2 =
∣∣∣Pαβ

0

∣∣∣2 + ∣∣∣Qαβ
∣∣∣2 + Pαβ

1 , (20)

where Qαβ is another function of E defined up to an arbitrary phase factor:

Qαβ = det
(

Âαβ − iΓ̂α + iΓ̂β
)

(21)

and Pαβ
1 is the following extra term, which is non-zero due to the non-Hermiticity of the matrix Âαβ:

Pαβ
1 = 4

∣∣det Âαβ
∣∣2 (−Im

{
u†

α

[
Âαβ

]−1 uα

} ∣∣∣1 + iu†
β

(
Âαβ

)−1 uβ

∣∣∣2
+Re

{
u†

α

[(
Âαβ

)−1 −
(

Âαβ
)†−1

]
uβu†

β

[
Âαβ

]−1 uα

}
+Im

{
u†

β

[
Âαβ

]−1 uαu†
α

[
Âαβ

]−1 uβu†
β

[
Âαβ

]†−1
uβ

})
.

(22)

From Equation (22) one can see that for two-terminal structures, i.e., for Hermitian matrix Âαβ, Pαβ
1

turns to zero and we exactly arrive to the calculations from [15]. Indeed, Hermiticity of Âαβ implies
Hermiticity of its inverse (Âαβ)−1, which provides turning to zero of the second term of Equation (22)
due to the cancellation of (Âαβ)−1 and (Âαβ)†−1. The first and the third terms in Equation (22) also
vanish because a†(Âαβ)−1a ∈ R and a†(Âαβ)−1bb†(Âαβ)−1a = |a†(Âαβ)−1b|2 ∈ R for any a, b ∈ CN

in the case of Hermitian Âαβ.
Quantity Qαβ from Equation (21) can be understood as a characteristic determinant of some

auxiliary Hamiltonian Ĥaux: Qαβ = det (EÎ − Ĥaux), where

Ĥaux = Ĥ0 +
M

∑
σ=1

δ̂σ − i
M

∑
σ=1,

σ 6=α

Γ̂σ + iΓ̂α. (23)

This auxiliary Hamiltonian differs from the effective one in Equation (7) only in the sign of Γ̂α,
which represents that the incoming electron flow goes from the α-th lead. Thus, the expression for
the transmission coefficient between the α-th and β-th leads of an arbitrary multi-terminal quantum
conductor can be written in the following form:

Tαβ =

∣∣∣Pαβ
0

∣∣∣2∣∣∣Pαβ
0

∣∣∣2 + Pαβ
1 +

∣∣Qαβ
∣∣2 , (24)

The Equations (23) and (24) represent the main result of our paper.
In two terminal systems, matrix Âαβ is Hermitian [15] and hence we have Pαβ

1 = 0. Transmission in

this case is governed only by P = Pαβ
0 and Q = Qαβ functions. Real roots of P define energies of zero

transmission (antiresonances) and real roots of Q—energies of unity transmission (resonances). In a
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spatially symmetric two-terminal quantum conductor Haux becomes PT -symmetric and at EPs, where its
PT -symmetry breaking takes place, resonances coalesce [15]. Quantity Pαβ

1 of the form of Equation (22)
arises from the non-Hermiticity of Âαβ due to non-zero coupling to more than two leads. One can show in
this case that Pαβ

1 ≥ 0 (see Appendix A for details), which guarantees that 0 ≤ Tαβ ≤ 1 (for real energies).

3.2. Conditions for Perfect and Zero Transmission

According to Equation (24), real roots of Pαβ
0 determine energies of zero transmission Tαβ as in

the two-terminal case. Using Equation (19) one can get the following conditions for DQI to take place
(Tαβ = 0):

u†
α B̂1uβ = 0, (25a)

u†
α B̂2uβ = 0. (25b)

Here B̂1,2 are defined as Hermitian and anti-Hermitian parts of (Âαβ)−1 respectively
(see Equation (A2) in Appendix A).

Perfect (unity-valued) resonances of Tαβ are located at energies, which provide both Pαβ
1 = 0 and

Qαβ = 0. Analyzing Equations (21) and (22) one can conclude that Tαβ = 1 takes place if the following
conditions are fulfilled simultaneously (see Appendix B for details):

u†
α B̂2uα = 0, (26a)

u†
β B̂2uβ = 0, (26b)

u†
α B̂1uα = u†

β B̂1uβ, (26c)

det Âαβ

[
1 +

(
u†

α B̂1uα

)2
−
∣∣∣u†

β B̂1uα

∣∣∣2] = 0. (26d)

These conditions can be easily interpreted. Indeed, matrix B̂2 is responsible for the coupling
with all the rest leads except the α-th and β-th and hence the first two conditions (26a) and (26b)
reflect effective decoupling from all that leads. Equation (26c) requires symmetric coupling to the
α-th and β-th lead and Equation (26d) defines the resonant energy. It is important to check that
conditions (26) do not lead to Pαβ

0 = 0, i.e., u†
α B̂1uβ 6= 0. Otherwise, we would have Pαβ

1 = Qαβ =

Pαβ
0 = 0, which means the presence of a real eigenvalue of the effective Hamiltonian (i.e., real S-matrix

pole), indicating the formation of a bound state in the continuum (BIC) [17]. Transmission coefficient
at BIC, in general, is indeterminate and it can be derived only from the analysis of multiplicity of the
roots of Pαβ

1 , Qαβ, and Pαβ
0 [15].

For illustration consider an example of a simple two-terminal (M = 2) resonant tunnelling
conductor with single state (N = 1) of energy ε0. In this case 1× 1 matrix Â12 = E− ε̃0 is Hermitian
and hence B̂1 = (Â12)−1 = (E− ε̃0)

−1 and B̂2 = 0. Here ε̃0 = ε0 + δ1 + δ2 is the hybridized eigenenrgy
of the state. Therefore, conditions (26a) and (26b) are fulfilled identically. Condition (26c) requires the
equivalent coupling to the leads: γ1 = ±γ2 and condition (26d) requires incident electron energy E to
be equal to ε̃0.

4. Three-Terminal Quantum Conductors: Illustrative Examples

In this section, we will apply the above-proposed formalism to study in detail different
three-terminal systems and the change of their transport properties with the insertion of the third
electrode. In this section we will work within the wide-band limit (WBL) [28] and use notation γα

i
instead of

√
πραγα

i as elements of coupling vectors uα (see general Equation (13)) for simplicity.
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4.1. Suppression of Transmission by the Third Electrode

It is well-known that coupling to electrodes in multi-terminal systems results in suppression of
resonant tunneling in coherent transport [1], which arises from the imaginary part of the electrode
self-energy. In the case of a three-terminal quantum conductor (inset in Figure 1a) consisting of a single
state with energy ε0 (resonant-tunneling transistor) all matrix and vector quantities, which appeared in
general equations in the previous section, has dimension one, i.e., are just numbers. In the wide-band
limit (WBL) [28], when we neglect the energy dependence of lead to conductor couplings γα

i = γα,
one can easily derive expressions for T12 and T13 transmissions:

T12(E) =
4γ2

1γ2
2

(E− ε0)
2 +

(
γ2

1 + γ2
2 + γ2

3
)2 , T13(E) =

4γ2
1γ2

3

(E− ε0)
2 +

(
γ2

1 + γ2
2 + γ2

3
)2 . (27)

From these equations one can see that γ3 can be interpreted as an additional
dephasing/dissipation, which suppresses the lead 1 to lead 2 tunneling. Coupling γ2 acts similarly for
the lead 1 to lead 3 tunneling process. Clearly, γ2/γ3 ratio defines the ratio of transmission coefficients
T12/T13. Figure 1 illustrates Equation (27) for different parameters.

0

0.2

0.4

0.6

0.8

1

T
1

2
(E

),
 T

1
3
(E

)

-5 0 5

(a)

2
γ1 γ2

γ3

3

1
ε0

-10 10
(E - ε0)/γ1

2

(b) (c)

-5 0 5-10 10
(E - ε0)/γ1

2

-5 0 5-10 10
(E - ε0)/γ1

2

Figure 1. Transmission coefficients T12 (blue thick line) and T13 (red thin line) of a single-state quantum
conductor for γ2 = γ1 and γ3 = 0.2γ1 (a), γ2 = 0.2γ1 and γ3 = γ1 (b) and γ2 = γ3 = γ1 (c). Inset in
plot (a): schematic view of the single-state quantum conductor connected to three electrodes.

In the case of a two-state quantum conductor, transmission behavior becomes substantially more
complicated. Consider a two-site model with the following Hamiltonian in an atomic orbital basis

Ĥ0 =

(
ε0 τ

τ ε0

)
, (28)

which is connected equally to two leads (Figure 2a):

u1 = (γ 0)> , u2 = (0 γ)> . (29)

Without the third electrode this system has

P12
0 = 2γ2τ, Q12 = (E− ε0)

2 − τ2 + γ4, (30)

and surely P12
1 ≡ 0. The auxiliary Hamiltonian in this two-terminal configuration is PT -symmetric:

Ĥaux =

(
ε0 − iγ2 τ

τ ε0 + iγ2

)
, (31)

and it can possess an EP at γ2 = τ, which corresponds to the resonance coalescence phenomenon [14].
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2
γ

τ
ε0

γ

γ1 γ2

(a)

3

1

ε0

0

0.2

0.4

0.6

0.8

1

|Q
1

2
(E

)|
, 

P
11

2
(E

)

-1 0 1

(b)

-2 2

(E - ε0)/τ

Figure 2. Schematic view of the two-site quantum conductor connected to three electrodes (a).
Energy dependence of |Q12| in three-terminal (thin solid blue line) and two-terminal (dashed red
line) configurations and P12

1 in three-terminal configuration (thick solid blue line) (b). Parameters
are the following: γ =

√
τ/2, γ1 = 0.2

√
τ, and γ2 = 0.5

√
τ (in two-terminal configurations we set

γ1 = γ2 = 0).

Insertion of the third electrode with coupling vector

u3 = (γ1 γ2)
> , (32)

gives the transmission coefficient T12 of the form Equation (24) with

P12
0 = 2γ2 (τ − iγ1γ2) ,

P12
1 = 4γ2

{[
(E− ε0)

2 + γ4
]

γ2
1 + 2 (E− ε0) γ1γ2τ + γ2

2τ2
}

,

Q12 = (E− ε0)
2 + γ4 + γ2

(
γ2

2 − γ2
1

)
+ i (E− ε0)

(
γ2

1 + γ2
2

)
+ (2iγ1γ2 − τ) τ.

(33)

From Equation (33), one can see that P12
0 is a non-zero constant either with or without the third

electrode and hence DQI is not supposed to take place in this system. Insertion of the third electrode,
however, makes roots of Q12 to be complex, which results in suppression of perfect transmission
resonances. This can be understood as non-spontaneous PT -symmetry breaking of the underlying
auxiliary Hamiltonian induced by the external influence of the third lead. Additionally, we have
P12

1 6= 0 for any real energy, which also decreases resonant transmission maxima. Figure 2b shows
energy dependence of |Q12| in two- and three-terminal configurations and P12

1 in three-terminal
configuration. One can see that with the third electrode insertion Q12 and P12

1 become strictly non-zero
at real energies.

4.2. Quantum Interference Transistor

Resonance coalescence effect and DQI formation were proposed to be an efficient mechanism for
current switching in a quantum interference transistor [29]. It was shown there that these phenomena
take place in a system of two degenerate states of opposite parity (with respect to the mirror symmetry
reflecting source and drain electrodes to each other). Gate was assumed to have only an electrostatic
influence on the system, which resulted in the lifting of degeneracy. However, non-zero coupling to
the third (gate) electrode is almost inevitable in a real system, and, as we have shown above, this leads
to the degradation of interference features in source-to-drain quantum transport. Hence, the question
arises—is it possible to find the configuration of the gate electrode coupling, which would have
minimal impact on the interference transport?
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Consider a two-state system with two degenerate states of different parity, which can be lifted by
the gate electrode potential (Figure 3a). Its Hamiltonian in a molecular orbital basis can be written as

Ĥ0 =

(
ε0 − ∆

2 0
0 ε0 +

∆
2

)
. (34)

Here ε0 is the energy of degenerate states, and ∆ is the energy split induced by the gate.
Different parity of these states manifests itself in the coupling vectors to the source and drain electrodes
(assume the first and the second electrodes for definiteness):

u1 = (γ γ)> , u2 = (γ − γ)> . (35)

Without coupling to the gate electrode taken into account, we have for this system:

P12
0 = 2γ2∆, Q12 = (E− ε0)

2 − ∆2

4
+ 4γ4, (36)

and P12
1 ≡ 0. The auxiliary Hamiltonian is PT -symmetric [29]:

Ĥaux =

(
ε0 − ∆

2 2iγ2

2iγ2 ε0 +
∆
2

)
, (37)

and its EP (i.e., resonance coalescence) takes place at ∆ = 4γ2. The key feature of this system
is that its transmission turns identically into zero in the case of degenerate states as P12

0 ≡ 0 for
∆ = 0. This provides, for instance, theoretically unbounded logarithmic transconductance and Ion/Io f f
ratio [29].

Taking into account non-zero coupling to the gate (third) electrode with

u3 = (γ1 γ2)
> , (38)

provides

P12
0 = 2γ2

[
∆− i

(
γ2

1 − γ2
2

)]
,

P12
1 = γ2

{
∆2 (γ1 − γ2)

2 + 4∆ (E− ε0)
(

γ2
1 − γ2

2

)
+ 4

[
(E− ε0)

2 + 4γ4
]
(γ1 + γ2)

2
}

,

Q12 = (E− ε0)
2 − ∆2

4
+ 4γ4 − 4γ2γ1γ2 +

i
2

∆
(

γ2
1 − γ2

2

)
+ i (E− ε0)

(
γ2

1 + γ2
2

)
.

(39)

Similar to Equation (33), here we also see that the third electrode prevents Q12 and P12
1 from

turning to zero at real energies, which results in suppression of the resonant tunneling. On the other
hand, from Equation (39), one can see that transmission T12 can still turn to zero identically even with
non-zero coupling to the third electrode if γ1 = ±γ2.
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Figure 3. Schematic view of the quantum interference transistor based on a two-level system (a).
Evolution of the transmission coefficients T12 (b), T13 (c) and T23 (d) with varying energy splitting ∆.
One can see that tunneling from source (lead 1) to drain (lead 2) is completely suppressed in degenerate
regime (∆ = 0). Parameters are chosen as following: γ1 = γ2 = 0.5γ.

The presence of tunneling coupling with the gate electrode allows parasitic leakage currents,
which arise from non-zero T13 and T23 transmission coefficients. In the optimal case, for γ1 = γ2 one
can derive that

T13 = 4
γ2

1
γ2 ×

(E− ε0)
2 + 4γ4

∆2 × T12, T23 =
γ2

1
γ2 × T12. (40)

The key difference between T13 and T23 arises from the fact that for γ1 = γ2, the third (gate)
electrode is attached in the same configuration as the first (source) one. Therefore, transmission T23

resembles the transmission T12 as states are coupled with different parity to the third and second
electrodes (as in the case of the first and second electrodes either). On the other hand, coupling to the
first and the third electrodes have the same parity, and hence transmission T13 differs dramatically
from the T12. In the case of γ1 = −γ2 one should swap expressions for T13 and T23, obviously.

From Equation (40) one can see that T23 scales as the square of γ1/γ ratio and hence blocking this
leakage essentially requires γ1 � γ. Transmission T13 has an additional factor, which “blows up” at
∆→ 0. At first sight, it makes source-gate leakage dominant in the “off” state of the transistor. However,
if ∆ = 0 corresponds to low potential on the gate electrode V3 ≈ 0 (see Figure 3a), then leakage current
between source and gate will be negligible regardless of nonzero transmission coefficient because of
zero voltage bias between these electrodes. In the case of γ1 = −γ2, the same argument is applicable,
but the source and the drain electrodes must be swapped. Thus, one can conclude that tunneling
coupling to the gate electrode has the least impact on the interference transport in the quantum
interference transistor, proposed in [29], if the configuration of this coupling is the same as for the
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source electrode but with a much smaller amplitude. Figure 3 illustrates evolution of the transmission
coefficients with varying ∆ for γ1 = γ2 = 0.5γ.

5. Three-Terminal Quantum Conductors: Comparison With Two-Terminal Configuration

5.1. Perfect Transmission

In the case of three-terminal system (M = 3), one can explicitly calculate the inverse of
non-Hermitian matrix Âαβ from Equation (14) in terms of coupling vector u3 and its Hermitian
part Â1 = EÎ − Ĥ0 − ∑3

σ=1 δ̂σ, which also corresponds to the two-terminal (α and β) configuration
except for δ̂3 term. This term reflects the hybridization of the system by the third electrode and can be
neglected in WBL approximation. Without loss of generality we assume α = 1 and β = 2 and get:

(
Â12
)−1

= Â−1
1 −

u†
3 Â−1

1 u3

1 +
(

u†
3 Â−1

1 u3

)2 Â−1
1 u3u†

3 Â−1
1 −

i

1 +
(

u†
3 Â−1

1 u3

)2 Â−1
1 u3u†

3 Â−1
1 . (41)

From Equation (41) one can get exact expressions for Hermitian and anti-Hermitian parts of
(Â12)−1 (i.e., for B̂1,2 correspondingly) and use them to analyze conditions for perfect transmission in
Equations (26). In the case of three-terminal systems conditions in Equations (26a) and (26b) reduce to

u†
1 Â−1

1 u3 = 0, (42a)

u†
2 Â−1

1 u3 = 0. (42b)

Using Equations (42a) and (42b) one can see that conditions in Equations (26c) and (26d) can be
rewritten with Â−1

1 instead of B̂1, i.e., they become the same as in the case of two leads except for
taking into account hybridization from the third electrode (δ̂3). Thus, within WBL approximation we
get that three-terminal quantum conductor has perfect (unity-valued) transmission resonances of T12

transmission for the same energies as in the two terminal case if conditions in Equations (42a) and (42b)
are fulfilled. It should be noted, for clarity, that perfect transmission T12 implies zero transmission T13

because of particle flow conservation. One can check this directly using Equations (42a) and (42b).
Transmission T13 turns to zero, if P13

0 does so. The latter can be written as

P13
0 = 2 det Â1

(
u†

3 Â−1
1 u1 + iu†

2 Â−1
1 u2u†

3 Â−1
1 u1 − iu†

3 Â−1
1 u2u†

2 Â−1
1 u1

)
, (43)

and it is clear that conditions in Equations (42a) and (42b) imply P13
0 = 0.

Using conditions in Equations (42a) and (42b) instead of analyzing full expressions for Pαβ
1 and

Qαβ is typically a much easier task as will be illustrated by the following examples. Single-state
quantum conductor surely cannot possess perfect transmission in the presence of the third electrode
(see Equation (27)). Conditions (42a) and (42b) cannot be satisfied in this case as their left-hand side
is non-zero constant. Then, consider a two-site system with the bare Hamiltonian in Equation (28),
which is coupled to three electrodes by (see Figure 4a)

u1 =
(

γ
(1)
1 γ

(1)
2

)>
, u2 =

(
γ
(2)
1 γ

(2)
2

)>
, u3 =

(
γ
(3)
1 γ

(3)
2

)>
. (44)

Conditions in Equations (42a) and (42b) in this case can be written as

γ
(3)
1

[
(E− ε0) γ

(1)
1 + τγ

(1)
2

]
+ γ

(3)
2

[
(E− ε0) γ

(1)
2 + τγ

(1)
1

]
= 0,

γ
(3)
1

[
(E− ε0) γ

(2)
1 + τγ

(2)
2

]
+ γ

(3)
2

[
(E− ε0) γ

(2)
2 + τγ

(2)
1

]
= 0.

(45)
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These conditions can be considered as a homogeneous system of linear equations with respect
to γ

(3)
1 and γ

(3)
2 . This system has non-trivial solutions if E = ±τ or γ

(1)
1 γ

(2)
2 = γ

(2)
1 γ

(1)
2 . Solution of

Equation (45) in this case must satisfy γ
(3)
1 = ∓γ

(3)
2 . Under these restrictions one can analyze conditions

in Equations (26c) and (26d) and get the full set of conditions, which must be fulfilled simultaneously
to get a perfect transmission resonance in T12:

E = ε0 ± τ, γ
(1)
1 γ

(2)
2 = γ

(2)
1 γ

(1)
2 ,

∣∣∣γ(1)
1 ± γ

(1)
2

∣∣∣ = ∣∣∣γ(2)
1 ± γ

(2)
2

∣∣∣ , γ
(3)
1 = ∓γ

(3)
2 . (46)

Figure 4b shows and example of the transmission coefficient of the system with particular
parameters, which satisfy Equations (46).

1 2

τ

ε
0

3

γ
2

(1)

0

0.2

0.4

0.6

0.8

1

T
1
2
(E
)

-3 -1 0 1 2
(E - ε

0
)/τ

(a) (b)

ε
0

γ
1

(1) γ
1

(2)

γ
2

(2)

γ
1

(3)

γ
2

(3)

-2 3

Figure 4. Schematic view of the two-site system (a). Transmission coefficient T12 with u3 6= 0 (blue solid
line) and u3 = 0 (red dashed line) in configurations, which provide perfect resonance at E = ε0 − τ (b).

Parameters are γ
(1)
1 = −γ

(2)
1 =

√
τ/2, γ

(1)
2 = −γ

(2)
2 =

√
2τ, and γ

(3)
1 = γ

(3)
2 =

√
τ/2.

Consider now another example – a linear three-site quantum conductor (Figure 5a). It has the
following bare Hamiltonian:

Ĥ0 =

ε0 τ 0
τ ε0 τ

0 τ ε0

 . (47)

If two leads are attached in a linear configuration (as shown in Figure 5a for the lead 1 and 2) with

u1 = (γ 0 0)> , u2 = (0 0 γ)> , (48)

then perfect transmission will take place at three resonant energies: E = ε0 ±
√

2τ2 − γ4 and E = ε0 if
γ2 <

√
2τ [14]. These unity transmission resonances coalesce at γ2 =

√
2, which corresponds to an

EP of the underlying auxiliary Hamiltonian. Here we again use γα
i instead of

√
πραγα

i as elements of
vectors uα and treat these couplings as energy-independent constants within WBL approximation.
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Figure 5. Schematic view of the linear three-site system (a). Transmission coefficient T12 with u3 6= 0
(blue solid line) and u3 = 0 (red dashed line) in configurations, which provide perfect resonance at
E = ε0 −

√
2τ2 − γ4 (b), E = ε0 (c), and E = ε0 +

√
2τ2 − γ4 (d).

Insertion of the third lead with the coupling vector

u3 = (γ1 γ2 γ3)
> (49)

results, in general, in suppression of the tunneling resonances between the first and the second
leads. However, one can utilize Equations (42a) and (42b) to figure out what particular coupling
configuration in Equation (49) will allow perfect transmission resonances in T12 with the third electrode
connected to the system. It turns out that perfect transmission takes place at E = ε0 ±

√
2τ2 − γ4

for γ1 = γ3 = ∓γ2τ/
√

2τ2 − γ4 correspondingly and at E = ε0 – for γ2 = 0 and γ1 = γ3. Detailed
analysis of these equations is presented in Appendix C. Figure 5 shows plots of T12 in two- and
three-terminal configurations having a perfect resonance. Surely, T13 = 0 at perfect resonance of T12.
Parameters are chosen as follows: γ2 = 1

2 τ in all cases, γ2
2 = τ in cases (b) and (d), and γ2

1 = τ in case
(c).

5.2. Transmission and Bound States in the Continuum

There is another interesting phenomenon, which takes place in three-terminal configurations
within WBL approximation. The system with a BIC in a two-terminal configuration does not change
its transmission coefficient at BIC if the third electrode is attached. BIC is such a localized state of the
system, which energy lies within the spectrum of continuous states and, for some reason, has zero
matrix elements with them [17]. Suppose that some i-th eigenstate of the system with energy εi
is effectively decoupled from the first and second electrodes, but has a non-zero coupling to the
third one: u1,i = u2,i = 0 and u3,i 6= 0. In this case, the following scalar products can be treated as
energy-independent constants in the vicinity of E = εi:

u†
σ Â−1

1 uσ′ =
N

∑
j=1,

j 6=i

u∗σ,juσ′ ,j

E− ε j
≈ cσσ′ = const, (50)
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where σ = 1, 2 or σ′ = 1, 2. Utilizing Equations (41) and (50) we can deduce that in the vicinity of
E = εi scalar products u†

σ B̂2uσ′ for σ = 1, 2 or σ′ = 1, 2 are linear in E− εi and hence turn to zero
exactly at BIC energy. Moreover, one can show that u†

σ B̂1uσ′ ≈ u†
σ Â−1

1 uσ′ + O(E− εi) for σ = 1, 2 and
σ′ = 1, 2. Exactly at E = εi these products have the same values as in the two-terminal configuration
(for u3 = 0). Thus, from Equations (19)–(22) we see that the transmission coefficient exactly at BIC
energy does not change if the third electrode is inserted.

As an illustrative example for this observation, we consider a three-site model (Figure 6a), which is
known to possess BICs with zero, unity, or intermediate value of the transmission coefficient depending on
particular system parameters values [15]. The Hamiltonian of the isolated model system is the following:

Ĥ0 =

ε0 τa τb
τa ε η

τb η ε

 . (51)

Without loss of generality, we can assume ε0 = 0, i.e., choose it as energy origin.

1 2γ
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Figure 6. Schematic view of the three-site model system (a). Transmission coefficient T12 with u3 6= 0
(blue solid line) and u3 = 0 (red dashed line) in configurations, which provide BIC with different
transmission coefficient values (b–d). Vertical dashed lines indicate BIC energy.

Coupling vectors u1,2 we assume to be of the following form:

u1 = u2 = (γ 0 0)> . (52)

In a two-terminal configuration (u3 = 0) this system has BICs with different transmission
values [15]. For instance, consider the following particular cases:

1. τb = 1
2 τa, ε = τa, and η = 0 give BIC at E = EBIC = ε = τa and transmission T12(EBIC) = 0,

2. τb = ε = η = τa give BIC at E = EBIC = ε− η = 0 and transmission 0 < T12(EBIC) < 1,

3. τb = η = τa and ε = ε0 = 0 give BIC at E = EBIC = ε− η = −τa and transmission T12(EBIC) = 1.
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Detailed discussion of these BICs is presented in Appendix D. Figure 6b–d show corresponding
two-terminal transmission coefficient for γ2 = 1

2 τa. Insertion of the third lead with non-zero coupling
u3 = (γ1 γ2 γ3)

> surely modifies the transmission except for E = EBIC. Exact expressions for
P12

0 , P12
1 , and Q12 for this structure are shown in Appendix D. Blue solid lines in Figure 6b–d show

T12 transmission spectrum for γ2
1 = τa, γ2

2 = 4τa, and γ2
3 = 9τa respectively. Exactly at E = EBIC

transmission does not change with the insertion of the third electrode.

6. Summary and Discussion

In this paper, we have presented a novel approach to a multi-terminal quantum transport
description using non-Hermitian Hamiltonians. A traditional treatment based on scattering matrix
formalism [21,22] made it possible to establish general symmetry relations for conductance and
elucidated the difference between current and voltage probes, which, e.g., can result in formally
negative values of the measured resistance. The problem, which we have addressed in the present paper
and that stands beyond multi-terminal scattering matrix theory [21,22] is that terminal-to-terminal
transparencies depend not only on electrode location but also on the peculiarities of quantum
conductor couplings with electrodes. In particular, a detailed investigation of the molecular
conductance dependence on the location of additional electrode could be of high interest for future
experimental studies.

Our method generalizes the result of [15] and provides exact rules of finding perfect (even in the
presence of extra electrodes) and zero transmission points, which essentially supplements the results
of ab initio modeling of multi-terminal molecular devices (e.g., [18]). In the case of three-terminal
systems, these rules can be simplified dramatically and provide an illustrative correspondence with
two-terminal systems. It should be noted that we have used the tight-binding approach without taking
electron-electron interactions into account. Coulomb interactions depend on the electron density,
and hence it should be low throughout the quantum conductor to make our theory valid. This implies
that couplings to the leads must be sufficiently high to prevent charge accumulation and, e.g., the
Coulomb blockade effect. On the other hand, the tight-binding approach (and WBL approximation
in particular) requires that tunneling matrix elements between the leads and the quantum conductor
should be less than hopping integrals inside the isolated electrode. These two restrictions on the
coupling strength define the domain of applicability of our method. The fact that our theory can
be implemented to single-molecular conductors is proved by the well-established (by comparison
with experiments and ab initio calculations) applicability (at least qualitatively) of a simple Hückel
molecular orbital method [30–32].

Presented results may be of interest for the development of designing principles of active
molecular electronic devices (e.g., transistors), which are under active experimental [33–36]
and ab initio modeling [37–39] study today. Among these investigations, the most relevant to
our theory are those, which consider molecules with complicated coupling to the leads [35,36,39].
In particular, the theory developed in the present paper gives a big deal for making design rules
of molecular electronic devices based on quantum interference effects, such as, for instance, [29,40].
The transmission coefficient based approach for quantum transport treatment is also suitable for the
description of thermoelectric properties of quantum conductors [41,42]. Interference effects in this
context are important as they can provide a great enhancement in thermoelectric effect [43].

In Ref. [29] we have proposed a new molecular quantum interference transistor (MQIT) with
extremely high logarithmic transconductance and high “on”/“off” current ratio, which operates near
EP of an OQS comprised of a molecule and electrodes. Control of this transistor is realized by a
capacitively coupled gate, which is electrically decoupled from the molecule, similarly to a gate in an
ordinary metal-oxide-semiconductor field-effect transistor (MOSFET). A perfect silicon oxide layer
provides electrical isolation in the latter case. Such a dielectric layer is not available for electronics
based on III-V semiconductor heterostructures, where Schottky barrier field-effect transistors (SBFET)
are used. However, unavoidable gate leakage currents in SBFETs are not critical at high frequencies,
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at which MOSFET circuits possess significant power consumption. In molecular electronics formation
of a perfect electrically isolated gate in MQIT will essentially complicate technological flow. Hence
gate leakage currents should be taken into account as well. Here we have applied newly developed
formalism to study simple two-level MQIT with electrically coupled gate and have shown that by a
proper choice of molecule couplings with gate electrodes, leakage currents can be made insignificant
for transistor operation. More complicated and realistic MQIT structures, as well as multi-terminal
current-voltage characteristics at finite bias, will be studied elsewhere.
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Appendix A. Non-Negativity of Pαβ
1

One can express the inverse of non-Hermitian matrix Âαβ given by Equation (14) as(
Âαβ

)−1
= B̂1 + iB̂2, (A1)

where B1,2 are Hermitian and

B̂1 = Â−1
1 − Â−1

1 Âαβ
2 Â−1

1 Âαβ
2 Â−1

1 + ... =
(

Â1 + Âαβ
2 Â−1

1 Âαβ
2

)−1
,

B̂2 = −Â−1
1 Âαβ

2 Â−1
1 + Â−1

1 Âαβ
2 Â−1

1 Âαβ
2 Â−1

1 Âαβ
2 Â−1

1 − ... = −Â−1
1 Âαβ

2

(
Â1 + Âαβ

2 Â−1
1 Âαβ

2

)−1
.

(A2)

The key feature of the matrix B̂2 is that it generates a non-positive definite Hermitian form,
i.e., a† B̂2a ≤ 0 for any a ∈ CM. Indeed, utilizing Equation (13) one can show that

a† B̂2a = −
M

∑
σ=1,σ 6=αβ

a†Ĉuσu†
σĈa = −

M

∑
σ=1,σ 6=αβ

∣∣∣a†Ĉuσ

∣∣∣2 ≤ 0, (A3)

where Ĉ is the Hermitian matrix:

Ĉ = c1 Â−1
1 + c2 Â−1

1 Âαβ
2 Â−1

1 Âαβ
2 Â−1

1 + c3 Â−1
1 Âαβ

2 Â−1
1 Âαβ

2 Â−1
1 Âαβ

2 Â−1
1 Âαβ

2 Â−1
1 + ... (A4)

with following coefficients cn:

cn = (−1)n−1 (2n− 3)!!
(2n− 2)!!

. (A5)

In terms of B̂1,2 we can rewrite Equation (22) in the following form:

Pαβ
1 = 4

∣∣det Âαβ
∣∣2 {[2− u†

β B̂2uβ

] [
u†

α B̂2uαu†
β B̂2uβ − u†

α B̂2uβu†
β B̂2uα

]
+2Re

[
u†

β B̂1uαu†
α B̂2uβ

(
i + u†

β B̂1uβ

)]
− u†

α B̂2uα

[
1 +

(
u†

β B̂1uβ

)2
]
− u†

β B̂2uβ

∣∣∣u†
α B̂1uβ

∣∣∣2} .
(A6)

According to Equation (A3), the matrix −B̂2 generates a non-negative definite Hermitian form
and satisfies the Cauchy-Bunyakovsky-Schwarz inequality:

a† (−B̂2
)

ab† (−B̂2
)

b− a† (−B̂2
)

bb† (−B̂2
)

a = a† B̂2ab† B̂2b− a† B̂2bb† B̂2a ≥ 0 (A7)

for any a, b ∈ CM. Indeed, if a† B̂2a = 0, then according to Equation (A3), a†Ĉuσ = 0 for any σ 6= α, β.
Consequently, one can conclude that a† B̂2b = −∑M

σ=1,σ 6=αβ a†Ĉuσu†
σĈb = 0 for any b ∈ CM and hence
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inequality (A7) turns to equality and still holds true. If a† B̂2a < 0, then one can apply the standard
proof of the Cauchy-Bunyakovsky-Schwarz inequality and go exactly to (A7).

Therefore, substituting a = uα and b = uβ into (A7) one can see, that the first term in Equation (A6)
is non-negative. The rest of the terms in Equation (A6) can also be rewritten using decomposition (A3):

2Re
[
u†

β B̂1uαu†
α B̂2uβ

(
i + u†

β B̂1uβ

)]
− u†

α B̂2uα

[
1 +

(
u†

β B̂1uβ

)2
]
− u†

β B̂2uβ

∣∣∣u†
α B̂1uβ

∣∣∣2
=

M

∑
σ=1,σ 6=α,β

{[
Im
(

u†
βĈuσu†

α B̂1uβe−iφασ

)
−
∣∣∣u†

αĈuσ

∣∣∣]2

+
[
Re
(

u†
βĈuσu†

α B̂1uβe−iφασ

)
−
∣∣u†

αĈuσ

∣∣u†
β B̂1uβ

]2
}
≥ 0.

(A8)

Here φασ = arg
(
u†

αĈuσ

)
. Thus, we get that Pαβ

1 is non-negative in the presence of more than
two leads.

Appendix B. Conditions for Perfect Transmission

According to general expression (24), one can conclude, that perfect (unity-valued) transmission
resonance of Tαβ takes place at energy E = E0 if Qαβ(E0) = 0 and Pαβ

1 (E0) = 0. From Equation (A6)

and the results of Appendix A, one can see that Pαβ
1 consists of two non-negative parts: the first term in

Equation (A6) is the first part and the rest three terms is second one. Hence, condition Pαβ
1 = 0 implies

that both of this non-negative parts must turn to zero simultaneously. The first part can turn to zero if
and only if u†

α B̂2uα = 0 or u†
β B̂2uβ = 0 or uα = xuβ for any x ∈ C. Analyzing the second non-negative

part of Pαβ
1 in each case one can finally formulate the following conditions for Pαβ

1 = 0:


u†

α B̂2uα = 0,[
u†

β B̂2uβ = 0,

u†
α B̂1uβ = 0,{

u†
β B̂2uβ = 0,

u†
α B̂2uα = 0,

uα = xuβ,[
x = 0,

u†
β B̂2uβ = 0.

(A9)

Consider now Q12, which in terms of B̂1,2 matrices can be rewritten from Equation (21) using matrix
determinant lemma [27] as:

Qαβ = det Âαβ
{[

1− iu†
α

(
B̂1 + iB̂2

)
uα

] [
1 + iu†

β

(
B̂1 + iB̂2

)
uβ

]
− u†

β

(
B̂1 + iB̂2

)
uαu†

α

(
B̂1 + iB̂2

)
uβ

}
. (A10)

Applying conditions (A9) to this formula and requiring Q12 = 0, one can derive full conditions
for simultaneous Q12 = 0 and P12

1 = 0, which are shown in Equation (26).

Appendix C. Perfect Transmission in Three-Site Linear Conductor

Using general formalism proposed in Section 3, one can derive transmission coefficient of a
linear system with the Hamiltonian in Euqation (47) in a two-terminal configuration with couplings in
Equation (48) in a general form (24) with

P12
0 = 2γ2τ2, Q12 = (E− ε0)

[
(E− ε0)

2 − 2τ2 + γ4
]

, (A11)
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and P12
1 ≡ 0. Real roots of Q12 define the energy of perfect transmission resonances, which are E = ε0

and E = ε0 ±
√

2τ2 − γ4 in this case. Conditions in Equations (42a) and (42b) for this system result in
the following system of equations:{

(E− ε0)
2 γ1 + (E− ε0) γ2τ + τ2 (γ3 − γ1) = 0,

(E− ε0)
2 γ3 + (E− ε0) γ2τ + τ2 (γ1 − γ3) = 0.

(A12)

From these equations one can derive conditions on the couplings with the third electrode γi to
observe perfect transmission resonances of T12 at E = ε0 or E = ε0 ±

√
2τ2 − γ4. Simple calculations

show that perfect transmission at E = ε0 requires γ1 = γ3 and perfect transmission at E = ε0 ±√
2τ2 − γ4 requires γ1 = γ3 = ∓γ2τ/

√
2τ2 − γ4.

We have derived requirements for the perfect transmission using conditions in Equations (42a)
and (42b). This prevented us from direct analysis of real roots of Pαβ

1 (E) and Qαβ(E) functions with
the presence of the third electrode, which are sophisticated even in such simple system:

P12
1 = 4γ2

(
(E− ε0)

2
[
(E− ε0)

2 + γ4
]

γ2
1 + 2 (E− ε0)

[
(E− ε0)

2 + γ4
]

γ1γ2τ

+
{

γ4γ2
2 + (E− ε0)

2 [γ2
2 + 2γ1 (γ3 − γ1)

]}
τ2 + 2 (E− ε0)

2 γ2 (γ3 − γ1) τ3 + (γ1 − γ3)
2 τ4

)
,

(A13)

Q12 = (E− ε0)
3 + i (E− ε0)

2
(

γ2
1 + γ2

2 + γ2
3

)
+ i
[
γ2γ2 + i (γ1 − γ3) τ

]2

+ (E− ε0)
[
γ4 + γ2

(
γ2

3 − γ2
1

)
+ 2iγ2 (γ1 + γ3) τ − 2τ2

]
. (A14)

Compare Equations (A13) and (A14) with Equation (A12).

Appendix D. Transmission at BIC

We discuss here three particular cases proposed in the main text. Using Equations (19)–(22) we derive
explicit expressions for P12

0 , Q12, and P12
1 in each case and show the equivalence of transmission coefficients

at BIC energy in each particular case. For simplicity we set energy origin to ε0.

Appendix D.1. τb = 1
2 τa, ε = τa, and η = 0

In this case one can get:

P12
0 = 2γ2 (E− τa)

[
i
(

γ2
2 + γ2

3

)
+ (E− τa)

]
, (A15)

P12
1 = γ2 (E− τa)

2
[
(2γ2 + γ3)

2 τ2
a + 4γ1 (2γ2 + γ3) τa (E− τa) + 4γ2

1 (E− τa)
2
]

, (A16)

Q12 = − i
4 (γ2 − 2γ3)

2 τ2
a +

{
iτa
[
γ2

2 + γ2
3 + γ1 (2γ2 + γ3)

]
− 5

4 τ2
a
}
(E− τa)

+
[
i
(
γ2

1 + γ2
2 + γ2

3
)
+ τa

]
(E− τa)

2 + (E− τa)
3 .

(A17)

It is clearly seen from these formulas, that at E = EBIC = τa we have P12
0 (EBIC) = 0, P12

1 (EBIC) = 0
and Q12(EBIC) = − i

4 (γ2 − 2γ3)
2τ2

a , which is nonzero for γ2 6= 2γ3. This leads to T12(EBIC) = 0 for
γ2 6= 2γ3. In two-terminal configuration (for γ1 = γ2 = γ3 = 0) we see from Equations (A15) and (A17)
that P12

1 ≡ 0 and P12
0 (EBIC) = Q12(EBIC) = 0, which indicates that BIC is formed [15]. Multiplicity of

the root at E = EBIC is higher for P12
0 and hence in two-terminal configuration transmission at E = EBIC

is also zero.
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Appendix D.2. τb = ε = η = τa

For this structure one can get:

P12
0 = 2γ2

[
−i (γ2 − γ3)

2 τa + i
(

γ2
2 + γ2

3 + 2iτa

)
E + E2

]
, (A18)

P12
1 = 4γ2E2

[
(−2γ1 + γ2 + γ3)

2 τ2
a + 2γ1 (−2γ1 + γ2 + γ3) τaE + γ2

1E2
]

, (A19)

Q12 = −i (γ2 − γ3)
2 τ2

a − iτaE
[
2γ2

1 + (γ2 − γ3)
2 − 2γ1 (γ2 + γ3)− 2iτa

]
+ i
(
γ2

1 + γ2
2 + γ2

3 + 2iτa
)

E2 + E3.
(A20)

We see, that at E = EBIC = ε − η = 0: P12
0 (EBIC) = −2iγ2 (γ2 − γ3)

2 τa, P12
1 (EBIC) = 0 and

Q12(EBIC) = −i (γ2 − γ3)
2 τ2

a . P12
0 and Q12 are nonzero for γ2 6= γ3 and hence transmission at

E = EBIC is defined by relation between P12
0 (EBIC) and Q12(EBIC), which is independent from the

coupling with the third electrode and hence transmission at this energy is the same for three- and
two-terminal configurations.

Appendix D.3. τb = η = τa and ε = ε0 = 0

In this case we get:

P12
0 = 2γ2

[
−i (γ2 − γ3)

2 τa + i
(

γ2
2 + γ2

3 + 2iτa

)
(E + τa) + (E + τa)

2
]

, (A21)

P12
1 = 4γ2 (E + τa)

2
[
(−2γ1 + γ2 + γ3)

2 τ2
a + 2γ1 (−2γ1 + γ2 + γ3) τa (E + τa) + γ2

1 (E + τa)
2
]

, (A22)

Q12 = −2iτa
[
γ2

1 + γ2
2 − γ2γ3 + γ2

3 − γ1 (γ2 + γ3)
]
(E + τa)

+ i
(
γ2

1 + γ2
2 + γ2

3 + 3iτa
)
(E + τa)

2 + (E + τa)
3 .

(A23)

From these equations one can see, that at E = EBIC = −τa we have Q12(EBIC) = 0, P12
1 (EBIC) =

0 and P12
0 (EBIC) = −2iγ2 (γ2 − γ3)

2 τa, which is nonzero for γ2 6= γ3. Therefore, transmission
in the three-terminal configuration is T12(EBIC) = 1 for γ2 6= γ3. In two-terminal configuration
Equations (A21) and (A23) show that P12

1 ≡ 0 and P12
0 (EBIC) = Q12(EBIC) = 0, which indicates

BIC. Multiplicity of the root at E = EBIC is higher for Q12 and hence in two-terminal configuration
transmission at E = EBIC is also perfect.
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11. Hernandez-Coronado, H.; Krejčiřík, D.; Siegl, P. Perfect transmission scattering as a PT-symmetric spectral
problem. Phys. Lett. A 2011, 375, 2149–2152, doi:10.1016/j.physleta.2011.04.021.

12. Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry.
Phys. Rev. Lett. 1998, 80, 5243–5246, doi:10.1103/PhysRevLett.80.5243.

13. Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947.
14. Gorbatsevich, A.A.; Shubin, N.M. PT-symmetry breaking in resonant tunneling heterostructures. JETP Lett.

2016, 103, 769–773, doi:10.1134/S0021364016120031.
15. Gorbatsevich, A.A.; Shubin, N.M. Unified theory of resonances and bound states in the continuum in

Hermitian tight-binding models. Phys. Rev. B 2017, 96, 205441, doi:10.1103/PhysRevB.96.205441.
16. Kato, T. Perturbation Theory for Linear Operators; Classics in Mathematics; Springer-Verlag:

Berlin/Heidelberg, Germany, 1995.
17. Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljacic, M. Bound states in the continuum.

Nat. Rev. Mater. 2016, 1, 16048, doi:10.1038/natrevmats.2016.48.
18. Saha, K.K.; Lu, W.; Bernholc, J.; Meunier, V. Electron transport in multiterminal molecular devices:

A density functional theory study. Phys. Rev. B 2010, 81, 125420, doi:10.1103/PhysRevB.81.125420.
19. Onipko, A.; Malysheva, L. Manifestation of bound states and coupling to leads in coherent transmission through

multiterminal molecular conductors. Phys. Rev. B 2012, 86, 085413, doi:10.1103/PhysRevB.86.085413.
20. Malysheva, L.; Onipko, A. Coherent transmission in multiterminal molecular conductors. Phys. Status Solidi (b)

2011, 248, 2676–2679, doi:10.1002/pssb.201100127.
21. Büttiker, M. Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett. 1986, 57, 1761–1764,

doi:10.1103/PhysRevLett.57.1761.
22. Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with

application to small rings. Phys. Rev. B 1985, 31, 6207–6215, doi:10.1103/PhysRevB.31.6207.
23. ]Büttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 1986, 33, 3020–3026,

doi:10.1103/PhysRevB.33.3020.
24. Caroli, C.; Combescot, R.; Nozieres, P.; Saint-James, D. Direct calculation of the tunneling current. J. Phys.

C Solid State Phys. 1971, 4, 916.
25. Sokolov, V.V.; Zelevinsky, V.G. Collective dynamics of unstable quantum states. Ann. Phys. 1992, 216, 323–350.
26. Sherman, J.; Morrison, W.J. Adjustment of an Inverse Matrix Corresponding to a Change in One Element

of a Given Matrix. Ann. Math. Stat. 1950, 21, 124–127.
27. Harville, D.A. Matrix Algebra from a Statistician’s Perspective; Springer-Verlag: New York, NY, USA, 1997;

Volume 1.
28. Ryndyk, D.; Gutiérrez, R.; Song, B.; Cuniberti, G. Green function techniques in the treatment of

quantum transport at the molecular scale. In Energy Transfer Dynamics in Biomaterial Systems; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 213–335.

29. Gorbatsevich, A.A.; Krasnikov, G.Y.; Shubin, N.M. PT-symmetric interference transistor. Sci. Rep. 2018,
8, 15780, doi:10.1038/s41598-018-34132-0.

30. Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A.W.; Siddiqui, L.; Datta, S. A self-consistent transport model
for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics.
J. Chem. Phys. 2005, 123, 064707, doi:10.1063/1.1961289.

31. Markussen, T.; Schiötz, J.; Thygesen, K.S. Electrochemical control of quantum interference in
anthraquinone-based molecular switches. J. Chem. Phys. 2010, 132, 224104.

32. Pedersen, K.G.; Strange, M.; Leijnse, M.; Hedegård, P.; Solomon, G.C.; Paaske, J. Quantum interference in
off-resonant transport through single molecules. Phys. Rev. B 2014, 90, 125413.

33. Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.W.; Zheng, J.F.; Pei, L.Q.; Shao, Y.; Li, J.F.; Zhou, X.S.; Chen, J.Z.; et al.
Controlling and Observing Sharp-Valleyed Quantum Interference Effect in Single Molecular Junctions.
J. Am. Chem. Soc. 2018, 140, 17685–17690, doi:10.1021/jacs.8b10450.

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/pssb.201100127


Entropy 2020, 22, 459 21 of 21

34. Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X.; Tang, Y.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X.; Tan, Z.; et al.
Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions
achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369, doi:10.1038/s41563-018-0265-4.

35. Kiguchi, M.; Takahashi, Y.; Fujii, S.; Takase, M.; Narita, T.; Iyoda, M.; Horikawa, M.; Naitoh, Y.;
Nakamura, H. Additive Electron Pathway and Nonadditive Molecular Conductance by Using a Multipodal
Bridging Compound. J. Phys. Chem. C 2014, 118, 5275–5283, doi:10.1021/jp4100262.

36. Sebera, J.; Lindner, M.; Gasior, J.; Meszaros, G.; Fuhr, O.; Mayor, M.; Valasek, M.; Kolivoska, V.;
Hromadova, M. Tuning the contact conductance of anchoring groups in single molecule junctions by
molecular design. Nanoscale 2019, 11, 12959–12964, doi:10.1039/C9NR04071D.

37. Chen, S.; Chen, G.; Ratner, M.A. Designing Principles of Molecular Quantum Interference Effect Transistors.
J. Phys. Chem. Lett. 2018, 9, 2843–2847, doi:10.1021/acs.jpclett.8b01185.

38. Garner, M.H.; Solomon, G.C.; Strange, M. Tuning Conductance in Aromatic Molecules: Constructive and
Counteractive Substituent Effects. J. Phys. Chem. C 2016, 120, 9097–9103, doi:10.1021/acs.jpcc.6b01828.

39. Hansen, T.; Solomon, G.C. When Conductance Is Less than the Sum of Its Parts: Exploring Interference in
Multiconnected Molecules. J. Phys. Chem. C 2016, 120, 6295–6301, doi:10.1021/acs.jpcc.5b11211.

40. Li, Y.; Mol, J.A.; Benjamin, S.C.; Briggs, G.A.D. Interference-based molecular transistors. Sci. Rep. 2016,
6, 33686.

41. Reddy, P.; Jang, S.Y.; Segalman, R.A.; Majumdar, A. Thermoelectricity in Molecular Junctions. Science 2007,
315, 1568–1571, doi:10.1126/science.1137149.

42. Park, S.; Kang, H.; Yoon, H.J. Structure–thermopower relationships in molecular thermoelectrics. J. Mater.
Chem. A 2019, 7, 14419–14446, doi:10.1039/C9TA03358K.

43. Bergfield, J.P.; Solis, M.A.; Stafford, C.A. Giant Thermoelectric Effect from Transmission Supernodes.
ACS Nano 2010, 4, 5314–5320, PMID: 20735063, doi:10.1021/nn100490g.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1021/acs.jpclett.8b01185
http://xxx.lanl.gov/abs/https://science.sciencemag.org/content/315/5818/1568.full.pdf
https://doi.org/10.1021/nn100490g
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multi-Terminal Quantum Conductor
	Transmission Coefficient in Multi-Terminal Quantum Conductor
	Formula for Transmission Coefficient
	Conditions for Perfect and Zero Transmission

	Three-Terminal Quantum Conductors: Illustrative Examples
	Suppression of Transmission by the Third Electrode
	Quantum Interference Transistor

	Three-Terminal Quantum Conductors: Comparison With Two-Terminal Configuration
	Perfect Transmission
	Transmission and Bound States in the Continuum

	Summary and Discussion
	Non-Negativity of P1
	Conditions for Perfect Transmission
	Perfect Transmission in Three-Site Linear Conductor
	Transmission at BIC
	b=12a, =a, and =0
	b===a
	b==a and =0=0

	References

