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Abstract: The Black-Scholes partial differential equation (PDE) from mathematical finance has been
analysed extensively and it is well known that the equation can be reduced to a heat equation on
Euclidean space by a logarithmic transformation of variables. However, an alternative interpretation
is proposed in this paper by reframing the PDE as evolving on a Lie group. This equation can be
transformed into a diffusion process and solved using mean and covariance propagation techniques
developed previously in the context of solving Fokker–Planck equations on Lie groups. An extension
of the Black-Scholes theory with coupled asset dynamics produces a diffusion equation on the affine
group, which is not a unimodular group. In this paper, we show that the cotangent bundle of a Lie
group endowed with a semidirect product group operation, constructed in this paper for the case of
groups with trivial centers, is always unimodular and considering PDEs as diffusion processes on
the unimodular cotangent bundle group allows a direct application of previously developed mean
and covariance propagation techniques, thereby offering an alternative means of solution of the
PDEs. Ultimately these results, provided here in the context of PDEs in mathematical finance may be
applied to PDEs arising in a variety of different fields and inform new methods of solution.
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1. Introduction

The Nobel Prize-winning Black-Scholes Equation [1] is arguably the most well-known partial
differential equation in mathematical finance. The equation rests on a parsimonious option pricing
model that has been fairly successful in informing banks and portfolio managers of the construction
of risk-free hedges. Additionally, the model has since provided the framework for the import of a
variety of tools, such as the theory of stochastic processes, from physics and mathematics. In this paper,
we offer a new Lie group-theoretic interpretation of the Black-Scholes equation by reformulating the
original equation and extensions of it as diffusion processes on Lie groups.

Group-theoretic approaches have been used extensively in the analysis of symmetries of partial
differential equations (PDEs) in mathematical finance [2–4]. One of the central questions there is to
identify the group of transformations of variables that can be applied to the equations that preserve the
structure of the equations while reducing it to a simpler form for analysis and solution. For instance,
the one-asset [2] and in general, the multi-asset Black Scholes equation [5] can be reduced to a heat
equation through a logarithmic transformation of variables.
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In this paper, instead of analysing the symmetry properties of PDEs, we reformulate the PDE as a
diffusion equation on the Lie group. Functions of real parameters are upgraded to functions that take
group elements as their arguments. That is, we start with a linear (parabolic) PDE of the form,

L f (q, t) = 0, (1)

where L is the linear partial differential operator and q is a vector of coordinates that may be chosen
based on how the differential equation is derived. In the case of the Black-Scholes equation and related
asset models considered in this paper, L and q are originally defined in an N-dimensional Euclidean
space. By matching the derivatives in L to Lie derivatives of correctly chosen groups, one can rewrite (1)
as the following linear PDE over the Lie group G,

L̃ f̃ (g(q), t) = 0, (2)

where q parameterizes the group element g ∈ G and f̃ (g(q), t) = f (q, t). The operator L̃ is now
a differential operator consisting of Lie directional derivatives. Such differential equations arise in
bevel-tip needle steering [6,7], error propagation [8,9], DNA statistical mechanics [10], multi-robot
localization [11], stochastic kinematic cart models in SLAM [12] and in image contour completion and
enhancement [13–15].

The benefit of reframing differential equations this way would be that variable-coefficient PDEs of
N variables in RN may reduce to constant-coefficient PDEs on the Lie group G of dimension of at least
N, which can be analysed using techniques developed in [6–12]. These applications motivated the
development of mean and covariance propagation techniques to approximate the solution of diffusion
equations in the special Euclidean group SE(N) and more generally, in unimodular groups [16,17].
Other numerical techniques to solve differential equations on Lie groups, through a generalisation of
Euler and Runge-Kutta schemes have been developed in [18–20].

In this paper, we extend the regime of applicability of mean and covariance propagation
techniques by first considering the groups GL+(1) and GL+(1)× GL+(1) that arise in the one-asset
and two-asset Black-Scholes equations, respectively, and then the affine group, A f f+(1) that arises
in a coupled-asset dynamics extension of the Black-Scholes theory. The application of mean and
covariance propagation to A f f+(1) becomes the main subject of the paper. There exist other methods
to approximately solve PDEs in mathematical finance, such as finite difference methods [21,22],
finite element methods [23] and the Adomian decomposition method [24,25]. In this paper, we also
make a comparison between the mean and covariance propagation technique and a standard finite
difference scheme used to solve the governing equations.

The Lie group A f f+(1) is not unimodular, thereby precluding the direct application of the theory
of mean and covariance propagation used in the solution of diffusion equations on the group. However,
we show that the cotangent bundle group of a Lie group (with a trivial center) is unimodular. Thus,
we analyse diffusion processes on the affine group by matching the diffusion on the affine group with
a degenerate diffusion on the cotangent bundle to which mean and covariance propagation techniques
can be applied.

This paper considers three types of asset dynamics models: one-asset, two-asset and a coupled
asset model. Each of these models give rise to a PDE describing the evolution of the option price
as a function of the asset prices, and are introduced in Section 2. These PDEs in Euclidean space
are reframed as diffusion processes on Lie groups in Section 3. The theory of mean and covariance
propagation in the solution of diffusion processes on Lie groups is reviewed in Section 4. The one-asset
and two-asset Black-Scholes models, which can be trivially solved using the logarithmic transformation
of variables, are used as examples to illustrate the techniques, and thereby sets the ground for the
non-trivial case of a coupled asset model. Since the coupled asset model leads to a diffusion equation
over a non-unimodular group, Section 5 proves that a related structure, the cotangent bundle group of
a Lie group with trivial center, is always unimodular. Section 6 describes the mean and covariance
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propagation over the unimodular cotangent bundle of the affine group, thereby solving the option price
dynamics for the coupled asset model. Section 7 provides some numerical results for the mean and
covariance propagated solution in comparison with finite difference methods. Finally, Section 8 seeks
to demonstrate backward compatibility and completes the analysis by applying mean and covariance
propagation on the cotangent bundle group to the solution of the one-asset Black-Scholes equation.

2. Asset Dynamics Models

In this section, we review the derivation of the well-known one-asset Black-Scholes equation,
the two-asset Black-Scholes equation that evolve with correlated Wiener process, and follow a similar
derivation to develop a coupled asset model.

2.1. One-Asset Black-Scholes Equation

The one-asset Black-Scholes equation is derived from the following Itô stochastic differential
equation [26] governing the dynamics of an asset value a,

da/a = µdt + σdW, (3)

where dW is the increment of a Wiener process, corresponding to random draws from a Gaussian
probability distribution [27,28]. The increment of the Wiener process satisfies the following relations:

〈dW〉 = 0

〈dW2〉 = dt, (4)

and in general for an N-dimensional Wiener increment dW we have,

〈dW〉 = 0

〈dWidWj〉 = dtδij, (5)

where in both cases 〈· · · 〉 denotes the expected value with respect to the underlying probability
distribution function and δij is the Kronecker-delta (δij = 1 if and only if i = j, otherwise δij = 0).
The µ and σ in Equation (3) respectively describe a drift and volatility for the asset price evolution.
The volatility is defined such that σ2a2 is the variance of the random price fluctuation. Equation (3)
is a stochastic differential equation whose solution is a geometric Brownian motion. We emphasise
that the equation in (3) is to be interpreted as an Itô stochastic differential equation. Stratonovich
stochastic differential equations also appear in this paper (see Equation (110) for instance) and will
be distinguished from Itô equations with as, i.e., for a stochastically varying quantity x, a general
one-dimensional Stratonovich stochastic differential equation with Wiener noise would be,

dx = a(x, t)dt + b(x, t) s dW,

for a drift a(x, t) and diffusion coefficient b(x, t). Nevertheless the properties of dW in (4) and of dW
in (5) hold for both Itô and Stratonovich equations.

The option price V = V(a, t) is a function of time t and the underlying asset price a. Using Itô’s
Lemma [29], we have for dV correct to order dt,

dV =
∂V
∂t

dt +
∂V
∂a

da +
1
2

∂2V
∂a2 da2

=

(
∂V
∂t

+ µa
∂V
∂a

+
σ2

2
a2 ∂2V

∂a2

)
dt + σa

∂V
∂a

dW. (6)
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In the Black-Scholes model, there also exists another asset, the bond price, which evolves
deterministically (for a non-stochastic interest rate) as dB = rBdt where r is the risk-free interest
rate [26]. A portfolio Π is constructed as a linear combination of the two assets and can be written as,

Π = ∆a + βB. (7)

This form of Π is due to the fact that the portfolio is assumed to be self-financing with no external
money flows [30]. Banks choose ∆ in order to obtain a zero-risk portfolio [31], i.e., so that d(V + Π)

would have no Wiener noise terms. Assets without stochasticity would evolve at the risk-free interest
rate r and therefore we obtain,

d(V + Π) = r(V + Π) dt, (8)

and using dΠ = ∆dV + βdB, a hedge of the form ∆ = −a∂V/∂a would cancel out the (σa∂V/∂a)dW
term in (6) and therefore make the dynamics of V + Π risk-free. Substituting this hedge into (8) and
using the form of dV in (6) we obtain the one-asset Black-Scholes equation as,

∂V
∂t

+
1
2

σ2a2 ∂2V
∂a2 + ra

∂V
∂a
− rV = 0. (9)

The parameters β and µ do not feature in this equation.

2.2. Two-Asset Black-Scholes Equation

In the two-asset model, one has asset values a and b that evolve with correlated Wiener
processes—this is a specific case of the multi-asset model in [5]. That is,

da/a = µ1dt + σ1dW1

db/b = µ2dt + σ2dW2, (10)

where 〈dW1dW2〉 = ρdt and 〈· · · 〉 represents the expectation. In the two-asset problem, the option
price is V = V(a, b, t). Applying Itô’s Lemma to dV now gives:

dV =

(
∂V
∂t + µ1a ∂V

∂a + µ2b ∂V
∂b + ρσ1σ2ab ∂2V

∂a∂b +
σ2

1
2 a2 ∂2V

∂a2 +
σ2

2
2 b2 ∂2V

∂b2

)
dt + σ1a ∂V

∂a dW1 + σ2b ∂V
∂b dW2. (11)

The portfolio is now Π = ∆1a + ∆2b + βB where ∆1 = −a∂V/∂a and ∆2 = −b∂V/∂b; ∆1 and ∆2

are both chosen such that V + Π experiences risk-free dynamics—very similar to the procedure in the
derivation of the one-asset Black-Scholes equation in the previous section. The two-asset Black-Scholes
equation [32] will then be,

∂V
∂t

+ ra
∂V
∂a

+ rb
∂V
∂b

+
σ2

1
2

a2 ∂2V
∂a2 + ρσ1σ2ab

∂2V
∂a∂b

+
σ2

2
2

b2 ∂2V
∂b2 − rV = 0, (12)

where r is the risk-free interest rate. Like the one-asset Black-Scholes equation, µ1, µ2 and β do not
feature in the two-asset equation.

2.3. Option Price Evolution with Coupled Assets

The evolution equations of the two assets a and b in the two-asset Black-Scholes model (10)
featured correlated Wiener processes. In this section, we imagine a different form of coupling of
the form:

da/a = µ1dt + σ1dW

db/a = µ2dt + σ2dW. (13)
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The evolution of the value of asset a is independent of the evolution of b; a is therefore the ‘leading’
asset value. On the other hand, the drift and variance in the stochastic differential equation for db are
dependent on the current values of the leading asset. Hence b is the ‘trailing’ asset value. One may
imagine this form of dependency when a represents a raw material and b represents a finished good
that makes use of this raw material.

Both da and db are forced by the same Wiener process dW; this implies that σ2/σ1 = (µ2 −
r)/(µ1 − r) for the risk-free interest rate r. This can be derived by using the risk-neutral measure with
the knowledge that all assets evolve with a risk-free interest rate of r in this measure [31]. The option
price is V = V(a, b, t) and applying Itô’s Lemma to dV now gives,

dV =

(
∂V
∂t + µ1a ∂V

∂a + µ2a ∂V
∂b + σ1σ2a2 ∂2V

∂a∂b +
σ2

1
2 a2 ∂2V

∂a2 +
σ2

2
2 a2 ∂2V

∂b2

)
dt +

(
σ1a ∂V

∂a + σ2a ∂V
∂b

)
dW. (14)

We now assume a general hedge of the form Π = ∆1a + ∆2b + βB. Since there is only one Wiener
process dW, removing uncertainty would not be a sufficient condition to determine both ∆1 and ∆2.
Thus, for simplicity, we let ∆2 = 0 which leads to the relationship ∆1 = −∂V/∂a− (σ2/σ1)∂V/∂b.
The governing partial differential equation for V(a, b, t) with two coupled assets would be,

∂V
∂t

+ ra
∂V
∂a

+

[(
µ2

µ1
− σ2

σ1

)
µ1 +

σ2

σ1
r
]

a
∂V
∂b

+
σ2

1
2

a2 ∂2V
∂a2 + σ1σ2a2 ∂2V

∂a∂b
+

σ2
2

2
a2 ∂2V

∂b2 − rV = 0, (15)

where the leading asset/trailing asset coupling between the variables breaks the symmetry between
the assets a and b that existed in (12).

3. Reframing Partial Differential Equations as Diffusion Processes on Lie Groups

The governing PDEs for the three types of asset dynamics models in (9), (12) and (15) can be
re-expressed in terms of Lie derivatives of GL(1)+, GL(1)+ × GL(1)+ and A f f+(1), respectively, by
matching the group parameters to the asset variables. A review of the concept of Lie derivatives is
presented in Section 3.1.

3.1. Preliminary Definitions

Let G be an N-dimensional matrix Lie group with Lie algebra G. Then, let an element g ∈ G be
parameterized as g = g(q) where q ∈ RN , using the notation in [29,33]. The ‘right’ Jacobian JR(g(q))
of the group is defined [34] as the following matrix,

[JR(g(q))] =

[(
g−1 ∂g

∂q1

)∨
, · · · ,

(
g−1 ∂g

∂qN

)∨]
, (16)

and the ‘left’ Jacobian JL(g(q)) is the matrix,

[JL(g(q))] =

[(
∂g
∂q1

g−1
)∨

, · · · ,
(

∂g
∂qN

g−1
)∨]

, (17)

where the square brackets reinforce that we are dealing with a matrix. This is not to be confused with
the ‘right’ and ‘left’ Jacobian determinants that arise in the volume forms of the group, which would
be the determinants of the matrices in (16) and (17), respectively. Note that the ‘right’ Jacobian has the
g−1 appearing on the right whereas the ‘left’ Jacobian has the term on the left. However, the ‘right’
Jacobian is left invariant, i.e., JR(h ◦ g(q)) = JR(g(q)) and the ‘left’ Jacobian is right invariant, i.e.,
JL(g(q) ◦ h) = JL(g(q)), assuming that q parameterizes the whole group G and that these shifts are
permitted in the function domain. Finally, the ∨ operator is defined as a bijection mapping G to RN ,
and vectorizes the matrix element in G. The inverse of the ∨ operator is a ∧ that maps RN to G.
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We make an additional remark regarding the parameterization of the group with q. This is to
say that the whole group (except for a set of measure zero) is parameterized by one coordinate chart.
For instance, for groups such as SO(3) or SE(3) where one may use Euler angles to parameterize
the rotations, there exists a set of measure zero corresponding to the set of Euler angles where
the Jacobian matrices for the parameterization becomes singular. For (α, β, γ) denoting the ZXZ
or ZYZ Euler angles, singularities occur at β = 0 and β = π. Additionally, since a rotation by
(α, β, γ) describes the same rotation as that by (α + 2π, β, γ + 2π), the open coordinate chart will
be (α, β, γ) ∈ (−π, π)× (0, π)× (−π, π), which has a one-to-one correspondence with a subset of
rotations that excludes the rotations at β = 0 and π, and the rotations at α = π and γ = π. The closure
of this coordinate chart will however establish a many-to-one map with the group and parameterize all
group elements. A similar issue exists in the case of using the Iwasawa decomposition to parameterize
SL(2,R) with (θ, λ, ξ) where θ parameterizes the 2D rotation, and (λ, ξ) parameterize the 2× 2 upper
triangular matrix. Here, the coordinate chart would be (θ, λ, ξ) ∈ (−π, π) × R+ × R; yet again,
the closure of this chart will establish a many-to-one map with SL(2,R) and parameterize all group
elements. For other cases, such as using a vector drawn from RN2

to parameterize GL(N) as well as
for the affine group A f f+(1) and the cotangent bundle group of A f f+(1) considered in this paper,
the coordinate chart used parameterizes the entire group.

The operator of the adjoint representation of group G at g ∈ G is given by Ad(g) where Ad(g)X =

gXg−1 for any X ∈ G. When expressed as a matrix, we denote the operator as [Ad(g)]. If Ei for
i = 1, · · · , N forms an N-dimensional orthonormal basis for G, [Ad(g)] is given as,

[Ad(g)] =
[
(gE1g−1)∨, · · · , (gEN g−1)∨

]
. (18)

Orthonormality of the Lie algebra basis is defined here with respect to an inner product of the
form (Ei, Ej) = eT

i ej where E∨i = ei, effectively fixing a metric for G. Using [Ei, Ej] = EiEj − EjEi
to define the Lie bracket, we can also represent the “little ad” operator, where ad(X)Y = [X, Y] for
X, Y ∈ G as,

[ad(X)] =
[
[X, E1]

∨, · · · , [X, EN ]
∨] , (19)

where X ∈ G and Ad(exp(X)) = exp(ad(X)).
For a differentiable function on the group f : G → R, one can construct the right and left Lie

directional derivatives as,

ER
i f (g) =̇

d
dt

f (g ◦ exp(tEi))

∣∣∣∣
t=0

and EL
i f (g) =̇

d
dt

f (exp(−tEi) ◦ g)
∣∣∣∣
t=0

. (20)

In parametric form,

ER f (g(q)) = [ J̃R(q)]−T∇q f̃ (q) and EL f (g(q)) = [ J̃L(q)]−T∇q f̃ (q), (21)

where f̃ (q) = f (g(q)), J̃R,L(q) = JR,L(g(q)) and ∇q = [∂/∂q1, · · · , ∂/∂qN ]
T is the gradient operator

for RN . Here, ‘−T’ represents the inverse transpose operation, i.e., the inverse of the transpose of
the matrix. The Lie directional derivative operators are ER = [ER

1 , · · · , ER
N ]

T and EL = [EL
1 , · · · , EL

N ]
T .

In the sequel, we drop the tildes, as it will be clear from the arguments whether f (g(q)) or f̃ (q) is
considered, and likewise for the Jacobians.

3.2. One-Asset Black-Scholes as a Diffusion on Gl+(1)

The set of positive real numbers equipped with the multiplication operation forms a commutative
(Abelian) group. This is a subgroup of the general linear group of one dimension and is represented
by GL+(1). The basis of the Lie algebra is the number 1 and for a group element a ∈ GL+(1),
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the corresponding element in the Lie algebra is log a. Using (21) for a differentiable function f :
GL+(1)→ R, we obtain,

E f (a) = a
∂ f
∂a

, (22)

where both left and right Lie derivatives yield the same result since the group is Abelian.
Using this relationship, we can rewrite the one-asset Black-Scholes Equation (9) as,

∂V
∂t

+
σ2

2
E2V +

(
r− σ2

2

)
EV − rV = 0, (23)

using the shorthand E2V = E(EV). The variable-coefficient Black-Scholes equation has thus been
transformed to a constant-coefficient equation on GL+(1). Additionally, using time reversal t′ = −t
to convert the backward parabolic equation to a forward parabolic equation and setting V(a, t′) =
u(a, t′)e−rt′ we have,

∂u
∂t′

=

(
r− σ2

2

)
Eu +

σ2

2
E2u, (24)

which is a diffusion equation with drift r− σ2/2 and diffusivity σ2. Here, u = u(a, t′) is interpreted as
a function over GL+(1)×R≥0. Henceforth the term initial condition will be with respect to t′, which
due to time reversal, refers to a final condition with respect to t.

We note that (9) by itself is not a diffusion process. Instead, we obtain a diffusion equation in (24)
only after the time reversal t′ = −t and making the exponential transformation V = u(a, t′)e−rt′ .
Therefore, solving for u(a, t′) indirectly solves for V(a, t′) and solves the Black-Scholes equations.
In subsequent sections, we apply similar transformations, while noting that solutions of such diffusion
equations for u indirectly provides a solution for V.

3.3. Two-Asset Black-Scholes as a Diffusion on Gl+(1)× Gl+(1)

An element g ∈ GL+(1)× GL+(1) parameterized as g = g(a, b) can be represented by a diagonal
matrix as,

g =

(
a 0
0 b

)
. (25)

The Lie algebra of GL+(1)× GL+(1) can be represented by the orthonormal basis,

E1 =

(
1 0
0 0

)
and E2 =

(
0 0
0 1

)
. (26)

The group is Abelian and much like GL+(1), the left and right Lie derivatives coincide for a
differentiable function f : GL+(1)× GL+(1)→ R as,(

E1 f (g)
E2 f (g)

)
=

(
a ∂ f̃ /∂a
b ∂ f̃ /∂b

)
, (27)

where f (g(a, b)) = f̃ (a, b). This allows us to write the two-asset Black-Scholes Equation (12) in terms
of Lie derivatives as,

∂u
∂t′

=

(
r−

σ2
1

2

)
E1u +

(
r−

σ2
2

2

)
E2u +

1
2

(
σ2

1 E2
1 + 2ρσ1σ2E1E2 + σ2

2 E2
2

)
u, (28)

where t′ = −t and V(a, b, t′) = u(g(a, b), t′)e−rt′ . Hence, the solution of (28) allows one to construct
the solution to the two-asset Black-Scholes Equation (12).
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3.4. Option Price Evolution with Coupled Assets as a Diffusion on A f f+(1)

The affine group of the positive real line consists of all (a, b) ∈ R+ ×R that transforms the scalar
x ∈ R to ax + b ∈ R that is, A f f+(1) = GL+(1)nR. An element g ∈ A f f+(1) can be expressed as,

g =

(
a b
0 1

)
. (29)

The group action is a matrix multiplication of g with x = [x, 1]T (where x is expressed in
homogeneous coordinates as x). The Lie algebra of A f f+(1) is two dimensional and spanned by the
orthonormal basis elements E1 and E2,

E1 =

(
1 0
0 0

)
and E2 =

(
0 1
0 0

)
. (30)

Since (a, b) ∈ R+ × R, for X = x1E1 + x2E2 in the Lie algebra of A f f+(1), (x1, x2) ∈ R2. Or
equivalently for a = eα, we would have (α, b) ∈ R2. Using (18), the adjoint representation of A f f+(1)
would be,

[Ad(g)] =

(
1 0
−b a

)
. (31)

An important feature of A f f+(1) is that the determinant of [Ad(g)] is a, which is generally not
equal to 1. This implies that the group is not unimodular. For non-unimodular groups, there exist
distinct left-invariant and right-invariant Haar measures [35,36]. Using (16) and (17), the left and right
Jacobians JL and JR of A f f+(1) expressed as matrices are,

[JL] =

(
1/a 0
−b/a 1

)
and [JR] =

(
1/a 0

0 1/a

)
, (32)

and since det JL 6= det JR the Lie group is not unimodular.
The left and right Lie directional derivatives can be evaluated using (21) for a function f :

A f f+(1)→ R as, (
EL

1 f
EL

2 f

)
=

(
a ∂ f̃ /∂a + b ∂ f̃ /∂b

∂ f̃ /∂b

)
and

(
ER

1 f
ER

2 f

)
=

(
a ∂ f̃ /∂a
a ∂ f̃ /∂b

)
, (33)

where f (g(a, b)) = f̃ (a, b). Therefore, we can now rewrite (15) in terms of Lie derivatives of A f f+(1) as

∂u
∂t′ =

(
r− σ2

1
2

)
ER

1 u +
[(

µ2
µ1
− σ2

σ1

)
µ1 +

σ2
σ1

r− σ1σ2
2

]
ER

2 u + 1
2
(
σ2

1 (ER
1 )

2 + σ1σ2(ER
2 ER

1 + ER
1 ER

2 ) + σ2
2 (ER

2 )
2) u, (34)

where t′ = −t and V(a, b, t′) = u(g(a, b), t′)e−rt′ . Hence, the solution of (34) allows one to construct
the solution to the coupled asset model in Equation (15).

4. Mean and Covariance Propagation for Unimodular Lie Groups

Diffusion equations on unimodular Lie groups, such as (24) and (28) can be solved approximately
using mean and covariance propagation techniques developed in [6–12,16]. This technique would
not be applicable directly on the affine group in the solution of Equation (34) since the group is not
unimodular; instead, the later sections will show how the technique can be modified by converting
(34) to a diffusion over the cotangent bundle of the affine group, which is unimodular. This section
will review the theory of covariance propagation for a general N-dimensional unimodular matrix Lie
group G with Lie algebra G and apply the technique to solve (24) and (28).
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Consider a general diffusion equation for u(g, t) on G in terms of right Lie derivatives as,

∂u
∂t

= −
N

∑
i=1

mi(t)ER
i u +

1
2

N

∑
i=1

N

∑
j=1

Dij(t)ER
i ER

j u, (35)

where the drift vector m(t) = [m1(t), · · · , mN(t)]T and diffusivity matrix D(t) are independent of
g but can be time-dependent in general. Since the equation is a Fokker–Planck equation over a Lie
group [17,33], one can interpret u(g, t) as a probability density (see Appendix B). This analogy also
assumes that u(g, t) is square-integrable in G. Additionally,

∫
G u(g, 0)dg = 1, which also holds true for

all values of time. Here, dg is the Haar measure [35,36].
Given an initial condition u0 = u(g, 0), we aim to propagate the solution to the next time-step

(t = δt) to obtain u(g, δt). In general, knowing u(g, t) we seek to obtain the solution at u(g, t + δt).
The solution at t + δt can be obtained by a group convolution [33] from the solution at t as,

u(g, t + δt) = u(g, t) ∗ u f (g, δt)

=
∫

G
u(h, t)u f (h−1 ◦ g, δt) dh, (36)

where u f (g, δt) is the fundamental solution/Green’s function that propagates the solution over δt.
We recognise that over a sufficiently small δt the fundamental solution evolves in G. Since G can
be bijectively mapped to the Euclidean space RN , an approximate expression for u f (g, δt) would be
a multivariate Gaussian that is a function of the N-dimensional q used to parameterize the group
element g ∈ G. This Gaussian would evolve in RN with a drift of mδt. This drift can be injected on the
group G by an evolution of the form µ(δt) = exp(m∧δt) where ∧maps an element of RN to G [12,17].
The covariance of this Gaussian would be Dδt, which would equal the group-theoretic covariance Σ(δt)
when restricted to small δt. The definitions of the group-theoretic mean, µ(t), and covariance, Σ(t),
would be provided later in (39) and (40), respectively, but here it suffices to note that the group-theoretic
mean and covariance match the mean and covariance defined in Euclidean space RN (see Appendix C)
for small δt, thereby allowing us to construct u f (g, δt) in terms of the group parameters [17,33] as,

u f (g, δt) =
1

(2π)N/2|det Σ(δt)|1/2 exp
(
−1

2
[log(µ(δt)−1 ◦ g)∨]TΣ−1(δt)[log(µ(δt)−1 ◦ g)∨]

)
, (37)

where the log maps the group element to G and ∨maps the element of the Lie algebra to RN . This form
naturally extends to a Gaussian over the group in (47). If u0 = u(g, 0) = δG(gg−1

0 ), which is a group
Dirac delta distribution centred about g0, the distribution at δt remains tightly focused (the rigorous
definition of such a distribution is provided in [9]) and u(g, δt) = u f (g, δt) from (36). The propagated
solution would be,

u(g, nδt) ≈ u0(g) ∗ u(g, δt) ∗ u(g, δt) · · · u(g, δt)︸ ︷︷ ︸
n times

, (38)

which is a specialized case of propagation of probability density using transition probabilities in a
continuous-time Markovian process. We can define the group-theoretic mean µ(t) and covariance Σ(t)
using the following equations [17,33]:∫

G
[log(µ(t)−1 ◦ g)∨]u(g, t) dg = 0. (39)

Σ(t) =̇
∫

G
[log(µ(t)−1 ◦ g)∨][log(µ(t)−1 ◦ g)∨]Tu(g, t) dg, (40)

where [log(µ(t)−1 ◦ g)∨] defines a distance from the mean. Note that
∫

G[log g]∨u(g, t)dg is usually
only approximately equal to log(µ(t))∨ [8]. Similar definitions of mean and covariance are constructed
in [37–39] and alternative definitions of an algebraic covariance have also been discussed in [17,40,41].
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It is possible to obtain expressions for Σ(t) and µ(t) without explicitly solving for u(g, t) using
the concepts of mean and covariance propagation developed in [6–12,16] by using the relation in (38).
For X, Y, Z ∈ G, we have the Baker-Campbell-Hausdorff (BCH) formula:

eZ(X,Y) = eXeY,

where [8,11],

Z(X, Y) = X + Y + 1
2 [X, Y] + 1

12 ([X, [X, Y] + [Y, [Y, X]]) + 1
48 ([Y, [X, [Y, X]]] + [X, [Y, [Y, X]]]) · · · . (41)

Here, [X, Y] = XY−YX, is the Lie bracket in G. Since x = log(eX)∨ and making use of the fact
that [X, Y]∨ = [ad(X)]y we have,

z = x + y +
1
2
[ad(X)]y +

1
12

([ad(X)][ad(X)]y + [ad(Y)][ad(Y)]x) + · · · , (42)

where the expansion in (41) is truncated to second-order with respect to X, Y, i.e., higher order
terms involving [Y, [X, [Y, X]]] and [X, [Y, [X, Y]]], and above are neglected since once substituted
in (39) and (40), they give rise to products of covariances or higher moments, which are assumed
to be negligible. Using the definitions of mean and covariance in (39) and (40) for a convolved
probability density u(g, t + δt) = u(g, t) ∗ u(g, δt), we obtain the following expressions for the mean
and covariance of the convolved distribution correct to second order:

µ(t + δt) = µ(t) ◦ µ(δt), (43)

Σ(t + δt) = Σ(δt) + [Ad(µ(δt)−1)]Σ(t)[Ad(µ(δt)−1)]T + F, (44)

where F captures the second order propagation in the covariance. Its exact form is derived for SE(3)
in [8] and more generally for unimodular groups in [11,33]. In this section, we concentrate on first
order propagation since it admits a closed-form solution.

Successive compositions of µ(δt) using (43) provides the following closed form solution for the
mean, which is obtained by integrating the exponent over time [12] (assuming that the initial condition
is the identity element of the group):

µ(t) = exp
(∫ t

0
m(τ)∧ dτ

)
, (45)

where m(τ) is defined in (35). Setting the initial condition to be the identity element does not lead to a
loss of generality since the solution at any other initial condition can be obtained by convolving the
fundamental solution (37) with a group Dirac delta function at the initial condition. Using Equation (41)
we see that a successive composition becomes an integration in the exponent when the Lie bracket
[
∫ t

0 m(τ)∧dτ, m(δt)∧δt] = 0 [7]; this holds in all examples considered in this paper since m∧ is
time-independent. Approximating Equation (44) to first order and recursively applying Equation (44)
by discretising a domain from 0 to t into n segments with step-size δt and taking the limits n→ ∞ and
δt→ 0, we obtain the following integral [12]:

Σ(t) =
∫ t

0
[Ad(µ(τ)−1)]D(τ)[Ad(µ(τ)−1)]T dτ. (46)

Then, an approximate solution to (35) can be constructed as,

u(g, t) = u0(g) ∗ 1
(2π)N/2|det Σ(t)|1/2 exp

(
−1

2
[log(µ(t)−1 ◦ g)∨]TΣ−1(t)[log(µ(t)−1 ◦ g)∨]

)
, (47)
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where u0(g) is the initial condition. While initial conditions such as that for European put options [22]
can also be considered, we focus on a Dirac delta initial condition centred at the group identity,
u0(g) = δG(g) since the solution for any other initial condition can be constructed by a convolution
using (47). Moreover, the initial condition should be such that u0(g) is square-integrable in G.

4.1. Mean and Covariance Propagation for Diffusion Processes on Gl+(1)

In this subsection, we apply the propagation technique to (23). An initial condition of u0(a) =
δG(a) = aδ(a − 1) is set (here δ(x) is the Euclidean Dirac delta distribution defined for x ∈ R+).
Using (45) and (46), we have µ(t′) = exp(−(r − σ2/2)t′) and Σ(t′) = σ2t′. The expressions are in
terms of reversed time t′ = −t. Substituting these expressions into (47) and noting that this is the
fundamental solution u f (a, t′), we have,

u f (a, t′) =
1

σ
√

2πt′
exp

(
− 1

2σ2t′
[log a +

(
r− σ2

2

)
t′]2
)

, (48)

and the corresponding solution for the one-asset Black-Scholes Equation (9) would be Vf (a, t′) =

u f (a, t′)e−rt′ . The solution obtained from covariance propagation exactly matches the standard
analytical solution obtained after applying a logarithmic transformation x = log a to (9), as described
in Appendix A.

4.2. Mean and Covariance Propagation for Diffusion Processes on Gl+(1)× Gl+(1)

We now apply the propagation technique to (28) with an initial condition of u0(g(a, b)) = δG(g) =
abδ(a− 1)δ(b− 1). Comparing (35) with (28), we have,

m = −
(

r− σ2
1 /2

r− σ2
2 /2

)
and D =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (49)

Then, the mean propagation equation would be,

µ(t′) =

(
exp(−(r− σ2

1 /2)t′) 0
0 exp(−(r− σ2

2 /2)t′)

)
, (50)

and Σ(t′) = Dt′. Substituting these expressions in (47), we obtain the fundamental solution
u f (g(a, b), t′) as,

u f (g(a, b), t′) =
1

2πσ1σ2
√

1− ρ2t′
exp

(
− 1

2σ2
1 σ2

2 (1− ρ2)t′
[σ2

1 l2
2 + σ2

2 l2
1 − 2ρσ1σ2l1l2]

)
(51)

for l1(t′) = log a + (r − σ2
1 /2)t′ and l2(t′) = log b + (r − σ2

2 /2)t′. Propagation yields a solution
that is equivalent to the standard solution obtained after applying the logarithmic transformations
x = log a and y = log b to (12) as described in Appendix A. In summary, mean and covariance
propagation applied to the one-asset and two-asset Black-Scholes models yields results that exactly
match analytical solutions.

4.3. Mean and Covariance Propagation Requires Unimodularity of the Lie Group

Both GL+(1) and GL+(1)× GL+(1) are unimodular Lie groups. That is, the Haar measure dg for
a group G is bi-invariant and is the only ‘natural’ measure (upto an arbitrary scaling by a constant) for
which the following holds,∫

G
f (g)dg =

∫
G

f (g ◦ g0)dg =
∫

G
f (g0 ◦ g)dg =

∫
G

f (g−1)dg, (52)
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for a fixed g0 ∈ G. However A f f+(1) is not a unimodular group, and one can define a right-invariant
as well as a left-invariant Haar measure (but no bi-invariant measure exists). The theory of mean and
covariance propagation in this section implicitly relies on the group being unimodular; this ensures
that there is a unique bi-invariant Haar measure with respect to which a probability density function
can be defined. If the group was not unimodular, a probability density defined with respect to one
measure may not be a density with respect to the other. Therefore, to apply mean and covariance
propagation to obtain the solution for (34), one approach would be to map the diffusion on the group to
a diffusion on a related but unimodular group. In the next section, we show that that cotangent bundle
of a group, when equipped with semidirect product group operation, is unimodular. This property
will be exploited thereon by reinterpreting (34) as a diffusion on the cotangent bundle of the affine
group.

5. Unimodularity of the Cotangent Bundle Group

Let G be an N dimensional matrix Lie group and the Lie algebra G is the tangent space of the
group at identity with N basis vectors, represented by Ei for i = 1, · · · , N. The tangent bundle TG can
be constructed and equipped with a group operation � as,

(TG,�) = G n G. (53)

Similarly, the cotangent bundle, which is the dual space to the tangent bundle is TG∗, and can be
equipped with the group operation � as,

(TG∗,�) = G n G∗, (54)

where there exists a bijection between G and RN and similarly between G∗ and RN . Note that the two
expressions indicate that the tangent and cotangent bundles have been endowed with a semidirect
product. For an element g ∈ G and X ∈ G, the corresponding element in the tangent bundle would be
(g, X) and the group operation in the tangent bundle will be,

(g1, X1)�(g2, X2) = (g1 ◦ g2, Ad(g1)X2 + X1) (55)

where ◦ is the group operation in G and Ad(g1) is the adjoint representation of g1 ∈ G where Ad(g)
is defined such that Ad(g)X = gXg−1 for X ∈ G. If we were to represent Ad(g) as matrix, we have
[Ad(g)] and the coadjoint representation would be [Ad(g)]−T . This is because for X ∈ G and Y ∈ G∗,
we can construct a bijection such that X∨ = x and Y∨ = y where x, y ∈ RN . Note that the ∨ operator
for elements from G and elements from G∗ are different but its usage will be clear from the object
to which it is applied to. The inner product is defined to be (X, Y) = xTy = k, k ∈ R. If we use the
adjoint representation of the group, a typical element of the tangent space would be Ad(g)X and
(Ad(g)X)∨ = [Ad(g)]x. Then, the image of the cotangent space on RN would transform as [Ad(g)]−Ty
since ([Ad(g)]x)T([Ad(g)]−Ty) = k. This motivates the use of [Ad(g)]−T as the dual to the adjoint
representation in (55). Then, for (g, Y) ∈ G n G∗, we have,

(g1, Y1)�(g2, Y2) = (g1 ◦ g2, Ad(g1)
−TY2 + Y1), (56)

where (Ad(g)−TY)∨ = [Ad(g)]−Ty for Y ∈ G∗ and Y∨ = y ∈ RN . Tangent and cotangent bundles,
endowed with these operations have been used before in [42].

A matrix representation can be constructed for both the tangent and cotangent bundles
incorporating the semidirect product as,

G n G .
=

{(
[Ad(g)] x

0T 1

)∣∣∣∣∣ g ∈ G and x ∈ G∨
}

, (57)
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and,

G n G∗ .
=

{(
[Ad(g)]−T y

0T 1

)∣∣∣∣∣ g ∈ G and y ∈ (G∗)∨
}

. (58)

The dimension of the cotangent and tangent bundle group would be 2N provided that the
adjoint representation Ad(G) is N-dimensional. This may not hold in certain cases, such as for
GL(1), where Ad(G) is zero dimensional. More generally, these constructions will result in a
2N-dimensional semidirect product group if the group G has a trivial center. For the affine group
A f f+(1), whose cotangent bundle group will be considered in the paper, this is true. However for
G = GL(N), the center is one-dimensional (consisting of scalar multiples of the identity matrix IN)
and Ad(G) would be N2 − 1 dimensional. We postpone the discussion of constructing the cotangent
and tangent bundle groups for groups with non-trivial centers to a future paper.

5.1. Properties of the Adjoint Operator

The proofs of unimodularity will depend on the properties of the adjoint operator in the tangent
and cotangent bundle group. We present a few properties that will be useful in constructing the proofs
in the later subsections.

5.1.1. [Ad(g)][ad(Ei)][Ad(g−1)] = [ad(Ad(g)Ei)]

Since Ad(g)Ei = gEig−1 and ad(Ei)Ej = [Ei, Ej] = EiEj − EjEi, we can convert the matrix
representation of the operator into its coordinate free form through the ∧ operator. For x ∈ RN where
x∧ = X ∈ G, we have,

([Ad(g)][ad(Ei)][Ad(g−1)]x)∧ = Ad(g)ad(Ei)Ad(g−1)X. (59)

The right-hand side can be simplified as,

Ad(g)ad(Ei)Ad(g−1)X = Ad(g)ad(Ei)(g−1Xg)

= g[Eig−1Xg− g−1XgEi]g−1

= gEig−1X− XgEig−1

= ad(gEig−1)X

= ad(Ad(g)Ei)X.

Hence,
[Ad(g)][ad(Ei)][Ad(g−1)]x = (ad(Ad(g)Ei)X)∨ = [ad(Ad(g)Ei)]x. (60)

This proves that [Ad(g)][ad(Ei)][Ad(g−1)] = [ad(Ad(g)Ei)] since it must hold for all x ∈ G∨.

5.1.2. [ad(Ad(g)Ei)]
∨ = [Ad(g)]ei

The relationship [ad(Ad(g)Ei)]
∨ = [Ad(g)]ei would follow if Ei = e∧i and [ad(Ei)]

∨ = E∨i = ei.
The ∨ operator defined on [ad(Ei)] maps the Lie algebra of the tangent bundle to R2N whereas the ∨
operator acting on Ei maps G to RN . The overloading of the ∨ symbol should not lead to confusion
since the object on which it acts will determine its interpretation.

5.2. Lie Algebra of TG and TG∗

The basis vectors spanning the Lie algebra of the tangent bundle can be obtained by differentiating
an element representation (57) with respect to each of the N variables parameterizing it, at identity.
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The Lie algebra basis can be obtained for the parameters parameterizing the group G as well as for the
parameters parameterizing G as,

Ẽi =

{(
[ad(Ei)] 0

0T 0

)
for i = 1, · · · , N and

(
O ei−N
0T 0

)
for i = N + 1, · · · , 2N

}
. (61)

Note that e∧j−N = Ej−N where Ej−N is a basis of G.
For Ẽi defined to be a basis element of the Lie algebra of (TG,�), the ∨ operator is defined such

that Ẽ∨i = ei where this time i = 1, · · · , 2N and the ∨ operator maps from this Lie algebra to R2N .
A similar definition can also be created for the Lie algebra of the cotangent bundle, (TG∗,�). In this
case, the basis of the Lie algebra can be deduced as,

Ẽi =

{(
−[ad(Ei)]

T 0
0T 0

)
for i = 1, · · · , N and

(
O e∗i−N
0T 0

)
for i = N + 1, · · · , 2N

}
. (62)

Here, Ei ∈ G but e∗i ∈ (G∗)∨, the latter of which is related to the cotangent space at identity.
In general for an element of the Lie algebra of G n G, the vee operator is defined such that,(

[ad(X)] y
0T 0

)∨
=

(
X∨

y

)
, (63)

where X ∈ G and y ∈ G∨. A similar definition exists for the cotangent bundle,(
−[ad(X)]T y

0T 0

)∨
=

(
X∨

y

)
, (64)

where X ∈ G and y ∈ (G∗)∨. The specific ∨ used will be clear from the context in terms of which
argument it is applied to. The Lie algebra for the (co-)tangent bundle group defined this way is only
2N-dimensional for groups with trivial centers.

5.3. Unimodularity of TG and TG∗

Theorem 1. The tangent bundle group (TG,�) = G n G of an N-dimensional Lie group with a trivial center
is a 2N-dimensional unimodular Lie group if and only if the group G is unimodular.

Proof. This can be proven by considering the adjoint representation of an element within the tangent
bundle. The adjoint, Ad(h)Ẽi where h ∈ G n G, is given through matrix notation as,

(Ad(h)Ẽi)
∨ =

(
[Ad(g)] x

0T 1

)
Ẽi

(
[Ad(g)]−1 −[Ad(g)]−1x

0T 1

)
. (65)

Solving this by substituting the two different forms of Ẽi obtained from (61) and using the
relationship that [Ad(g)][ad(Ei)][Ad(g−1)]∨ = [Ad(g)]ei from Sections 5.1.1 and 5.1.2 we obtain,

[Ad(h)] =

(
[Ad(g)] O
∗ [Ad(g)]

)
, (66)

where ∗ denotes a matrix of the same size as [Ad(g)]. The determinant of the adjoint det [Ad(h)]
is (det [Ad(g)])2. A group is unimodular if and only if the absolute value of the determinant of
the adjoint is equal to 1. In this case, it can be seen that G n G would be unimodular if and only if
|det [Ad(g)]| = 1 and dim(Ad(G)) = 2N if and only if Z(G) = e where e is the identity element of G.
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If G has a non-trivial center Z(G), then for a k ∈ Z(G), one can decompose g = h(q1, · · · , qm) ◦
k(qm+1, · · · , qN) such that h and k commute. This is true since one can partition G such that any
g ∈ G can be decomposed into g = h ◦ k where h ∈ FG/Z(G), k ∈ Z(G), and FG/Z(G) ⊂ G is the
‘fundamental domain’ [33] associated with the quotient group G/Z(G). The dimension of Ad(G) will
then be dim(G)− dim(Z(G)) = m. Therefore, the current construction of using Ad(G) to represent
the group G will no longer be faithful when dim(Z(G)) 6= 0 implying that since the theorem and proof
are restricted to the special construction Ad(G)n G, they only hold in their current form for the case
where G has a trivial center and Ad(G)n G is 2N dimensional.

Theorem 2. The cotangent bundle group (TG∗,�) = G n G∗ of an N-dimensional Lie group with a trivial
center is always a 2N-dimensional unimodular Lie group independent of the unimodularity of G.

Proof. We construct a proof in a very similar way as that in Theorem 1. Here, we obtain the adjoint
representation of the cotangent bundle in the following form for h ∈ G n G∗,

[Ad(h)] =

(
[Ad(g)] O
∗ [Ad(g)]−T

)
. (67)

Since det [Ad(h)] = 1, this ensures that the cotangent bundle group is unimodular, independent
of the unimodularity of G. The restriction to trivial centers follows from the fact that Ad(G)−T is only
N-dimensional for groups with trivial centers and therefore Ad−T(G)n G will only have the same
number of dimensions as the cotangent bundle with such a restriction.

6. Option Price Evolution with Coupled Assets as a Diffusion Process on the Cotangent Bundle
of the Affine Group

Now we apply the results from the previous section to construct the cotangent bundle of the
affine group. The motivation is to re-express Equation (34) in terms of the Lie derivatives of the
cotangent bundle of A f f+(1). An element h from the cotangent bundle of the affine group, h ∈
Ad(A f f+(1))−T nR2, can be expressed in the following form using (31) and (58),

h =

 1 b/a x
0 1/a y
0 0 1

 , (68)

where (a, b, x, y) ∈ R+ × R3. Using (62), the orthonormal basis of the Lie algebra of this group,
expressed in matrices, is

Ẽ1 =

 0 0 0
0 −1 0
0 0 0

 , Ẽ2 =

 0 1 0
0 0 0
0 0 0

 , Ẽ3 =

 0 0 1
0 0 0
0 0 0

 and Ẽ4 =

 0 0 0
0 0 1
0 0 0

 . (69)

For X = x1Ẽ1 + x2Ẽ2 + x3Ẽ3 + x4Ẽ4, we have (x1, x2, x3, x4) ∈ R4, and hence we can construct
a bijection from the Lie algebra to R4 such that Ẽ∨i = ei for i = 1, 2, 3, 4. We argue that although
the number of dimensions is doubled when we consider the cotangent bundle, this has the benefit
of making the group unimodular. To see this, consider the left and right Jacobians of the cotangent
bundle group:

[
J̃L
]
=


1/a 0 0 0
−b/a 1 0 0
by/a −y 1 0
y/a 0 0 1

 and
[

J̃R
]
=


1/a 0 0 0

0 1/a 0 0
0 0 1 −b
0 0 0 a

 (70)
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Then, we observe that det J̃R = det J̃L = 1/a, implying unimodularity. The adjoint of the affine
cotangent bundle [Ad(h)] is,

[Ad(h)] =


1 0 0 0
−b a 0 0
by −ay 1 b/a
y 0 0 1/a

 , (71)

where det [Ad(h)] = 1, as expected. For completeness, [ad(X)] for X = ∑4
i=1 xi Ẽi is,

[ad(X)] =


0 0 0 0
−x2 x1 0 0

0 −x4 0 x2

x4 0 0 −x1

 . (72)

The left and right Lie derivatives are,
ẼL

1 f
ẼL

2 f
ẼL

3 f
ẼL

4 f

 =


a ∂ f̃ /∂a + b ∂ f̃ /∂b− y ∂ f̃ /∂y

∂ f̃ /∂b + y ∂ f̃ /∂x
∂ f̃ /∂x
∂ f̃ /∂y

 and


ẼR

1 f
ẼR

2 f
ẼR

3 f
ẼR

4 f

 =


a ∂ f̃ /∂a
a ∂ f̃ /∂b
∂ f̃ /∂x

(b/a) ∂ f̃ /∂x + (1/a) ∂ f̃ /∂y

 , (73)

where f (h(a, b, x, y)) = f̃ (a, b, x, y). We now observe from (33) and (73) that ẼR
1 = ER

1 and ẼR
2 = ER

2 ,
which allows us to rewrite (34) in terms of the cotangent bundle group Lie derivatives as,

∂u
∂t′ =

(
r− σ2

1
2

)
ẼR

1 u +
[(

µ2
µ1
− σ2

σ1

)
µ1 +

σ2
σ1

r− σ1σ2
2

]
ẼR

2 u + 1
2
(
σ2

1 (ẼR
1 )

2 + σ1σ2(ẼR
2 ẼR

1 + ẼR
1 ẼR

2 ) + σ2
2 (ẼR

2 )
2) u, (74)

which is a degenerate diffusion over the affine cotangent bundle group. We denote the ‘master’
function as, u = u(h(a, b, x, y), t), and ũ = ũ(a, b, t) as the marginalised version of this ‘master’
function marginalised over the variables x and y.

6.1. Mean and Covariance Propagation for Diffusion Processes in the Cotangent Bundle of A f f+(1)

Since Ad(A f f+(1))−T nR2 is unimodular, the theory of mean and covariance propagation can
be applied directly from Section 4 to solve (74). The initial condition is u0(h(a, b, x, y)) = δG(h) =

aδ(a− 1)δ(b− 1)δ(x)δ(y) where µ(0) would be the 2× 2 identity matrix and the mean propagation
equation would be,

µ(t′) =

 1 −k2(ek1t′ − 1)/k1 0
0 exp(k1t′) 0
0 0 1

 , (75)

for k1 = r− σ2
1 /2 and k2 =

(
µ2
µ1
− σ2

σ1

)
µ1 +

σ2
σ1

r− σ1σ2
2 .

Comparing (74) with (35), we have,

D =


σ2

1 σ1σ2 0 0
σ1σ2 σ2

2 0 0
0 0 0 0
0 0 0 0

 , (76)

which is a singular matrix, implying that this is a degenerate diffusion over the cotangent bundle
group. The covariance propagation equation is then,
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Σ(t′) =

(
Σ̃(t′) O2

O2 O2

)
, (77)

such that,

Σ̃(t′) =

(
σ2

1 t′ [σ1σ2 − κσ2
1 ]I1(t′) + κσ2

1 t′

[σ1σ2 − κσ2
1 ]I1(t′) + κσ2

1 t′ [σ2
1 κ2 − 2σ1σ2κ + σ2

2 ]I2(t′) + 2[σ1σ2κ − σ2
1 κ2]I1(t′) + σ2

1 κ2t′

)
, (78)

where κ = k2/k1, I1 = (ek1t′ − 1)/k1 and I2 = (e2k1t′ − 1)/(2k1). Noticeably Σ(t′) is singular, but we
treat this issue by writing,

Σ(t′) = lim
ε→0

Σε(t′) = lim
ε→0

(
Σ̃(t′) O2

O2 εI2

)
, (79)

where I2 is the 2×2 identity matrix. Then, u f (h(a, b, x, y), t′) can be written as:

u f (h, t′) = limε→0

(
1

(2π)2|det Σε(t′)|1/2 exp
(
− 1

2 [log(µ(t′)−1 ◦ h)∨]TΣ−1
ε (t′)[log(µ(t′)−1 ◦ h)∨]

))
. (80)

For the affine cotangent bundle, it is possible to obtain a closed-form expression for log(µ(t′)−1 ◦
h)∨. Any µ(t′) ∈ Ad(A f f+(1))−T nR2 can be expressed in the following form,

µ(t′) =

1 b′/a′ 0
0 1/a′ 0
0 0 1

 , (81)

using the expression of h in (68) and where a′ and b′ are functions of t′. Then, one has,

log(µ−1 ◦ h)∨ =


− log(a′/a)

− log(a′/a)(b− b′)/(a− a′)
F1

F2

 , (82)

where,

F1 = x +

(
(a′b− b′a)

a− a′
+

aa′ log(a/a′)(b− b′)
(a− a′)2

)
y (83)

F2 =
aa′ log(a/a′)

a− a′
y. (84)

The derivations of these expressions are provided in Appendix D. For convenience of notation,
we express the first two components of log(µ(t′)−1 ◦ h)∨ as log(µ(t′)−1 ◦ h)∨ and the third and fourth
components with F so that we have,

log(µ(t′)−1 ◦ h)∨ =

(
log(µ(t′)−1 ◦ h)∨

F

)
. (85)

Substituting this form into (80) and taking the limit ε→ 0, we obtain,

u f (h, t′) = 1
(2π)|det Σ̃(t′)|1/2 exp

(
− 1

2 [log(µ(t′)−1 ◦ h)∨]TΣ̃−1(t′)[log(µ(t′)−1 ◦ h)∨]
)

δ(F1)δ(F2), (86)

where δ(· · · ) is the Dirac delta function. Additionally, we re-express δ(F1)δ(F2) in terms of δ(x)δ(y)
as,

δ(F1)δ(F2) =

∣∣∣∣ a− a′

aa′ log(a/a′)

∣∣∣∣ δ(x)δ(y), (87)
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which can be derived by calculating the Jacobian determinant of the system of Equations in (83)
and (84). We note that the variables x and y are extraneous to the original problem and we aim to
marginalise the distribution u f (h(a, b, x, y), t′) from (80) to ũ f (a, b, t′) as,

ũ f (a, b, t′) =
∫
R

∫
R

u f (h(a, b, x, y), t′) dx dy. (88)

Using (87) and (86), we have,

ũ f (a, b, t′) = 1
(2π)|det Σ̃(t′)|1/2 exp

(
− 1

2 [log(µ(t′)−1 ◦ h)∨]TΣ̃−1(t′)[log(µ(t′)−1 ◦ h)∨]
) ∣∣∣ a−a′

aa′ log(a/a′)

∣∣∣ , (89)

which is the fundamental solution to (74).

6.2. Normalisation of Probability Distribution Functions on the Affine Cotangent Bundle Group

For the affine cotangent bundle group, we can define a general Gaussian as,

u(h, t′) = c(Σ) exp
(
−1

2
[log(µ−1(t′) ◦ h)∨]TΣ−1[log(µ−1(t′) ◦ h)∨]

)
, (90)

for h ∈ A f f+(1)nR2, where a general normalisation factor c(Σ), which is a function of the covariance
Σ, is used. In the previous section, we used a factor of the form, c(Σε) = |det Σ−1

ε |1/2/(2π)N/2 for
N = 4 in the affine cotangent bundle group (prior to marginalisation; see Equation (80)). However,
this is only correct for small covariances and assuming that the determinant of the group Jacobian (70) is
sufficiently close to 1. The goal of this section is to derive a higher order correction to this normalisation
factor for the affine cotangent bundle group. To do so, we first convert to exponential coordinates so
that for an arbitrary element g ∈ A f f+(1)nR2,

log(g)∨ = q =


α

β

γ

φ

 , (91)

where q = [α, β, γ, φ]T is the exponential coordinate parameterization of the group. Then, the right
Jacobian of the group defined in (16) for this coordinate system would be

[JR]exp =


(1/a)∂a/∂α 0 0 0
(1/a)∂b/∂α (1/a)∂b/∂β 0 0

∂x/∂α− b∂y/∂α ∂x/∂β ∂x/∂γ ∂x/∂φ− b∂y/∂φ

a∂y/∂α 0 0 a∂y/∂φ

 , (92)

where the use of (a, b, x, y) makes contact with the earlier parameterization in (68); expressing α, β, γ

and φ as functions of (a, b, x, y) we have,

α(a) = log a,

β(a, b) =
log a
a− 1

b,

γ(a, b, x, y) = x + by
(

1
a− 1

− log a
(a− 1)2

)
,

φ(a, y) =
a log a
a− 1

y. (93)
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Then, we have,

det Jexp =
1
eα

∂a
∂α

∂b
∂β

∂x
∂γ

∂y
∂φ

=
(eα − 1)2

α2eα
, (94)

where since the cotangent bundle group is unimodular, we have dropped the R subscript noting that
det JR = det JL independent of the parameterization. Expanding det Jexp to small α we have,

det Jexp = 1 +
1
12

α2 +O(α4). (95)

We can also write this relation as,

det Jexp(q) ≈ 1− 1
2

qTWq, (96)

for

W =


−1/6 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 . (97)

Since to O(α4),

exp
(
−1

2
qTWq

)
≈ 1− 1

2
qTWq, (98)

we have
det Jexp ≈ exp(−1

2
qTWq). (99)

Now if we consider the integral of (90) over the cotangent bundle group,∫
G

u(h, t′) dh = 1, (100)

and make the substitution g = µ−1 ◦ h, we can rewrite (100) as,

∫
G

c(Σ) exp
(
−1

2
qTΣ−1q

)
dg = 1, (101)

by making use of the unimodularity of the cotangent bundle and noting that log(g(q))∨ = q for a
parameterization in terms of the exponential coordinates q. Thus,

∫
G

c(Σ) exp
(
−1

2
qTΣ−1q

)
dg =

∫
q

c(Σ) exp
(
−1

2
qTΣ−1q

)
det Jexp(q) dq

≈ c(Σ)
∫

q
exp

(
−1

2
qT(Σ−1 + W)q

)
dq, (102)

where we use the relationship for the determinant of the Jacobian in (99). Equating (102) to the number
1 and noting that the integral evaluates to (2π)

N
2 /|det (Σ−1 + W)|1/2, we have,

c(Σ) ≈ |det (Σ−1 + W)| 12
(2π)2 . (103)

In the context of the degenerate diffusions on the affine cotangent bundle group that arise in the
coupled asset model, we have,

c(Σ̃) ≈ |det (Σ̃−1 + W̃)| 12
(2π)

, (104)



Entropy 2020, 22, 455 20 of 35

for

W̃ =

(
−1/6 0

0 0

)
. (105)

We also note that the sign of the non-zero element of W̃ is negative. Whereas, all terms of Σ̃−1

are positive. This suggests that at a sufficiently large covariance, it is possible that c(Σ̃) = 0 as a
consequence of the current approximation. While this was not observed for the small covariances used
in this paper, this suggests an opportunity to use a different method of approximating the integral,

∫
q

c(Σ) exp
(
−1

2
qTΣ−1q

)
det Jexp(q) dq,

by using the following general relation for q ∈ RN [29,43]:

∫
q

qTWq exp
(
−1

2
qTΣ−1q

)
dq = (2π)N/2 tr(WΣ)

|det Σ−1| 12
, (106)

where tr(· · · ) is the trace operator. Nevertheless, in this paper we do not pursue this approximation
and instead use the result in (104) assuming that the eigenvalues of Σ̃−1 are sufficiently large (which is
the case for the range of parameters used in the numerical simulations in the subsequent sections).

7. Numerical Results for Option Price Evolution with Coupled Assets

We solve the PDE in (74) by four methods: (1) Finite difference method (implicit and explicit),
(2) first order propagation, (3) second order propagation and (4) Euler–Maruyama integration of the
underlying stochastic differential equations. The theory of second order covariance propagation has
not yet been introduced for A f f+(1)nR2, and will also be described in this section. All simulations
were performed using MATLAB R2019a on a 2.7 GHz Dual-Core Intel Core i5 processor. The CPU
time to run 10 time steps of second order propagation, explicit finite difference method and implicit
finite difference method was 18.94 s, 0.99 s and 11.55 s (assuming that the finite difference matrices are
constructed before-hand), respectively; however, if the matrix logarithms are evaluated analytically
rather than numerically—which is possible for the affine cotangent bundle group (82)—the CPU time
for first order propagation reduces to 0.30 s for 10 time steps.

7.1. Finite Difference Method

The 2D finite difference scheme was implemented on a rectangular a–b grid with second-order
accuracy. Explicit and implicit schemes were constructed, using the forward and backward Euler
scheme, respectively. A time-step of 10−6 units was used for the explicit scheme and a time-step of
10−3 units for the implicit scheme. A smaller time-step was used for the explicit method to ensure
stability. A grid spacing of approximately 4.92× 10−3 units along a and 5.24× 10−3 units along b
was used. The simulation domain was chosen to best capture the distribution while ensuring that
the boundaries B were sufficiently far from the mode of the distribution. This was to ensure that
the Dirichlet boundary condition of ũ(a, b)|B = 0 could be set. A Dirac delta initial condition was
approximated using a circular Gaussian with a standard deviation equal to twice the grid spacing
along a.
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7.2. Euler–Maruyama Integration of Underlying Stochastic Differential Equations

It is possible to convert a Fokker–Planck equation over an N-dimensional Lie group to a stochastic
differential equation in the Lie algebra. A Fokker–Planck equation for a probability density of the form
u(g, t) in the group G with a drift of m(t) and diffusivity D(t) is,

∂u
∂t

= −
N

∑
i=1

mi(t)ẼR
i u +

N

∑
i,j=1

Dij(t)ẼR
i ẼR

j u, (107)

where ẼR
i is a right directional Lie derivative in G. From [17,29], we recognise that the stochastic

differential equation described by this Fokker-Planck equation on the Lie algebra G would be of
the form,

dx̃ = m(t)dt + B(t)dW , (108)

where dW is a vector of increments of N uncorrelated Wiener processes, W1, · · · , WN , corresponding
to random draws from a Gaussian with zero mean and variance dt, and BBT = D. Equation (108) can
be interpreted either as a Stratonovich or Itô equation since the diffusion term B is independent of x̃.
Since x̃ ∈ G∨, this process occurs in the Lie algebra of G. This process can then be injected on to the
group [17] as,

g(t + dt) = g(t) ◦ exp(dx̃∧), (109)

thereby defining a stochastic process on G. If we were to parameterize the group elements with a vector
q ∈ RN such that dx̃ = [ J̃R(q)]dq where [ J̃R(q)] is the right Jacobian matrix, we obtain a Stratonovich
stochastic differential equation in the parameter space RN as,

dq = [ J̃R]
−1(m(t)dt + B(t) s dW), (110)

where s emphasises that this is a Stratonovich equation. For the cotangent bundle group of the
affine group, dq = [da, db, dx, dy]T and the form of [ J̃R] is provided in (70). Matching (107) with (74),
we obtain,

m = −


(r− σ2

1 /2)
(µ2/µ1 − σ2/σ1)µ1 + σ2r/σ1 − σ1σ2/2

0
0

 , (111)

and,

B =
1√

σ2
1 + σ2

2


σ2

1 σ1σ2 0 0
σ1σ2 σ2

2 0 0
0 0 0 0
0 0 0 0

 . (112)

Using the form of [ J̃R] from (70) and the expressions for m and B from (111) and (112), we have
the following Stratonovich stochastic differential equations for a, b, x, y:

da
db
dx
dy

 =


a(m1dt + B11 s dW1 + B12 s dW2)

a(m2dt + B21 s dW1 + B22 s dW2)

0
0

 , (113)

where dx = 0 and dy = 0 highlight the degenerate nature of the stochastic differential equation.
However, to implement an Euler-Maruyama integration in parameter space, we require the stochastic
differential equations to be expressed as Itô equations; the distinction between the Itô and Stratonovich
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form of a stochastic differential equation is especially important here since the diffusivity is now a
function of a. The Itô version of the equations is thus,


da
db
dx
dy

 =


a
(
(m1 +

1
2 (B2

11 + B2
12))dt + B11dW1 + B12dW2

)
a
(
(m2 +

1
2 (B21B11 + B22B12))dt + B21dW1 + B22dW2

)
0
0

 , (114)

where the terms 1
2 (B2

11 + B2
12) and 1

2 (B21B11 + B22B12) correct for the drift. Equivalently, instead of
solving (114), it is also possible to obtain an evolution in parameter space by projecting the stochastic
evolution of g(a(t), b(t), x(t), y(t)) in the cotangent bundle (109) on to the space of parameters
(a, b, x, y). This is because for any g(t) ∈ A f f+(1)nR2 we have,

g(t) = g(a(t), b(t), x(t), y(t)) =

1 b(t)/a(t) x(t)
0 1/a(t) y(t)
0 0 1

 , (115)

which determines a unique point in a stochastic trajectory in parameter space (a(t), b(t), x(t), y(t)).
Due to the degenerate nature of the diffusion process, there is no evolution in the parameters (x, y).
This method of obtaining the stochastic process in parameter space, although equivalent in principle
to that obtained by integrating (114), is henceforth referred to as an Itô-Gangolli method since it makes
use of the McKean-Gangolli injection [17] and numerically solves the stochastic differential equations
in the Lie algebra of the group (108) by an Euler-Maruyama integration.

The group-theoretic covariance and mean of the probability density function u(g, t) were
deduced from the ensemble generated by (109) on the group using the methods in [8,33]. That is,
the discrete version of (39) can be obtained by setting the sampled probability density to be
us(g, t) = 1

N ∑Ns
i=1 δG(gg−1

i ) for a total of Ns samples. Here, δG(g) is the group Dirac delta function.
A similar substitution in (40) gives the sample covariance. Thus, the sampled mean µs(t) and
covariance Σs(t) are,

Ns

∑
i=1

[log(µs(t)−1 ◦ gi(t))]∨ = 0, (116)

Σs(t) =
1

Ns

Ns

∑
i=1

[log(µs(t)−1 ◦ gi(t))∨][log(µs(t)−1 ◦ gi(t))∨]T . (117)

In the context of the Euler–Maruyama integration, Ns is the total number of sample paths and the
averaging is performed at each time slice t. The value of gi(t) is obtained from the evolution process
in G described in (109). One would expect that for large Ns, µs(t) and Σs(t) will approximate the
corresponding mean and covariance of the solution of (74) to the extent that the exact solution remains
a Gaussian on the cotangent bundle group. Hence, the results from the Euler-Maruyama integration of
a large number of sample paths can serve as a baseline truth to compare results against. Note that (116)
needs to be solved iteratively by beginning with the following guess solution,

µ0
s (t) =

Ns

∑
i=1

[log(gi(t))]∨, (118)

and the mean at the (j + 1)th iteration can be computed using,

µ
j+1
s (t) = µ

j
s(t) ◦ exp

(
1

Ns

Ns

∑
i=1

[log(µj
s(t)−1 ◦ gi(t))]

)
, (119)
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where we observe that 1
Ns

∑Ns
i=1[log(µj

s(t)−1 ◦ gi(t))] quantifies an error that goes to zero once the mean
converges. This converged value is substituted as µs(t) in (117) to obtain the sampled covariance.
In the simulations, Ns = 30,000 and a time-step of 10−3 units was used. After generating the ensemble
of sample paths, a continuous probability distribution was created in (a, b) space by kernel density
estimation using a Gaussian kernel. This kernel density estimated probability distribution was used as
a baseline to compare against finite difference and propagation solutions (shown later in the contour
plots of Figures 3 and Figures 6).

7.3. Second Order Propagation for A f f+(1)nR2

The mean propagates by (43) where µ(δt) = exp(m∧δt) for m = −[k1, k2]
T using the definitions

in (75). Using (72) and (42) and substituting it in the definition of covariance in (40), we have the
following expression for second-order covariance propagation [11,33]:

Σ(t + δt) = A + B + F(A, B), (120)

where,

A = [Ad(µ(δt)−1)]Σ(t)[Ad(µ(δt)−1)]T ,

B = Dδt,

F(A, B) =
1
4

C +
1

12
(P + PT + Q + QT), (121)

for

C = ∑4
i,j=1[ad(Ẽi]B[ad(Ẽj]Aij , P =

(
∑4

i,j=1[ad(Ẽi][ad(Ẽj]Aij

)
B and Q =

(
∑4

i,j=1[ad(Ẽi][ad(Ẽj]Bij

)
A.

Much like the case for first order propagation, only the first 2 × 2 subspace of Σ(t′) is non-zero,
corresponding to Σ̃(t′). A time-step of 10−3 units was used in second order propagation. Figure 1
depicts the convergence of the error in Σ(t′) with respect to time-step. The baseline truth in this case
was Σs(t′) sampled from the ensemble of paths generated in the Euler-Maruyama integration (117).
The parameters used in this study were: σ1 = 0.1, σ2 = 0.05, r = 3, µ1 = 1 and µ2 = 2. To compare the
covariances, the metric in (122) was used.

Figure 1. Convergence of second order propagated Σ with reducing time-step, relative to the sample
standard deviation Σs(t′). The horizontal axis shows the reversed time t′ from 0.1 to 0.7 units.
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7.4. Results

For the numerical simulations, we consider the PDE in (74) with two sets of parameters, Sl : {σ1 =

0.1, σ2 = 0.05, r = 3, µ1 = 1, µ2 = 2} and Sh : {σ1 = 1, σ2 = 0.5, r = 3, µ1 = 1, µ2 = 2}; the set of
parameters Sl describes a scenario where diffusion of asset price is low and Sh describes a scenario
where the diffusion is relatively large. Since the values of µ1, µ2 and r are same in both cases, the values
of σ1 and σ2 will be used to distinguish these two sets. The constraint σ2/σ1 = (µ2 − r)/(µ1 − r) was
used to fix the ratio σ2/σ1 in both cases. Additionally, the initial condition is a Dirac delta distribution
at the identity element of the cotangent bundle group of A f f+(1).

Firstly, we show the differences between first and second order group-theoretic covariance
propagation for the large diffusion scenario (Sh) in Figure 2. The error in covariance is plotted as a
relative deviation using the following error metric,

Error (t′) =
||Σ(t′)− Σs(t′)||
||Σs(t′)||

, (122)

where || · · · || denotes the Frobenius matrix norm, Σs(t′) is the sampled covariance from (117) and
Σ(t′) is either the first or second order propagated covariance.

The relative error in mean was evaluated in a similar fashion:

Error (t′) =
||µ(t′)− µs(t′)||
||µs(t′)||

, (123)

where µs(t′) is the sampled mean from (116) and µ(t′) is either the first or second order propagated
mean. For the set of parameters describing ‘large diffusion’ (parameter set Sh) the relative error
in the mean was approximately 0.1 to 0.2% and first order and second order mean propagation
were indistinguishable. Furthermore, in the case of ‘small diffusion’ (parameter set Sl), the error in
covariance was approximately 0.4 to 1.2% and with minimal difference between first order and second
order propagated results; finally, the relative error in mean for this set of parameters was in the order
of 0.02% and again with no difference between first and second order propagation. Only approximate
values are given since this range of error is within the variability of the sampled mean and covariance
itself, which are used as the baseline.

Figure 2. Relative error comparing Σ(t′) at a given time-step with the sampled covariance Σs(t′) for
parameter values σ1 = 1 and σ2 = 0.5, representing a scenario with large diffusion.



Entropy 2020, 22, 455 25 of 35

We now proceed to compare the results from first order and second order propagation with
those from finite-difference methods, relative to the probability density function obtained from
the Itô-Gangolli method used to indirectly solve the stochastic differential equations in (114).
The probability distribution corresponding to the ensemble of points (a, b) ∈ R+ ×R in parameter
space was considered as the ground truth for the following numerical studies. One can then estimate
the mean and covariance of this ground truth at time t′ by,

µs(t
′) =

1
Ns

Ns

∑
i=1

qi (124)

Σs(t′) =
1

Ns

Ns

∑
i=1

(qi − µ(t′))(qi − µ(t′))T (125)

for Ns sample paths and qi = [ai(t), bi(t)]T . Note that these are the expressions for the mean and
covariance defined in Euclidean space (see Appendix C). It is important to emphasise that here we are
not comparing on the basis of the group-theoretic mean and covariance but rather on the basis of a mean
and covariance defined in R+ ×R3. Since the solution from propagation (followed by marginalisation)
or finite difference methods would yield a probability density over the affine cotangent bundle group,
it is important to convert these results to an equivalent probability density function on parameter
space. That is, if f (g, t) is a probability distribution on the affine cotangent bundle,∫

G
f (g, t) dg =

∫
q

f̃ (q, t) det J(q) dq = 1, (126)

and ˜̃f (q, t) = f̃ (q, t) det J(q) would be a probability distribution in parameter space R+ ×R3. In the
special case of degenerate diffusion for the coupled asset model, ˜̃f (q, t) is a probability distribution
in the Euclidean half-space R+ × R. The mean and covariance of such a distribution can then be
evaluated as,

µ(t) =
∫

q
q ˜̃f (q, t) dq (127)

Σ(t) =
∫

q
(q− µ)(q− µ)T ˜̃f (q, t) dq. (128)

For q = [a, b]T ; we also have det J(q) = 1/a from (70). The mean and covariance defined this way
is evaluated for the finite difference and propagation solution (based on (89) but using the higher-order
normalisation factor from (104)) and compared against the sampled mean and covariance obtained
from the ground truth in (124,125).

7.4.1. Small Diffusion: σ1 = 0.1, σ2 = 0.05

Contour plots were generated for first order propagation, second order propagation, explicit and
implicit finite difference methods. The baseline probability density was smoothed by a kernel density
estimation procedure using a Gaussian kernel, which was used as the ground truth for the contour
plots to qualitatively assess the shape of the distribution. These are shown at 300 time steps into the
simulation in Figure 3.

The poor performance of the finite difference solution relative to the propagation solution is
also evident in Figure 4. In this figure, the relative error is measured with respect to the sampled
covariance (125) and calculated using the same formula in (122), but where Σ(t′) is the covariance in
terms of parameters (a, b) from (128).



Entropy 2020, 22, 455 26 of 35

Figure 3. Contour plots at 300 time steps into the simulation (t′ = 0.30) for the small diffusion scenario,
showing the close match between the first order and second order propagation against the ground
truth (kernel estimated probability density) but a worse match for the finite difference solutions.

Figure 4. Relative error in covariance: Comparison between first order propagation, second order
propagation and explicit and implicit finite difference (inset) for the small diffusion scenario.
The propagation results nearly coincide and therefore cannot be distinguished in the plot.

The relatively poor performance of the finite difference solution is because the covariance is very
small (but not zero) such that one observes spurious oscillations in the finite difference solution (see
Figure 5). Negative values of ũ f (a, b, t) are artefacts of the discretisation. In simulating the evolution
of distributions with low covariance, a finite difference solution requires a very fine mesh near the
mode of the distribution to avoid such artefacts whereas a propagated solution requires no such
discretisation in (a, b) space and automatically avoids these issues. Nevertheless, the relative error in
mean, measured through a Euclidean norm, was approximately 0.2 to 0.4% for both propagation and
finite difference simulations.
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Figure 5. Finite difference solution (explicit) at 450 time steps (t′ = 0.45) showing spurious oscillations
due to the small covariances in the small diffusion scenario.

7.4.2. Large Diffusion: σ1 = 1, σ2 = 0.5

Contour plots were generated for first order propagation, second order propagation, explicit and
implicit finite difference methods. These are shown at 300 time steps into the simulation in Figure 6.

Figures 7 and 8 show the mean and covariance evaluated using (127) and (128) compared relative
to (124) and (125). The error in covariance was measured by a relative Frobenius norm and the relative
error in mean was measured using a Euclidean norm defined as,

||ε||
||µs||

=

√
εTε

µT
s µs

, (129)

for ε = µ− µs and µs is the sampled mean (124).

Figure 6. Contour plots at 300 time steps into the simulation (t′ = 0.30) for the large diffusion scenario,
with the kernel density estimated probability distribution used as the ground truth.
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Figure 7. Relative error in mean: Comparison between first order, second order propagation and finite
difference methods (explicit and implicit) for the large diffusion scenario. The propagation results
nearly coincide and therefore cannot be distinguished in the plot.

Figure 8. Relative error in covariance: Comparison between first order, second order propagation and
finite difference methods (explicit and implicit) for the large diffusion scenario.

Mean and covariance propagation when applied to the coupled asset model tend to yield results
with lower error when the covariances are small, in line with the original assumptions made to derive
the technique. Additionally, covariance propagation is more suitable in dealing with Dirac delta
initial conditions than a finite difference method. Another advantage of the propagation technique as
opposed to a finite difference solution is that there is no grid involved: one effectively has a solution
that is not discretized in the (a, b) domain and only requires a temporal discretization (for the second
order propagation) or no discretization at all (for the first order propagation where the solution can be
written in closed-form). Finally, a synergy of the two methods would be useful in spanning a broader
range of covariances than either method can handle on its own.

8. Backward Compatibility of Propagation on the Cotangent Bundle with the One-Asset
Black-Scholes Equation

In this final section, we consider reframing the one-asset Black-Scholes equation as a diffusion
process on the affine cotangent bundle group. This is possible because the Lie derivative of GL+(1) (22)
can also be represented by Ẽr

1 from (73). Hence, we can write (24) in terms of the affine cotangent
bundle group Lie derivatives as,
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∂u
∂t′

= (r− σ2

2
)ẼR

1 u +
σ2

2
ẼR

1 u. (130)

By first order propagation, we know that the mean is (assuming an identity initial condition),

µ(t′) = exp(−(r− σ2

2
)Ẽ1t′) =

1 0 0
0 exp((r− σ2

2 )t′) 0
0 0 1

 . (131)

The diffusion matrix is now,

D =


σ2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (132)

and,

Σ(t′) =
∫ t′

0
[Ad(µ−1(τ)]D[Ad(µ−1(τ)]T dτ =


σ2t′ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , (133)

since [Ad(µ(t′)−1)] and D are both diagonal. Similar results can also be obtained numerically using
second order propagation for both mean and covariance. Following the discussion in Section 6.1,
we construct a Gaussian on the cotangent bundle of the form,

u f (h(a, b, x, y), t′) = 1
σ
√

2πt′
exp

(
−1

2σ2t′ [log(µ(t′)−1 ◦ h)∨]T [log(µ(t′)−1 ◦ h)∨]
)

δ(Fb)δ(F1)δ(F2), (134)

where using the form of µ(t′) in (81) we have,

µ(t′) =

1 0 0
0 1/a′ 0
0 0 1

 , (135)

so that,

Fb = − log(a′/a)
a− a′

b (136)

F1 = x +

(
a′

a− a′
+

aa′ log(a/a′)
(a− a′)2

)
by (137)

F2 =
aa′ log(a/a′)

a− a′
y, (138)

and log(µ(t′)−1 ◦ h)∨ = log(µ(t′)−1 ◦ h)∨ · e1. Then we can show that,

δ(Fb)δ(F1)δ(F2) =
δ(b)δ(x)δ(y)

det J′
=

1
aa′

(
a− a′

log(a′/a)

)2

δ(b)δ(x)δ(y) (139)

by constructing a Jacobian matrix J′ from the system of equations in (136)–(138) and using its
determinant det J′ to normalise the Dirac delta function. Marginalising over the variables b, x, y,
we obtain the solution for the one-asset Black-Scholes equation given by propagation on the affine
cotangent bundle as,
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u f (h(a, b, x, y), t′) =
1

σ
√

2πt′
exp

(
−1

2σ2t′
[(r− σ2

2
)t′ + log a]2

)
1

aa′

(
a− a′

log(a′/a)

)2

. (140)

It is important to note that the solution in (140) differs from (48) by the Jacobian factor 1/det J′ and
therefore is not an exact solution. However we see that for small values of ε = (a− a′)/a′, 1/det J′ ≈ 1
to O(ε2). In this case, it is also possible to compare the propagated result with the analytical solution
for the Black-Scholes equation. We make this comparison for Sl : {r = 3, σ = 0.5} representing a
small diffusion scenario and Sh : {r = 3, σ = 1} representing a large diffusion scenario, at t′ = 0.30
and show the plots in Figures 9 and 10. Moreover, the higher-order normalisation factor in (104) is
used to normalise the propagated result in (140) instead of 1/σ

√
2πt′. We see a closer match with the

analytical solution for the small diffusion scenario.

Figure 9. Plot of the analytical and propagated solution to the converted 1D Black-Scholes equation
in (130), ũ f (a, t′), for the small diffusion case (σ = 0.5, r = 3 and t′ = 0.3). Both first order and second
order propagation results coincide.

Figure 10. Plot of the analytical and propagated solution to the converted 1D Black-Scholes equation
in (130), ũ f (a, t′), for the large diffusion case (σ = 1, r = 3 and t′ = 0.3). Both first order and second
order propagation results coincide.
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9. Conclusions

Reframing PDEs in RN as diffusion processes on Lie groups offers an alternative method to solve
PDEs by using mean and covariance propagation techniques developed previously in the context of
Fokker–Planck equations on Lie groups [6–10,12]. In the case of asset dynamics from mathematical
finance, the method yields the exact solution for the one-asset and two-asset problems by matching
the Lie derivatives of the one-asset and two-asset Black-Scholes equations with the Lie derivatives
of GL+(1) and GL+(1)× GL+(1), respectively; this trivially reduces to the logarithmic coordinate
transformation that converts these equations to heat equations.

While using the apparatus of mean/covariance propagation on Lie groups is undue for the
one-asset and two-asset Black-Scholes equations, the matching is especially useful for the model of
option price evolution under coupled asset dynamics introduced in the paper where the logarithmic
coordinate transformation characteristic of the one-asset and two-asset Black-Scholes PDE can no
longer be applied. Instead, we solve the equation by matching the derivatives with the Lie derivatives
of A f f+(1). We provide proofs of the unimodularity of the cotangent bundle of a Lie group, and
exploit this property to perform a mean/covariance propagation on the cotangent bundle of A f f+(1).

The mathematical apparatus developed can be applied to different PDEs in mathematical finance,
such as those arising from stochastic volatility models or other forms of asset coupling in multi-asset
models, and to linear convection-diffusion equations in transport theory, to name a few. Due to the
unimodularity of the cotangent bundle group, the Lie group to which the derivatives are matched with
need not be unimodular. Additionally, subsequent research can also be directed towards extending
the cotangent bundle group construction presented here to groups with non-trivial centers, and to a
general stability analysis of propagation schemes.
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Appendix A. Standard Solution of the Black-Scholes Equation

The one-asset Black-Scholes equation (9) can be solved exactly by first substituting t′ = t,
and V = u(a, t′)e−rt′ followed by a = ex. These substitutions give us the following constant-coefficient
one-dimensional diffusion equation:

∂ũ
∂t′

= (r− σ2

2
)

∂ũ
∂x

+
σ2

2
∂2ũ
∂x2 , (A1)

where u(a, t′) = ũ(x, t′). This form is consistent with the square-integrability condition used to derive
the covariance propagation results in Section 4. Equation (A1) can be solved using the one-dimensional
Fourier transform to yield the following solution,

ũ(x, t′) = ũ(x, 0) ∗ 1

σ
√

2πt′
exp

(
−(x−

(
σ2/2− r

)
t′)2

2σ2t′

)
(A2)

where ∗ is the one-dimensional convolution operator and u(a, 0) is the initial condition. If the initial
condition is a Dirac delta distribution centered at a0 we have,
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u f (a, t′) =
1

σ
√

2πt′
exp

(
− 1

2σ2t′
[log a− log a0 + (r− σ2

2
)t′]2

)
, (A3)

which is the Green’s function for the one-asset Black-Scholes equation.
A similar procedure can be followed for the two-asset model (12) as well where we have V =

u(a, b, t′)e−rt′ . Then substituting a = ex and b = ey we obtain for ũ(x, y, t′) = u(a, b, t′),

∂ũ
∂t′

= (r−
σ2

1
2
)

∂ũ
∂x

+ (r−
σ2

1
2
)

∂ũ
∂y

+ ρσ1σ2
∂2ũ

∂x∂y
+

σ2
1

2
∂2ũ
∂x2 +

σ2
2

2
∂2ũ
∂y2 . (A4)

The solution to Equation (A4) would be,

ũ(x, y, t′) = ũ(x, y, 0) ∗ 1
2πσ1σ2

√
1−ρ2t′

exp
(
− 1

2σ2
1 σ2

2 (1−ρ2)t′
(σ2

1 L2
2 + σ2

2 L2
1 − 2ρσ1σ2L1L2)

)
, (A5)

where L1 = x + (r − σ2
1 /2)t′ and L2 = y + (r − σ2

2 /2)t′. Substituting x = log a and y = log b and
using the initial condition u(a, b, 0) = δ(a− a0)δ(b− b0) we have,

u f (a, b, t′) =
1

2πσ1σ2
√

1− ρ2t′
exp

(
− 1

2σ2
1 σ2

2 (1− ρ2)t′
(σ2

1 l2
2 + σ2

2 l2
1 − 2ρσ1σ2l1l2)

)
, (A6)

where l1(t′) = log a + (r− σ2
1 /2)t′ − log a0 and l2(t′) = log b + (r− σ2

2 /2)t′ − log b0 where u f (a, b, t′)
is the Green’s function for the two-asset Black-Scholes equation.

Appendix B. The Solution of a Diffusion Equation on a Unimodular Lie Group Is a
Probability Density

Consider the diffusion equation for u(g, t) on an N-dimensional unimodular Lie group G of
the form,

∂u
∂t

= −
N

∑
i=1

mi(t)ER
i u +

1
2

N

∑
i=1

N

∑
j=1

Dij(t)ER
i ER

j u. (A7)

If we let P =
∫

G u dg and integrating both sides of (A7) with respect to the bi-invariant Haar
measure dg, we have,

∂P
∂t

= −
N

∑
i=1

mi(t)
∫

G
ER

i u dg +
1
2

N

∑
i=1

N

∑
j=1

Dij(t)
∫

G
ER

i ER
j u dg. (A8)

If u and ER
i u are ‘well-behaved’ in that their absolute values and the square of the functions

integrate to a finite value over the group then, by integration by parts, both integrals on the
right-hand-side vanish and we are left with ∂P/∂t = 0 [17], which is the statement that the total
probability (correct to a constant normalisation factor) is conserved. That is, if the initial condition
u(g, 0) is a probability density, u(g, t) will also be a probability density.

Appendix C. Mean and Covariance in RN

For a probability density function ũ(q, t) where q ∈ RN , the mean µ(t) and covariance Σ(t) are
defined as, ∫

RN
(q− µ(t))ũ(q, t) dq =̇ 0, (A9)

Σ(t) =̇
∫
RN

(q− µ) (q− µ)T ũ(q, t) dq. (A10)
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If the probability density function was instead a function of g ∈ G, i.e., u(g, t) such that ũ(q, t) =
u(g(q), t), then a natural generalisation of the distance from the mean, (q − µ) in RN , would be
log(µ−1 ◦ g) in the Lie algebra, for µ ∈ G.

Appendix D. Derivation of Equation (82)

The expression in (82) can be derived by first recognising that the matrix exponential of an N × N
matrix A is given by the following infinite series,

exp A = IN +
∞

∑
n=1

An

n!
, (A11)

where IN is the identity matrix. The problem of evaluating log(µ−1 ◦ h) can be rewritten as finding the
A such that exp A = µ−1 ◦ h. Since A must be in the Lie algebra of the affine cotangent bundle group,

A =

0 α γ

0 β Γ
0 0 0

 . (A12)

Exponentiating (A12) using the series in (A11), we have,

exp A =

1 α(1 + ∑∞
n=2

1
n! βn−1) γ + αΓ ∑∞

n=2
1
n! βn−2

0 exp(β) Γ(1 + ∑∞
n=2

1
n! βn−1)

0 0 0

 . (A13)

Matching exp A with µ−1 ◦ h, where h is given by (68) and the general expression for µ is provided
in (81), we obtain the following set of equations:

exp(β) = a′/a, (A14)

α

(
1 +

1
β

∞

∑
n=2

βn

n!

)
=

b− b′

a
, (A15)

Γ

(
1 +

1
β

∞

∑
n=2

βn

n!

)
= a′y, (A16)

γ +
αΓ
β2

∞

∑
n=2

βn

n!
= x− b′y. (A17)

These four equations can be solved for α, β, γ, Γ by using exp(β) = 1 + ∑∞
n=1(βn/n!). Then,

applying the ∨ operator from (64) on (A12), one obtains (82).
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