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Abstract: In this paper, we consider an optimal control problem in the equilibrium thermodynamics
of gases. The thermodynamic state of the gas is given by a Legendrian submanifold in a contact
thermodynamic space. Using Pontryagin’s maximum principle, we find a thermodynamic process in
this submanifold such that the gas maximizes the work functional. For ideal gases, this problem is
shown to be integrable in Liouville’s sense and its solution is given by means of action-angle variables.
For real gases considered to be a perturbation of ideal ones, the integrals are given asymptotically.

Keywords: measurement; information gain; real gases; optimal control; Pontryagin’s maximum
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1. Introduction

The problem of optimal control of thermodynamic processes has been of wide interest since the
19th century when a classical work of Carnot [1] paved the way for investigation of optimal heat
engines. A number of works is devoted to constructing heat engines with maximal efficiency in case
of linear heat transfer laws (see [2,3]). In [3], the problem of optimal control was investigated by
means of Pontryagin’s maximum principle, which is formulated in [4] and is also described in [5].
In a relatively recent series of works [6], a non-equilibrium thermodynamic system is presented as a
union of equilibrium subsystems with linear heat transfer laws between each pair of subsystems and a
work of such system is maximized. Volumes of subsystems are considered to be control parameters,
while state variables are entropies of subsystems. Thermodynamic optimization in some engineering
problems is elaborated for example, in [7], and power optimization for irreversible thermodynamic
cycles is studied in [8].

In the present work, we formulate thermodynamics as a theory of measurement of random
vectors, namely extensive variables. This observation leads us to the definition of thermodynamic
states as Legendrian and Lagrangian manifolds. This approach goes back to classical work [9] and is
also reflected in papers [10,11]. Legendrian and Lagrangian manifolds are equipped with Riemannian
structures and one of distinguishing points of this work is an observation that these structures naturally
appear in measurement. This geometrical representation of thermodynamic states allows us to use
Pontryagin’s maximum principle to find optimal thermodynamic process maximizing the work
functional. One of the main results of this paper is that a Hamiltonian system turns out to be integrable
in Liouville’s sense and we provide its exact solution. We also consider the case of real gases in
virial approximation and provide commuting up to linear terms of virial expansion integrals of the
Hamiltonian system for real gases.
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The paper is organized as follows. In Section 2, we show relations between thermodynamics
and measurement of random vectors. In Section 3, we describe Legendrian manifolds and geometric
structures on them for gases in the form convenient for further optimal control problem statement.
In Section 4, we state and solve the optimal control problem for ideal gases and construct asymptotics
of commuting integrals for real ones.

2. Measurement and Thermodynamics

In this section, we briefly describe a link between thermodynamics and measurement of random
vectors. Namely we show that thermodynamics can be seen as a measurement theory of extensive
variables. Moreover, such a consideration leads to the notion of Legendrian manifolds representing
any thermodynamic state and various geometric structures on it, in particular, Riemannian structures
responsible for applicability conditions for state equations. These structures, as we shall see below,
play a crucial role in control problems on Legendrian manifolds. More comprehensive discussion can
be found in [12] and references therein.

2.1. Minimal Information Gain Principle

Let (Ω,A, p) be a discrete probability space, i.e., Ω = {ω1, . . . , ωk} is a set of elementary events,
A is a σ-algebra on Ω and p is a probability measure, p = {p1, . . . pk}, where pi = p(ωi). Let q =

{q1, . . . , qk} be another probability measure equivalent to p. It means that measures p and q have
the same zero measure sets. Introduce the surprise function as a random variable sp : A → R by
determining its values on elementary outcomes as follows:

sp(ωi) = − ln pi, i = 1, k. (1)

Due to (1), we have relations sp(Ω) = 0, sp(∅) = +∞, therefore the notion “surprise” is justified.
The average S(p) of the surprise function sp with respect to the measure p is

S(p) = −
k

∑
i=1

pi ln pi. (2)

Please note that formula (2) coincides with the Shannon’s definition of entropy. If we change
measure p to measure q, then we get the changing of the surprise function:

s(p, q) = sq − sp = ln
(

pi
qi

)
,

and therefore the average of s(p, q) with respect to measure p called Kullback-Leibler divergence [13]
or information gain is

I(p, q) =
k

∑
i=1

pi ln
(

pi
qi

)
. (3)

Generalization of (3) on the case of arbitrary probability space (Ω,A, p) is of the form

I(p, q) =
∫
Ω

ln
(

dp
dq

)
dp, (4)

and if dp = ρdq, where ρ is the density, then formula (4) takes the form

I(ρ) =
∫
Ω

ρ ln ρdq.

Let W be a vector space over R, dim W = n < ∞ and let X : (Ω,A, q) → W be a random
vector. Let x ∈ W be a fixed vector, supposed to be a result of the measurement of random vector
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X, i.e., EX = x. If the initial measure q does not give us the required vector x ∈ W, then we have to
choose another measure dp = ρdq, such that∫

Ω

ρdq = 1,
∫
Ω

ρXdq = x. (5)

In other words, to get a fixed vector x ∈W as a result of the measurement we need to find such a
density ρ that conditions (5) hold. Obviously, conditions (5) cannot determine the density ρ uniquely,
therefore we need an additional requirement, which is called the principle of minimal information gain:

I(ρ) =
∫
Ω

ρ ln ρdq→ min
ρ

. (6)

Thus, the problem of finding the density ρ can be formulated as an extremal problem. We need to
find the probability density ρ satisfying constraints (5) and minimizing functional (6).

Theorem 1. The extremal probability measure p is given by means of density ρ as follows

ρ =
1

Z(λ)
e〈λ,X〉, Z(λ) =

∫
Ω

e〈λ,X〉dq, (7)

where λ ∈W∗. The results of the measurement belong to a manifold

LH =

{
x = −∂H

∂λ

}
⊂W ×W∗,

where H(λ) = − ln Z(λ).

The proof can be found in [12].

Remark 1.

1. The function Z(λ) is called the partition function.
2. The function H(λ) is called the Hamiltonian.

Please note that a manifold Φ = W ×W∗ is equipped with the symplectic structure

ω = dλ ∧ dx =
n

∑
i=1

dλi ∧ dxi.

A pair (Φ, ω) is therefore the symplectic manifold. Moreover, the manifold LH turns out to be
Lagrangian, i.e., ω|LH = 0.

Thus, the results of the measurement of random vectors are given by a Lagrangian manifold,
and having given a Lagrangian manifold one can find out both extreme probability measure p and
expectation x of random vector X.

Let us now introduce the information gain into the picture. To that end, construct the
contactization Φ̂ of Φ by the following way:

Φ̂ = R×Φ = R2n+1(u, x, λ).

Equip Φ̂ with the contact form

θ = du−
n

∑
i=1

λidxi. (8)

Thus, (Φ̂, θ) is a contact space. Let a = (x, λ) ∈ LH and construct a manifold L̂ of dimension n
as follows:
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L̂ =

{
u = I(a), x = −∂H

∂λ

}
⊂ Φ̂.

Theorem 2. The manifold L̂ is Legendrian, i.e., θ|L̂ = 0.

Proof. First of all, introduce a function J(x, λ):

J(λ, x) = H(λ) + 〈λ, x〉.

Let us show that J|LH = I. Indeed, using (7) we have

J|LH = H(λ)
∫
Ω

ρdq− 〈λ, Hλ〉 =
∫
Ω

e〈λ,X〉

Z(λ)
(〈λ, X〉 − ln Z(λ)) dq =

∫
Ω

ρ ln ρdq = I.

The differential of the function J(λ, x) is

dJ =
n

∑
i=1

(
xi +

∂H
∂λi

)
dλi +

n

∑
i=1

λidxi,

which implies that dJ|LH = θ̂|LH , where

θ̂ =
n

∑
i=1

λidxi.

Taking into account the equality J|LH = I, we get θ̂|LH = dI. Finally,

θ|L̂ =
(

du− θ̂
)∣∣∣

L̂
= dI − θ̂|LH = 0.

It is worth saying that a canonical projection π : Φ̂→ Φ, π(u, x, λ) = (x, λ) being restricted to the
Legendrian manifold L̂ becomes a local diffeomorphism with the image LH , i.e., π(L̂) = LH and the
differential 2-form dθ is a pullback of the symplectic form ω, dθ = π∗(ω).

Summarizing all above discussion, we conclude that any measurement of random vectors can be
represented by means of Legendrian submanifold L̂ in the contact manifold Φ̂. This Legendrian manifold
gives us knowledge of extremal measure p (or, equivalently, the probability density ρ), average values x of
random vector X and additionally the values of the information gain function I(λ).

2.2. Variance of Random Vectors

The next step is to analyze the variance of random vector X. Recall that the second moment is a
symmetric 2-form µ2 ∈ S2(W) defined by the formula

µ2(X) =
∫
Ω

X(ω)⊗ X(ω)dp.

Variance is a central second moment, i.e., a symmetric 2-form σ2 ∈ S2(W)

σ2(X) = µ2(X− µ1(X)) = µ2(X)− µ1(X)⊗ µ1(X).
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Theorem 3 ([12]). The variance of a random vector X is

σ2(X) = −Hess(H),

where Hess(H) =
n
∑

i,j=1
Hλiλj dλi ⊗ dλj is the Hessian of the Hamiltonian H(λ).

Please note that the symplectic manifold Φ is equipped with the universal quadratic form κ:

κ = dλ · dx =
1
2

n

∑
i=1

(dλi ⊗ dxi + dxi ⊗ dλi).

Its restriction to the Lagrangian manifold LH

κ|LH =
1
2

n

∑
i=1

(dλi ⊗ dxi + dxi ⊗ dλi)

∣∣∣∣∣
x=−Hλ

= −Hess(H) = σ2(X)

Coincides with the variance of random vector X. Since the variance is positive, the only areas on
LH make sense where the differential quadratic form κ|LH defines a Riemannian structure.

Thus, we showed that measurement of random vectors leads us to the following geometric
structures on Φ = W ×W∗.

• symplectic structure
ω = dλ ∧ dx

• pseudo-Riemannian structure
κ = dλ · dx

Moreover, Lagrangian manifolds LH ⊂ (Φ, ω) representing expectations of random vectors X
consist of areas where the quadratic form κ|LH is either positive, which we call applicable phases, or not.

2.3. Relations with Thermodynamics

First of all, we recall that any thermodynamical system is described by two types of
variables, extensive (volume, energy, mass) and intensive (pressure, temperature, chemical potential).
A distinctive property of extensive variables is their additivity with respect to division of the system to
a disjoint union of subsystems. Secondly, the main law of thermodynamics (in particular, for gas-like
systems) including the first and the second laws states that the differential form

θ = −dS + T−1dE + pT−1dV − γT−1dm (9)

must be zero. Here S is entropy, E is energy, V is volume, m is mass, T and p are temperature and
pressure respectively, γ is a chemical potential. Introducing Wint = R3(p, T, γ) and Wext = R3(V, E, m)

we come to a conclusion that a thermodynamical state is a Legendrian manifold L̂ ⊂ R×Wint ×Wext,
where the main law of thermodynamics holds, i.e., θ|L̂ = 0. Moreover, form (8) coincides with (9)
if one puts

du = −dS, (λ1, λ2, λ3) = (−T−1,−pT−1, γT−1), (x1, x2, x3) = (E, V, m). (10)

Therefore, on the surface L̂ we have the relation S = −I + α, where α is a constant. This means
that thermodynamics can be viewed as a theory of measurement of extensive variables and entropy is
an information gain up to a sign and additive constant. This in turn implies that principle of minimal
information gain is exactly what in thermodynamics usually called principle of maximum entropy.
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As in measurement theory, consider projection π : R ×Wint ×Wext → Wint ×Wext. Then,
its restriction to the manifold L̂ gives us an immersed Lagrangian manifold L ⊂ Wint ×Wext and
Φ = Wint ×Wext is a symplectic space with structure form

ω = dθ = d
(

T−1
)
∧ dE + d

(
pT−1

)
∧ dV − d

(
γT−1

)
∧ dm.

Condition for L to be Lagrangian is expressed as ω|L = 0. Again, we can see analogies
with measurement.

Pseudo-Riemannian structures coming from measurement of random vectors are inherited in
thermodynamics as well. Let us define the differential quadratic form κ on Φ = Wint ×Wext using (10)
by the following way:

κ = −d
(

T−1
)
· dE− d

(
pT−1

)
· dV + d

(
γT−1

)
· dm,

and its restriction κ|L to the Lagrangian manifold L has to be positive. We shall see below that domains
where form κ|L is positive correspond to phases of the medium and conditions for L to be Riemannian
with respect to quadratic form κ|L are conditions of thermodynamic stability.

3. Legendrian Manifolds For Gases

In this section, we describe Legendrian and Lagrangian manifolds for gases (see also [14–16]).
We pay special attention to ideal gases and virial model of real gases [17], which are used further in
optimal control problem.

Let us choose the extensive variables (E, V, m) as coordinates on the Legendrian manifold L̂. Then,
on L̂ we have entropy as a function S(E, V, m). Since entropy is an extensive quantity, the function
S(E, V, m) is homogeneous of degree 1:

S(E, V, m) = ms
(

E
m

,
V
m

)
.

Introducing specific variables e = E/m—specific energy, v = V/m—specific volume,
s(e, v)—specific entropy, we get the following expression for contact structure θ:

θ =
(
−s + T−1e + pT−1v− γT−1

)
dm +

(
−ds + T−1de + pT−1dv

)
m,

on a given Legendrian manifold θ|L̂ = 0, and therefore we get

−ds + T−1de + pT−1dv = 0, γ = e− Ts + pv.

The differential quadratic form κ in terms of specific variables takes the form

κ = −m
(

d(T−1) · de + d(pT−1) · dv)
)

,

and since m > 0, the condition of positivity of κ becomes equivalent to negativity of the form −m−1κ,
which we will continue denoting by κ:

κ = d(T−1) · de + d(pT−1) · dv. (11)

Summarizing, we have the following description of thermodynamic states of gases. Consider the
contact space (R5, θ) equipped with coordinates (s, e, v, p, T) and structure form

θ = −ds + T−1de + pT−1dv.
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By a thermodynamic state we mean a Legendrian manifold L̂, such that θ|L̂ = 0. It can be defined
by a given function σ(e, v):

L̂ =

{
s = σ(e, v), p =

σv

σe
, T =

1
σe

}
. (12)

To eliminate the specific entropy form our consideration we use a projection π : R5 → R4,
π(s, e, v, p, T) = (e, v, p, T). Its restriction to the Legendrian manifold L̂ gives an immersed Lagrangian
manifold L ⊂ R4, such that ω|L = 0, where

ω = dθ = d(T−1) ∧ de + d(pT−1) ∧ dv

defines a symplectic structure on R4(e, v, p, T). Since any 2-dimensional surface L ⊂ (R4, ω) can be
given by two functions (state equations)

L = { f1(e, v, p, T) = 0, f2(e, v, p, T) = 0} ,

the condition ω|L = 0 is expressed as [ f1, f2] = 0 on L, where [ f1, f2] is the Poisson bracket with respect
to the symplectic structure ω:

[ f1, f2]ω ∧ω = d f1 ∧ d f2 ∧ω.

The expression for the bracket [ f1, f2] in coordinates is given by the formula:

[ f1, f2] =
1
2

(
pT
(

f1p f2e − f1e f2p
)
+ T2 ( f1T f2e − f1e f2T) + T

(
f1v f2p − f1p f2v

))
.

Suppose that functions f1 and f2 are given in a usual for thermodynamics of gases form

f1 = p− A(v, T), f2 = e− B(v, T). (13)

Then the equation [ f1, f2]|L = 0 takes the form

(T−2B)v = (T−1 A)T

and therefore the following theorem is valid

Theorem 4. The Lagrangian manifold L is given by the Massieu-Planck potential φ(v, T):

p = RTφv, e = RT2φT , (14)

where R is the universal gas constant.

Using the Massieu-Planck potential one can write the differential quadratic form (11) in the
following way:

R−1κ = −
(

φTT + 2T−1φT

)
dT · dT + φvvdv · dv

and we conclude that conditions of applicability for the thermodynamic state model are

φTT + 2T−1φT > 0, φvv < 0. (15)

Using (14) we obtain that inequalities (15) are equivalent to

eT > 0, pv < 0,

which are the conditions of thermodynamic stability.
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By a thermodynamic process we shall mean a contact transformation of Φ̂ = R×Wint ×Wext =

R5(s, p, T, v, e) preserving the Legendrian manifold L̂. Infinitesimally, such a transformation is given
by a contact vector field X, i.e., LX(θ) ∧ θ = 0, where LX is a Lie derivative along the vector field X.
Contact vector fields are defined by generating functions (see, for example, [18]) and in thermodynamic
case have the form [12]:

X f = T
(

p fp + T fT
)

∂e − T fp∂v + ( f + T fT) ∂s + T ( fv − p fe) ∂p − T ( fs + T fe) ∂T ,

where f ∈ C∞(Φ̂) is a generating function of the vector field X f . One can show that LX f ( f ) = X f ( f ) =
f fs and therefore the vector field X f is tangent to the surface { f = 0}. Thus, for a given Legendrian
manifold L̂ = { f1 = f2 = f3 = 0} the restriction of the process X f to L̂ is represented as [12]

X f = a1X f1 + a2X f2 + a3X f3 ,

where aj are functions on L̂. Using (12) we get that restrictions Yj of vector fields X f j
to L̂ are

Y1 = σvσ−2
e ∂e − σ−1

e ∂v, Y2 = σ−2
e ∂e, Y3 = 0. (16)

Example 1 (Ideal gases). For ideal gases, the Legendrian manifold L̂ is given by state equations

f1 = pv− RT, f2 = e− n
2

RT, f3 = s− R ln(en/2v),

where n is a degree of freedom.
The differential quadratic form κ on L̂ is

κ = − nR
2e2 de · de− R

v2 dv · dv. (17)

It is negative and applicable domain is therefore entire manifold L̂.
Vector fields Y1 and Y2 have the following form

Y1 = −2ev
nR

∂v, Y2 = −2e2

nR
∂e. (18)

Example 2 (van der Waals gases and virial model). One of the most important models of real gases is the
van der Waals model:

f1 =
(

p +
a

v2

)
(v− b)− RT, f2 = e− n

2
RT +

a
v

f3 = s− R ln
(

Tn/2(v− b)
)

,

where a and b are constants responsible for particles’ interaction and their volume respectively.
The differential quadratic form κ in coordinates (T, v) for van der Waals gases is [16]

κ = − Rn
2T2 dT · dT − v3RT − 2a(v− b)2

v3T(v− b)2 dv · dv.

This form can change its sign and applicable domain in a plane (T, v) for van der Waals model is given
by inequality

T >
2a(v− b)2

Rv3 .

The virial model for real gases’ state equations was proposed in [17] and is of the form

p =
RT
v

(
1 + ∑

i=1
Ai(T)v−i

)
.
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For van der Waals gases, we will mainly be interested in the first term of the expansion which has the form

A1(T) = b− a
RT

.

In this approximation, vector fields Y1 and Y2 are

Y1 = −2a(ev + a)
Rv2n

∂e −
2(ev + a)

Rn
∂v, Y2 = −2(ev + a)2

nRv2 ∂e. (19)

4. Optimal Control

In this section, we formulate the control problem for thermodynamic processes of gases and
provide exact solution for ideal gases and asymptotic expansion of integrals for real ones.

Let thermodynamic state of a gas be given by a Legendrian manifold L̂ and let us choose vector
fields Y1 and Y2 defined by formula (16) as a basis in module of vector fields on L̂. We will use the
notation x = (e, v). Let x(1) = (e1, v1) and x(2) = (e2, v2) be two fixed points in applicable domains on
L̂. Let l ⊂ L̂ be an integral curve of the unknown vector field Y = u1Y1 + u2Y2 and let α = pdv be a
work 1-form. Introduce a quality functional J:

J =
∫
l

α. (20)

Physical meaning of J is a work of the gas along the process curve l. We are looking for a process
Y = u1Y1 + u2Y2 such that functional (20) reaches its maximum value. Vector u = (u1, u2) is a vector
of control parameters. If t is a parameter on l, then we will suppose that t = 0 corresponds to the point
x(1) and t = t0, where t0 is a given value of the parameter t, corresponds to x(2). Rewrite the vector
field Y as

Y = Y(1)(x, u)∂e + Y(2)(x, u)∂v,

where coefficients Y(1), Y(2) are defined by means of (16).
We define the domain of admissible control parameters by means of the differential quadratic

form κ. On the Legendrian manifold its physical meaning is (up to a sign) the variance of extensive
variables (e, v), we limit a relative variance by a positive number δ:

−κ(Y, Y)
e2 ≤ δ,

which leads to inequality

−κ(Y1, Y1)u2
1 − 2κ(Y1, Y2)u1u2 − κ(Y2, Y2)u2

2 ≤ δe2.

Therefore, for a given point x ∈ L̂, the boundary ∂U of the admissible domain U for control
parameters is an ellipse with a centre at that point and whose semi-axes depend, in general, on x.

Summarizing, we formulate an extremal problem for finding the process Y in the form:

ẋ = (Y(1)(x, u), Y(2)(x, u)), x ∈ R2, u ∈ U,
x(0) = x(1), x(t0) = x(2),

J =
t0∫
0

α(Y)dt→ max
u∈U

.

The Hamiltonian of problem (21) has the form

H(x, λ, u) = α(Y) + λ1Y(1)(x, u) + λ2Y(2)(x, u), (21)
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where λ = (λ1, λ2) are Lagrangian multipliers.

4.1. Ideal Gases

For ideal gases, vector fields Y1 and Y2 have form (18) and vector field Y is

Y = −2ev
nR

u1∂v −
2e2

nR
u2∂e.

Therefore using expression (17) for the differential quadratic form κ in case of ideal gases we get
the domain U of admissible control parameters:

U =

{
(u1, u2) ∈ R2 | 4

n2R
u2

1 +
2

nR
u2

2 ≤ δ

}
,

and its boundary is an ellipse with constant semi-axes.
The commutator of vector fields Y1 and Y2 is

[Y1, Y2] =
2e
nR

Y1.

The dual basis is generated by 1-forms

ξ1 = − nR
2ev

dv, ξ2 = − nR
2e2 de.

Due to the Lie-Bianchi theorem (see, for example, [18]), 1-form ξ2 is exact, i.e., ξ2 = dq1, where
q1 = nR(2e)−1. The restriction of the form ξ1 to the curve q1 = C1 is exact too and its potential is
q2 = −C1 ln v + C2, where Ci are constants. Let q = (q1, q2) be new coordinates on L̂. Then, the inverse
transformation is

e =
nR
2q1

, v = exp
(
− q2

q1

)
. (22)

In new coordinates (q1, q2) vector fields Y1 and Y2 take the form:

Y1 = ∂q2 , Y2 = ∂q1 +
q2

q1
∂q2 .

Therefore Hamiltonian (21) will take the form

H(q, λ, u) = −Ru1

q2
1

+ λ1u2 + λ2

(
q2u2

q1
+ u1

)
. (23)

Since Hamiltonian (23) is linear with respect to control parameters (u1, u2), it reaches its extremal
values on the boundary ∂U. Let τ be a parameter on ∂U. Then control parameters (u1, u2) can be
written as

u1 =
n
√

Rδ

2
cos τ, u2 =

√
nRδ

2
sin τ,

and the Hamiltonian H(q, λ, u) takes the form

H(q, λ, τ) =

√
2nRδq1(q1λ1 + q2λ2) sin τ +

√
Rδn

(
q2

1λ2 − R
)

cos τ

2q2
1

. (24)

To find the points where the Hamiltonian H(q, λ, τ) reaches its maximum one has to resolve the
equation Hτ = 0 with respect to τ:

sin

(
τ + arctan

(√
2q1(q1λ1 + q2λ2)√

n(R− q2
1λ2)

))
= 0.
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Its solution is

τ∗(q, λ) = π(2k + 1)− arctan

(√
2q1(q1λ1 + q2λ2)√

n
(

R− q2
1λ2
) )

, k ∈ Z. (25)

Substituting roots (25) into (24) we get the following expression for Hamiltonian H(q, λ):

H(q, λ) =
1

2q2
1

√
nRδ

(
nq4

1λ2
2 + 2q4

1λ2
1 + 4q3

1q2λ1λ2 + 2q2
1q2

2λ2
2 − 2Rnq2

1λ2 + R2n
)
. (26)

To find the optimal process, one needs to solve the system

q̇1,2 =
∂H

∂λ1,2
, λ̇1,2 = − ∂H

∂q1,2
, (27)

where the Hamiltonian H(q, λ) is given by (26). Since the Hamiltonian H(q, λ) does not depend on the
parameter t explicitly, it is the integral of system (27). Moreover, the following theorem is valid:

Theorem 5. Hamiltonian system (27) has an integral G(q, λ) = q1λ2 which is in involution with the
Hamiltonian H(q, λ) with respect to the Poisson bracket on phase space, i.e., [G, H] = 0, where

[G, H]Ω ∧Ω = dG ∧ dH ∧Ω, Ω = dq ∧ dλ.

Thus, Hamiltonian system (27) has two commuting integrals and is therefore integrable in
Liouville’s sense.

To construct solution to (27) we use the method of action-angle variables (see, for example, [19]).
The invariant manifold M of system (27) is given by levels H1 and H2 of its integrals:

M =
{
(q, λ) ∈ R4 | H(q, λ) = H1, G(q, λ) = H2

}
.

Choose (q1, q2) as local coordinates on M. Then we have

λ1 =
−2H2Rδnq2 ±

√
D

2Rnδq2
1

, λ2 =
H2

q1
,

where D = 2Rδn
(
4H2

1 q4
1 − δRn2(R− H2q1)

2). Therefore the manifold M can have different numbers
of connected components depending on the number of roots of polynomial D.

Theorem 6. The manifold M has three connected components if levels of integrals H1 and H2 are related as

H4
2 δn2 − 64RH2

1 ≥ 0.

Otherwise, the manifold M has two connected components.

Singularities of projection of M to the plane (q1, q2) are given as Σ = ∪Σj, where

Σj =
{
(q(j)

1 , q2) | q2 ∈ R, D(q(j)
1 ) = 0

}
.

Thus, for a given initial point (q(0), λ(0)) the reachability set consists of points of M belonging to
the same connected component as (q(0), λ(0)) does.
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Let us choose two Hamiltonian vector fields X1 = XH and X2 = XG as a basis in module of vector
fields on phase space R4(q, λ). Here

X f = fλ1 ∂q1 + fλ2 ∂q2 − fq1 ∂λ1 − fq2 ∂λ2 .

We need to find two closed 1-forms κ1 and κ2 dual to restrictions Z1 and Z2 of vector fields X1

and X2 on M, i.e., κi(Zj) = δij, where δij is the Kronecker symbol. On each connected component of
M the forms κ1 and κ2 are exact, i.e., κi = dΩi and functions Ωi are called angles. Expressions for Ω1

and Ω2 are given by the following theorem, which is the result of straightforward computations.

Theorem 7. Angle variables Ω1 and Ω2 are of the form

Ω1 = ±
∫ 4H1q2

1dq1√
D

, Ω2 =
q2

q1
±
∫ n2Rδ(R− H2q1)dq1

q1
√

D
. (28)

Hamiltonian system (27) is equivalent to

Ω̇1 = 1, Ω̇2 = 0.

Thus, the solution of (27) is given as

Ω1 = t + α1, Ω2 = α2,

where constants α1 and α2 are derived from conditions at the ends. By means of inverse
transformation (22) one can obtain the corresponding solutions in terms of thermodynamic
variables (e, v).

4.2. Real Gases

Here, we again will look for a process Y = u1Y1 + u2Y2, where vector fields Y1 and Y2 are given
by (19). Following the case of ideal gases, we finally get the Hamiltonian HvdW(q, λ) in the form

HvdW(q, λ) = H(q, λ) + aHa(q, λ) + bHb(q, λ) + . . . , (29)

where the first order corrections Ha and Hb are

Ha(q, λ) =
eq2/q1

(
q2

1(Rδn3λ2
2 − 8H2(q, λ))− R2λ2n3δ

)
4q1nRH(q, λ)

, Hb(q, λ) =
eq2/q1 Rδn2λ2(R− λ2q2

1)

4H(q, λ)q2
1

.

We will restrict ourselves to the linear with respect to parameters a and b corrections only.
From now and on, we will assume that all the functions are expressed in terms of angle variables

(Ω1, Ω2) given by (28) instead of (q1, q2). This can be done by resolving (28) with respect to (q1, q2).
In these new coordinates, vector fields Z1 and Z2 have the form

Z1 =
∂

∂Ω1
, Z2 =

∂

∂Ω2
. (30)

To integrate the Hamiltonian system with Hamiltonian (29), one needs to find the second
commuting integral GvdW(q, λ). We will look for that integral in the form

GvdW(Ω1, Ω2) = G(Ω1, Ω2) + aGa(Ω1, Ω2) + bGb(Ω1, Ω2) + . . . ,

where functions Ga and Gb are to be defined. Condition [HvdW , GvdW ] = 0 leads us (up to linear terms)
to the following equations:

[Ha, G] = [Ga, H], [Hb, G] = [Gb, H]. (31)
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Using a well-known relation [ f , g] = Xg( f ) and (30), we get system (31) as

∂Ha

∂Ω2
=

∂Ga

∂Ω1
,

∂Hb
∂Ω2

=
∂Gb
∂Ω1

.

and finally we obtain

Ga =
∫

∂Ha

∂Ω2
dΩ1, Gb =

∫
∂Hb
∂Ω2

dΩ1.

Thus, we have the second integral for the extremal problem commuting with the Hamiltonian up
to linear in a and b terms and therefore the Hamiltonian system is integrable in Liouville’s sense in
this approximation.

5. Conclusions

We showed that considering thermodynamics as a theory of measurement of random vectors
one can describe thermodynamic states as Legendrian or Lagrangian manifolds equipped with the
differential quadratic form responsible for the variance of extensive variables. Thermodynamic processes
are interpreted as curves on Legendrian manifolds. The Hamiltonian system arising from the problem of
finding an optimal curve maximizing the work functional is shown to be integrable in Liouville’s sense
and its solution is constructed explicitly by means of action-angle variables. We also provided a method
of finding asymptotically commuting integrals for real gases in virial approximation.
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