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Abstract: This paper considers non-classical continuum theory for thermoviscous fluids without
memory incorporating internal rotation rates resulting from the antisymmetric part of the velocity
gradient tensor to derive ordered rate constitutive theories for the Cauchy stress and the Cauchy
moment tensor based on entropy inequality and representation theorem. Using the generalization
of the conjugate pairs in the entropy inequality, the ordered rate constitutive theory for Cauchy
stress tensor considers convected time derivatives of the Green’s strain tensor (or Almansi strain
tensor) of up to orders nε as its argument tensors and the ordered rate constitutive theory for the
Cauchy moment tensor considers convected time derivatives of the symmetric part of the rotation
gradient tensor up to orders nΘ. While the convected time derivatives of the strain tensors are
well known the convected time derivatives of higher orders of the symmetric part of the rotation
gradient tensor need to be derived and are presented in this paper. Complete and general constitutive
theories based on integrity using conjugate pairs in the entropy inequality and the generalization of
the argument tensors of the constitutive variables and the representation theorem are derived and
the material coefficients are established. It is shown that for the type of non-classical thermofluids
considered in this paper the dissipation mechanism is an ordered rate mechanism due to convected
time derivatives of the strain tensor as well as the convected time derivatives of the symmetric part
of the rotation gradient tensor. The derivations of the constitutive theories presented in the paper is
basis independent but can be made basis specific depending upon the choice of the specific basis for
the constitutive variables and the argument tensors. Simplified linear theories are also presented as
subset of the general constitutive theories and are compared with published works.

Keywords: ordered rate; constitutive theories; convected time derivatives; strain rate; gradients of
rotation rates; representation theorem; integrity

1. Introduction

The conservation and balance laws for non-classical thermofluids incorporating internal
rotation rates due to antisymmetric part of the velocity gradient tensor have been presented by
Surana et al. [1–4]. These consist of usual conservation and balance laws of classical continuum
mechanics: conservation of mass (CM), balance of linear momenta (BLM), balance of angular momenta
(BAM), first and second laws of thermodynamics (FLT, SLT), but require some modification and/or
re-derivations and additionally a new balance law, balance of moment of moment (BMM), is needed
due to presence of new physics associated with the rotation rates. Yang et al. [5] derived BMM balance
law based on static considerations. Surana et al. [6] showed that a balance law must be based on
rate considerations and presented a consistent derivation in Lagrangian and Eulerian descriptions.
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Surana et al. [3] presented an ordered rate constitutive theory for the Cauchy stress tensor using
convected time derivatives of up to orders n of the Green’s or Almansi strain tensors. However,
the constitutive theory for the Cauchy moment tensor was limited to the convected time derivative of
order one of the symmetric part of the rotation gradient tensor. In this paper convected time derivatives
of the symmetric part of the rotation gradient tensor of up to orders nΘ are derived. These are then
utilized as argument tensors of the Cauchy moment tensor in conjunction with conjugate pairs in
entropy inequality. The ordered rate constitutive theories for the Cauchy stress tensor (up to orders nε)
and the Cauchy moment tensor (up to order nΘ) are derived based on theory of isotropic tensors using
basis independent approach. The basis independent constitutive theories so derived can be easily
made basis specific by basis dependent choices of constitutive variables and their argument tensors.
The most general derivations of the constitutive theories for the Cauchy stress and Cauchy moment
tensors are based on representation theorem and integrity established using their argument tensors.
Constitutive theory for the heat vector is also derived using representation theorem and integrity
based on the argument tensors of heat vector. Material coefficients are derived for all ordered rate
constitutive theories presented in this paper. Simplified linear ordered rate constitutive theories are
presented for the Cauchy stress tensor, Cauchy moment tensor and the heat vector.

The notations used in this paper have been used by the authors in the current literature,
nonetheless some description and their use in deriving conservation and balance laws are presented
in the following. Over bar is used on quantities to express quantities in the current configuration in
Eulerian description, that is, all quantities with over bars are functions of current coordinates x̄xx and time
t. The mass density, Helmholtz free-energy density, temperature, and entropy density of the fluid in
the current configuration are denoted ρ̄, Φ̄, θ̄, and η̄, respectively, and all are functions of x̄xx. The Cauchy
stress tensor in Eulerian description in contravariant basis is denoted by σ̄σσ(0). The superscript “0” is
used to signify that it is rate of order zero and the lowercase parenthesis distinguish it from the second
Piola-Kirchhoff stress tensor σσσ[0] used in Lagrangian description. Dot on any quantity refers to the
material derivative. As explained above undeformed and deformed configurations can be used in the
derivatives as long as the final equations from the conservation and balance laws contain x̄i and t and
do not have displacements and strains in them as these are not considered for fluent continua.

Motivation and New Contributions in the Present Work

In order to illustrate the motivation for this work and the new contribution in this paper for
non-classical fluent continua, we must begin with thermoviscous fluids based on classical continuum
mechanics (CCM). It is well known that for such fluids the commonly used constitutive theories for
deviatoric Cauchy stress tensor dσ̄σσ is Newton’s law of viscosity. From the CCM point of view this
constitutive theory in Equation (1) is a much simplified form of the constitutive theory based on
integrity derived using representation theorem in which symmetric part of the velocity gradient tensor
and temperature are argument tensors of the deviatoric Cauchy stress tensor in Equation (2):

[dσ̄] = 2µ [D̄] + λtr ([D̄]) [I] , (1)

dσ̄σσ = dσ̄σσ
(
D̄DD, θ̄

)
. (2)

We shall show that dσ̄σσ in this case is basis independent. It is easy to show [7] that [D̄] is in fact the
first convected time derivative

[
γ(1)

]
of the Green’s strain tensor

[
ε [0]

]
(or [ε]) (a covariant measure).

It can also be shown that [D̄] is the first convected time derivative
([

γ(1)
])

of the Almansi strain

tensor
[
ε̄[0]
]

(a contravariant tensor). Thus,

[D̄] =
[
γ(1)

]
=
[
γ(1)

]
. (3)
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That is, [D̄] is basis independent, hence dσ̄σσ in Equation (1) which is entirely dependent on [D̄] is also
basis independent. Constitutive theory in Equation (1) is what is used in fluid mechanics writings.
Since [D̄] =

[
γ(1)

]
and [D̄] =

[
γ(1)

]
, it suggests that one could possibly derive a constitutive theory for

deviatoric Cauchy stress tensor using
[
γ(1)

]
as well as

[
γ(i)

]
; i = 2, 3, . . . , n, higher order convected

time derivatives of
[
ε [0]

]
and θ as its argument tensors. Such stress measure would be contravariant

deviatoric Cauchy stress tensor, dσ̄σσ(0). On the other hand if we decide to choose convected time
derivatives

[
γ(1)

]
,
[
γ(i)
]

; i = 2, 3, . . . , n, then the stress measure would be covariant, that is, dσ̄σσ(0).
Thus, we can derive constitutive theories for deviatoric Cauchy stress tensor using

dσ̄σσ(0) = dσ̄σσ(0)
(

γγγ(i) ; i = 1, 2, . . . , n, θ
)

(4)

or

dσ̄σσ(0) = dσ̄σσ(0)

(
γγγ(i) ; i = 1, 2, . . . , n, θ

)
. (5)

It can be shown that for finite strain rates the constitutive theory resulting from Equation (4)
is valid, where as the constitutive theory due to Equation (5) is only valid for small strain rates [7].
Inclusion of γγγ(i); i = 2, 3, . . . , n as argument tensors of deviatoric Cauchy stress dσ̄σσ(0) makes it
basis dependent.

Remark 1.

(1) Inclusion of
[
γ(i)

]
; i = 2, 3, . . . , n as additional argument tensors of deviatoric Cauchy stress dσ̄σσ(0) may

appear non-justifiable based on the conjugate pair tr ([σ̄] [L̄]) = tr ([σ̄] [D̄]) in the entropy inequality
(used in fluid mechanics writings), but if we realize that the rate of work used in the derivation of energy
equation only considers velocity and force, then it is not surprising to see the absence of other conjugate
terms that would support inclusion of

[
γ(i)

]
; i = 2, 3, . . . , n as additional argument tensors of dσ̄σσ(0).

(2) From continuum mechanics point of view, we do not seek for applications of the constitutive theory based
on
[
γ(i)

]
; i = 2, 3, . . . , n but rather seek if their inclusion as additional argument tensors of dσ̄σσ(0) would

lead to a consistent constitutive theory which it does.
(3) This work described above has been published by Surana et al. in various papers, some are cited in

this paper.
(4) A clear explanation of the use of higher order convected time derivatives of the strain tensors as argument

tensors of deviatoric Cauchy stress for thermoviscous fluids based on CCM and consistency of the resulting
constitutive theory and the rationale supporting such derivations is essential in explaining the use of these
concepts in non-classical fluent continua incorporating internal rotation rates.

(5) We remark that the presence of [D̄] or
[
γ(1)

]
in the constitutive theory for dσ̄σσ(0) is responsible for

dissipation mechanism in the fluent continua. Thus, each
[
γ(i)

]
; i = 1, 2, . . . , n contributes to dissipation

mechanism, hence the constitutive theory could be referred to as ordered rate constitutive theory for dσ̄σσ(0).
(6) In classical continuum mechanics the constitutive theories for polymeric fluids makes use of convected time

derivatives of the strain tensor [8]. The Maxwell model only uses first convected time derivative of Green’s
strain tensor, however the Oldroyd-B model uses first as well as second convected time derivatives of the
Green’s strain tensor for deriving constitutive theory for the deviatoric Cauchy stress tensor. This suggest
that a constitutive theory for non-classical polymeric fluid for Cauchy moment tensor could possibly benefit
from the higher order convected rotation rates derived in this paper. This work is currently in progress.

The non-classical continuum mechanics considered here for thermofluids incorporates
antisymmetric part of the velocity gradient tensor (rotation rates) in the conservation and balance
laws. This physics is neglected in classical continuum mechanics. The resistance offered to these
by the deforming continua results in moments. One could show that upon using Cauchy principle,
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we can derive the concept of Cauchy moment tensor (contravariant or covariant). The derivation
of balance based on this new physics shows that Cauchy moment tensor is symmetric [3] and that
Cauchy moment tensor and the symmetric part of the gradients of rotation rate tensor are rate of
work conjugate (entropy inequality). The similarity of these conjugate quantities with the conjugate
pair

[
dσ̄(0)

]
and [D̄] is obvious. Replacing [D̄] =

[
γ(1)

]
with

[
γ(i)

]
; i = 1, 2, . . . , n as the argument

tensors of dσ̄σσ(0) suggests, that perhaps we must also consider a parallel and consistent derivation of
the constitutive theory for Cauchy moment tensor in which higher order convected time derivatives of
rotation rate tensors are considered as its argument tensors. The first concern is that will this lead to a
consistent constitutive theory? We show in the paper that it does. The second concern may be, where
do we use this theory. We make some comments in the following to address these.

Comments

(1) Just like dσ̄σσ(0) and each
[
γ(i)

]
; i = 1, 2, . . . , n provides a mechanism of dissipation in CCM, Cauchy

moment tensor and each convected time derivative of the rotation rate tensor will also result in is additional
mechanism of dissipation that is absent in classical mechanics.

(2) We shall observe that the conjugate pairs in the entropy inequality provide limited information regarding
the argument tensors of the constitutive variables. Initial selection of the argument tensors of the
constitutive variables based on conjugate pairs in the entropy inequality is augmented in the present work
to include additional desired physics based on the higher order convected time derivatives of the Green’s
strain tensor for the deviatoric Cauchy stress tensor and higher order convected rotation rates for Cauchy
moment tensor. Inclusion of higher order convected time derivatives in both deviatoric Cauchy stress
tensor and the Cauchy moment tensor provide hierarchical and ordered rate dissipation mechanism.

(3) Do we have applications that require constitutive theory for Cauchy moment tensor with higher order
convected time derivatives of the rotation rate tensor? Maybe not at the moment, but the motivation for
the present work is to derive more complete and consistent theories for the future that allow more complex
physics than what we may be used to at the present. This is the motivation for the work presented here.

(4) This paper presents new constitutive theory for non-classical fluent continua, applications are not the
thrust of the paper.

2. Preliminaries, Rotation Rates, Gradients of Rotation Rates, Convected Time Derivatives of
Strain Tensor and Rotation Gradient Tensor

In the following, a brief explanation of notations is necessary as some of the notations are new. xi
and x̄i denote the position coordinates of a material point in the reference and current configurations,
respectively, in a fixed frame (x-frame).

x̄i = x̄i(x1, x2, x3, t) ,

xi = xi(x̄1, x̄2, x̄3, t) .
(6)

If {dx} = [dx1, dx2, dx3]
T and {dx̄} = [dx̄1, dx̄2, dx̄3]

T are components of length ds and ds̄ in reference
and current configurations, then

{dx̄} = [J] {dx} ; [J] =
[

∂ {x̄}
∂ {x}

]
,

{dx} = [ J̄] {dx̄} ; [ J̄] =
[

∂ {x}
∂ {x̄}

]
,

(7)

[L̄] =
[

∂ {v̄}
∂ {x̄}

]
; v̄i = v̄i (x̄1, x̄2, x̄3, t) , (8)
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D
Dt

[J] = [L̄] [J] ,

D
Dt

[ J̄] = − [ J̄] [L̄] .
(9)

[J] and [ J̄] are covariant and contravariant deformation gradient tensors or Jacobian of deformation
tensors, and [L̄] is the velocity gradient tensor. Decomposition of [L̄] into symmetric tensor [D̄] and
skew symmetric tensor [W̄] gives

[L̄] = [D̄] + [W̄] ; [D̄] =
1
2

(
[L̄] + [L̄]T

)
, [W̄] =

1
2

(
[L̄]− [L̄]T

)
. (10)

The classical continuum mechanics in Eulerian description only considers [D̄]. [W̄] is neglected in
the conservation and balance laws of CCM in Eulerian description. Thus, the conservation and balance
laws and the constitutive theories of CCM in Eulerian description only consider partial physics of
the deformation physics contained in [L̄]. [W̄] contains rotation rates at x̄i defined in the following.
Consider

∇̄∇∇× v̄vv = eee1

(
∂v̄3

∂x̄2
− ∂v̄2

∂x̄3

)
+ eee2

(
∂v̄1

∂x̄3
− ∂v̄3

∂x̄1

)
+ eee3

(
∂v̄2

∂x̄1
− ∂v̄1

∂x̄2

)
, (11)

∇̄∇∇× v̄vv = eee1 (Θ̄x1)
(1)

+ eee2 (Θ̄x2)
(1)

+ eee3 (Θ̄x3)
(1) . (12)

Now we can define [W̄]:

[W̄] =
1
2

 0 − (Θ̄x3)
(1)

(Θ̄x2)
(1)

(Θ̄x3)
(1) 0 − (Θ̄x1)

(1)

− (Θ̄x2)
(1)

(Θ̄x1)
(1) 0

 . (13)

The non-classical continuum theory in this paper considers [L̄] in its entirety, that is, both [D̄] and [W̄]

and their convected time derivatives are considered in the derivation of the conservation and balance
laws and the constitutive theories.

3. Conservation and Balance Laws

The conservation and balance laws for non-classical continuum mechanics in Eulerian description
have been presented in References [1–3]. As shown by Surana et al. [7], the contravariant Cauchy stress
tensor σ̄σσ(0) is physical as it is derived using contravariant components of stresses acting on the faces of
the deformed tetrahedron in the current configuration. This choice necessitates that we use convected
time derivatives of the Green’s strain tensor as rate of work conjugate quantities to σ̄σσ(0). On the other
hand if we decide to choose covariant Cauchy stress tensor σ̄σσ(0) as a stress measure, then the convected
time derivatives of Almansi strain tensor must be used as rate of work conjugate quantities to σ̄σσ(0).
It is well known (see Reference [7]) that the choice of σ̄σσ(0) as a stress measure is only meaningful when
x̄i
∼= xi. This precludes its use for finite strain rate processes. Jaumann stress measure (0)σ̄σσJ that is

average of σ̄σσ(0) and σ̄σσ(0) obviously suffers from the same limitations as σ̄σσ(0). We shall show in a later
section that we have the following conjugate pairs:[

σ̄(0)
]

,
[
γ(i)

]
[
σ̄(0)

]
,
[
γ(i)
]

[
(0)σ̄J

]
,
[
(i)γJ

]
 i = 1, 2, . . . , n, (14)

in which
[
γ(i)

]
,
[
γ(i)
]

are convected time derivatives of the Green’s and Almansi strain tensors and[
(i)γJ

]
are Jaumann rates. These conjugate pairs are clearly basis dependent. That is, if we choose a
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stress tensor in a preferred basis then the basis for the strain measure and its convected time derivatives
is automatically established based on conjugate pair(s). Instead of choosing conjugate pairs from
Equation (14) we consider the basis independent measures in the derivation of the constitutive theories.
Let the following be conjugate pair(s):[

(0)σ̄
]

,
[
(i)γ
]

; i = 1, 2, . . . , nε. (15)

Similarly, for the Cauchy moment tensor we consider similar basis independent conjugate pairs in the
derivation of the constitutive theory for the Cauchy moment tensor:[

(0)m̄
]

,
[
(i)γΘ

]
; i = 1, 2, . . . , nθ (16)

in which
[
(i)γΘ

]
; i = 1, 2, . . . , nθ are the convected time derivatives of the rotation gradient tensor.

The derivations of these is presented in a following section. Choosing desired pairs from Equation (14)
and using them in Equation (15) will yield the constitutive theory for Cauchy stress tensor in the
desired basis. The same will hold for Equation (16). We summarize the conservation and balance
laws for non-classical continuum mechanics (NCCM) based on internal rotation rates [1–3] in Eulerian
description in the following. These consist of conservation of mass (CM), balance of linear momenta
(BLM), balance of angular momenta (BAM), balance of moment of moments (BMM), first law of
thermodynamics (FLT), and the second law of thermodynamics (SLT):

∂ρ̄

∂t
+

∂

∂x̄i
(ρ̄v̄i) = 0 (CM) , (17)

ρ̄
∂v̄i
∂t

+ ρ̄v̄j
∂v̄i
∂x̄j
− ρ̄F̄b

i −
∂

∂x̄j

(
(0)σ̄ji

)
= 0 (BLM) , (18)

(0)m̄pk,p + εijk
(0)σ̄ij = 0 (BAM) , (19)

εijk
(0)m̄ij = 0 (BMM) , (20)

ρ̄
Dē
Dt

+
∂q̄i
∂x̄i
− (0)σ̄ji

∂v̄i
∂x̄j
− (0)m̄ji

(
(1)γΘ

)
ij
− (1)Θ̄ΘΘ ·

(
εεε : (0)σ̄σσ

)
= 0 (FLT) , (21)

ρ̄

(
Dφ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄i ḡi

θ̄
− (0)σ̄ji

∂v̄i
∂x̄j
− (0)m̄ji

(
(1)γΘ

)
ij
− (1)Θ̄ΘΘ ·

(
εεε : (0)σ̄σσ

)
≤ 0 (SLT) , (22)

in which ē, η̄, θ̄, q̄qq, ḡgg, (1)γγγΘ, and (1)Θ̄ΘΘ are specific internal energy, entropy density, absolute
temperature, heat flux, temperature gradients, gradients of the first convected internal rotation rates,
and internal rotation rates, respectively.

Remark 2.

(1) Equations (17)–(21) are a system of eight partial differential equations (CM (1), BLM (3), BAM (3),
FLT (1)) in twenty three dependent variables (ρ̄ (1), v̄vv (3), (0)σ̄σσ (9), q̄qq (3), θ̄ (1), (0)m̄mm (6)), thus we need
fifteen equations for the mathematical model defined by Equations (17)–(21) to have closure. These are
obtained from the constitutive theory. We note that φ̄, ē, and, η̄ are not dependent variables as these can
be expressed in terms of the variables already considered.

(2) While in fluid mechanics and gas dynamics the entropy inequality seems to play a very limited role based
on the writing on the subject, primarily in inferring whether a process is irreversible or not or whether
the calculated solutions violate the SLT, which could happen if the calculated solutions are in error. In
view of the fact that all fluids must possess viscosity, irreversibility in fluid mechanics and gas dynamics
is intrinsic hence is a given fact. Thus, it appears that the role of entropy inequality is rather peripheral.
In continuum mechanics (classical or non-classical) the role of entropy inequality is rather central in the
development of the constitutive theories:
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(i) determination of constitutive variables and the initial determination of their argument tensors based
on the conjugate pairs in one of the most significant and crucial conclusions we are able to draw from
the entropy inequality. This gives us a starting point in the derivation of the constitutive theories.

(ii) Helmholtz free energy density in the entropy inequality facilitates constitutive theories for equilibrium
stress or total stress for elastic solid continua depending upon the physics considered.

(iii) The role of Helmholtz free energy density and the rate of work conjugate pairs in entropy inequality
are vital in the derivation of the constitutive theories for solid continua as well as fluent continua.

(3) We remark that once the constitutive theories are derived using the conjugate pairs in the entropy
inequality, the entropy inequality condition is identically satisfied by the solution obtained using the
balance laws incorporating these constitutive theories. When using numerical methods such as finite
element method L2-norm of the residuals over the discretization [9,10] can be used to ensure that the
calculated solution is indeed the solution of the mathematical model consisting of the conservation and
balance laws incorporating constitutive theories derived using entropy inequality. Hence, every calculated
solution with sufficient accuracy always satisfies SLT provided the conditions resulting from the conjugate
pairs are not violated in the derivation of the constitutive theories.

(4) Thus, in continuum mechanics the entropy inequality plays a central role as without it thermodynamically
constitutive theories are not possible. FLT and SLT need to be recast in slightly different forms so that the
conjugate pairs helpful in deriving constitutive theories can be established.

4. Constitutive Theories

First we consider some preliminary material to present alternate forms of some terms in the FLT
and the SLT. Let

[
(1)γΘ

]
represent the gradient of the rotation rate tensor (basis independent), then

[
(1)γΘ

]
=

∂
{
(1)Θ̄

}
∂
{

x̄
}
 . (23)

We note that
[
(1)γΘ

]
is also the first convected time derivative of the rotation gradient tensor. We

consider decomposition of
[
(0)σ̄

]
,
[
(0)m̄

]
, [L̄], and

[
(1)γΘ

]
into symmetric and antisymmetric tensors

(indicated by back subscripts s and a):

(0)σ̄σσ =
(0)
s σ̄σσ +

(0)
a σ̄σσ

(0)m̄mm =
(0)
s m̄mm +

(0)
a m̄mm[

(1)γΘ

]
=
[
(1)
s γΘ

]
+
[
(1)
a γΘ

]
 . (24)

We note the following:

(0)σ̄ji
∂v̄i
∂x̄j

=
(
(0)
s σ̄ji +

(0)
s σ̄ji

) (
D̄ij + W̄ij

)
=

(0)
s σ̄jiD̄ij +

(0)
s σ̄jiW̄ij. (25)

We can also write Equation (25) as

tr
([

(0)σ̄
]
[L̄]
)
= tr

([
(0)
s σ̄
]
[D̄]
)
+ tr

([
(0)
a σ̄
]
[W̄]

)
. (26)
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Similarly,

(0)m̄ji

(
(1)γΘ

)
ij
=
(
(0)
s m̄ji +

(0)
a m̄ji

)((
(1)
s γΘ

)
ij
+
(
(1)
a γΘ

)
ij

)
(27)

=
(0)
s m̄ji

(
(1)
s γΘ

)
ij
+

(0)
a m̄ji

(
(1)
a γΘ

)
ij

=
(0)
s m̄ji

(
(1)
s γΘ

)
ij

(
as (0)m̄mm is symmetric

)
. (28)

We can also write Equation (28) as

tr
([

(0)m̄
] [

(1)γΘ

])
= tr

([
(0)
s m̄
] [

(1)
s γΘ

])
. (29)

With simple calculations we can show that

tr
([

(0)
a m̄
]
[W̄]

)
= −(1)Θ̄ΘΘ ·

(
εεε : (0)σ̄σσ

)
. (30)

Using Equations (26), (29), and (30) in FLT and SLT (Equations (21) and (22)) we can obtain

ρ̄
Dē
Dt

+
∂q̄i
∂x̄i
− (0)

s σ̄jiD̄ij −
(0)
s m̄ji

(
(1)
s γΘ

)
ij
= 0, (31)

ρ̄

(
Dφ̄

Dt
+ η̄

Dθ̄

Dt

)
+

q̄i ḡi

θ̄
− (0)

s σ̄jiD̄ij −
(0)
s m̄ji

(
(1)
s γΘ

)
ij
≤ 0. (32)

Equations (17)–(20) and (31), (32) constitute the complete mathematical model in Eulerian description.

4.1. Constitutive Variables and Their Argument Tensors

From Equations (17)–(20) and (31), (32), we determine that φ̄, η̄, (0)s σ̄σσ, (0)s m̄mm, and q̄qq are constitutive
variables. At this stage the argument tensors of (0)

s σ̄σσ, (0)s m̄mm, and q̄qq can be established from the rate of
work conjugate pairs (0)

s σ̄jiD̄ij,
(0)
s m̄ji

(
(1)
s γΘ

)
ij

, and the conjugate pair q̄i ḡi
θ̄

. From conservation of mass

in Lagrangian description ρ0 = |J| ρ, that is, compressibility is due to |J| = ρ0
ρ , hence it is fitting to

consider 1
ρ̄ as an argument tensor in Eulerian description as opposed to ρ̄ of the constitutive variables.

At a later stage dependence on 1
ρ̄ can be replaced by dependence on ρ̄ (using calculus). Furthermore we

consider θ̄ as argument tensor of the constitutive variables (thermoviscous fluid). Thus, we can write

(0)
s σ̄σσ =

(0)
s σ̄σσ

(
1
ρ̄

, D̄DD, θ̄

)
, (33)

(0)
s m̄mm =

(0)
s m̄mm

(
1
ρ̄

, (1)
s γγγΘ, θ̄

)
, (34)

q̄qq = q̄qq
(

1
ρ̄

, ḡgg, θ̄

)
. (35)

Argument tensors of φ̄ and η̄ can be established using principle of equipresence [7,11]

φ̄ = φ̄

(
1
ρ̄

, D̄DD, (1)
s γγγΘ, ḡgg, θ̄

)
, (36)

η̄ = η̄

(
1
ρ̄

, D̄DD, (1)
s γγγΘ, ḡgg, θ̄

)
. (37)

However, we have not used principle of equipresence for (0)σ̄σσ, (0)m̄mm, and q̄qq as the conjugate pairs
specifically dictate their argument tensors as used in Equations (33)–(35).
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4.2. Convected Time Derivatives of Strain Tensors and Convected Rotation Rates

The argument tensors of the constitutive variables in Equations (33)–(37) can be enhanced to
permit more comprehensive constitutive theories. Convected time derivatives of the Green’s strain
tensor and the Almansi strain tensor have been presented in Reference [7]. We summarize these in
the following.

4.2.1. Convected Time Derivatives of the Green’s Strain Tensor

If
[
ε [0]

]
is Green’s strain tensor, then

[
γ[1]

]
=

D
Dt

[
ε [0]

]
= [J]T

[
γ(1)

]
[J] , (38)

D
Dt

[
γ[k−1]

]
=
[
γ[k]

]
[
γ[k]

]
= [J]T

[
γ(k)

]
[J][

γ(k)

]
=

D
Dt

[
γ(k−1)

]
+ [L̄]T

[
γ(k−1)

]
+
[
γ(k−1)

]
[L̄]


k = 2, 3, . . . , nε, (39)

in which
[
γ(j)

]
; j = 1, 2, . . . , nε are the convected time derivatives of the Green’s strain tensor

[
ε [0]

]
of orders 1, 2, . . . , nε. We can show that[

γ(1)

]
= [D̄] =

1
2

(
[L̄] + [L̄]T

)
. (40)

These are obviously covariant measures.

4.2.2. Convected Time Derivatives of Almansi Strain Tensor

Let
[
ε̄[0]
]

be Almansi strain tensor, then we have the following[
γ[1]
]
=

D
Dt

[
ε̄[0]
]
= [ J̄]

[
γ(1)

]
[ J̄]T , (41)

[
γ[k]
]
=

D
Dt

[
γ[k−1]

]
[
γ[k]
]
= [ J̄]

[
γ(k)

]
[ J̄]T[

γ(k)
]
=

D
Dt

[
γ(k−1)

]
− [L̄]

[
γ(k−1)

]
−
[
γ(k−1)

]
[L̄]T


k = 2, 3, . . . , nε, (42)

in which
[
γ(j)

]
; j = 1, 2, . . . , nε are the convected time derivatives of orders 1, 2, . . . , nε of the Almansi

strain tensor
[
ε̄[0]
]
. We can also show that

[
γ(1)

]
= [D̄] =

1
2

(
[L̄] + [L̄]T

)
. (43)

Remark 3.

(1) We note that [
γ(1)

]
=
[
γ(1)

]
= [D̄] . (44)

Thus the first convected time derivatives of
[
ε [0]

]
and

[
ε̄[0]
]

are basis independent.
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(2) Jaumann rates
[
(k)γJ

]
are the average of

[
γ(k)

]
and

[
γ(k)

]
rates, that is,

[
(k)γJ

]
=

1
2

([
γ(k)

]
+
[
γ(k)

])
; k = 1, 2, . . . , nε. (45)

4.2.3. Gradients of the Higher Order Convected Rotation Rates

To our knowledge, the gradients of the higher order convected rotation rates presented in the
following is its first presentation. Consider

∇∇∇× vvv = eee1 (Θx1)(1) + eee2 (Θx2)(1) + eee2 (Θx3)(1) , (46)

and
∇̄∇∇× v̄vv = eee1 (Θ̄x1)

(1)
+ eee2 (Θ̄x2)

(1)
+ eee2 (Θ̄x3)

(1) . (47)

Thus, we have [(
γΘ

)
(1)

]
=

∂
{
(Θ)(1)

}
∂ {x}

 , (48)

[(
γΘ

)(1)]
=

∂
{
(Θ̄)

(1)
}

∂ {x̄}

 , (49)

in which
[(

γΘ

)
(1)

]
and

[(
γΘ

)(1)] are gradients of the rotation rates (of order one) in co- and

contra-variant bases. The symmetric and the antisymmetric components of
[(

γΘ

)
(1)

]
and

[(
γΘ

)(1)]
are given by [(

sγΘ

)
(1)

]
=

1
2

([(
γΘ

)
(1)

]
+
[(

γΘ

)
(1)

]T
)

,[(
aγΘ

)
(1)

]
=

1
2

([(
γΘ

)
(1)

]
−
[(

γΘ

)
(1)

]T
) (50)

and [(
sγΘ

)(1)]
=

1
2

([(
γΘ

)(1)]
+
[(

γΘ

)(1)]T
)

,[(
aγΘ

)(1)]
=

1
2

([(
γΘ

)(1)]− [(γΘ

)(1)]T
)

.
(51)

We can define the second Piola-Kirchhoff tensors corresponding to
[(

sγΘ

)
(1)

]
and

[(
sγΘ

)(1)] by

[(
sγΘ

)
[1]

]
= [J]

[(
sγΘ

)
(1)

]
[J]T

and
[(

sγΘ

)[1]]
= [ J̄]

[(
sγΘ

)(1)]
[ J̄]T

 . (52)

Following the details in Reference [7] and Sections 4.2.1 and 4.2.2 we can write the following for[(
sγΘ

)
(k)

]
; k = 2, 3, . . . , nΘ, the symmetric parts of the gradient of the higher order convected

rotation rates in covariant basis[(
sγΘ

)
[k]

]
=

D
Dt

[(
sγΘ

)
[k−1]

]
[(

sγΘ

)
[k]

]
= [J]

[(
sγΘ

)
(k)

]
[J]T[(

sγΘ

)
(k)

]
=

D
Dt

[(
sγΘ

)
(k−1)

]
+ [L̄]T

[(
sγΘ

)
(k−1)

]
+
[(

sγΘ

)
(k−1)

]
[L̄]


k = 2, 3, . . . , nΘ. (53)
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Likewise, for
[(

sγΘ

)(k)] ; k = 2, 3, . . . , nΘ, the symmetric parts of the gradient of the higher order
convected rotation rates in contravariant basis can be defined by[(

sγΘ

)[k]]
=

D
Dt

[(
sγΘ

)[k−1]
]

[(
sγΘ

)[k]]
= [ J̄]

[(
sγΘ

)(k)]
[ J̄]T[(

sγΘ

)(k)]
=

D
Dt

[(
sγΘ

)(k−1)
]
− [L̄]

[(
sγΘ

)(k−1)
]
−
[(

sγΘ

)(k−1)
]
[L̄]T


k = 2, 3, . . . , nΘ. (54)

Symmetric parts of the gradient of the convected rotation rate tensors called Jaumann tensors can
be defined as [

(k)
(

sγ J
Θ

)]
=

1
2

([(
sγΘ

)
(k)

]
+
[(

sγΘ

)(k)]) ; k = 1, 2, . . . , nΘ. (55)

In order to make the derivation of the constitutive theories basis independent we use the notation[
(k)
s γΘ

]
; k = 1, 2, . . . , nΘ for the symmetric parts of the gradient of convected rotation rates.

Depending upon the choice of the basis for the Cauchy moment tensor, that is, contra- or co-variant or
Jaumann basis we can choose the corresponding conjugates as

[(
sγΘ

)
(k)

]
,
[(

sγΘ

)(k)], and
[
(k)
(

sγ J
Θ

)]
,

respectively.

4.3. Final Choice of Argument Tensors for the Constitutive Variables

Recall the constitutive variables and their argument tensors defined by Equations (33)–(37). We can
generalize this choice of the argument tensors of Cauchy stress and moment tensors by replacing

[D̄]
(

i.e.,
[
γ(1)

]
or
[
γ(1)

]
or
[
(1)γJ

])
by
[
(i)γ
]

; k = 1, 2, . . . , nε,[
(1)
s γΘ

]
by
[
(k)
s γΘ

]
; k = 1, 2, . . . , nΘ.

(56)

Thus, now we have

(0)
s σ̄σσ =

(0)
s σ̄σσ

(
1
ρ̄

, (k)γγγ, θ̄

)
; k = 1, 2, . . . , nε, (57)

(0)
s m̄mm =

(0)
s m̄mm

(
1
ρ̄

, (k)
s γγγΘ, θ̄

)
; k = 1, 2, . . . , nΘ, (58)

q̄qq = q̄qq
(

1
ρ̄

, ḡgg, θ̄

)
, (59)

φ̄ = φ̄

(
1
ρ̄

, (i)γγγ, (j)
s γγγΘ, ḡgg, θ̄

)
;

i = 1, 2, . . . , nε

j = 1, 2, . . . , nΘ
. (60)

4.4. Entropy Inequality and Constitutive Theories

Consider entropy inequality Equation (32) and the argument tensors of φ̄ in Equation (60). Using

the chain rule
.
φ̄ = Dφ̄

Dt can now be obtained:

.
φ̄ =

Dφ̄

Dt
=

∂φ̄

∂
(

1
ρ̄

) (− 1
ρ̄2

) .
ρ̄ +

nε

∑
i=1

∂φ̄

∂
(
(i)γlk

) ((i) .
γlk

)
+

nΘ

∑
j=1

∂φ̄

∂
(
(j)
s γΘ

)
lk

(
(j)
s

.
γΘ

)
lk
+

∂φ̄

∂ḡi

.
ḡi +

∂φ̄

∂θ̄

.
θ̄. (61)

From the continuity equation

Dρ̄

Dt
=

.
ρ̄ = −ρ̄∇̄∇∇ · v̄vv = −ρ̄D̄kk = −ρ̄

(
(1)γkk

)
= −ρ̄

(
(1)γlk

)
δlk. (62)
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Using Equation (62) in Equation (61)

.
φ̄ =

1
ρ̄

∂φ̄

∂
(

1
ρ̄

) ((1)γlkδlk

)
+

nε

∑
i=1

∂φ̄

∂
(
(i)γlk

) ((i) .
γlk

)
+

nΘ

∑
j=1

∂φ̄

∂
(
(j)
s γΘ

)
lk

(
(j)
s

.
γΘ

)
lk
+

∂φ̄

∂ḡi

.
ḡi +

∂φ̄

∂θ̄

.
θ̄. (63)

We note that
∂φ̄

∂
(

1
ρ̄

) = −ρ̄2 ∂φ̄

∂ρ̄
. (64)

Using Equation (64) in Equation (63)

.
φ̄ = −ρ̄

∂φ̄

∂ρ̄

(
(1)γlkδlk

)
+

nε

∑
i=1

∂φ̄

∂
(
(i)γlk

) ((i) .
γlk

)
+

nΘ

∑
j=1

∂φ̄

∂
(
(j)
s γΘ

)
lk

(
(j)
s

.
γΘ

)
lk
+

∂φ̄

∂ḡi

.
ḡi +

∂φ̄

∂θ̄

.
θ̄. (65)

Substituting from Equation (65) in entropy inequality Equation (32) we obtain

ρ̄

−ρ̄
∂φ̄

∂ρ̄

(
(1)γlkδlk

)
+

nε

∑
i=1

∂φ̄

∂
(
(i)γlk

) ((i) .
γlk

)
+

nΘ

∑
j=1

∂φ̄

∂
(
(j)
s γΘ

)
lk

(
(j)
s

.
γΘ

)
lk
+

∂φ̄

∂ḡi

.
ḡi +

∂φ̄

∂θ̄

.
θ̄ + η̄

Dθ̄

Dt


+

q̄i ḡi
θ̄
− (0)

s σ̄lk

(
(1)γlk

)
− (0)

s m̄lk

(
(1)
s γΘ

)
lk
≤ 0.

(66)

Regrouping terms in Equation (66) we can write(
−ρ̄2 ∂φ̄

∂ρ̄
δlk −

(0)
s σ̄lk

)
(1)γlk + ρ̄

nε

∑
i=1

∂φ̄

∂
(
(i)γlk

) ((i) .
γlk

)
+ ρ̄

nΘ

∑
j=1

∂φ̄

∂
(
(j)
s γΘ

)
lk

(
(j)
s

.
γΘ

)
lk

+ρ̄

(
∂φ̄

∂θ̄
+ η̄

) .
θ̄ + ρ̄

∂φ̄

∂ḡi

.
ḡi +

q̄i ḡi

θ̄
− (0)

s m̄lk

(
(1)
s γΘ

)
lk
≤ 0.

(67)

For Equation (67) to hold for arbitrary but admissible choices of
[
(i)γ
]

; i = 1, 2, . . . , nε,
[
(j)
s γΘ

]
; j =

1, 2, . . . , nΘ,
.
ḡgg, and

.
θ̄, the following must hold:

ρ̄
∂φ̄

∂
(
(i)γlk

) = 0 =⇒ φ̄ 6= φ̄
([

(i)γ
])

; i = 1, 2, . . . , nε, (68)

ρ̄
∂φ̄

∂
(
(j)
s γΘ

)
lk

= 0 =⇒ φ̄ 6= φ̄
([

(j)
s γΘ

])
; j = 1, 2, . . . , nΘ, (69)

ρ̄
∂φ̄

∂ḡi
= 0 =⇒ φ̄ 6= φ̄(ḡgg) , (70)

ρ̄

(
∂φ̄

∂θ̄
+ η̄

)
= 0 =⇒ η̄ = −∂φ̄

∂θ̄
. (71)

The entropy inequality Equation (67) reduces to(
−ρ̄2 ∂φ̄

∂ρ̄
δlk −

(0)
s σ̄lk

)
(1)γlk +

q̄i ḡi

θ̄
− (0)

s m̄lk

(
(1)
s γΘ

)
lk
≤ 0. (72)

Equations (68)–(71) are fundamental relations resulting from the entropy inequality and Equation (72)
is the reduced form of the entropy inequality.

Remark 4.

(1) Equation (68) implies that φ̄ is not a function of
[
(i)γ
]

; i = 1, 2, . . . , nε.
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(2) Equation (69) shows that φ̄ is not a function of
[
(j)
s γΘ

]
; j = 1, 2, . . . , nΘ.

(3) From Equation (70) we can conclude that ḡgg is not an argument tensor of φ̄.
(4) Equation (71) allows us to determine η̄ using φ̄, hence η̄ is not a constitutive variable.
(5) From remarks (1)–(4) we have that φ̄ = φ̄

(
ρ̄, θ̄

)
.

(6) The entropy inequality Equation (72) is essential in the form stated in Equation (72). Setting coefficient of
(1)γlk in the first term of Equation (72) to zero would imply that

(0)
s σ̄lk = −ρ̄2 ∂φ̄

∂ρ̄
δlk (73)

which implies that (0)
s σ̄σσ is not a function of

[
(i)γ
]

; i = 1, 2, . . . , nε, which is contrary to Equation (57).
The entropy inequality Equation (72) in this form is unable to provide further details regarding the
derivations of the constitutive theories (specifically for (0)

s σ̄σσ).

In view of the remarks, the choice of constitutive variables and their argument tensors can
be modified:

φ̄ = φ̄
(
ρ̄, θ̄

)
, (74)

(0)
s σ̄σσ =

(0)
s σ̄σσ
(

ρ̄, (i)γγγ, θ̄
)

; i = 1, 2, . . . , nε, (75)

(0)
s m̄mm =

(0)
s m̄mm

(
ρ̄, (j)

s γγγΘ, θ̄
)

; j = 1, 2, . . . , nΘ, (76)

q̄qq = q̄qq
(
ρ̄, ḡgg, θ̄

)
. (77)

4.5. Decomposition of Cauchy Stress Tensor (0)
s σ̄σσ

We decompose Cauchy stress tensor (0)
s σ̄σσ into equilibrium Cauchy stress tensor, e

(
(0)
s σ̄σσ
)

, and

deviatoric stress tensor, d

(
(0)
s σ̄σσ
)

, that is,

(0)
s σ̄σσ = e

(
(0)
s σ̄σσ
)
+ d

(
(0)
s σ̄σσ
)

(78)

in which we consider the following

e

(
(0)
s σ̄σσ
)
= e

(
(0)
s σ̄σσ
(
ρ̄, θ̄

))
, (79)

d

(
(0)
s σ̄σσ
)
= d

(
(0)
s σ̄σσ
(

ρ̄, (i)γγγ, θ̄
))

; i = 1, 2, . . . , nε, (80)

and d

(
(0)
s σ̄σσ
(
ρ̄, θ̄

))
= 0. (81)

That is, e

(
(0)
s σ̄σσ
)

is not a function of (i)γγγ ; i = 1, 2, . . . , nε and d

(
(0)
s σ̄σσ
)

vanishes when (i)γγγ ; i = 1, 2, . . . , nε

are zero. Substituting Equation (78) in Equation (72)(
−ρ̄2 ∂φ̄

∂ρ̄
δlk − e

(
(0)
s σ̄
)

lk
− d

(
(0)
s σ̄
)

lk

)
(1)γlk +

q̄i ḡi

θ̄
− (0)

s m̄lk

(
(1)
s γΘ

)
lk
≤ 0, (82)

or (
−ρ̄2 ∂φ̄

∂ρ̄
δlk − e

(
(0)
s σ̄
)

lk

)
(1)γlk − d

(
(0)
s σ̄
)

lk
(1)γlk +

q̄i ḡi

θ̄
− (0)

s m̄lk

(
(1)
s γΘ

)
lk
≤ 0. (83)
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4.6. Constitutive Theory for Equilibrium Stress e

(
(0)
s σ̄σσ
)

4.6.1. Compressible Matter

We note that e

(
(0)
s σ̄σσ
)
= e

(
(0)
s σ̄σσ
(
ρ̄, θ̄

))
and φ̄ = φ̄

(
ρ̄, θ̄

)
. Thus, we can derive constitutive theory

for e

(
(0)
s σ̄σσ
)
= e

(
(0)
s σ̄σσ
(
ρ̄, θ̄

))
by setting coefficient of (1)γlk in the first term of Equation (83) to zero,

that is,

e

(
(0)
s σ̄
)

lk
= −ρ̄2 ∂φ̄

∂ρ̄
δlk = p̄

(
ρ̄, θ̄

)
δlk,

or e

(
(0)
s σ̄σσ
)
= p̄

(
ρ̄, θ̄

)
III,

(84)

in which

p̄
(
ρ̄, θ̄

)
= −ρ̄2 ∂φ̄

∂ρ̄
. (85)

p̄
(
ρ̄, θ̄

)
is called thermodynamic pressure. If we consider compressive pressure p̄

(
ρ̄, θ̄

)
to be positive,

then p̄
(
ρ̄, θ̄

)
in Equation (84) can be replaced by − p̄

(
ρ̄, θ̄

)
. Using Equation (84), the entropy inequality

reduces to
− d

(
(0)
s σ̄
)

lk
(1)γlk −

(0)
s m̄lk

(
(1)
s γΘ

)
lk
+

q̄i ḡi

θ̄
≤ 0. (86)

4.6.2. Incompressible Matter

For incompressible matter density is constant, hence ρ̄ = ρ0, ∂φ̄
∂ρ̄ = 0, and e

(
(0)
s σ̄σσ
)
= e

(
(0)
s σ̄σσ
(
θ̄
))

,

thus the constitutive theory for e

(
(0)
s σ̄σσ
)

for incompressible matter cannot be derived using ∂φ̄
∂ρ̄ , that is,

using Equation (84). The problem arises due to the fact that the incompressibility condition

∇̄∇∇ · v̄vv = tr [D̄] = tr
[
(1)γ

]
= (1)γlkδlk = 0 (87)

is not present in the entropy inequality, but can be incorporated in it by simply adding the following to
the entropy inequality Equation (83)

p̄
(
θ̄
)
(1)γlkδlk = 0, (88)

in which p̄
(
θ̄
)

is an arbitrary Lagrange multiplier. This yields:(
−ρ̄2 ∂φ̄

∂ρ̄
δlk − e

(
(0)
s σ̄
)

lk

)
(1)γlk + p̄

(
θ̄
)
(1)γlkδlk − d

(
(0)
s σ̄
)

lk
(1)γlk −

(0)
s m̄lk

(
(1)
s γΘ

)
lk
+

q̄i ḡi

θ̄
≤ 0. (89)

Using ∂φ̄
∂ρ̄ = 0 and regrouping terms in Equation (89),

(
p̄
(
θ̄
)

δlk − e

(
(0)
s σ̄
)

lk

)
(1)γlk +

q̄i ḡi

θ̄
− d

(
(0)
s σ̄
)

lk
(1)γlk −

(0)
s m̄lk

(
(1)
s γΘ

)
lk
≤ 0. (90)

Since e

(
(0)
s σ̄σσ
)
= e

(
(0)
s σ̄σσ
(
θ̄
))

, we can derive constitutive theory for e

(
(0)
s σ̄σσ
)

by setting the coefficient of
(1)γlk in Equation (90) to zero, that is,

e

(
(0)
s σ̄
)

lk
= p̄

(
θ̄
)

δlk,

or (0)
s σ̄σσ = p̄

(
θ̄
)

III.
(91)

p̄
(
θ̄
)

is called mechanical pressure. Since p̄
(
θ̄
)

is an arbitrary Lagrange multiplier, p̄
(
θ̄
)

cannot
be determined from the deformation field. The entropy inequality reduces to the same as in the
compressible case, that is, Equation (86).
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4.7. Constitutive Theories for d

(
(0)
s σ̄σσ
)

, (0)s m̄mm, and q̄qq

The constitutive variables and their argument tensors are now given in the following.

d

(
(0)
s σ̄σσ
)
= d

(
(0)
s σ̄σσ
(

ρ̄, (i)γγγ, θ̄
))

; i = 1, 2, . . . , nε, (92)

(0)
s m̄mm =

(0)
s m̄mm

(
ρ̄, (j)

s γγγΘ, θ̄
)

; j = 1, 2, . . . , nΘ, (93)

φ̄ = φ̄
(
θ̄
)

, (94)

and
e

(
(0)
s σ̄σσ
)
= p̄

(
ρ̄, θ̄

)
III ; Compressible

e

(
(0)
s σ̄σσ
)
= p̄

(
θ̄
)

III ; Incompressible

 , (95)

q̄qq = q̄qq
(
ρ̄, ḡgg, θ̄

)
. (96)

The final form of the entropy inequality is given by

q̄i ḡi

θ̄
− d

(
(0)
s σ̄
)

lk
(1)γlk −

(0)
s m̄lk

(
(1)
s γΘ

)
lk
≤ 0. (97)

Remark 5.

(1) Entropy inequality Equation (97) is satisfied if

d

(
(0)
s σ̄
)

lk
(1)γlk ≥ 0, (98)

(0)
s m̄lk

(
(1)
s γΘ

)
lk
≥ 0, (99)

and
q̄i ḡi

θ̄
≤ 0. (100)

(2) Inequalities (98) and (99) require that rate of work due to d

(
(0)
s σ̄σσ
)

and (0)
s m̄mm be positive. The constitutive

theory for q̄qq must satisfy inequality Equation (100).
(3) We derive constitutive theories for d

(
(0)
s σ̄σσ
)

, (0)s m̄mm, and q̄qq using Equations (92), (93), and (96) based on
representation theorem [7,11–26].

4.7.1. Constitutive Theory for d

(
(0)
s σ̄σσ
)

Consider Equation (92) defining argument tensors of d

(
(0)
s σ̄σσ
)

. Let
[

σG˜ i] ; i = 1, 2, . . . , Nε be the

combined generators of the argument tensors of d

(
(0)
s σ̄σσ
)

in Equation (92) that are symmetric tensors

of rank two, then d

(
(0)
s σ̄σσ
)

in the current configuration can be represented as a linear combination of [I]

and
[

σG˜ i] ; i = 1, 2, . . . , Nε: [
d

(
(0)
s σ̄
)]

= σα˜0 [I] +
Nε

∑
i=1

σα˜i
[

σG˜ i
]

. (101)

The coefficients σα˜i ; i = 0, 1, . . . , Nε are functions of ρ̄, θ̄, and σ I˜j ; j = 1, 2, . . . , Mε. σ I˜j ; j = 1, 2, . . . , Mε

are the combined invariants of the same argument tensors of d

(
(0)
s σ̄σσ
)

as in Equation (92), that is,

σα˜i = σα˜i
(

ρ̄, σ I˜j, θ̄
)

;
i = 0, 1, . . . , Nε

j = 1, 2, . . . , Mε
. (102)
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To determine material coefficients in the constitutive theory Equation (101), we expand σα˜i ; i =

0, 1, . . . , Nε in Taylor series in σ I˜j ; j = 1, 2, . . . , Mε and θ̄ about a known configuration Ω and retain
only up to linear terms in σ I˜j ; j = 1, 2, . . . , Mε and θ̄ (for simplicity):

σα˜i = σα˜i
∣∣∣
Ω
+

Mε

∑
j=1

∂
(

σα˜i)
∂
(

σ I˜j
) ∣∣∣∣∣

Ω

(
σ I˜j − σ I˜j

∣∣∣
Ω

)
+

∂
(

σα˜i)
∂θ̄

∣∣∣∣∣
Ω

(
θ̄ − θ̄

∣∣
Ω

)
; i = 0, 1, . . . , Nε. (103)

We substitute σα˜i ; i = 0, 1, . . . , Nε from Equation (103) in Equation (101) and collect coefficients
(defined in Ω configuration) of the terms defined in the current configuration and introduce new
coefficients for the terms defined in the known configuration, Ω. Then, we can obtain the following:

[
d

(
(0)
s σ̄
)]

= 0σ̄
∣∣∣
Ω
[I] +

Mε

∑
j=1

σaj

(
σ I˜j
)
[I] +

Nε

∑
i=1

σbi

[
σG˜ i
]
+

Nε

∑
i=1

Mε

∑
j=1

σcij

(
σ I˜j
) [

σG˜ i
]

−
Nε

∑
i=1

σdi

(
θ̄ − θ̄

∣∣
Ω

) [
σG˜ i
]
− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] .

(104)

In Equation (104) the quantities σaj, σbi, σcij, σdi, and σαtm ; i = 1, 2, . . . , Nε and j = 1, 2, . . . , Mε are
material coefficients defined in the known configuration Ω. The material coefficients are functions
of ρ̄|Ω, θ̄

∣∣
Ω, and σ I˜j

∣∣
Ω ; j = 1, 2, . . . , Mε. This constitutive theory requires (Mε + 2Nε + MεNε + 1)

material coefficients.

Remark 6.

(1) The constitutive theory Equation (104) is based on integrity, hence utilizes complete basis, but
unfortunately requires determination of too many material coefficients. This constitutive theory utilizes
convected time derivatives of the strain tensor up to orders nε.

(2) We can derive simplified constitutive theory from Equation (104) by only retaining the desired terms on
the right hand side of Equation (104). In the following we consider a constitutive theory that is linear in
convected time derivatives of the strain tensor in which higher degree and all product terms are neglected.
Introducing more familiar notation for material coefficients:

[
d

(
(0)
s σ̄
)]

= (0)σ̄
∣∣∣
Ω
[I] +

nε

∑
i=1

2µi

[
(i)γ
]
+

nε

∑
i=1

λi

(
tr
[
(i)γ
])

[I]− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] . (105)

This constitutive theory contains each strain rate and its trace and is obviously nonlinear due to the fact
that

[
(i)γ
]

; i = 2, 3, . . . , nε are nonlinear functions of the components of the velocity gradient tensor.
Each convected time derivative of the strain tensor requires two material coefficients (µi, λi).

(3) The only possible linear constitutive theory for d

(
(0)
s σ̄σσ
)

is given by

[
d

(
(0)
s σ̄
)]

= (0)σ̄
∣∣∣
Ω
[I] + 2µ1

[
(1)γ

]
+ λ1

(
tr
[
(1)γ

])
[I]− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] . (106)

This constitutive theory is basis independent as
[
γ(1)

]
=
[
γ(1)

]
= [D̄] =

[
(1)γJ

]
, hence d

(
(0)
s σ̄σσ
)

is
basis independent as well and we can write Equation (106) as

[d(sσ̄)] = σ̄0
∣∣∣
Ω
[I] + 2µ1 [D̄] + λ1 (tr [D̄]) [I]− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] . (107)

In which d(sσ̄σσ) = d

(
sσ̄σσ(0)

)
= d

(
sσ̄σσ(0)

)
= d

(
(0)
s σ̄σσJ

)
as right hand side of Equation (107) is

basis independent.
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(4) It is instructive to consider constitutive theory with nε = 1, in which case we have

d

(
(0)
s σ̄σσ=

)
d

(
(0)
s σ̄σσ
(

ρ̄, (1)γγγ, θ̄
))

. (108)

Hence, in this case we have [I] ,
[
(1)γ

]
= [D̄] , and

[
(1)γ

]2
= [D̄]

2 as combined generators of the

argument tensors of
[

d

(
(0)
s σ̄
)]

:

[
d

(
(0)
s σ̄
)]

= σα˜0 [I] + σα˜1
[
(1)γ

]
+ σα˜2

[
(1)γ

]2
, (109)

or
[

d

(
(0)
s σ̄
)]

= σα˜0 [I] + σα˜1 [D̄] + σα˜2 [D̄]
2 (110)

in which σα˜i = σα˜i(ρ̄, θ̄, ID̄, IID̄, IIID̄
)

; i = 0, 1, 2. (111)

If we choose
[
(i)γ
]
=
[

σG˜1
]

,
[
(i)γ
]2

=
[

σG˜2
]

; i.e. Nε = 2

and σ I˜1 = ID̄, σ I˜2 = IID̄, and σ I˜3 = IIID̄ ; Mε = 3

 (112)

then the resulting constitutive theory is given by Equation (104) with Nε = 2, and Mε = 3. The generators
and the invariants are defined in Equation (112).

4.7.2. Constitutive Theory for (0)
s m̄mm

We consider Equation (93) defining argument tensors of (0)
s m̄mm. Let

[mG˜ i] ; i = 1, 2, . . . , Nm be the

combined generators of the argument tensors of rank two, then (0)
s m̄mm can be represented by a linear

combination of [I] and
[mG˜ i] ; i = 1, 2, . . . , Nm:

[
(0)
s m̄
]
= mα˜0 [I] +

Nm

∑
i=1

mα˜i
[

mG˜ i
]

. (113)

The coefficients mα˜i ; i = 0, 1, . . . , Nm are functions of ρ̄, θ̄, and m I˜j ; j = 1, 2, . . . , Mm. m I˜j ; j =

1, 2, . . . , Mm are the combined invariants of the same argument tensors of (0)
s m̄mm as in (93), that is,

mα˜i = mα˜i
(

ρ̄, m I˜j, θ̄
)

; j = 1, 2, . . . , Mm. (114)

To determine material coefficients in the constitutive theory Equation (113), we expand mα˜i ; i =

0, 1, . . . , Nm in Taylor series in m I˜j ; j = 1, 2, . . . , Mm and θ̄ about a known configuration Ω and retain
only up to linear terms in m I˜j and θ̄ (for simplicity):

mα˜i = mα˜i
∣∣∣
Ω
+

Mm

∑
j=1

∂
(mα˜i)

∂
(

m I˜j
) ∣∣∣∣∣

Ω

(
m I˜j − m I˜j

∣∣∣
Ω

)
+

∂
(mα˜i)
∂θ̄

∣∣∣∣∣
Ω

(
θ̄ − θ̄

∣∣
Ω

)
; i = 0, 1, . . . , Nm. (115)

We substitute mα˜i ; i = 0, 1, . . . , Nm in Equation (113) and collect coefficients (those defined in Ω
configuration) of the terms defined in the current configuration and introduce new coefficients for the
terms defined in the known configuration Ω. Then, we obtain the following:

[
(0)
s m̄
]
= 0m̄

∣∣∣
Ω
[I] +

Mm

∑
j=1

maj

(
m I˜j
)
[I] +

Nm

∑
i=1

mbi

[
mG˜ i

]
+

Nm

∑
i=1

Mm

∑
j=1

mcij

(
m I˜j
) [

mG˜ i
]

−
Nm

∑
i=1

mdi

(
θ̄ − θ̄

∣∣
Ω

)
− mαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] .

(116)
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In Equation (116), maj, mbi, mcij, mdi, and mαtm ; i = 1, 2, . . . , Nm ; j = 1, 2, . . . , Mm are material
coefficients defined in the known configuration Ω. The material coefficients are functions of ρ̄|Ω,
θ̄
∣∣
Ω, and m I˜j

∣∣
Ω ; j = 1, 2, . . . , Mm. This constitutive theory requires (Mm + 2Nm + Nm Mm + 1)

material coefficients.

Remark 7.

(1) The constitutive theory Equation (116) is based on integrity, hence utilizes complete basis, but
unfortunately requires determination of too many material coefficients. This constitutive theory utilizes
symmetric part of the gradients of the convected rotation rates up to orders nΘ.

(2) It is possible to derive simplified constitutive theory for (0)
s m̄mm using Equation (116) by retaining only the

desired terms on the right side of Equation (116). In the following we consider a constitutive theory for
(0)
s m̄mm that is linear in the

[
(i)
s γΘ

]
; i = 1, 2, . . . , nΘ in which the higher degree terms of

[
(i)
s γΘ

]
as well

as all product terms are neglected:

[
(0)
s m̄
]
= 0m̄

∣∣∣
Ω
[I] +

nΘ

∑
i=1

2
(

Θµi

) [
(i)
s γΘ

]
+

nΘ

∑
i=1

Θλi

(
tr
[
(i)
s γΘ

])
[I]− mαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] . (117)

This constitutive theory contains
[
(i)
s γΘ

]
and tr

[
(i)
s γΘ

]
, i = 1, 2, . . . , nΘ and is obviously nonlinear

due to the fact that
[
(i)
s γΘ

]
; i = 2, 3, . . . , nΘ are nonlinear functions of the components of the velocity

gradient tensor. Consideration of each rate requires two material coefficients Θµi and Θλi.
(3) The only possible linear constitutive theory for (0)

s m̄mm is given by:[
(0)
s m̄
]
= 0m̄

∣∣∣
Ω
[I] + 2

(
Θµ1

) [
(i)
s γΘ

]
+ Θλ1

(
tr
[
(i)
s γΘ

])
[I]− mαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] (118)

in which tr
[
(i)
s γΘ

]
= 0, hence in this constitutive theory only one material coefficient is associated with

the rate of order one.
(4) It is instructive to consider a constitutive theory for

[
(0)
s m̄
]

with nΘ = 1, in which case we have

(0)
s m̄mm =

(0)
s m̄mm

(
ρ̄, (1)

s γγγΘ, θ̄
)

. (119)

Hence, [
(0)
s m̄
]
= mα˜0 [I] + mα˜1

[
(1)
s γΘ

]
+ mα˜2

[
(1)
s γΘ

]2
(120)

in which mα˜i = mα˜i
(

ρ̄, θ̄, I((1)
s γ

Θ

) , II((1)
s γ

Θ

) , III((1)
s γ

Θ

)) ; i = 0, 1, 2 (121)

If we choose
[
(1)
s γΘ

]
=
[

mG˜1
]

,
[
(1)
s γΘ

]2
=
[

mG˜2
]

; Nm = 2

and m I˜1 = I((1)
s γ

Θ

) , m I˜2 = II((1)
s γ

Θ

) , m I˜3 = III((1)
s γ

Θ

)
 (122)

then the resulting constitutive theory is given by Equation (116) with Nm = 2, Mm = 3. The generators
and invariants are defined in Equation (122).

4.7.3. Constitutive Theory for q̄qq

Consider the argument tensors of q̄qq in Equation (96), that is,

q̄qq = q̄qq
(
ρ̄, ḡgg, θ̄

)
. (123)
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Using representation theorem (following Reference [7]) we can derive the following constitutive theory,
keeping in mind that here the generator is ḡgg and the invariant is ḡgg · ḡgg:

q̄qq = −kḡgg − k1

(
ḡgg · ḡgg − (ḡgg · ḡgg)|Ω

)
ḡgg − k2

(
θ̄ − θ̄

∣∣
Ω

)
ḡgg, (124)

in which k, k1, and k2 can be functions of ρ̄, θ̄
∣∣
Ω, and (ḡgg · ḡgg)|Ω. A linear constitutive theory for q̄qq is

given by
q̄qq = −kḡgg. (125)

This is the Fourier heat conduction law.

5. Complete Mathematical Model

The equations resulting from the conservation and balance laws and constitutive theories, based
on integrity and simplified are presented in this section. It is shown that this mathematical model
has closure.

∂ρ̄

∂t
+

∂

∂x̄i
(ρ̄v̄i) = 0 (CM) , (126)

ρ̄
∂v̄i
∂t

+ ρ̄v̄j
∂v̄i
∂x̄j
− ρ̄F̄b

i −
∂

∂x̄j

(
(0)σ̄ji

)
= 0 (BLM) , (127)

(0)m̄pk,p + εijk
(0)σ̄ij = 0 (BAM) , (128)

εijk
(0)m̄ij = 0 (BMM) , (129)

ρ̄
Dē
Dt

+
∂q̄i
∂x̄i
− (0)

s σ̄jiD̄ij −
(0)
s m̄ji

(
(1)
s γΘ

)
ij
= 0 (FLT) , (130)

q̄i ḡi

θ̄
− d

(
(0)
s σ̄
)

lk
(1)γlk −

(0)
s m̄lk

(
(1)
s γΘ

)
lk
≤ 0 (SLT) . (131)

Constitutive theories for e

(
(0)
s σ̄σσ
)

:

[
e

(
(0)
s σ̄
)]

= p̄
(
θ̄
)
[I] ; Incompressible (132)[

e

(
(0)
s σ̄
)]

= p̄
(
ρ̄, θ̄

)
[I] ; Compressible (133)

Constitutive theories for
[

d

(
(0)
s σ̄
)]

,
[
(0)
s m̄
]
, and q̄qq:

(a) Based on integrity:

[
d

(
(0)
s σ̄
)]

= 0σ̄
∣∣∣
Ω
[I] +

Mε

∑
j=1

σaj

(
σ I˜j
)
[I] +

Nε

∑
i=1

σbi

[
σG˜ i
]
+

Nε

∑
i=1

Mε

∑
j=1

σcij

(
σ I˜j
) [

σG˜ i
]

−
Nε

∑
i=1

σdi

(
θ̄ − θ̄

∣∣
Ω

) [
σG˜ i
]
− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] ,

(134)

[
(0)
s m̄
]
= 0m̄

∣∣∣
Ω
[I] +

Mm

∑
j=1

maj

(
m I˜j
)
[I] +

Nm

∑
i=1

mbi

[
mG˜ i

]
+

Nm

∑
i=1

Mm

∑
j=1

mcij

(
m I˜j
) [

mG˜ i
]

−
Nm

∑
i=1

mdi

(
θ̄ − θ̄

∣∣
Ω

)
− mαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] ,

(135)

q̄qq = −kḡgg − k1

(
ḡgg · ḡgg − (ḡgg · ḡgg)|Ω

)
ḡgg − k2

(
θ̄ − θ̄

∣∣
Ω

)
ḡgg. (136)
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(b) Simplified theories (neglecting product terms):

[
d

(
(0)
s σ̄
)]

= (0)σ̄
∣∣∣
Ω
[I] +

nε

∑
i=1

2µi

[
(i)γ
]
+

nε

∑
i=1

λi

(
tr
[
(i)γ
])

[I]− σαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] , (137)

[
(0)
s m̄
]
= 0m̄

∣∣∣
Ω
[I] +

nΘ

∑
i=1

2
(

Θµi

) [
(i)
s γΘ

]
+

nΘ

∑
i=1

Θλi

(
tr
[
(i)
s γΘ

])
[I]− mαtm

(
θ̄ − θ̄

∣∣
Ω

)
[I] , (138)

q̄qq = −kḡgg. (139)

This mathematical model consists of conservation of mass (1), balance of linear momenta (3),
balance of angular momenta (3), first law of thermodynamics (1), constitutive theories: d

(
(0)
s σ̄σσ
)
(6),

(0)
s m̄mm (6), q̄qq (3), a total of twenty-three equations in the dependent variables: ρ̄ (1), v̄vv (3), (0)σ̄σσ (9),
(0)
s m̄mm (6), q̄qq (3), θ̄ (1), a total of twenty three dependent variables, hence this mathematical model has

closure. We note that ē = ē
(
ρ̄, θ̄

)
, and p̄ = p̄

(
ρ̄, θ̄

)
or p̄ = p̄

(
θ̄
)
, hence ē and p̄ are not dependent

variables in the mathematical model.

6. Summary and Conclusions

In this section, we present a summary of the work presented in the paper, highlight new and
meritorious features and present some conclusions.

(1) Role of entropy inequality in the derivation of the constitutive theories for Cauchy stress tensor,
Cauchy moment tensor, and heat vector are discussed in Section 3, remark (2).

(2) The paper considers the conservation and balance laws of non-classical mechanics [1–3] in
Eulerian description in which internal rotation rates naturally arise due to anti-symmetric part of
the velocity gradient tensor.

(3) Surana et al. [6] have shown that in this NCCM, the conservation and balance laws of CCM
need modifications and a new balance law ‘balance of moment of moments’ is essential to ensure
dynamic equilibrium of the deforming fluent continua.

(4) It has been shown [3] that, in this physics, a more complete constitutive theory for the symmetric
part of the Cauchy stress tensor can be derived using convected time derivatives of the Green’s
or Almansi strain tensor. However, the constitutive theories for the symmetric Cauchy moment
tensor have been limited to the symmetric part of the gradients of rotation rates.

(5) In this paper, we show that parallel to the convected time derivatives of the strain tensors (up to
orders nε), it is also possible to establish symmetric gradient tensors of the higher order rotation
rates. The derivation presented in this paper derives a recursive form through which rotation
rates of any order (nΘ) can be obtained.

(6) The constitutive theories for Cauchy stress and Cauchy moment tensors are derived by:

(i) first establishing their argument tensors using conjugate pairs in the entropy inequality;
(ii) then augmenting these by the higher order convected time derivatives;

(iii) consideration of the argument tensors of φ̄ using principle of equipresence and using
.
φ̄ in

the entropy inequality;
(iv) decompositions of Cauchy stress and Cauchy moment tensors into equilibrium and

deviatoric parts.

(7) Constitutive theory for equilibrium stress tensor is established for compressible and
incompressible fluent continua.

(8) Constitutive theories for deviatoric part of the symmetric Cauchy stress and Cauchy moment
tensor and heat vector are derived using representation theorem. These theories are based on
integrity (complete basis), hence are complete and are naturally nonlinear in terms of their
argument tensors. Simplified constitutive theories are also presented.
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(9) The dissipation mechanism in such non-classical fluent continua is a higher order rate mechanism:
arising from the strain rates (up to orders nε) as well as the symmetric gradients of the rotation
rates (up to orders nΘ). We note that nε = 1 and nΘ = 0 (CCM) gives rise to standard
constitutive theory for Cauchy stress tensor used for Newtonian fluids (compressible as well
as incompressible).

(10) Model problem studies considering nε ≥ 1 and nΘ ≥ 1 will be presented in a forthcoming paper.
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The following abbreviations are used in this manuscript:

BAM Balance of angular momenta
BLM Balance of linear momenta
BMM Balance of moment of moments
CM Conservation of mass
CCM Classical continuum mechanics
FLT First law of thermodynamics
NCCM Non-classical continuum mechanics
SLT Second law of thermodynamics
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