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Human language is a system of communication. Communication, in turn, consists primarily of
information transmission. Writing about the interactions between information and natural language,
we cannot fail to mention that information theory has originated with statistical investigations of
English text in the turn of the 1940s and 1950s [1,2]. While initially, there were some common interests
between information theory and linguistics, for instance, understanding distributional properties of
elements in natural language, e.g., [3,4], the following decades brought a growing divide between the
fields. They went down separate research paths until the end of the 20th century. Whereas information
theory embraced probabilities, also in disguise of algorithms [5], the influential Chomskyan formal
theory of syntax deemed the question of probabilities in language as scientifically largely irrelevant [6].
It was only in the 1990s that the gap between information theory and formal language studies started
to be bridged by the rapid progress of computational linguistics [7,8]. For a detailed account of
this development see also [9]. Presently, this progress has resulted in large-scale neural statistical
language models such as the much publicized GPT-2 [10], which is capable of generating surreal but
understandable short stories.

To use an information theoretic metaphor, the communication channel between the divergent
research traditions is reopening. Looking back at independent discoveries of probabilistic and
non-probabilistic accounts of natural language, we deem that the divide might have been necessary to
focus attention on particular areas of scientific investigation. However, the time is ripe to integrate the
established disjoint scholarships, and to cross-fertilize research. We believe that the frameworks of
information theory and linguistics are fully compatible in spite of some historical reservations and
different academic curricula.

This Special Issue consists of twelve contributions that cover various recent research areas at the
interface of information theory and linguistics. They concern in particular:

• applications of information theoretic concepts to the research of natural languages;
• mathematical work in information theory inspired by natural language phenomena;
• empirical and theoretical investigation of quantitative laws of natural language;
• empirical and theoretical investigation of statistical and neural language models.

We believe that the selection of authors and topics in this Special issue reflects the state of the art
of interdisciplinary research. In fact, the formal disciplines of the contributing authors range from
linguistics and cognitive science to computer science, mathematics, and physics. Since the various
research perspectives cannot be easily arranged in an obvious linear order, we have decided to present
the papers in the order of their publication.
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The Contributions

• Koplenig, A., Wolfer, S., and Müller-Spitzer, C., Studying Lexical Dynamics and Language Change via
Generalized Entropies: The Problem of Sample Size [11].

Dependence on sample size is a recurrent problem in quantitative linguistics. This also holds for
accounts harnessing, for instance, the entropy of word frequency distributions. Koplenig, Wolfer, and
Müller-Spitzer systematically investigate this issue based on a corpus compiled from a weekly news
magazine in German, which spans seven decades, and contains more than 200 million word tokens.
In particular, they employ the generalized Tsallis entropies, which allow for weighting parts of the
frequency spectrum more or less heavily in entropy calculations. It turns out that correlations between
the estimated entropies and respective sample sizes are only broken if a heavy bias towards highly
frequent words is introduced. In particular, the standard Shannon entropies display a strong dependence
on sample size. In an application investigating lexical change over several decades, the authors further
propose and illustrate a "litmus test". This entails calculating entropy divergences between parts of
the corpus over historical time, and comparing these with entropy divergences calculated for texts
in random order. Their results suggest that it is the growing sample size over time which leads to
systematic patterns in entropy divergences, potentially independent of genuine lexical change.

• Hahn, M. and Futrell, R., Estimating Predictive Rate–Distortion Curves via Neural Variational
Inference [12].

The predictive rate-distortion curve quantifies the trade-off between compressing information
about the past of a stochastic process and predicting its future accurately. Hence it is a more detailed
characteristic of the process complexity than its excess entropy or statistical complexity. Hahn and
Futrell study estimation of predictive rate-distortion curves for complex stochastic processes, aimed to
be applied for natural language. The authors’ method of estimation consists in upper bounding the
correct curve by means of a neural network approximation of the investigated process. The method is
validated on examples of processes for which the predictive rate-distortion curve is known analytically.
Moreover, the authors provide an estimate of the predictive rate-distortion curve for text corpora in
five natural languages (English, Russian, Arabic, Japanese, and Chinese). The experiments universally
indicate that the excess entropy and statistical complexity for natural language are infinite.

• Hernández-Fernández, A., Torre, I.G., Garrido, J.M., and Lacasa, L., Linguistic Laws in Speech: The
Case of Catalan and Spanish [13].

There is a hypothesis in quantitative linguistics, called the physical hypothesis, that statistical
linguistic laws in written texts are a byproduct of more exact laws present in the acoustic signals of
oral communication. In contrast to earlier works, Hernández-Fernández et al. investigate and verify
the physical hypothesis using a large oral text corpus, the Glissando Corpus of spoken Catalan and
Spanish. The studied quantitative linguistic laws include Zipf’s law, Herdan’s law, the brevity law,
Menzerath–Altmann’s law, the log-normality law, and the size-rank law. By aligning the acoustic signal
with the speech transcripts, they measure and compare the agreement of each of these laws when
measured in both physical and symbolic units. The conclusion of this experiment is that quantitative
linguistic laws are satisfied indeed more accurately for the acoustic signal than for the speech transcript.

• Venhuizen, N.J., Crocker, M.W., and Brouwer, H., Semantic Entropy in Language Comprehension [14].

The link between information and meaning has been a controversial topic ever since Shannon’s
work. The alleged disconnection between the two was posed as a main argument against analyzing
natural language in the light of information theory. Venhuizen, Crocker and Brouwer illustrate that
information theoretic concepts might be fruitfully applied to both linguistic signals, and the points
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they denote in meaning space. In their experiments, they combine formal semantic tools with neural
network technology. Based on a set of training sentences, their neural network learns to map linguistic
signals onto meaning vectors representing propositional truth values. This setup allows the authors to
trace the semantic expectations of the network in word-by-word online processing. In this context,
they tease apart surprisal and entropy reduction, two concepts which were previously often seen as
strongly intertwined. Surprisal is calculated based on word-by-word transitions in meaning space,
whereas entropy is calculated over meaning vectors which identify a unique semantic model of the
world. Given these definitions, suprisal and entropy reduction are not strongly correlated. The authors
explain this by pointing out that surprisal is inherently more sensitive to frequency effects in the
linguistic signal, while entropy reduction is more strongly influenced by knowledge of the model
theoretic world.

• Ren, G., Takahashi, S., and Tanaka-Ishii, K., Entropy Rate Estimation for English via a Large Cognitive
Experiment Using Mechanical Turk [15].

The entropy rate of a sequence reflects the amount of information conveyed per unit, e.g.,
characters or words in natural language. It has been proposed also as a measure of the complexity
of a sequence. However, estimating the entropy rate of natural languages has proven a challenging
endeavor due to the problem of finite sample sizes and long-range dependence. Ren, Takahashi, and
Tanaka-Ishii revive an idea going back to Shannon’s experiments [2], namely, estimating the entropy
rate by using human subjects to predict the next character in a linguistic sequence. They collect more
than 100,000 character predictions for English texts by 683 different subjects. Across all subjects and
trials, they estimate the entropy rate to around 1.4 bits per character. Using trials selected for high
performance (i.e., correctly guessing characters) reduces the estimate to around 1.22 bits per character.
In their discussion, the authors point out that this is lower than Shannon’s original value of 1.3 bits per
character. On the other hand, it is higher than entropy rates estimated with current state-of-the-art
neural language models, which are just above 1 bit per character. This suggests that neural language
models outperform human subjects in character guessing games.

• Gutierrez-Vasques, X. and Mijangos, V., Productivity and Predictability for Measuring Morphological
Complexity [16].

There is a recent rise of interest in measuring the morphological complexity of typologically
diverse languages. The findings of this research have implications for both theoretical and applied
linguistics, especially in the domain of natural language processing. Gutierrez-Vasques and Mijangos
propose to apply the information-theoretic concept of entropy rate to word internal structure. Their
data sets contain parallel texts for 47 and 133 typologically diverse languages respectively. Using
a neural language model they estimate the difficulty of predicting character unigrams and trigrams
within words for different languages and writing systems. These estimates are then contrasted with
more traditional measures of morphological complexity, such as the type-token ratio for words. It turns
out that word internal predictability is only weakly correlated with the type-token ratio, and hence
measures a new and independent dimension of morphological complexity.

• Dębowski, Ł., Approximating Information Measures for Fields [17].

Motivated by some theoretical problems of statistical modeling of natural language, Dębowski
reconsiders the classical problem of generalizing entropy and mutual information from discrete random
variables (finite partitions, in more abstract formulation) to arbitrary random variables (fields and
σ-fields, respectively). Having noticed a mistake in his paper from 2009, he supplies corrected proofs
of the invariance of completion and the chain rule for conditional entropy and mutual information.
In the final section, he also discusses how the generalized calculus of conditional entropy and mutual
information is useful in particular for studying the ergodic decomposition of strongly non-ergodic
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stationary processes and its links with statistical modeling of natural language, which possibly should
be modeled by a strongly non-ergodic process.

• Linke, M. and Ramscar, M., How the Probabilistic Structure of Grammatical Context Shapes Speech [18].

Frequencies of occurrence are a central concept in quantitative linguistics. They are often used
to measure the informativeness of units (i.e., characters, words, etc.) in written language. Linke and
Ramscar point out several caveats with this approach. Firstly, written language is not a direct reflection
of speech. As a remedy, they use a corpus of conversational English of more than 200,000 word
tokens with phonetic labels, and compare their results to studies using written language. Secondly,
frequencies of occurrence abstract away from co-occurrence patterns at different levels of language
structure, e.g., n-grams for words and parts-of-speech, as well as subword structure. The authors argue
that grammatical context often predicts usage patterns in speech better than mere frequencies. Thirdly,
distributions of frequencies are mostly analyzed over entire texts, for instance, when power law like
patterns such as Zipf’s law are assessed. However, the authors illustrate that there are systematic
differences between the distributions of frequencies for words of different parts-of-speech. Namely,
while open class items such as nouns and verbs follow power laws, function words rather follow
geometric distributions. In fact, the authors further argue that power law like behavior in aggregate
distributions might well be the outcome of mixing distributions which are by themselves geometric.

• Gerlach, M. and Font-Clos, F., A Standardized Project Gutenberg Corpus for Statistical Analysis of
Natural Language and Quantitative Linguistics [19].

Studies on information theoretic properties of natural languages—and analyses in quantitative
linguistics more generally—stand and fall with availability of textual data. The universality of linguistic
laws, for instance, can only be ascertained given openly available, cross-linguistic, and transparently
processed data. To this end, Gerlach and Font-Clos contribute a standardized version of the Project
Gutenberg Corpus, which contains more than 50,000 books in over 20 languages. They give a detailed
description of the data acquisition, processing, and metadata annotation procedures. Furthermore,
they illustrate how this corpus can be used to measure the topical variability between texts associated
with different genres via so-called “bookshelf” labels, and how authors are distinguishable by the
Jensen-Shannon divergence applied to their works.

• Seoane, L.F. and Solé, R., Criticality in Pareto Optimal Grammars? [20].

Seoane and Solé propose a computational methodology to inspect corpora of texts in order
to extract salient levels of linguistic description. Their methodology is grounded in the bottleneck
method from information theory, Pareto optimality from multi-objective optimization, and concepts
from statistical physics such as energy, entropy, phase transitions and criticality. Their working
example concerns extracting the Pareto optimal grammars from 49 newspaper articles taken from the
Corpus of Contemporary American English preprocessed by the Natural Language Toolkit (NLTK).
The numerical results indicate a critical point in the description of human language. As the authors
write, the critical point is the worst case in terms of description since there is no relatively small model
which can capture the whole phenomenology at any level of linguistic description.

• Ahmadi, L. and Ward, M.D., Asymptotic Analysis of the kth Subword Complexity [21].

The subword complexity is a function which counts how many distinct substrings of a given length
appear in a given string. It is a simple characteristic of a string that yields an insight whether the string is
periodic, random, or something in between—like a text in natural language. In particular, the subword
complexity divided by the string length equals to the type-token ratio investigated in quantitative
linguistics. Ahmadi and Ward study some properties of subword complexity from a mathematical
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point of view. Namely, they investigate the asymptotic behavior of the subword complexity for
sequences of independent identically distributed random variables. They derive expressions for
the expectation (first moment) and the variance (second moment) of subword complexity. Their
methodology involves complex analysis, analytical poissonization and depoissonization, the Mellin
transform, and saddle point analysis.

• Corral, Á. and Serra, I., The Brevity Law as a Scaling Law, and a Possible Origin of Zipf’s Law for Word
Frequencies [22].

Corral and Serra study the joint distribution of lengths and frequencies of words, whose marginals
are described by the brevity law and Zipf’s law for frequencies of frequencies, called also Lotka’s
law. The investigated corpus is the English subcorpus of the Standardized Project Gutenberg Corpus,
introduced in contribution [19]. The authors observe that the marginal distribution of word length is
better described by the gamma distribution than by the previously proposed log-normal distribution.
Moreover, the conditional frequency distributions at a fixed length exhibit a universal power-law
decay and a scaling law analogous to those found in the thermodynamics of critical phenomena.
In conclusion, the authors present a four-parameter model for the joint distribution of lengths and
frequencies of words.
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