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Abstract: This paper aims to describe a statistical model of wrapped densities for bi-invariant
statistics on the group of rigid motions of a Euclidean space. Probability distributions on the group
are constructed from distributions on tangent spaces and pushed to the group by the exponential map.
We provide an expression of the Jacobian determinant of the exponential map of SE(n) which enables
the obtaining of explicit expressions of the densities on the group. Besides having explicit expressions,
the strengths of this statistical model are that densities are parametrized by their moments and
are easy to sample from. Unfortunately, we are not able to provide convergence rates for density
estimation. We provide instead a numerical comparison between the moment-matching estimators
on SE(2) and R3, which shows similar behaviors.

Keywords: wrapped distributions; rigid motions; Euclidean groups; differential of the exponential;
moment-matching estimator; density estimation; sampling

1. Introduction

This work is an extended version of the conference paper [1], focused on SE(2). We provide
here a formula for SE(n) with arbitrary n ≥ 2, and a numerical evaluation of the convergence of the
moment-matching density estimator on SE(2).

Probability density estimation problems generally fall in one of two categories: estimating a
density on a Euclidean vector space or estimating a density on a non-Euclidean manifold. In turn,
estimation problems on non-Euclidean manifolds can be divided in different categories depending on
the nature of the manifold. The two main classes of non-Euclidean manifold encountered in statistics
are Riemannian manifolds and Lie groups. On Riemannian manifolds, the objects studied in statistics
should be consistent with the Riemannian distance. For instance, means of distributions are defined as
points minimizing the average square Riemannian distances. On a Lie group, the objects should be
consistent with the group law. Direct products of compact Lie groups and vector spaces for examples
belong to both categories, they admit a Riemannian metric invariant by left and right multiplications.
However, in full generality, Lie groups do not admit such nice metrics, hence the need for statistical
tools based solely on the group law and not on the Riemannian distance.

The definition of a statistical mean on Lie groups was addressed by Pennec and Arsigny in [2]
where authors define bi-invariant means on arbitrary Lie groups as exponential barycenters [3]. Once
the bi-invariant mean is defined, higher order bi-invariant centered moments can be defined in the
tangent space at the mean. We build on this notion of moments to address the problem of constructing
statistical models on SE(n), the group of direct isometries of Rn. The wrapped distributions model
we propose has several advantages. First, it is stable under left and right multiplications. Second,
densities have explicit expressions and are parameterized by their mean and covariance rather than
their concentration matrix as for normal distributions defined in [4]. Third, the densities are easy
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to sample from. To do so, we construct wrapped densities on SE(n) similar to the densities defined
in [5–11] on Riemannian manifolds. Similar types of probability distributions have already been
considered for robotics applications on SE(3) to model uncertainty in motion estimation, see for
instance [12].

Harmonic analysis is another well-known approach to density estimation, see [13] for SE(2)
and [14–16] on other manifolds. Beside the technicalities and numerical difficulties introduced by
harmonic analysis on non-abelian and non-compact groups, the main motivation for using wrapped
distributions over harmonic analysis techniques, is that it enables the definition of parametric models.

This work is based on two facts. First, the exponential map can be translated from the identity
element to any point of the group regardless of the choice of left or right multiplication. This property
was already of primary importance in the construction of the bi-invariant mean [2] and enables the
definition of bi-invariant estimation procedures. The second important fact is that the Jacobian of the
exponential map on SE(n) admits a closed form expression which we compute in Section 3.2. This
Jacobian provides an easy way to define probability densities with explicit expressions on the group
by pushing densities from tangent spaces using the exponential map.

Unfortunately, the literature on convergence of bi-invariant moments on Lie group is still very
limited. Therefore, we were not able to characterize the convergence of estimators using the proposed
model. Instead, we compared numerically the convergence of the moment-matching estimator on
SE(2) and on R3.

The paper is organized as follows. Section 2 describes the group of direct isometries of the Euclidean
space. Section 3 includes relevant properties of the exponential mapping and the computation of the
Jacobian determinant. Section 4 recalls the definitions of the first and second centered moments on a
Lie group. A statistical model together with a sampling and an estimation procedure is introduced in
Section 5. Section 6 concludes the paper.

2. Euclidean Groups

For a condensed introduction to Lie group theory for robotics, see [17], and for several relevant
calculations on low-dimensional rigid motions, see the series of notes [18–20].

SE(n) is the set of all direct isometries of the Euclidean space Rn. The composition law of maps
makes SE(n) a group. For each element g of SE(n) there are a unique rotation R and a unique vector t
such that

g(u) = Ru + t,

hence the isometry g can be represented by the couple (R, t). The group structure of SE(n) is not a
direct product between the special orthogonal group and the group of translations, but a semi direct
product with translations as the normal subgroup:

SE(n) = SO(n)nφ Rn

(R, t)(R′, t′) = (RR′, φR(t′) + t)

where we simply have φR = R. Let Ψ(R,t) denote the conjugation by (R, t). A short calculation gives

Ψ(R,t)(R′, t′) = (R, t)(R′, t′)(R, t)−1 = (RR′Rt,−RR′Rtt + Rt′ + t).

Recall that AdR,t = d
(

Ψ(R,t)

)
e

. Hence, after unfolding the elements of the Lie algebra se(n) into
column vectors, the matrix representation of AdR,t is given by

Ad(R,t) :

(
AdR 0

C R

)
(1)



Entropy 2020, 22, 432 3 of 15

where C is a n by n(n−1)
2 matrix, AdR is the adjoint representation of rotations. The structure of this

adjoint matrix implies first that SE(n) is unimodular, i.e., admits a bi-invariant measure and the
derivative of the exponential admits an explicit expression as we will see in Section 3.2. To see that
SE(n) is unimodular, consider a left-invariant volume form ω. The volume form is bi-invariant if and
only if

dLg ◦ dRg−1(ωe) = ωe,

or equivalently det(dLg ◦ dRg−1) = det(Adg) = 1. Since SO(n) is compact, it admits a bi-invariant
measure. Hence det(AdR) = 1, and we have

det(Ad(R,t)) = det(AdR). det(R) = 1.

We note µG the bi-invariant measure associated with ω. The fact that SE(n) is unimodular has
a significant impact on the definition of statistical tools: it is possible to manipulate densities of
probability distributions with respect to a canonical measure.

A convenient way to represent elements of SE(n) is to identify the isometry (R, t) with the matrix(
R t
0 1

)
∈ GLn+1(R).

It is easy to check that the composition of isometries corresponds to the matrix multiplication.
SE(n) is thus seen as a Lie subgroup of GLn+1(R). Our density modelling framework is intrinsic and
does not depend on a specific choice of coordinates. However, it is useful for some computations to set
a reference basis. The tangent space at the identity element, noted TeSE(n), is spanned by the matrices
of the form

Ai,j =

(
Ei,j − Ej,i 0

0 0

)
and Ti =

(
0 ei
0 0

)
where Ei,j is the n× n matrix with a 1 at index (i, j) and zeros elsewhere and ei is the i-th basis vector of
Rn. Let Be =

(
Ai,j
)⋃

(Ti) be the reference basis of TeSE(n). Be can be translated by left multiplication
to make a left-invariant field of basis B. Depending on context A will denote an n× n skew-symmetric
matrix or its embedding in the Lie algebra of GLn+1, and tangent vectors will be noted with the letter
u: u = (A, T).

Recall that a skew-symmetric matrix can be block-diagonalized with 2 by 2 rotations on the
diagonal, followed by a 0 when the dimension is odd. For each n by n skew-symmetric matrix A, we
note θ1, . . . , θb n

2 c the set of angles of the 2 by 2 rotations.
The identification of SE(n) with a Lie subgroup of GLn+1(R) makes the computation of the

exponential map easy: the group exponential is simply the matrix exponential. Let U be the subset of
TeSE(n) defined by

U = {u = (A, T)| ∀i, θi ∈ [−π, π]}.

It can be checked that the exponential map on U is a bijection. Therefore, we can define the
logarithm on SE(n) as the inverse of the exponential on U.

3. Bi-Invariant Local Linearizations

Moments and densities are defined using local linearizations of the group. Hence, to obtain
bi-invariant statistics, the linearization must be compatible with left and right multiplications.
This section describes why the exponential map provides such linearizations from arbitrary elements.

Though we do not use this formalism, the construction of the exponential at g can be viewed in
the general setting of Cartan connections on Lie groups. The exponential at g is then the exponential of
a bi-invariant connection, see [21–23].
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3.1. The Exponential at Point G

Since the exponential maps the lines of the tangent space at e to the one parameter subgroups of
SE(n), it is a natural candidate to linearize the group near the identity. To linearize the group around
an arbitrary element g, it is possible to move g to the identity by a multiplication by g−1, use the
linearization at identity to obtain a tangent vector in TeSE(n), and map the resulting tangent vector to
TgSE(n) with a multiplication by g. Fortunately, we can check that this procedure does not depend on
a choice of left or right multiplication. Recall that on a Lie group,

g exp(u)g−1 = exp(Adg(u)) = exp(dLg(dRg−1(u))) = exp(dRg−1(dLg(u))),

where dLg and dRg are the differentials of the left and right multiplication. This property enables the
transport of the exponential application to any element of the group without ambiguity on the choice
of left or right multiplication,

expg : TgSE(n)→ SE(n)

u 7→ expg(u) = g. exp
(

dLg−1 u
)
= exp

(
dRg−1 u

)
g,

see Figure 1 for a visual illustration.

TgSE(n)

TeSE(n)

SE(n)

SE(n)

TeSE(n)

SE(n)

dL−1
g

expe

Lg

dR−1
g

expe

Rg

expg

Figure 1. Commutation of the Adjoint/conjugation and the exponential.

Note Ug ⊂ TgSE(n) = dLg (U) the injectivity domain of expg. The logarithm logg : SE(n)→ Ug

becomes

logg0
(g) = dLg0

(
log
(

g−1
0 g

))
(2)

= dRg0

(
log
(

gg−1
0

))
. (3)

We now have a linearization of the group around an arbitrary g ∈ SE(n). The bi-invariant
nature of the linearization is summarized in Figure 2. Independence from the choice of left or right
multiplication in the definition of the exponential at an arbitrary point was the key ingredient of the
definition of the bi-invariant mean in [2]. It is again a key property in our statistical model.
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Figure 2. Bi-invariant linearization.

The strength of the exponential map is that it turns some general algebra problems into linear
algebra. Once the space has been lifted to a tangent space, the problem of left and right invariances is
reduced to the study of the commutation with the differentials of left and right multiplications. Since
the tangent spaces do not have a canonical basis or scalar product, the manipulations we perform
such as computing a mean, a covariance or estimating a density should not depend on the choice of
a particular coordinate system. Hence if these manipulations commute with all the linear invertible
transformations, in particular with the left and right differentials, they induce bi-invariant operations.

3.2. Jacobian Determinant of the Exponential

A measure µ on TgSE(n) can be pushed forward to the group using the exponential at g.
This push-forward measure is noted expg∗(µ). Since expg commutes with the right and left actions, so
does the push-forward of measures. To obtain expressions of the densities on the group, it is necessary
to compute the Jacobian determinant of the exponential, see Figure 3.

Figure 3. To push a density from a tangent space to the group, it is necessary to know the ratios between
red and blue areas.

Assume µ has a density f with respect to a Lebesgue measure of TgSE(n) and that its support is
contained in an injectivity domain Ug of expg. The density fSE(n) of the measure pushed on the group
is given by

fSE(n)(expg u) =
d expg∗(µ)

dµG
(expg(u)) =

1
|det(d(expg)u)|

f (u)
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where d(expg)u is the differential of expg at the vector u expressed in the left-invariant reference field
of basis. Since SE(n) is unimodular, i.e., µG is bi-invariant, the density of the pushed forward measure
also commutes with the left and right translations of SE(n).

We now compute this Jacobian determinant at the identity element. For the sake of notation, we
drop the index e and let d expu be the differential of the group exponential at the tangent vector u
expressed in the bases Be and Bexp(u). d expu has the following expression (see [20,24]):

d expu = dLexpu
◦
(

∑
k≥0

(−1)k

(k + 1)!
adk

u

)
.

Since det(dLexpu
) = 1, the Jacobian determinant of the exponential is given by the determinant of

the series. Fortunately, the adjoint action can be diagonalized and the determinant can be computed
explicitly. Recall that adu=(A,T) = d(Ad(R,t))(R,t)=e(A, T). Using Equation(1) we have that the matrix
of adu has the following form

adu :

(
adA 0
D A

)
, (4)

where on the left side A is an n× n skew-symmetric matrix, adA is the adjoint map in the Lie algebra
of skew-symmetric matrices, and D is an n(n−1)

2 by n matrix. Since the matrix of ad(A,T) is block
triangular,

det(d expu) = det

(
∑
k≥0

(−1)k

(k + 1)!
adk

A

)
. det

(
∑
k≥0

(−1)k

(k + 1)!
Ak

)
.

Both determinants are obtained by diagonalizing A and adA. Take a d × d real skew-symmetric
matrix M. There is an unitary matrix P such that M = PDP̄t, where D is diagonal with eigenvalues
iλ1,−iλ1, . . . , iλb d

2 c
,−iλb d

2 c
with λi ∈ R followed by a 0 when d is odd. For λ 6= 0 we have,

∑
k≥0

(−1)k

(k + 1)!
λk =

1− e−λ

λ
,

and when λ = 0, the left term equals 1 and the right term can be extended by continuity. The right terms
are the eigenvalues of the series in M. Hence using the fact that the determinant of a diagonalizable
matrix is the product of its eigenvalues we have

det

(
∑
k≥0

(−1)k

(k + 1)!
Mk

)
= ∏

i

1− e−iλi

iλi

1− eiλi

−iλi

= ∏
i

2
1− cos(λi)

λ2
i

. (5)

A is by definition skew-symmetric. Since the adjoint representation of SO(n) is compact, there is
a basis of matrices such that adA are skew-symmetric. Hence, Equation (5) enables the computation
of det(d expu) from the eigenvalues of A and adA. The eigenvalues of adA are usually obtained by
computing the roots of the complexified Lie algebra of the group SO(n), see ([25], [chap. 3, sec. 8]).
We provide a direct computation in Appendix A. If n is even, we have then

det(d expu) = ∏
i

2
1− cos(θi)

θ2
i

·∏
i<j

(
4 ·

1 + cos(θi + θj)

(θi + θj)2 ·
1 + cos(θi − θj)

(θi − θj)2

)
(6)

and for n odd,

det(d expu) =

(
∏

i
2

1− cos(θi)

θ2
i

)2

·∏
i<j

(
4 ·

1 + cos(θi + θj)

(θi + θj)2 ·
1 + cos(θi − θj)

(θi − θj)2

)
. (7)
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Let Jg(u) = |det(d expg,u)|. Since expg(u) = g · expe

(
dLg−1 u

)
,

d expg,u = dLg ◦ d expe,dLg−1 (u)
◦dLg−1 .

Furthermore,

dLg−1
(
Bg
)
= Be and Bexpg(u)

= dLg

(
B

expe

(
dLg−1 (u)

)) .

Hence expressed in the basis Bg and Bexpg(u)
, the determinant of d expg,u is given by

Jg(u) = Je

(
dLg−1(u)

)
.

When all tangent vectors are expressed in the left-invariant basis, it is possible to drop the
subscripts and write

J(A, T) = J(θ1, . . . , θb n
2 c, T) =

∣∣∣det(d exp(A,T))
∣∣∣ . (8)

On SE(2) we simply have

J(θ, T) =
∣∣∣∣21− cos(θ)

θ2

∣∣∣∣ . (9)

4. First and Second Moments of a Distribution on a Lie Group

4.1. Bi-Invariant Means

Bi-invariant means on Lie groups have been introduced by Pennec and Arsigny, see [2].
An element ḡ in a Lie group G is said to be a bi-invariant mean of g1, . . . , gk ∈ G or of probability
distribution µ on G, if

∑
i

logḡ(gi) = 0 or
∫

G
logḡ(g)dµ(g) = 0.

Observe that ḡ is not necessarily unique, see [2,26,27] for more details. Using Equation (2), it is
straightforward to check that the mean is compatible with left and right multiplications:

dLg′

(
∑

i
logg(gi)

)
= ∑

i
logg′g(g′gi) and dRg′

(
∑

i
logg(gi)

)
= ∑

i
loggg′(gig′),

Hence if ∑i logḡ(gi) = 0 we also have ∑i logg′ ḡ(g′gi) = 0 and ∑i logḡg′(gig′) = 0.

4.2. Covariance in a Vector Space

In this section, the bold letter u represents a vector and the letter u its coordinate in a basis.
Let us recall the definition of the covariance of a distribution on a vector space in a coordinate

system. Let e1, . . . , en be a basis of the vector space V and µ a distribution on V. The covariance of µ

in V is defined by

Σ = Eµ((u− µ̄)(u− µ̄)t) =
∫

V
(u− µ̄)(u− µ̄)tdµ(u),

where u and µ̄ are the coordinate expressions of the vector u and the average of µ and Eµ() is the
expectation with respect to µ.

Let K : R+ → R+ be such that K(‖x‖) is a probability density on Rn whose covariance matrix in
the canonical basis is the identity matrix, and µ be the distribution on V whose density is

dµ

dλe
(u) =

1

det
(√

Σ
)K

(√
utΣ−1u

)
. (10)
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where λe is the Lebesgue measure induced by e1, . . . , en. It is easy to check that the covariance of µ is Σ.
Since the tangent space of a Lie group does not have a canonical basis, it is sometimes useful to

define objects independently of coordinates. The coordinate free definition of the covariance becomes

Σ =
∫

V
(u− µ̄)⊗ (u− µ̄)dµ(u).

Recall that V⊗V is naturally identified with the space of bilinear forms on V∗ . Let B∗ be the bilinear
form on V∗ associated with Σ. If B∗ is positive definite, it induces an isomorphism between V∗ and V
and is then naturally identified with a bilinear form B on V. The definition µ in Equation (10) becomes

dµ

dλB
(u) = K

(√
B (u, u)

)
,

where λB is the Lebesgue measure on V induced by B. In this formulation it clearly appears that µ

does not depends on a basis.

4.3. Covariance of a Distribution on SE(N)

Let µ be a distribution on SE(n) such that its bi-invariant mean ḡ is uniquely defined.
The covariance tensor of µ is defined as

Σ = Eµ

(
logḡ(g)⊗ logḡ(g)

)
=
∫

SE(n)
logḡ(g)⊗ logḡ(g)dµ(g) ∈ TḡSE(n)⊗ TḡSE(n),

see Figure 4 for a visual illustration.

Figure 4. Covariance of an empirical measure.

Again, using Equation (2) and the bi-invariance of the mean, the compatibility of the covariance
with left and right multiplication is straightforward. Note g · Σ and Σ · g the pushforwards by left and
right multiplication by g of the tensor Σ. We have then

g′ · Σ = Eµ

(
dLg′(logḡ(g))⊗ dLg′(logḡ(g))

)
= Eµ

(
logg′ ḡ(g

′g)⊗ logg′ ḡ(g
′g)
)

= Σ′

where Σ′ is the covariance of the distribution g′ · µ, the push-forward of µ by Lg′ . The same goes for
right multiplications. However, it is important to note that for a covariance Σ defined on TgSE(n),
pushing the covariance to the tangent space at identity using left and right multiplication usually gives
different results:
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g−1 · Σ = Adg−1

(
Σ · g−1

)
6= Σ · g−1,

where Adg(·) is interpreted as the map on tensors induced by the adjoint representation.
For two distributions µ1 and µ2 with different means, their covariance tensors are objects defined

in different tangent spaces. The collection of all these spaces form the tangent bundle TSE(n), and
covariances are identified to points in the tensor bundle TSE(n)⊗ TSE(n).

In the reference field of basis B, the covariance Σ has a matrix Σ given by

Σ =
∫

SE(n)
logḡ(g) logḡ(g)tdµ(g).

In principal geodesic analysis, the matrix Σ is sometimes referred to as a linearized quantity in
contrast to the exact principal geodesic analysis, see [28].

5. Statistical Models for Bi-Invariant Statistics

5.1. The Model

Let K : R+ → R+ be such that

(i)
∫
Rn K(‖u‖)du = 1

(ii)
∫
Rn uutK(‖u‖)du = I, I being the n× n identity matrix

(iii) K(x > a) = 0 for some a ∈ R.

Condition (i) imposes that K(‖u‖) is a probability density on Rn, condition (ii) that the covariance
matrix is the identity matrix and condition (iii) that it has a bounded support.

The statistical model is defined by pushing densities of the form K(‖u‖) from tangent spaces
to the group via the exponential, where the Euclidean norms on tangent spaces are parameters of
the distributions. To avoid summing densities over the multiple inverse images of the exponential
map, it is convenient to deal with densities K(‖u‖) whose support are included in injectivity domains,
hence the (iii) requirement. Let Cg be the set of covariance matrices compatible with the injectivity
domain Ug,

Cg =
{

Σ|∀u /∈ Ug, utΣ−1u > a
}

,

see Figure 5. When covariance matrices are expressed in the left-invariant reference basis, the set Cg is
the same for all g and the subscript can be dropped.

Figure 5. Σ /∈ Cg.

When Σ ∈ Cg, the support of the probability distribution µ on TgSE(n) defined by

dµ̃

dλg
(u) =

1√
det(Σ)

K
(√

utΣ−1u
)

,
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where µ̃ is the lift of µ by logg, is contained in Ug. Here λg denotes the Lebesgue measure of TgSE(n).
The density of the push-forward of µ is then

f (expg(u)) =
1

J(u)
√

det(Σ)
K
(√

utΣ−1u
)

, (11)

or, expressed at g′ ∈ SE(n),

f (g′) =
1

J(logg(g′))
√

det(Σ)
K
(√

logg(g′)tΣ−1 logg(g′)
)

, (12)

where J is given in Equation (8). The set of such probability densities when g and Σ vary form a natural
parametric statistical model:

M =
{

fg,Σ : g ∈ SE(n) and Σ ∈ Cg
}

.

The commutation relations of Section 3.1 imply thatM is closed under left and right multiplications.
The fact that g and Σ are the moments of fg,Σ plays a major role in the relevance of the modelM. This
fact holds when Σ is small enough, a more precise result should follow in a future work.

5.2. Sampling Distributions ofM

An advantage of constructing distributions from tangent spaces is that they are easy to sample:
it suffices to be able to sample from the probability density p on R proportional to K(x), p ∝ K. Recall
that the dimension of tangent spaces is d = n(n+1)

2 . Let vi = (x1,i, . . . , xd,i)
t be random column vectors

with xk,l i.i.d. reals distributed according to p. Then the vectors

ui = Σ
1
2 vi

are i.i.d. of density 1√
det(Σ)

K
(√

utΣ−1u
)

on Rd, and the points

gi = expg(ui)

are i.i.d. according to the density fg,Σ on SE(n).

5.3. Evaluation of the Convergence of the Moment-Matching Estimator

All the experiments in this section were performed using the Python package geomstats, see [29],
available at http:geomstats.ai. Let g1, . . . , gk be points in SE(n) with a unique bi-invariant mean ĝ and
such that the empirical covariance

Σ̂(g1, . . . , gk) =
1
k ∑

i
logĝ(gi) logĝ(gi)

t

is contained in Cĝ and that the moments of fĝ,Σ̂µG are (ĝ, Σ̂). The compatibilities with left multiplications,

fg′g,g′Σ = g′ · fg,Σ and Σ̂(g′ · g1, . . . , g′ · gk) = g′.Σ̂(g1, . . . , gk),

and right multiplications, implies that the maximum likelihood and the moment-matching estimators
are bi-invariant.

On the one hand, finding the maximum likelihood estimation when g1, . . . , gk are i.i.d. requires
an optimization procedure. On the other hand, matching moments is straightforward, provided
that the moments of f ḡ,Σ are (ḡ, Σ). In most cases, this moment-matching estimator is expected to
have reasonable convergence properties; however there are currently no theoretical results on the
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convergence of bi-invariant means and covariance on Lie groups. Hence for now it is only possible to
provide empirical convergence on specific examples. Let

K(x) = 3
4π53/2 1[0,

√
5](x), Σ1 =

1 0 0
0 1 0
0 0 1

 , Σ2 =

0 −1 0
1 0 0
0 0 1


0.5 0 0

0 0.2 0
0 0 1


 0 1 0
−1 0 0
0 0 1

 . (13)

The function K verifies i), ii) and ii) of Section 5.1. Since
√

5 < π
2 , Σ1 and Σ2 are admissible

covariances, Σ1,2 ∈ C. Σ2 is chosen such that it correlates the rotation and translation coordinates.
Given a set of i.i.d. samples g1, . . . , gk of the density fe,Σ, the estimated density of the

moment-matching estimator is f ĝ,Σ̂. For the sake of notations, we drop subscripts and simply write f

and f̂ . To characterize the convergence of the estimator, we compare the convergence of f̂ on SE(2) with
the analogous moment-matching estimator on TeSE(2) ∼ R3 using the samples log(g1), . . . , log(gk).

Any Lp distance between densities provides a way to evaluate the convergence in a bi-invariant
way. The L1 is particularly meaningful in the context of probabilities and presents the advantage of
being independent from a reference measure. Therefore, we evaluated the expectation of the L1 distance
to f :

ek = E f

(∫
SE(2)

| f (g)− f̂ (g)|dµG(g)
)

,

and the Euclidean analogous, where k is the number of samples of f . The integrals over SE(2) can be
estimated using a Monte-Carlo sampling adapted to the distributions. Indeed,

∫ ∣∣∣ f − f̂
∣∣∣ dµG =

∫
S

∣∣∣∣∣1− f̂
f

∣∣∣∣∣ f dµG +
∫

Sc
f̂ dµG (14)

= E f

(∣∣∣∣∣1− f̂
f

∣∣∣∣∣
)
+ 1− E f

(
f̂
f

)
(15)

≈ 1 + ∑
i

(∣∣∣∣∣1− f̂
f
(ui)

∣∣∣∣∣− f̂
f
(ui)

)
(16)

where S is the support of f and the (ui) are i.i.d. samples of f . The L1 distances between f and f̂ are
estimated using 5000 Monte-Carlo samples, and the expectation of the L1 distance is estimated using
200 estimates f̂ . Figure 6 depicts the decay of the expected L1 distance with the number of samples
for the SE(2) and R3 cases using the covariance Σ1 and Figure 7 using the covariance Σ2. For a given
covariance Σ, the error decay on SE(2) and R3 seem to be asymptotically related by a multiplicative
factor close to 1. Future work should focus on gaining insights into the phenomena underlying the
error decay in the general case.

6. Conclusion and Perspectives

In this paper, we have described a statistical modelM of densities for bi-invariant statistics on
SE(n). Even though we do not provide convergence rates, we showed experimentally on an example
that the density estimation on SE(2) behaves similarly to the estimation on R3. Further works will focus
on a deeper analysis of the performance of the moment-matching estimator, on proposing detailed
algorithms to estimate densities in a mixture model, and on generalizing the construction to other
Lie groups.
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Figure 6. L1 errors and their ratios on SE(2) and TeSE(2) ∼ R3 for the covariance Σ1, see Equation (13).
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Figure 7. L1 errors and their ratios on SE(2) and TeSE(2) ∼ R3 for the covariance Σ2, see Equation (13).
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Appendix A. Eigenvalues of adA

LetA be the set of skew-symmetric n× n matrices. Let A ∈ A and adA : X ∈ A 7→ AX−XA ∈ A.
We aim at computing the eigenvalues of adA. Since A is in A, there exists an orthogonal matrix P such
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that D = P−1 AP is a matrix with vanishing entries outside of b n
2 c 2 by 2 matrices Aj =

(
0 −aj
aj 0

)
along the diagonal. If n is even, the eigenvalues of adA are the numbers

i(±aj ± ak), 1 ≤ j < k ≤ n
2

0, with multiplicity
n
2

.

If n is odd the eigenvalues of adA are the numbers

i(±aj ± ak), 1 ≤ j < k ≤ n− 1
2

±aj, 1 ≤ j ≤ n− 1
2

,

0, with multiplicity
n− 1

2
.

Proof. Let gP(X) = PXP−1. Since gP is invertible and that adA = gP ◦ adD ◦ g−1
P , adA and adD have

the same eigenvalues. Consider first the case n odd. Let X ∈ A, X can be decomposed in n−1
2 ×

n−1
2

2 by 2 sub-matrices Bi,j, n−1
2 1 by 2 sub-matrices uj on the last line of X, and n−1

2 2 by 1 ut
j on the

last column, and a 1 by 1 sub-matrix x = Xn,n. Y = adA(X) can be decomposed the same way in
sub-matrices ci,j, vi,j, vt

i,j and y = Yn,n. With the block products we obtain,

Ci,j = AiBi,j − Bi,j Ai, 1 ≤ j ≤ k ≤ n− 1
2

vj = −uj Aj 1 ≤ j ≤ n− 1
2

,

y = 0.

it follows that each subspace Aij,i 6=j with vanishing entries outside the 2 by 2 blocks ij and ji, are adD
stable. These spaces are four-dimensional and direct calculation shows that the eigenvalues of adD
restricted to these spaces are i(±ai ± aj). The subspace Ai defined by the blocks ui and ut

i are stable
as well, and the computation shows that the corresponding eigenvalues are i(±aj). adD restricted to
blocks Ai,i vanishes, thus 0 is of multiplicity n−1

2 . In the n even case, only the eigenvalues associated
with blocks Ai,j remain.
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