
entropy

Article

Identifying Communities in Dynamic Networks
Using Information Dynamics

Zejun Sun 1,2 , Jinfang Sheng 1,* , Bin Wang 1,*, Aman Ullah1 and FaizaRiaz Khawaja 1

1 School of Computer Science and Engineering, Central South University, Changsha 401302, China;
szj@pdsu.edu.cn (Z.S.); dr.aman@csu.edu.cn (A.U.); riazfaiza94@yahoo.com (F.K.)

2 School of Information Engineering, Pingdingshan University, Pingdingshan 462500, China
* Correspondence: jfsheng@csu.edu.cn (J.S.); wb_csut@csu.edu.cn (B.K.)

Received: 29 February 2020; Accepted: 8 April 2020; Published: 9 April 2020
����������
�������

Abstract: Identifying communities in dynamic networks is essential for exploring the latent
network structures, understanding network functions, predicting network evolution, and discovering
abnormal network events. Many dynamic community detection methods have been proposed
from different viewpoints. However, identifying the community structure in dynamic networks
is very challenging due to the difficulty of parameter tuning, high time complexity and detection
accuracy decreasing as time slices increase. In this paper, we present a dynamic community detection
framework based on information dynamics and develop a dynamic community detection algorithm
called DCDID (dynamic community detection based on information dynamics), which uses a batch
processing technique to incrementally uncover communities in dynamic networks. DCDID employs
the information dynamics model to simulate the exchange of information among nodes and aims to
improve the efficiency of community detection by filtering out the unchanged subgraph. To illustrate
the effectiveness of DCDID, we extensively test it on synthetic and real-world dynamic networks,
and the results demonstrate that the DCDID algorithm is superior to the representative methods in
relation to the quality of dynamic community detection.
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1. Introduction

Systems in the real world can be abstracted into complex networks, and a large number of
algorithms for complex network mining have been proposed [1–5], most of which focus on static
networks. However, most networks in the real world are evolving over time. For example, news
and public opinions are constantly being produced, spread and abandoned; infectious diseases are
constantly appearing, spreading and dying; urban road networks are constantly being built, expanded
and demolished; organizations or groups in social networks are constantly forming, growing and
dissolving, and so on. Studying the structural characteristics of dynamic networks is beneficial to
analyze the formation mechanism of networks, explore the implicit structure, and predict the evolution
of the network structure. These have important theoretical and practical value for the development
of various fields and disciplines in real society. For decades, researchers have conducted extensive
research on community structures in complex networks and have proposed many well-known static
community discovery methods, such as GN [6], CPM [7], LPA [8], Louvain [9], Infomap [10], MCL [11],
etc. However, the network structure in the real world is not static. In contrast, the community
structure of most networks is constantly evolving over time. The existing static community discovery
methods divide the community based on the static topology of the network and have not considered
the relationship between the network structures under multiple snapshots. Therefore, most static
community detection algorithms are not suitable for dynamic networks.
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Recently, community detection in dynamic networks has attracted increasing attention and
become a popular research topic because of their high potential for apprehending social phenomena
over time. Many methods have been designed for identifying the communities in dynamic networks
from different perspectives, which include dynamic community detection based on evolutionary
clustering [12] and incremental [13] dynamic community detection. The evolutionary clustering-based
method defines a general clustering framework, so that some static clustering algorithms can also
be extended to community detection in dynamic networks. Evolutionary clustering includes two
evaluation indicators; one is the clustering quality of the current snapshot, and the other is the
difference of the clustering result between the current and the previous snapshots. The methods
based on evolutionary clustering consider both that the evolution of the network structure is smooth
and the relationship between snapshots, but such methods still have a high time complexity. Similar
to evolutionary clustering, the incremental dynamic community detection methods still assume
that the network evolution is smooth. This type of algorithm first performs global community
detection on the initial network, and then incrementally detects the changed subgraphs in the snapshot
network. Therefore, incremental community detection methods often have faster detection speeds.
Such methods have also attracted the attention of researchers and several incremental algorithms have
been proposed [13–15]. However, most of the existing incremental dynamic community detection
methods have gradually reduced their performance as the number of snapshots increases. In the
process of incremental community identification, only the local structure of the network is detected;
therefore, some changes in the associated structure may be neglected. In addition, when processing the
addition and deletion of nodes and edges incrementally, the processing order may have an impact on
the detection results and efficiency [16]. Therefore, accurately and efficiently identifying the community
structure in a dynamic network is still a very interesting and challenging task.

In this paper, we propose a dynamic community detection framework based on information
dynamics. Based on this framework, we design a dynamic community detection algorithm DCDID.
We regard a network as a closed dynamic system with the information exchanges in the network
based on the topology. Through the exchange of information between nodes, nodes with the same
characteristics will self-organize, and finally, the community structure in the network will be naturally
exposed. This new viewpoint provides a fresh approach to dynamic community detection and it has
some attractive features. We will introduce DCDID in Section 3, but first, let us describe the basic idea
of the proposed method.

1.1. Basic Idea

In social networks, a person usually prefers to communicate with people who share their values.
This feature promotes the formation and development of groups, and groups also facilitate the
communication of information between people. Therefore, the exchange of information among
people plays a very important role in the formation and growth of communities. The structure of the
network affects information propagation; in turn, the spread of information also reflects the community
structure of the network. Based on these characteristics, we can construct models to automatically
reveal the community structure by imitating the communication of information between people. Thus,
we designed a new approach based on information dynamics to acquire insights into the division of
communities in dynamic networks, where the basic idea is to consider an accommodative dynamical
system and investigate its information dynamics over time. In particular, in an interpersonal network,
people with similar interests or features are more likely to interact with others, and the propagation of
information between them tends to be more frequent. With the diffusion and interaction of information,
people in the same community have almost the equivalent amount of information, whereas those in
diverse communities have different amounts of information. Over time, the information dynamics on
the network reaches the steady state, and the communities can be naturally uncovered by counting the
amount of information of nodes in the network.
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To better illustrate the basic idea, we employ a toy network as an example. Figure 1 describes the
process of information dynamics in a dynamic social network, which consists of many users denoted
as cartoon persons with different colors. In this dynamic artificial network, we take a company as
an example to present the process of dynamic community detection based on information dynamics,
which comprises the following stages. First, everyone possesses his/her own knowledge as initial
information because of distinct occupations (i.e., v = 0.66, u1 = 0.5), as shown in Figure 1a (see
Definition 3). Then, the information spreads through the topological structure of the network (see
Equation (4)). For example, user v shares its information with the connected neighbors u1 − u4, as
shown in Figure 1b. Over time, the amount of information exchanged between people tends to zero
and the information dynamics reaches the steady state. Next, the communities are naturally revealed
by computing the different information in the network. Figure 1b shows the community structure
detected by the information dynamics model in the time slice T0. Building upon the information of
communities detected at the time slice T0, an incremental community discovery framework is adopted
for the subsequent snapshot networks (see Figure 2), which includes adding nodes, deleting nodes,
adding edges, and deleting edges events. Figure 1c–f demonstrates that the addition and deletion of
nodes and edges may lead to changes in the network structure. For example, the addition of user u5

causes the two communities to merge into one community, as shown in Figure 1c. Similarly, Figure
1d–e present that the deletion of users u6 and u7 results in a split in the community.
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Figure 1. Illustration of dynamic community detection based on information dynamics. (a) In the initial
state, each person possesses his/her own initial information. (b) The community detection based on
information dynamics in the overall network at the time slice T0. (c) The addition of node U5 resulted
in the merging of the two communities. (d) Adding the edge E1 did not change the original community
partition. (e) The deletion of nodes U6 and U7 caused the community to split. (f) Deleting the edge E2

did not cause the community to change.
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1.2. Contributions

By imitating the information dynamics, the proposed dynamic community detection algorithm
has several attractive benefits, the most important of which are listed as follows:

• Effective Dynamic Community Detection: We propose an information dynamics-based
framework, which employs the batch processing technique to incrementally uncover community
structures in dynamic networks. In addition, we develop a dynamic community detection
method DCDID for revealing the communities by simulating the exchange of information
between nodes in each time slice of dynamic networks. The DCDID method provides a natural
manner to uncover community structure and obtains high-quality communities in each time
slice (cf. Figures 7–12).

• Parameter-free: The DCDID approach does not require parameter settings and prior knowledge,
and it automatically detects the communities through information dynamics driven by the local
topological structure of the network.

• Scalability: Because of using the batch processing and incremental technology, DCDID only
needs to update those communities where the subgraph changed and keep the rest of the
subgraph unchanged in each time slice. Thus, DCDID has a low time complexity and can be
applied to large-scale dynamic networks. (cf. Section 3.5).

The rest of this paper is organized as follows. In the second section, we introduce the related
work. Section 3 gives the information dynamic model and presents the dynamic community detection
framework and algorithm in detail. Section 4 describes the experimental results of DCDID on synthetic
and real-world networks. Finally, our conclusions are presented in Section 5.

2. Related Work

In recent years, many methods have been proposed for community detection in dynamic networks.
Here, we only summarize some contributions in the most closely related areas from the literature. For
more detailed research work of dynamic community detection, please refer to the review literature
in [17–19].

Incremental-based Methods. The topic of Incremental community detection in dynamic
networks has attracted significant attention in recent years. Shang et al. [20] proposed a real-time
detection algorithm in dynamic networks, which detects the community structure of the initial network
based on the Louvain algorithm, and then employs the strategy of modularity optimization to update
the community structure according to the type of the changed edge. Chong et al. [16] presented an
incremental batch processing technique, which uses the Louvain method for batch processing of the
changed structure. In addition, it pointed out some problems existing in the real-time processing
algorithms based on event processing of nodes and edges, such as the impact of the processing
sequence on detection results and efficiency. LBTR is an incremental community detection method
based on machine learning, which was proposed by Shang et al. [14]. This method classifies and
predicts nodes that need to be processed by machine learning methods, and filters unchanged nodes
to improve the efficiency of community detection. Takaffoli et al. [21] introduced an Incremental
L-metric community detection method, which employs the current and temporal data to identify the
communities in each snapshot network.

Evolution-based Methods. Chakrabarti et al. [12] provided a general framework, which
simultaneously optimizes two evaluation indicators: the clustering quality of each snapshot network
and the difference of the clustering result from one snapshot to the next. Chi et al. [22] proposed
an evolutionary spectral clustering that is an extension of evolutionary clustering. FacetNet [23]
is a classic and widely used approach for analyzing communities and their evolutions in dynamic
networks. It uses the nonnegative matrix factorization to combine communities and their evolutions
in a unified way, which is different from traditional methods in that two-stage techniques are handled
separately. However, the FacetNet method requires prior knowledge and must specify the number
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of communities. Kim and Han [24] introduced an evolutionary clustering method based on particles
and density (PDEM). This method treats the network as a collection of tiny particles and divides
high-quality communities through cost-embedding technology and modularity optimization. Folino
and Pizzuti [25] presented a multiobjective genetic algorithm (DYNMOGA) based on an evolutionary
clustering framework to identify the community structure in dynamic networks. DYNMOGA
maximizes the cost of the current snapshot by optimizing the modularity to achieve good community
partitioning and minimizes timing costs by optimizing the normalized mutual information (NMI).
DYNMOGA can achieve a better quality of community discovery, but one of its disadvantages is high
time complexity.

Optimization-based Methods. Optimization-based approaches handle the community detection
by transforming it into an optimization problem, and the optimal solution is obtained by optimizing
a predefined objective function. However, this is often an NP-hard problem. Tantipathananandh et
al. [26] proposed a framework for community detection in dynamic social networks. In each time
step, the social interaction of individuals or organizations is observed in the form of subgraphs. It
uses combinatorial optimization algorithms based on dynamic programming, exhaustive search,
maximum matching and greedy heuristics to approximate the community structure in the network.
One disadvantage of this algorithm is the high time complexity. Niu et al. provided L-DMGA [27],
which is a multiobjective optimization genetic algorithm and is based on label propagation dynamics.
L-DMGA regards community detection in dynamic networks as a multiobjective optimization problem.
Quick Community Adaptation (QCA) [28] is a modularity-based optimization method, and it is also an
incremental dynamic community discovery method. QCA uses the Louvain method to perform initial
community partitioning and then processes the changed nodes and edges using the objective function
in the subsequent snapshot networks. One advantage of the QCA approach is the low time complexity
due to the incremental technology it employs. Agarwal et al. [29] introduced a community detection
method (DyPerm) based on maximizing permanence in dynamic networks. One disadvantage of the
DyPerm method is that it needs to have the initial community structure of the network, but this is
unknown in many real networks.

Other Methods Xie et al. [15] developed an incremental community detection method
(LabelRankT) based on label propagation in dynamic networks. An advantage of this method is
its low time complexity (O(m)), which is linear with the edges m. However, the LabelRankT algorithm
has several parameters that are difficult to set [30]. Xin et al. [31] presented an adaptive random walk
sampling method (ARWS), which only updates the adjacent nodes of nodes affected by dynamic
events. ARWS is used to detect overlapping community structures in dynamic networks. Quiles
et al. [32] introduced a dynamic community detection method based on particle dynamics, which
regards the nodes of the network as particles, and employs the diffusive equations of motion and
the topological properties of the network to construct a dynamic model of the interaction between
particles for clustering. This method needs to set the relative strength parameters of attraction between
particles.

In summary, many types of dynamic community detection algorithms have been proposed from
different perspectives. Each algorithm has its own advantages and disadvantages, such as parameter
setting, high time complexity, and detection accuracy decreasing with time slice. Therefore, efficient
community detection in dynamic networks is still a challenging task.

3. Methods

3.1. Preliminaries

Dynamic community detection is the process of partitioning communities in each snapshot of a
continuously changing network. We model a dynamic network as an undirected graph Gt = (Vt, Et),
where t represents the time step, Vt is the set of nodes, and Et is the set of edges. The definition of
community detection in dynamic networks is depicted as follows: Let DG = {G1, G2, ..., GT} be a
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given dynamic network, where T denotes time steps (1 ≤ t ≤ T). Let Pt = {C1, C2, ..., Ck} represent
the result of community partition in the snapshot network at time step t. The purpose of dynamic
community detection is to find an optimal partition DP = {P1, P2, ..., PT}. Before elaborating the
proposed framework for dynamic community detection, we introduce some basic definitions, which
will be used in the following sections.

Definition 1. (Jaccard similarity coefficient [33]) Let Gt = (Vt, Et) be an undirected network at time steps t.
The Jaccard similarity coefficient of two nodes v and u is defined as follows:

JSvu =
| τ(v)

⋂
τ(u) |

| τ(v)
⋃

τ(u) | (1)

where u ∈ V, v ∈ V, τ(u) = N(u) ∪ {u} , and N(u) is the set of adjacent nodes of node u .

In real life, social networks often include strong and weak relationships, which play a significant
role in information propagation and community formation. To describe this relationship, we use
contact strength to represent the degree of tightness between nodes in a given network. Here, we use
triangles to formalize the definition of the contact strength because the triangle structure can better
characterize the tightness of the vertices.

Definition 2. (Contact strength) Let Gt = (Vt, Et) be an undirected network at time step t, and the contact
strength of vertex v on vertex u is defined as follows:

CSuv =
|N(u)

⋂
N(v)|

Tu
(2)

where Tu denotes the number of triangles for vertex u, and the intersection between N(u) and N(v) represents
the amount of triangles shared by two nodes u and v.

Here, CSuv is an asymmetric function, in other words, the values of CSuv and CSvu may not be
equal. For example, everyone has their own circle of friends, and the contact strength between two
people is likely to be unequal.

In the real world, the more friends a person has, the more resources he has, so he may obtain
more information. To describe the information of nodes in the network, we use the degree of nodes to
characterize the initial information of the nodes.

Definition 3. (Information) Let Gt = (Vt, Et) be an undirected network at time step t, and the information of
vertex u is defined as follows:

Iu =
Du

Dmax
(3)

where Du represents the degree of vertex u, and Dmax denotes the maximum degree of the network Gt.

3.2. Information Dynamic Model

To reveal the communities in the dynamic networks, we begin to construct the information
dynamic model, which includes three parts: information propagation volume, information loss, and
propagation model. For a more detailed introduction, please refer to our work in another literature [34].

Propagation Volume. According to the research on the patterns of information diffusion among
people in the real world, we assume that everyone can acquire information from their neighbors
and propagate information to them. The diffusion of information is greatly dependent on the local
topology of a network, such as the degree of a node, similarities and connection strengths of nodes.
For example, people prefer to choose to communicate with people with whom they have closer links or
common interests. To describe the propagation of information in a more realistic way, we employ the
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node similarity, connection strength, and information difference to model the amount of information
diffusion. Formally, let Iu→v represent the information that a node v obtains from its neighbor u, which
is defined as follows:

Iu→v = f (Iu − Iv)JSuvCSuv (4)

where JSuv denotes the Jaccard similarity coefficient between node u and node v, and CSuv represents
the contact strength of node v on node u. The coupling function f (·) denotes the information that can
be disseminated from the u to v, which is defined as follows:

f (Iu − Iv) =

{
e(Iu−Iv) − 1 Iu − Iv ≥ 0

0 Iu − Iv < 0.
(5)

We can see that the nodes with a large information volume are more likely to diffuse and affect the
nodes with a small information volume. When the information of Iu and Iv are close to equal, the
amount of information passed between them tends to zero.

The loss of information may occur during the information propagation process in the real world.
For example, if the information disseminated is familiar or attractive to us, we can understand and
spread it more easily. By contrast, owing to environmental factors, people may misunderstand, ignore,
or even lose information. To describe the loss of information in a more realistic and accurate manner,
we employ the topological features and information volume for its characterization. Formally, we
define the loss of information as follows:

Information Loss. In the real world, because of the influence of complex environments, loss may
occur during information dissemination. As an example, if people are familiar or interested in the
information diffused, they may understand and propagate it more easily. Conversely, we may ignore,
misunderstand or even lose information. To reflect the loss of information in a more realistic and
accurate way, we use the volume of information and the topological features for its characterization.
Let I(u→v)_cost denote the loss of information, which is defined as follows:

I(u→v)_cost =
Avgs(v)

Avgd(v)
f (Iu − Iv) ∗ (1− JSuv) (6)

where the first item of the formula characterizes the local topological feature, which consists of the
local average similarity and local average degree. I(u→v)_cost is positively correlated with coupling
function f (·) and negatively correlated with JSuv. Therefore, the larger the information volume to be
diffused, the greater the information loss is, and the more similar the communication objects are, the
smaller the information loss is.

Information Propagation. Finally, by considering the information volume and the information
loss described above, the information dynamics of a node v over time is provided by the following:

Iv(t+1) = Iv(t) + ∑u∈N(v)(Iu→v − I(u→v)_cost) (7)

where Iv(t) represents the information of node v at time step t, and the second term of this formula
denotes the information that is acquired from its neighbors. As we can see, the information of node v at
time step t + 1 includes the information at time step t and the information obtained from its neighbors
at time step t + 1. With the evolution of time, the information propagated tends to zero. Eventually, the
information in the network will reach equilibrium, and the communities can be uncovered naturally.

3.3. Dynamic Community Detection Framework

Building upon the proposed information dynamics model, we construct a dynamic community
detection framework. Figure 2 illustrates the rationale of dynamic community detection based on
information dynamics, which consists of two parts: initial community detection and incremental
community detection. First, the initial communities C0 are obtained by using the information dynamics
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model at time slice T0, and then the dynamic community detection at time slice Tt is performed. Next,
we introduce the specific process of dynamic community detection based on information dynamics.

Figure 2. The framework of dynamic community detection based on information dynamics.

Initial Community Detection. We employ the information dynamics model to detect the
community structure of the whole network at time slice T0.

Incremental Community Detection. After the initial community detection using the information
dynamics model, an incremental community discovery method is adopted for the subsequent snapshot
networks. The process of incremental community detection mainly involves the following steps:

(1) Extract Changed Subgraph ∆Gt. Unlike static networks, the structure of dynamic networks
is evolving over time. Nodes and edges in a dynamic network may occur or disappear over
time, which may lead to constant changes in the community structure of the network. Next, we
will analyze network events that may cause changes in community structure, including adding
nodes, deleting nodes, adding edges, and deleting edges.

(a) Add Nodes. Adding nodes refers to the new nodes added to the current time slice network
Gt compared with previous time slice network Gt−1. Let AN denotes the set of added nodes,
which is defined as follows:

AN = {v|v ∈ Vt, v /∈ Vt−1} (8)

where Vt and Vt−1 represent the set of nodes in the networks Gt and Gt−1, respectively. The
added nodes can be calculated by solving the difference set of these two sets. What is the
impact of adding a new node to the community structure in the network? When the added
node is within one community, the original community structure will not change [35,36]. As
shown in Figure 3b, adding a node inside one community increases the connection density
of the community, and the number of communities has not changed. Therefore, it is only
necessary to divide the added nodes into the current community.

Conversely, when the added node is not inside the community, it may cause a change in the
community structure, as shown in Figure 3c. In this case, it is necessary to record the added
nodes and the connected communities and add them to the subgraph ∆Gt.
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Figure 3. Adding nodes in the network.

(b) Delete Nodes. The deleted node refers to a node that is removed in the current time slice
network Gt compared with the previous time slice network Gt−1. Let AN represent the set
of deleted nodes, which is given by the following:

DN = {v|v /∈ Vt, v ∈ Vt−1}. (9)

The deleted nodes can be computed by solving the difference set between sets Vt and
Vt−1. Figure 4 shows one node deletions within the community and between communities,
respectively. We can observe that the deletion of a node within one community or between
the communities has caused changes in the structure of the community. Therefore, when
deleting a node, we need to add the deleted node and the connected communities to the
subgraph ∆Gt.

Figure 4. Deleting nodes in the network.

(c) Add Edges. Similarly, the added edges correspond to the new edges in the current time
slice network Gt compared to the previous time slice network Gt−1. Formally, we define the
added edges as follows:

AE = {e|e ∈ Et, e /∈ Et−1}. (10)

where Et and Et−1 represent the set of edges in the networks Gt and Gt−1, respectively.
Figure 5b shows that adding an edge within the community enhances the density of the
edges inside it and does not change the structure of the community. Therefore, it is not
necessary to deal with the new edges added. However, the addition of edges between
communities may lead to changes in community structure. Figure 5c illustrates that the
added edges between communities have led to the merger of this two communities into
one community.

Figure 5. Adding edges in the network.
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(d) Delete Edges. The deleted edge refers to the edge removed in the current time slice network
Gt compared to the previous time slice network Gt−1. Let DE denote the set of deleted
edges, which is defined as follows:

DE = {e|e /∈ Et, e ∈ Et−1}. (11)

Deleting edges within one community may lead to changes in the community structure.
As shown in Figure 6b, deleting the inner edge causes the community to split. Therefore,
we need to add the current edge and the community involved to the subgraph ∆Gt. In
contrast, deleting the links between the communities weakens the connection between them,
which does not cause changes of the original communities. Figure 6c shows an edge deleted
between communities, and the communities have not changed. Therefore, there is no need
to process the deleted edges and related communities.

Figure 6. Deleting edges in the network.

(2) Calculate Changed Communities ∆Ct. After obtaining the subgraph ∆Gt that may change, we
need to redetect the communities in the subgraph. Here, we employ the information dynamics
to discover the subgraph ∆Gt incrementally and obtain the corresponding community structure
∆Ct (cf. Algorithm 3)

(3) Compute Unchanged Communities C
′
t−1. Based on the acquired networks Gt−1 and ∆Gt, we

can calculate all the communities and the communities that may change at the t− 1 time slice.
Therefore, the unchanged communities can be obtained by calculating the difference set of the
two sets.

(4) Compute Communities Ct. Communities in the network at time slice t are composed of the
unchanged communities at the previous time slice t− 1 and the changed communities at the time
slice t. Let Ct denote the communities of network Gt at time slice t, which is given as follows:

Ct = C
′
t−1 + ∆Ct (12)

where C
′
t−1 represents the unchanged communities at the previous time slice t − 1, and ∆Ct

denotes the changed communities at the time slice t.

Unlike the general real-time incremental algorithm, the incremental method based on information
dynamics proposed in this paper adopts batch processing instead of single event processing. The
advantage of this method is that it can improve the detection efficiency of the community. In contrast,
when the events are handled one by one, the difference in the order of event processing may result in
different detection results, and the detection efficiency of the community is also affected [16].

3.4. Dynamic Community Detection Algorithm

In this section, we introduce the dynamic community detection algorithm based on information
dynamics (DCDID).

(1) Community Detection based on Information Dynamics. Based on the information dynamics
models, we identify the community structure by simulating the interaction of information on
the network, which mainly involves several steps. In the beginning, each node is provided
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initial information in light of the local topology features (cf. Equation 3). Then, the information
diffuses in the network and every node is constantly interacting with neighbor nodes. The
exchange of information between nodes in the same community is more frequent than that in
different communities. At each step, every node updates its information based on the information
dynamics models (cf. Equation 7). As time evolves, the exchange of information between nodes
tends to zero, and the information dynamics of each node in the network reaches the convergent
state. Finally, the amount of information for each node in the same community is basically the
same, and the information on each node in different communities is different. Therefore, we can
naturally uncover the communities by considering the amount of information for each node.

(2) Dynamic Community Detection. DCDID mainly consists of the three steps: initial
community structure detection, calculation of subgraphs that have changed, and incremental
community identification.

(a) Initial Community Structure Detection. The initial community structure is the community
partition of the network at time slice T0. There is no prior information about community
structure in the initial time slice, so it is necessary to perform community detection on the
entire network. We use the community detection based on information dynamics (CDID) to
identify the community structure of the initial network at time slice T0. The CDID algorithm
is given in the appendices (Algorithm 2 in Appendix A).

(b) Changed Subgraphs. Considering the operations that may cause changes in the community
structure, we divide the events that change the network into four categories: adding nodes,
deleting nodes, adding edges, and deleting edges. Algorithm 3–6 in Appendix A show the
specific process, and each type of event returns a subgraph that may change.

(c) Incremental Community Identification. At present, most incremental dynamic community
detection methods adopt the fine-grained processing method, which processes an event
when an event is generated. For example, when a node is added to the network, the node
is detected. The advantage of this design is that the processing of events is takes place in
real time, but the disadvantage is that it increases the computational complexity. Here, we
employ a batch-based incremental community detection method. Based on the obtained
subgraphs that may change, we employ the information dynamics model to incrementally
detect the communities. The DCDID algorithm is given in Algorithm 1.

Algorithm 1 DCDID

Input: DG = {G0, G1, ..., Gk}
Output: DC = {C0, C1, ..., Ck}

1: //Initial community detection
2: C0 = CDID(G0)
3: //Incremental community detection
4: for t = 1 to k do

5: compute AN,DN,AE,DE using Equation (8)–(11)
6: ∆Gt ← Add_nodes(AN, Gt, Ct−1)
7: ∆Gt ← Del_nodes(DN, Gt−1, Ct−1)
8: ∆Gt ← Add_edges(AE, Ct−1)
9: ∆Gt ← Del_edges(DE, Ct−1)

10: compute the unchanged communities C
′
t−1

11: ∆Ct ← CDID(∆Gt)
12: compute Ct using Equation (12)
13: end for

3.5. Complexity Analysis

The time complexity of the DCDID algorithm is mainly composed of two parts: one is the time
complexity of the initial community partition, and the other is the time complexity of the incremental
community detection.
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(1) Initial Community Partition. In the beginning, community detection is required for the
entire network, so the time complexity is the time taken by the CDID algorithm. The CDID
algorithm consists of three steps: information initialization, information dynamic interaction, and
community partition. In the first step, CDID needs to compute the initial information, Jaccard
similarity coefficient and contact strength. Thus, the time complexity of information initialization
is O(k · n), where k denotes the average degree, and n represents the number of nodes in the
network. In the second step, the time complexity of information interaction is O(L · n · k) due to
the local interaction strategy, where L denotes the number of iterations. It is typically between
20 and 100. In the third step, the time complexity is O(k · n) because of two loops for finding
communities. Thus, the time complexity for the initial community partition is O(L · n · k).

(2) Incremental Community Detection. The incremental community detection mainly includes the
calculation of the changed subgraph and the incremental partition communities. The calculation
of the subgraph consists of adding nodes, deleting nodes, adding edges, and deleting edges. The
time complexity of adding nodes is O(|∆Vt| · kt), where ∆Vt is the nodes set added and kt is the
average degree at time slice t. Similarly, the time complexity of deleting nodes is O(|∆Vt| · kt).
The time complexity of adding edges and deleting edges is O(|∆Et|) because of only one loop.
The next step is to detect the communities of the subgraph ∆G that have changed, and the time
complexity is O(L · |∆Vt| · kt). Thus, the time complexity for incremental community detection is
O(|∆Et|+ L · |∆Vt| · kt).

In summary, the time complexity of the DCDID algorithm is divided into the complexity O(L ·n · k)
at the time slice T0 and the time complexity O(|∆Et|+ L · |∆Vt| · kt) at the time slice Tt. In general,
|∆Vt|,|∆Et| and kt are very small, so the time complexity at the time slice Tt is relatively low. Therefore,
the DCDID method can be applied to dynamic community detection of large-scale networks.

4. Experiments

In this section, we evaluate our dynamic community detection method DCDID on real-world and
synthetic networks to demonstrate its benefits. To extensively research the performance of DCDID, we
compare it with several representative dynamic community detection algorithms. Before the empirical
comparison, we briefly introduce the comparison algorithms.

QCA [28] is a modularity optimization algorithm based on Louvain [9]. It adaptively updates
and detects new community structures according to the changes of network structure and network
information in the previous time slice.

FacetNet [23] is a well-known dynamic community detection algorithm, which uses nonnegative
matrix decomposition to analyze the community structure and evolution in dynamic networks and
optimizes the quality of detected communities through a loss function. FacetNet requires parameter
settings, such as the number of communities.

DYNMOGA [25] is a multiobjective optimization genetic algorithm based on evolutionary
clustering. It detects the community structure in dynamic networks by optimizing Modularity and
NMI. The DYNMOGA algorithm also requires parameter settings.

DyPerm [29] is an optimization method based on permanence, which is also an incremental
dynamic community detection method. DyPerm needs to specify the actual communities at the
beginning.

InBatch [16] is an incremental dynamic network community detection algorithm based on the
Louvain method. It processes the changed network structure in batches instead of an event-by-event
approach.

LBTR [14] is an incremental dynamic community detection method based on machine learning.
It also uses the Louvain method to obtain the initial community structure, and then implements the
machine learning method for classification, prediction and revision.
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4.1. Data Description

Synthetic Networks.Although there are many dynamic networks in the real world, we rarely
know the ground truth of communities. Therefore, we constructed many synthetic networks with
ground truth communities to evaluate algorithms. To obtain a synthetic network that is more similar
to a real-world network, we employ the extended LFR [37] model to generate dynamic networks.
The extended LFR benchmark can be easily controlled by several parameters, such as the number
of time slices, average degree, community size, mixing parameter, and several events that cause the
structure of the network to change. Table 1 shows the detailed descriptions of parameters for this
benchmark model.

Table 1. Description of the parameters for the dynamic LFR benchmarks.

Symbol Definition

n number of nodes
s number of time slices
µ mixing parameter
k average degree of each time slice

kmax max degree of each time slice
Cmin minimum of community sizes for each time slice
Cmax maximum of community sizes for each time slice

p probability of one node switching community membership between time slices
birth number of community births for each time slice
death number of community deaths for each time slice

expand number of community expansions for each time slice
contract number of contractions for each time slice
merge number of community mergers for each time slice
split number of community splits for each time slice

Real-world Data Sets. To evaluate the effect of the dynamic community detection algorithms
more comprehensively, we select several different scales of real-world networks with ground truth.
Table 2 shows the statistical properties of each dynamic network, where N denotes the average number
of nodes, M represents the average number of edges, k is the average degree, CC is the average
clustering coefficient, and S denotes the number of time slices. All these dynamic networks are
available at the website of social patterns (http://www.sociopatterns.org/datasets/) and the data
repository of citation networks (https://www.aminer.cn/citation). Next, we briefly describe these
real-world networks.

Table 2. Some statistical properties of several real-world networks.

Dataset N M k CC S

HSD11 123 1271 20 0.51 7
HSD12 175 1629 18 0.43 8

PS 239 6146 50.8 0.52 9
CW 88 537 11.4 0.38 8
CC 107,180 376,567 4.3 0.49 17

NCC 107,166 376,543 4.3 0.49 17

2011 High school dynamic contact networks (HSD11): This data set contains the time series
network of contacts between three classes in a high school in Marseille, France, in December 2011.
HSD11 includes 7 time slices, and the network of each time slice contains three communities. In HSD11
dynamic network, one node represents a student, and one edge indicates that there is a connection
between the students.

2012 High school dynamic contact networks (HSD12): Similar to HSD11, this data set is also a
time series network for connections between high school students in Marseille, France. This network

(http://www.sociopatterns.org/datasets/)
(https://www.aminer.cn/citation)
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was collected in November 2012 and consists of five classes. The other information is consistent
with HSD11.

Primary school contact networks (PS): This data set contains a time series network of contacts
between children and teachers. Each child or teacher represents a node, and the contact between them
represents an edge.

Contact network in a workplace (CW): This data set is a time series network of contacts between
people in an office building in France. The CW dynamic network consists of five departments as real
communities and records the contact between people at intervals of 20 seconds.

Cumulative coauthorship network (CC): This data set is a collaboration network derived from
the citation network. The data set used in this paper has been collated and modified by reference [38].
In this dynamic network, one node represents an author of one paper, and an edge denotes the
relationship between the coauthors of a paper.

Noncumulative coauthorship network (NCC): This data set is also a collaboration network
similar to the CC dynamic network. The CC dynamic network accumulates the changes of each
node and edge. In contrast, the NCC dynamic network does not accumulate, i.e., when two authors
copublish papers many times, there is still only one link between them.

4.2. Evaluation Metrics

At present, the evaluation of the performance of the dynamic community detection is mainly to
quantify the goodness of community detection in each time slice, and the evaluation criteria adopted
are consistent with community detection in a static network. Here, we employ NMI [39] and ARI [40]
metrics to evaluate the performance of the comparison algorithms. NMI and ARI are widely used for
quantifying the quality of communities detected by algorithms. Before presenting the experiment, let
us briefly describe the evaluation metrics.

Normalized mutual information (NMI) is a well-known metric, which originates from
information theory. NMI is widely used to evaluate the result of disjoint community detection,
which posits that if two partitions of communities are similar, then little additional information is
needed to deduce one division from the other. Formally, the definition of NMI is given as follows:

NMI(A; B) =
2I(A; B)

H(A) + H(B)
(13)

where A and B are the partitions of communities, I(A; B) denotes the mutual information of random
variables A and B, and H(A) represent the entropy of A. The value of NMI ranges from 0 to 1, where 0
represents that the detected communities are completely independent of the real communities, whereas
1 denotes a perfect match with the ground truth.

Adjusted rand index (ARI) is another measure to evaluate the similarity between two
communities, which is defined as follows:

ARI =
RI − ExpectedRI

MaxRI − ExpectedRI
(14)

where RI denotes the similarity of two partitions, which includes all pairs of samples. Next, it calculates
the numbers of pairs that are assigned to the same or different partitions in the predicted and true
partitions [41]. More specifically,

ARI =

∑ij

(
nij
2

)
−
[

∑i

(
ai
2

)
∑j

(
bj
2

)]
/

(
n
2

)
1
2

[
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(
ai
2

)
+ ∑j

(
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2

)]
−
[
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(
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2

)
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(
bj
2

)]
/

(
n
2

) (15)

where ai, bj and nij are values from the contingency table. For details, please refer to [42].
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4.3. Performance Evaluation

In these experiments, we employed the parameters of comparison algorithms to
the default values suggested by the authors. The DyPerm is available at GitHub (
https://github.com/ayush14029/Dyperm-Code). The codes of LBTR and InBatch are provided
by Jiaxing Shang [14]. QCA, FacetNet, DYNMOGA, and DCDID are available at GitHub
(https://github.com/sunwww168/DCDID). For each dynamic network, the average result of each
algorithm was obtained by averaging 20 independent runs. All experiments were performed on a
desktop computer with a 3.3 GHz CPU of an Intel Core i5 and 16.0 GB RAM.

Evaluation on Synthetic Networks. The changes of the community structure in dynamic
networks mainly include: the nodes’ switching community membership in each time slice, the birth
and death of communities, the growth and contraction of communities, and the merger and split of
communities. To evaluate the performance of the proposed dynamic community detection algorithm,
we employ the dynamic LFR benchmark model to generate multiple synthetic networks with different
characteristics. To cover several states of dynamic network community structure changes, we evaluate
the comparison algorithms from four aspects: node switch, community birth and death, community
expansion and contraction, and community merger and split. Without loss of generality, the common
parameters of these states are set as follows: the time slices s = 20, the number of nodes in each time
slices n = 1000, the average degree k = [5− 25], and the max degree maxk = [20− 50]. The DyPerm
algorithm does not take part in the comparison of the initial time slice because of it uses the ground
truth as the initial community information.

(1) Node Switch. Node switch refers to the transition of a node from one community to another in
different time slices in a dynamic network. The parameter p represents the probability that a
node switches community membership in different time slices. We varied the value of p from 0.1
to 0.8 and fixed the parameters k = 10, maxk = 20, and µ = 0.1. Figure 7 shows the performance
of comparison algorithms with different p on NMI and ARI metrics. Because of the limitation of
space, we only display the results of community detection when p is 0.1, 0.4 and 0.8. In terms of
the NMI metric, DCDID and DYNMOGA methods acquired the best effects, and the values of
NMI obtained on each time slice were approximately 0.95. It demonstrates that the performances
of these two methods are relatively stable over time. FacetNet also performed well, and the NMI
values achieved reached to 0.9. However, the FacetNet algorithm needs to specify the number
of communities in the network, which is often unknown in the real world. DyPerm also had
a stable performance, and the values of NMI were basically maintained at approximately 0.8.
QCA, InBatch, and LBTR methods initially implemented very high NMI values because these
algorithms use the Louvain method to detect the community structure of the initial time slice.
However, the performances of these algorithms gradually declined over time. In particular, the
NMI values obtained by the InBatch algorithm were close to 0.2 when p was larger than 0.4. In
terms of the ARI metric, DCDID obtained the best effect, which achieved the highest ARI value
among these algorithms. DYNMOGA and FacetNet methods acquired better results than the
other comparison algorithms. Although DyPerm attained good NMI values, its ARI values were
very low. Because the granularity on the community partition of the DyPerm algorithm became
increasingly fine with the increase of time slices, the number of communities it partitions was
usually several dozen times the number of real communities. The ARI values of QCA, InBatch
and LBTR algorithms also decreased with the increase of time slices. In particular, the values of
ARI were close to zero when p was larger than 0.4 and the time slice was greater than 10.
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Figure 7. Performances of comparison algorithms on NMI and ARI metrics with different switch
probability p.

(2) Community Birth and Death. To investigate the effects of comparison algorithms on the birth
and death event of communities, we fixed parameters k = 10, maxk = 20, µ = 0.1, and p = 0.1,
and varied the number of birth and death communities to generate dynamic networks. Because
the dynamic LFR model cannot generate a dynamic network when the number of birth and death
communities both reach 16, we changed the number of birth communities from 2 to 16 and varied
the number of death communities from 2 to 8. Figure 8 reveals the performance of each algorithm
on NMI and ARI metrics with different numbers of birth and death communities. In terms of
the NMI metric, DCDID and DYNMOGA were very stable, and they obtained higher values
than the other algorithms. FacetNet cannot run on this dynamic network because the number
of communities in each time slice is constantly changing over time. DyPerm also performed
well with the NMI values stable at approximately 0.8, but the ARI values were very low. In
particular, its values were close to zero when the number of birth and death communities were
greater than 8 and the time slice was greater than 12. QCA and LBTR achieved acceptable results,
and they also obtained an NMI value of 0.5 when the number of birth communities reached 16.
By contrast, InBatch did not perform well in this group of experiments and obtained the lowest
values of NMI and ARI.
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Figure 8. Performances of comparison algorithms on NMI and ARI metrics with different birth and
death communities.

(3) Community Expansion and Contraction. To further evaluate the performance of each algorithm
on the expansion and contraction event of communities, we fixed parameters k = 10, maxk = 20,
µ = 0.1, and p = 0.1, and varied the number of expansion and contraction communities from 5
to 40. As shown in Figure 9, DCDID and DYNMOGA acquired the best quality of community
detection. Their NMI values were stable at approximately 0.95, and ARI values were stable
between 0.8 and 0.9. FacetNet also yielded good results, and its NMI values were stable at
approximately 0.84. Although the DyPerm method achieved stable NMI values at approximately
0.8, the ARI values were relatively low, indicating that the quality of its community detection
was not ideal. The effectiveness of QCA, InBatch and LBTR methods decreased gradually over
time. It explains that these algorithms have higher cumulative errors.
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Figure 9. Performances of comparison algorithms on NMI and ARI metrics with different expansion
and contraction communities.

(4) Community Merger and Split. Figure 10 describes the effectiveness of comparison algorithms
when the number of merger and split communities varied from 5 to 40. We can observe that
DCDID performed best in these comparison algorithms, and the NMI value of each time slice
was stable at approximately 0.96 when the number of merger and split communities was less
than 20. DYNMOGA also performed well, which achieved better results of community detection
than other comparison algorithms. As shown in Figure 10c, the results of DCDID, DYNMOGA,
FacetNet and DyPerm algorithms fluctuated greatly when the number of communities merged
and split in dynamic networks reaches 40, i.e., almost all communities in the network have
changed. We can see that the NMI and ARI values obtained were lower in the seventh time slice,
but the quality of the community detection of these four algorithms was still better than other
comparison algorithms. The performance of QCA, InBatch and LBTR algorithms also decreased
gradually over time. Interestingly, the NMI values of InBatch had a higher improvement when
the number of communities merged and split increased to 40 in the 13th time slice (Figure 10c).
We analyzed the network structure of the current time slice and found that the community
structure under this time slice was relatively clear, and there were fewer links between the
communities. This may also be the reason the NMI values of the DCDID, DYNMOGA and
FacetNet algorithms had a peak in this time slice.
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Figure 10. Performances of comparison algorithms on NMI and ARI metrics with different merger
and split communities.

Real-world Networks. To further compare DCDID and the other algorithms, we tested their
performances on several real-world dynamic networks with ground truth. The NMI and ARI indexes
are employed to evaluate the efficiency of these algorithms. Figures 11 and 12 show the evaluation
results of comparison algorithms on real-world dynamic networks. In the CC and NCC dynamic
networks, DCDID and DyPerm achieved the best quality of community detection and obtained NMI
values of approximately 0.5. In terms of the ARI metric, most of the comparison algorithms did not
perform ideally on these two networks, which may be related to their low-average degree. As shown
in Table 2, the average degree of each time slice is 4.3. However, the DCDID method acquired the
highest value compared with the other algorithms. It indicates that DCDID can still achieve better
quality of community detection in the dynamic networks with a low-average degree. DYNMOGA
and FacetNet methods cannot run on these two dynamic networks because the number of nodes in
them have reached 100,000. QCA obtained acceptable performance on these two real networks, and
the results of community detection are better than that of the InBatch and LBTR methods.
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Figure 11. Performances of comparison algorithms on the NMI metric with different merger and split
communities.

On CW, HSD11 and HSD12 dynamic networks, the InBatch algorithm performed very well,
where it obtained the highest NMI and ARI values. The DCDID algorithm also achieved good
quality of community detection on these three networks, and the results are better than those of the
DYNMOGA, QCA and DyPerm algorithms. In the HSD11 and HSD12 dynamic networks, LBTR
yielded stable results, similar to DCDID. On the PS dynamic network, DCDID and LBTR obtained the
best quality of community detection, and the NMI and ARI values obtained were approximately 0.9
and 0.8, respectively. The QCA method also produced acceptable results on this network. The DyPerm
algorithm performance was not ideal, and it failed to identify the communities in CW, HSD11, HSD12
and PS networks.

Figure 12. Performances of comparison algorithms on the ARI metric with different merger and split
communities.

In summary, many experiments on synthetic dynamic networks demonstrated that the DCDID
method achieved good quality of community detection under different network events. The evaluation
on the real-world dynamic network shows that DCDID cannot only achieve good community
recognition on low-average degree networks but also achieve good community detection performance
on other dynamic networks with different characteristics. The DyPerm algorithm performed well on
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most synthetic networks, but its community divisions were too fine-grained, which resulted in too
low ARI values. In addition, this algorithm uses ground truth community information as the initial
information; however, this is unknown in most real dynamic networks. DYNMOGA and FacetNet
methods performed well on generation networks, but their spatial complexity is high, and they cannot
be run on real networks CC and NCC. In addition, the FacetNet method requires prior knowledge
and must set the number of communities. QCA, InBatch and LBTR had significant cumulative errors
on the synthetic dynamic networks, and their performance degraded rapidly over time. However,
InBatch and LBTR methods have achieved good quality of community detection in real-world dynamic
networks. In particular, the InBatch method achieved the best quality of community detection on CW,
HSD11 and HSD12 networks.

4.4. Runtime

To evaluate the scalability of DCDID at different network scales, we employed the dynamic LFR
model to generate dynamic networks with different sizes. We varied the number of node ranges
from 1K to 100M and fixed the parameters at k = [10− 20], maxk = [20− 50], p = 0.1, µ = 0.1, and
s = 5. Figure 13 reveals the overall running time of the comparison algorithms in five time slices
of the dynamic networks. We observed that the DyPerm algorithm used the highest runtime, and
the runtime was more than ten days when the number of nodes reaches 5M. The DCDID algorithm
was faster than the DyPerm, FaceNet and DYNMOGA methods, and this advantage was obvious
as the size of the network increased. This difference was mainly due to the low time complexity of
O(|∆Et|+ L · |∆Vt| · kt), where |∆Vt|,|∆Et| and kt are very small. Therefore, the DCDID algorithm
can handle large-scale dynamic networks. When the number of nodes reaches 5M, FaceNet and
DYNMOGA methods indicated that there was insufficient memory space to run. Although DCDID
was slower than QCA, InBatch and LBTR, its quality of community detection was higher than these
three algorithms.
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Figure 13. The runtimes of the comparison algorithms on the dynamic LFR benchmark with nodes
ranging from 1K to 103K .

5. Conclusions

In this paper, we proposed an information dynamics-based dynamic community detection
framework, which uses a batch processing technique to incrementally uncover community structures
in dynamic networks. In addition, we designed a new algorithm called DCDID and used the
information dynamics model to simulate the exchange of information between nodes in each time
slice of dynamic networks. DCDID provides an intuitive and topologically driven manner for
community detection in dynamic networks. To validate the performance of DCDID, we compared it
with six representative dynamic community detection algorithms on synthetic and real-world datasets.
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Experiments demonstrate that DCDID performed well at dynamic community detection and obtained
better results than the representative methods compared in the evaluation.
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Appendix A. Algorithm

Algorithm 2 CDID

Input: Gt = (Vt, Et)
Output: Ct

1: //Initialization of information
2: for each node v ∈ Vt do
3: for each node u ∈ N(v) do
4: compute the JSvu, CSuv using Equation (1)–(2)
5: end for
6: compute the Iv using Equation (3)
7: end for
8: //Information dynamic interaction.
9: while true do

10: Imax = 0
11: for each node v ∈ Vt do
12: for each node u ∈ N(v) do
13: compute Iu→v using Equation (4)–(5)
14: compute I(u→v)_cost using Equation (6)
15: end for
16: compute Iv(t+1) using Equation (7)
17: Iin = Iu→v − I(u→v)_cost
18: if Iin > Imax then
19: Imax = Iin
20: end if
21: end for
22: // the balanced state
23: if Imax < Threshold then
24: Break
25: end if
26: end while
27: // Find communities Ct
28: for each node v ∈ Vt do
29: if v /∈ Ct then
30: for each node u ∈ N(v) do
31: if |Iv − Iu| < Threshold then
32: u− > Cv
33: else
34: u− > Cu
35: end if
36: end for
37: end if
38: end for
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Algorithm 3 Add_nodes

Input: AN, G, C
Output: ∆g

1: for each node v ∈ AN do

2: if N(v) in the same community CN(v) then

3: CN(v) ← v
4: else

5: ∆g← v
6: for each node u ∈ N(v) do

7: ∆g← Cu
8: end for
9: end if

10: end for

Algorithm 4 Del_nodes

Input: DN, G, C
Output: ∆g

1: for each node v ∈ DN do

2: for each node u ∈ N(v) do

3: ∆g← Cu
4: end for
5: end for

Algorithm 5 Add_edges

Input: AE, C
Output: ∆g

1: for each edge e ∈ AE do

2: //(u, v) ∈ e
3: if Cu 6= Cv then

4: ∆g← Cu
5: ∆g← Cv
6: end if
7: end for

Algorithm 6 Del_edges

Input: DE, C
Output: ∆g

1: for each edge e ∈ AE do

2: //(u, v) ∈ e
3: if Cu = Cv then

4: ∆g← Cu
5: end if
6: end for
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