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Abstract: We investigate the downlink of a cell-free massive multiple-in multiple-out system in
which all access points (APs) are connected in a linear-topolpgy fronthaul with constrained capacity
and send a common message to a single receiver. By modeling the system as an extension of the
multiple-access channel with partially cooperating encoders, we derive the channel capacity of the
two-AP setting and then extend the results to arbitrary N-AP scenarios. By developing a cooperating
mode concept, we investigate the optimal cooperation among the encoders (APs) when we limit the
total fronthaul capacity, and the total transmit power is constrained as well. It is demonstrated that
achieving capacity requires a water-pouring distribution of the total available fronthaul capacity over
the fronthaul links. Our study reveals that a linear growth of total fronthaul capacity results in a
logarithmic growth of the beamforming capacity. Moreover, even if the number of APs would be
unlimited, only a finite number of them need to be activated. We found an expression for this number.

Keywords: channel capacity; distributed beamforming; cell-free MIMO; constrained fronthaul

1. Introduction

Recently, cell-free massive multiple-input multiple-output (mMIMO) has been considered as a
key technology for beyond-5G networks. In such user-centric transmission systems, a large number
of distributed access points (APs) are connected to one central processing unit (CPU) via fronthaul
links and phase coherently cooperate to cover a wide area for a small number of users in the same
time-frequency resource using time-division operation. Compared to cell-based collocated mMIMO
solutions, such technology improves energy-spectral efficiency and enhances immunity to shadow
fading without extra signal processing burdens. We refer to [1–3] and the references therein for a
general overview of current developments of cell-free mMIMO.

Effectively utilizing fronthaul resources is of critical importance for deploying a scalable cell-free
mMIMO system. Considering the downlink for instance, simple distributed conjugate beamforming is
optimal, as shown in [1]. However, it can already be seen that a large amount of information exchange
over fronthaul links is required since all the APs need to know the message that is to be transmitted.
A star-topology fronthaul where each APs are individually connected to a CPU was originally modeled
and has been widely studied, see, e.g., [4–6] and the references therein. Currently, a serial fronthaul
connecting APs in a linear topology is considered for achieving a cost-efficient architecture, both in
deployment and maintenance [3]. A novel and promising technique relying on a linear topology is
the radio stripe system, where multiple APs are embedded in a cable/strip, see [3,7] in detail. Such
radio stripes can be easily and invisibly deployed indoor or outdoor in existing constructions to enable
numerous new applications [8].
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The focus of prior work in cell-free mMIMO study was on developing wireless signaling
techniques. In this paper, we study from an information-theoretic perspective the downlink of a
cell-free mMIMO system shown by Figure 1, where single-antenna APs are connected in a linear
topology with constrained fronthaul capacities to communicate to one single-antenna terminal receiver
(Rx).
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Figure 1. Cell-free transmit beamforming where access points (APs) are connected via serial fronthaul.

The considered multiple-in single-out (MISO) setup forms a distributed massive beamforming
system and can be formulated as a multiple-access-channel (MAC) with limited fronthaul capacity,
which is defined as the maximal amount of information that can be reliably sent per MAC channel
use [9]. By investigating the channel capacity of such a MAC, we reveal essential relations between the
three the most fundamental resources of the system, i.e., the total available number of APs (N), the
total transmit power (P), and total available fronthaul capacity (CB). Specifically, in the current cell-free
mMIMO literature, the only configuration of APs that is considered is where full cooperation (full
beamforming) is realized and where the same information is shared at all involved APs. Therefore, for
a real-valued Gaussian MISO channel with N APs and unity channel gains, the maximum downlink
rate is given by the channel capacity

Cfull :=
1
2

log2(1 + N · SNR) bits/channel use (1)

where SNR is the received signal-to-noise ratio (SNR) if only one AP is active with all available
transmit power assigned to it. It requires Cfull

B := (N − 1)Cfull fronthaul capacity among N APs.
In this work, we focus on the case where the available fronthaul capacity is not large enough

to support full cooperation of the APs. We were motivated to investigate the achievable downlink
rates given that fronthaul resources for communication between the APs is constrained. We call this
setting partial beamforming, since CB < Cfull

B . We could derive the channel capacity and the optimal
cooperation strategies among APs for given total available P and N.

1.1. Related Work

We can model the studied system as a special extension of the multiple-access channel (MAC)
with partially cooperating encoders studied by Willems [9]. In particular, we can generalize the system
setup in [9] to a network of encoders by considering only one source but employing an arbitrary
number of encoders, namely APs, via unidirectional conferences. Since fronthaul links can be treated
as separate channels that are orthogonal to the beamforming MAC, our setup might also be viewed
as an extension of a special case of the orthogonal-component relay channel due to El Gamal and
Zahedi [10], which is generalized to relay networks by Ghabeli and Aref in [11]. In addition, if only
two APs are considered, our study is also strongly related to the multiple access diamond channel
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as studied in [12,13]. Moreover, the two APs setup looks very similar to the semi-deterministic relay
channels [14]. Furthermore, it is also worth to note that in our system, all APs cooperatively send one
message to a receiver at a same time. In this sense, our channel setting is “noncausal”, which is related
to the relay-with-delay channel studied in [15] in general.

1.2. Contributions and Organization

By investigating the MAC with limited fronthaul capacity in the discrete channel case and in the
Gaussian channel cases, the main findings of our research work include

• The channel capacity is found for an arbitrary number of APs for both discrete channel and the
Gaussian channel with constrained transit power, where the total fronthaul capacity and the total
number of APs are limited.

• When numerous APs are engaged, a linear growth of total fronthaul capacity results in a
logarithmic growing of the channel (beamforming) capacity.

• A concept of cooperating modes is developed to demonstrate the optimal cooperation among APs
to achieve capacity based on superposition coding.

• When the channel capacity is only limited by the fronthaul capacity, the number of required APs
is quasi-linear to the available fronthaul capacity even if the number of APs would be unlimited.

• A new and sharp lower bound of the Lambert-W function is derived for computing the number
of required APs given by the total fronthaul constraint.

In the rest of this paper, the system model is first presented in Section 2. In Section 3, we start
with investigating a two-APs setting consisting of one fronthaul link. This setting serves as a baseline
system where the cooperating mode concept is developed. In Section 4, the study is extended to the
case where an arbitrary number of APs is engaged and the behavior and exact solution of the channel
capacity is derived. In Section 5, the number of required APs is derived to leverage limited fronthaul
resources if the number of available APs is unlimited. Finally, the conclusion and final remarks can
be found in Section 6. Detailed proofs and derivations of the presented results are collected in the
Appendix A. Partial material in this paper was presented in [16].

2. Problem Setup

2.1. Notation

Although all the paper, capital letters, e.g., X, denote random variables, and their realizations are
denoted by small letters, e.g., x. The probability mass or density function according to X is denoted by
pX(x) or simply p(x). The expectation of X is denoted by E[X]. The entropy of X is denoted by H(X)

and the differential entropy is denoted by h(X). The mutual information between X and Y is denoted
by I(X; Y). The consecutive integer range from i to j with i ≤ j is denoted by [i : j]. In addition, a set of
elements xm with index m in range of i to j is denoted as {xm}j

m=i.

2.2. System Model

The investigated system is modeled as Figure 2, where we denote the CPU as the source, the
APs as encoders, while for the destination, the receiver is denoted as the decoder. As plotted,
one-directional fronthaul links connect N adjacent encoders that simultaneously send a uniformly
distributed message W ∈ [1 : M] to a decoder (receiver). We focus on the study of the fronthaul
resource usage among all encoders. The discrete memoryless MAC denoted by (X1 × X2 × . . . ×
XN , p(y|x1, x2, . . . , xN),Y , {Cm,m+1}N−1

m=1) consists of input alphabets {Xm}N
m=1, output alphabet Y ,

a transition probability distribution p(y|x1, x2, . . . , xN), and a set of fronthaul capacity constraints
{Cm,m+1}N−1

m=1 between N encoders.
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Figure 2. N encoders that cooperate in sending a message W to a decoder with limited fronthaul
communication.

Before the beginning of each n channel uses, (partial) information about the generated message W
is first shared among N encoders. Let Wm,m+1 ∈ [1 : Mm,m+1] for m ∈ [1 : N − 1] be the message sent
over the fronthaul link between encoder m to encoder m + 1. Then, the encoders map the messages W
and {Wm,m+1}N−1

m=1 into codewords {xn
m}N

m=1 as follows

e1(W) → (Xn
1 , W12),

em(Wm−1,m) → (Xn
m, Wm,m+1),

eN(WN−1,N) → Xn
N ,

where {em(·)}N
m=1 are the corresponding encoding functions. Meanwhile, the generated fronthaul

messages should satisfy
1
n

log2 Mm,m+1 ≤ Cm,m+1. (2)

As presented, the corresponding fronthaul link capacity Cm,m+1 ≥ 0 is defined as the maximal amount
of information that can be reliably sent per channel use of the MAC channel over the link from encoder
m to encoder m + 1.

At the decoder, a deterministic decoding function d : Yn → [1 : M] is applied to obtain the
message-estimate Ŵ based on the channel output yn. We define the average probability of error at the
decoder as

P(n)
e

∆
= Pr(Ŵ 6= W). (3)

Now we say that a rate R is achievable with given fronthaul capacities {Cm m+1}N−1
m=1 if there exists N

encoders and a corresponding decoder, such that

log2 M ≥ n(R− δ),
log2 Mm,m+1 ≤ nCm,m+1,

P(n)
e ≤ δ,

(4)

for all δ > 0 and large enough n. The channel capacity C (of MAC) as a function of the fronthaul
capacities is defined as the supremum of all achievable rates given by all the fronthaul constraints.
Eventually, we will be interested only in a constraint on the sum of the fronthaul capacities CB that is
defined as

CB
∆
=

N−1

∑
m=1

Cm,m+1. (5)
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To interpret the capacity results for the partial beamforming, we focus on MACs with additive
white Gaussian noise. At the output of the Gaussian MAC, the decoder receives

Yi =
N

∑
m=1

Xmi + Zi, (6)

at time i, where Xmi is the transmitted symbol by encoder m and Zi is modeled as independent and
identically distributed (i.i.d.) Gaussian noise at the decoder for all i ∈ [1 : n]. For individual encoder
m, m ∈ [1 : N], the transmit power constraint is

1
n

n

∑
i=1

E[X2
mi] ≤ Pm (7)

for Pm ≥ 0. Then, the total transmit power is limited as

N

∑
m=1

Pm ≤ P. (8)

Without loss of generality, we assume that Zi ∼ N (0, 1). Therefore, the transmit SNR can be directly
represented by the total constrained transmit power P.

3. Two-Encoder Result

We first investigate the simplest system setting where only two encoders are involved. The MAC
is now denoted by (X1 ×X2, p(y|x1, x2),Y , C12). The fronthaul message W12 ∈ [1 : M12] must satisfy
the constraint

1
n

log2 M12 ≤ C12, (9)

which is same to the total fronthaul capacity CB in this case. The underlying Gaussian MAC is given by

Yi = X1i + X2i + Zi. (10)

Although this two-encoder setting can be considered as a special case of related work, see
discussion later, we provide here the capacity proofs for both discrete and Gaussian MACs. The
applied approach carries over to the N-encoder setting that is investigated in Section 2.

In the following, the channel capacity as a function of the fronthaul capacity is first obtained
for the discrete memoryless MAC. Then, we derive capacity results for the Gaussian case with total
transmit power constraint. Within this study, a so-called cooperating mode concept is developed that
will be very useful to provide cooperation insights among encoders when more of them are engaged.

3.1. Discrete Channel

First, consider the discrete channel setup.

Theorem 1. For the discrete memoryless channel p(y|x1, x2), the channel capacity C as a function of the
fronthaul capacity C12 is given by

C(C12) = max
p(x1,x2)

min {I(X1, X2; Y), I(X1; Y|X2) + C12}, (11)

where distribution p(x1, x2, y) = p(x1, x2)p(y|x1, x2) is determined by the input distribution p(x1, x2).

The detailed proof is provided in Section Appendix A.1, where the converse is based on the
Markovities of W → (Xn

1 , Xn
2 )→ Yn and (W, W12)→ (Xn

1 , Xn
2 )→ Yn, and the achievability is based

on applying superposition coding. For the achievability, the source splits the message W into two parts
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(W1, W12) and delivers the index of W12 over the fronthaul link to encoder 2 that maps W12 into the
inner code while encoder 1 of the source encodes W1 into an outer code-word which is super-imposed
on the inner code-word. Although this coding scheme is simple, the cooperating mode concept that is
important for studying the multi-encoder setup will be developed based on the superposition scheme
as discussed later.

Remark 1. By viewing the two-encoder setting as a special setup of ([9], Figure 1), where only one source
and one conference link are deployed, we can have Theorem 1 by letting the common message U = X2 and the
conference capacity C21 = 0 in ([9], Thm.). Note that the achievability in [9] which is based on binning becomes
superposition coding.

Remark 2. By viewing the two-encoder setting as a special setup of the multiple access diamond channel where
one source connects to two encoders (relays) by using two separate noiseless links, see [12,13], Theorem 1 can
also be obtained if letting C1 = ∞, the common message V = X2, and the common message rate R0 = C2

(or C2 = ∞, V = X1, R0 = C1) in ([12], Thm. 2). Note that the achievability based on superposition and
Marton-coding in [12,13] becomes superposition coding only.

3.2. Gaussian Channel

Now we consider the Gaussian MAC of the two-encoder channel setting given by (10) with total
power constraint P, i.e., P1 + P2 ≤ P, where

1
n

n

∑
i=1

E[x2
1i] ≤ P1 and

1
n

n

∑
i=2

E[x2
2i] ≤ P2. (12)

This first leads to the following result.

Theorem 2. The channel capacity C(C12, P) of the two-encoder Gaussian MAC is

C(C12, P) = max
0≤β≤1

min
{1

2
log2(1 + (1 + β)P),

1
2

log2(1 + (1− β)P) + C12
}

. (13)

The proof is the adaptation of the discrete channel version given in Section Appendix A.1 by
considering the transmit power constraints and Gaussian channel noise.

Proof. (i) Converse. First note that without loss of generality (and without violating the power
constraints) we may assume that all E[X1i] = E[X2i] = 0 for all i ∈ [1, n]. If we define (X1, X2, Y) being
the random triple with density pX1,X2,Y(x1, x2, y) = 1

N ∑N
i=1 pX1i ,X2i ,Yi (x1, x2, y) then converse in Section

Appendix A.1 shows that

I(Xn
1 , Xn

2 ; Yn) ≤ nI(X1, X2; Y),

I(Xn
1 ; Yn|Xn

2 ) ≤ nI(X1; Y|X2), (14)

where the random variables X1, X2 satisfy E[X1] = E[X2] = 0 and

E[X2
1 ] ≤

1
n

n

∑
i=1

E[X2
1i] ≤ P1, (15)

E[X2
2 ] ≤

1
n

n

∑
i=1

E[X2
2i] ≤ P2. (16)
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First consider the random pair (X1, X2). By applying the Cholesky factorization ([17], Thm. 4.2.7)
to the covariance matrix of [X2, X1]

T , the assignment of{
X1 = α21S2 + α1S1,
X2 = α22S2,

(17)

can be obtained, where S1 and S2 are uncorrelated with zero means and unit variances.
Next, observe that if we take α′21 = α′22 = (α21 + α22)/2 = α2 this choice does not affect I(X2; Y) =

I(S2; Y) and I(X1; Y|X2) = I(S1; Y|S2), but minimizes the total transmit power for fixed α21 + α22,
since

2α2
2 = 2(

α21 + α22

2
)2 ≤ α2

21 + α2
22. (18)

Therefore we only need to consider assignment{
X1 = α2S2 + α1S1,
X2 = α2S2.

(19)

Now we take α2
2 = P2, α2

2 + α2
1 = P1, and 2α2

2 + α2
1 = P. By denoting

β
∆
=

2α2
2

P
(20)

in [0, 1], we further have
α2

1 = (1− βP) and α2
2 = βP/2. (21)

Taking the signal assignment (19) and the power assignment (21) gives that

I(X1, X2; Y) = I(S1, S2; Y) = h(α1S1 + 2α2S2 + Z)− h(Z)
(a)
≤ 1

2
log2(1 + (1 + β)P), (22)

I(X1; Y|X2) = I(S1; Y|S2) = h(α1S + Z)− h(Z)
(b)
≤ 1

2
log2(1 + (1− β)P), (23)

where (a) and (b) follow by the maximum differential entropy theorem, see ([18], Thm. 8.6.5).
(ii) Achievability. Taking the assignment (19) by letting S1 ∼ N (0, 1) and S2 ∼ N (0, 1). Using the

power assignment (21) directly gives

I(X1, X2; Y) = I(S1, S2, Y) =
1
2

log2(1 + (1 + β)P), (24)

I(X1; Y|X2) = I(S1; Y|S2) =
1
2

log2(1 + (1− β)P). (25)

The rest of the proof follows by first establishing a coding theorem for the discrete memoryless channel
with input cost (power constraint). The step from discrete to Gaussian channels is justified by the
relation between differential entropy and discrete entropy, see, e.g., ([18], Thm. 9.3.1).

Now, by optimizing over β in (13), we can further express C as a function only in total transmit
power P and total fronthaul capacity CB, which is C12 for this two-encoder setup.
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Corollary 1. The channel capacity C(CB, P) of the total transmit power constrained two-encoder Gaussian
MAC can be expressed as

C(CB, P) =


1
2

log2(1 + 2P), if CB ≥
1
2

log2(1 + 2P)

1
2

log2(1 + P) +
1
2

log2
(
2− 2

22CB + 1
)
, otherwise.

(26)

Proof. The two logarithms on the RHS of (13) are monotonically increasing and decreasing in β

respectively and equal to each other at β = 0. Hence, we can set

1
2

log2(1 + (1 + β)P) =
1
2

log2(1 + (1− β)P) + CB (27)

to obtain the β that maximizes C for ∀CB ∈ [0, 1
2 log2(1 + 2P)] as

β? =
(1 + P)(22CB − 1)

P(22CB + 1)
. (28)

This results in the second capacity expression in (26). Then, if CB > 1
2 log2(1 + 2P), the second term is

always larger than the first term for any β in (13). This corresponds to the situation where CB is large
enough and the transmission over the MAC is the bottleneck of the network. In this case, C remains at
its global maximum.

Note that, for CB < 1
2 log2(1 + 2P), the first term of the capacity result (26) is the channel capacity

with no beamforming and the second term directly represents the partial beamforming gain that is
independent of transmit power P and only grows as the fronthaul capacity increases. As revealed, the
partial beamforming gain increases with a same rate regardless of the transmit power P.

3.3. Cooperating Modes

Based on assignment (19) that possesses a superposition structure, we can naturally denote two
cooperating modes as what follows to describe the optimal cooperation between the encoders for the
capacity achieving.

• mode 1: Sending a private message given by α1S1 from encoder 1;
• mode 2: Coherently sending a common message given by α2S2 from encoder 2 and encoder 1.

According to (20), the parameter β represents the fraction of the total transmit power assigned to
mode 2 while 1− β represents the remaining fraction assigned to mode 1. Note that β? given by (28)
should be taken for achieving the capacity.

Now consider the cooperation scenarios of the two encoders based on the availability of CB. If
CB = 0, the transmission reduces to the point-to-point communication case. This is represented by
having only mode 1 active and encoder 2 is inactive. If CB ≥ Cfull, full cooperation can be achieved by
activating mode 2 only. For C12 ∈ (0, Cfull), two encoders cooperate to achieve partial beamforming
capacity by activating both cooperating modes. Figure 3 illustrates the cooperating modes activating and
deactivating at encoders depending on CB increasing from 0 to Cfull.

Cfull

�� ���� ��
-

- -

0
C12

mode 2

mode 1
encoder 1

encoder 2

�� ��

Figure 3. Modes activation for the two-encoder Gaussian setting.
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For the two-encoder setting, the modes evolution due to available amount of CB looks
straightforward. Nevertheless, it will be shown that this cooperating modes interpretation provides a
clear insight of leveraging available encoders for given certain total fronthaul and transmit power
constraints, where the optimal cooperation is not trivial as the number of encoders goes largely.

4. N-Encoder Result

Based on the investigations of the two-encoder setting, we extend the study to the system model
with arbitrarily N encoders, where N ≥ 2. The parameter N in principle can be any large integer so
that a distributed massive beamforming is obtained. The investigation is focused on the Gaussian
MAC under the constraints of the total fronthaul capacity CB and the total transmit power P, which
are defined by (5) and (8), respectively. Before addressing the exact capacity solution for arbitrary
N encoders, we first derive capacity bounds of C(CB, P) to provide a general behavior of channel
capacity C in total fronthaul capacity CB. The obtained result indicates that the growth of C requires
an exponential growth of CB. By using the compound mode, the exact capacity solution with the optimal
cooperation among encoders are derived. The results show that the distributed beamforming system
works most efficiently when it is working in its fronthaul-capacity-limited regime. As a result, we
consider the case where encoders are always available to be activated as needed to leverage the entire
fronthaul resource.

4.1. Discrete Channel

For simplicity, let the tuple Xm
l , (Xl , Xl+1, . . . , Xm) be the collection of ordered transmitted

random variables that are generated at encoder l to encoder m with l ≤ m for one channel use. In
addition, let Cb , {Cj,j+1}N−1

j=1 be the collection of the corresponding fronthaul capacities.

Theorem 3. For the discrete memoryless N-encoder setting, channel capacity C of the channel
P(y|x1, x2, . . . , xN) as a function of fronthaul capacities Cb is

C(Cb) = max
p(x1,x2,...,xN)

min
{

I(XN
1 ; Y), I(Xm

1 ; Y|XN
m+1) + Cm,m+1}N−1

m=1

}
, (29)

with N ≥ 2.

A sketch of the proof is given in Section Appendix A.2. As shown in the achievability, the capacity
is achieved by applying an N-layer superposition coding among the encoders, which naturally agrees
with the studied linear topology.

4.2. Gaussian Channel under Total fronthaul Constraint

By considering on the total power and separate fronthaul constraints, we first have the
following result.

Theorem 4. The the N-encoder Gaussian setting with the total transmit power constraint of P, the channel
capacity C as a function of the fronthaul capacities Cb is

C(Cb, P) = max
β

min
{1

2
log2(1 +

N

∑
l=1

lβl P), {
1
2

log2(1 +
m

∑
l=1

lβl P) + Cm,m+1}N−1
m=1

}
, (30)

where β = (β1, β2, . . . , βN)
T is a probability vector.
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Proof. Similar to proof of the two-encoder setting, the generic signal assignment

Xm =
N

∑
l=m

αlmSl (31)

can be used at each encoder for m ∈ [1, N], where {Sl}N
l=1 are uncorrelated and have zero mean and

unit variance. Again, we can further apply the special signal assignment

Xm =
N

∑
l=m

αlSl (32)

to minimize the total transmit power without affecting dependency of the different signals {Sl}N
l=1 at

the decoder that determines the beamforming capacity. In this way, the transmit power allocated for
signal Sl can be expressed by

βl =
lα2

l
P

(33)

such that ∑N
l=1 βl = 1.

Thus, for the converse, we can use the assignment (32) to evaluate (29) and the mutual
informations on the RHS are bounded as given by (30). Then, for the achievability, by letting
Sl ∼ N (0, 1), the result follows.

The proof shows that all the transmitted signals at encoders should form a Markov chain XN →
XN−1 → · · · → X1. Again, since signal αlSl represents the common messages used at first l encoders,
we say that cooperating mode l is active if the signal Sl is generated and sent and there can be N
cooperating modes in total for this N-encoder setting.

Now, we can solve the optimization problem

maximize
Cb

C(Cb, P) (34)

subject to
N−1

∑
m=1

Cm,m+1 = CB, (35)

where C(Cb, P) is given by (30), to investigate the total power limited capacity C under the constraint
of total fronthaul capacity CB for a given P. To do so, we first prove the following lemma. Note that the
full-cooperation capacity is now Cfull(N) = 1

2 log2(1 + NP) when N encoders are used. For simplicity,
we denote the mutual informations as

Im ,
1
2

log2(1 +
m

∑
l=1

lβl P) (36)

for any m ∈ [1 : N].

Lemma 1. For the N-encoder setting with any given CB ≤ (N − 1)Cfull(N), power distribution β can only
be optimal if equality of all the terms on the RHS of (30) is achieved.

The proof is given in Appendix A.3.

Remark 3. Lemma 1 indicates that asymmetric distribution of CB over fronthaul link is optimal. This result
will be further demonstrated after the capacity result is derived.
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Based on the reduced β set given by Lemma 1, we make the terms on the RHS of (30) equal and
have

Cm,m+1 = IN − Im with m ∈ [1 : N − 1]. (37)

Thus, the channel capacity and the required total fronthaul capacity in the power allocation vector β

can now be represented as

C(β, P) = IN =
1
2

log2(1 +
N

∑
l=1

lβl P), (38)

and

CB(β, P) = (N − 1)IN −
N−1

∑
m=1

Im =
N − 1

2
log2(1 +

N

∑
l=1

lβl P)−
N−1

∑
m=1

1
2

log2(1 +
m

∑
l=1

lβl P) (39)

respectively for a fixed P if CB ≤ (N − 1)Cfull(N). Based on (38) and (39), we can have the
following theorem.

Theorem 5. For the N-encoder Gaussian channel under the total power constraint P and total fronthaul
constraint CB, the channel capacity is given by

maximize
β

C(β, P) = IN

subject to (N − 1)IN −
N−1

∑
m=1

Im = CB (40)

N

∑
l=1

βl = 1 and 0 ≤ βl ≤ 1. (41)

To evaluate the channel capacity, we only need to maximize the function by introducing a
Lagrange multiplier λ as

g(β, P, λ) = IN − λCB

= (1− (N − 1)λ)IN + λ
N−1

∑
m=1

Im

=
1− (N − 1)λ

2
log2(1 +

N

∑
l=1

lβl P) + λ
2

N−1

∑
m=1

log2(1 +
m

∑
l=1

lβl P)

(42)

under the constraint that β is a probability vector to derive the solution of C(CB) for the general
N-encoder case. Note that the parameter λ is the slope of C(CB). However, before working out the
exact solution of this optimization problem, we first derive general bounds of C(CB, P) to reveal the
capacity behavior of the studied distributed beamforming.

4.3. Capacity Behavior Bounds

To obtain a simple but meaningful insight of the relation between C and the constrained CB and P
for an arbitrary N, we propose an upper bound and a lower bound of the channel capacity to draw the
following conclusion.

Property 1. For any fixed total transmit power P and number of encoders N, a linear growth of total fronthaul
capacity CB results in a logarithmical growing of the channel capacity as C can be bounded as

C ≤ 1
2

log2(1 + P) +
1
2

log2(1 + 2 ln 2 · CB), (43)
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and
C >

1
2

log2(1 + (2 ln 2 · PCB)
2/3). (44)

for CB ≤ (N − 1)Cfull.

Proof. (1) Upper bound. By considering L ∈ [1 : N] as a random variable with distribution β, the
capacity (38) can be expressed as

C =
1
2

log2(1 + µLP), (45)

where µL , E[L]. By applying Jensen’s inequality, the corresponding fronthaul capacity CB in (39) can
be lower bounded as

CB ≥ (N − 1)C− N − 1
2

log2(
∑N−1

m=1(1 + ∑m
l=1 lβl P)

N − 1
)

= (N − 1)C− N − 1
2

log2(1 +
∑N−1

l=1 (N − l)lβl P
N − 1

)

(a)
≥ (N − 1)C− N − 1

2
log2(1 +

µL(N − µL)P
N − 1

)

=
N − 1

2
log2

( 1 + µLP

1 + µL(N−µL)P
N−1

)
(b)
≥ (µL − 1)µLP

2 ln 2 · (1 + µLP)
(46)

where (a) follows µ2
L ≤ E[L2] and (b) follows ln x ≥ 1− 1

x for x > 0. Since µL ≥ 1, we can have

CB ≥ (µL−1)µLP
2 ln 2·(µL+µLP) =

(µL−1)P
2 ln 2·(1+P) that results in µL ≤ 1 + 2 ln 2 · ( 1+P

P )CB and thus (43).
2) Lower bound. Consider time-sharing of the rates given by only using one cooperating mode.

Hence, the channel capacity should be larger than or equal to an achievable rate R as

C ≥ R ,
1
2

log2(1 + kP), (47)

where k is the number of the activated encoders corresponding to the required total fronthaul capacity

CB = (k− 1)R (48)

that achieves R. By applying ln x ≤ x−1√
x for x ≥ 1, see, e.g., ([19], Section 3.6.15), we have

R ≤ 1
2 ln 2

· kP√
1 + kP

(49)

that gives an upper bound of CB as

CB ≤ (k− 1)kP
2 ln 2

√
1 + kP

<
(k− 1)kP
2 ln 2

√
kP

<
k
√

kP
2 ln 2

.

(50)

Therefore, we can have k3 > (2 ln 2 · CB)
2/P that directly gives (44).
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The upper bound (43) and lower bound (44) thus indicate the logarithmical behavior of C in CB.
Figure 4 gives an illustration of these two bounds for 10-encoder Gaussian setting where total transmit
power is set at P = 21.

Figure 4. Upper and lower bounds on C(CB) at P = 21 for 10-encoder Gaussian setting.

The exact capacity solution derived shortly is plotted as well as a comparison, showing that the
bounds describes the capacity behavior.

4.4. Compound Mode and Exact Solution

In what follows, we perform evaluation of the channel capacity given in Theorem 5 by defining a
compound mode 〈j, k〉 as a collection of all consecutive cooperating modes between and including modes
j, k ∈ [1 : N] with j ≤ k. A compound mode 〈j, k〉 is referred to as active if all {βl}k

l=j are nonzero and the
other elements in β are zeros. Note that using a single mode is a special case of compound mode. By
denoting

b(j) ,
1

j(2 + (j + 1)P)
, (51)

we have the following results.

Corollary 2. For an N-encoder Gaussian setting where CB ≤ (N − 1)Cfull with a fixed transmit power P, if
there is a compound mode 〈j, k〉 such that UB ≥ LB, where

UB ,

{ 1
2(k−1) if j = 1

min{ 1
2(k−1) , b(j− 1)} if j > 1,

(52)

LB ,

{
max{ 1

2k , b(j)} if k < N
b(j) if k = N,

(53)

the channel capacity corresponding to the slope λ ∈ [LB, UB] is achieved and only achieved by using that
compound mode which gives

C(λ) =
1
2

log2
( k(1− (k− 1)λ)(1 + jP)

j(1− (j− 1)λ)
)
, (54)
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and

CB(λ) =
1
2

log2

( (2λ)j−k(1 + jP)j−1

∏k−1
l=j

l(l+1)
2

· (k(1− (k− 1)λ))k−1

(j(1− (j− 1)λ))j−1

)
. (55)

The proof is given in Appendix A.4.

Remark 4. The proof in Appendix A.4 shows that if compound mode 〈j, k〉 achieves the capacity and k ≥ j + 2,
the modes in [j + 1 : k− 1] should be assigned with same power amount as the optimal setting.

Remark 5. By rewriting (55) and comparing it to (54), we can also represent CB in terms of C as

CB(λ) = (j− 1)C(λ) +
1
2

log2

( [λ−1k(1− (k− 1)λ)]k−j

∏k−1
l=j l(l + 1)

)
. (56)

for a certain slope λ ∈ [LB, UB].

4.5. Modes Selection for Capacity Achieving

The results in Corollary 2 state how the capacity is achieved and expressed over a certain λ range.
To further elaborate how to exactly use cooperating modes from no cooperation to full cooperation, a
procedure efficiently activating modes is developed based on applying the following result, where an
identification of valid compound modes that are the ones resulting in capacity is provided in terms of
using a power penalty.

Corollary 3. For any fixed P, a compound mode 〈j, k〉 achieves the capacity if and only if

2(k− j− 1)
j(j + 1)

< P ≤ 2(k− j + 1)
j(j− 1)d1− k

N e
, (57)

where d·e is the ceiling function. If (57) is satisfied, compound modes 〈j′, k′〉 with j′ > j and k′ < k do not
achieve the capacity.

The proof is given in Appendix A.5. The power condition (57) indicates that a compound mode
needs certain transmit power to be supported to be optimal. On the other hand, some compound
modes can never be optimal if the transmit power is too large.

Now, note that C is monotonically increasing in CB owing to nonnegative slope λ and
monotonically decreasing in λ according to (54) when j and k are fixed. It shows that to achieve
the capacity, compound modes should be activated in a way such that the corresponding slope range
varies from large to small as CB increases. Therefore, based on the results in Corollary 3, an algorithm
is resulted for computing C and CB over CB ∈ [0, (N − 1)Cfull] by activating valid compound modes
sequentially.

Algorithm 1 represents the cooperating strategy among encoders. It reveals that cooperating
modes should be activated one-by-one to form new compound modes with the increase of CB. At
certain point of the growth of CB, the first mode dies, i.e., deactivated owing to the limited P or N.
With the further increasing of CB, lower modes die in a one-by-one fashion till the full cooperation is
obtained.

Figure 5 plots the results for P = 1 and P = 21 by applying Algorithm 1, C(CB) over the full
range of CB ∈ [0, (N − 1)Cfull]. Different number of the available encoders are considered. In the
plot, each color segment represents the corresponding activated compound mode. In addition, the
pentagram markers label the points where a lower mode has to be deactivated (dead) because of the
power penalty (57) or because all N encoders are all used up, namely operations in line 13 and line 9
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of the algorithm, respectively. It is shown that for low SNR, i.e., P = 1, the modes die fast due to the
small power. On the other hand, for large SNR, i.e., P = 21, the larger available encoder number the
slower the modes die such that higher capacity can be achieved (consider curves of using 2-encoder,
3-encoder, 4-encoder, and 5-encoder).

Algorithm 1 Compute C and CB from no cooperation to full cooperation

Initialize: j← 1 and k← 1
Ensure: 1 ≤ j ≤ k ≤ N

1: while j < N do
2: if Power condition (57) is satisfied then
3: λ← [LB, UB]
4: Compute C(λ) and CB(λ) by (54) and (55)
5: if k < N then
6: k← k + 1
7: else
8: k← N
9: j← j + 1

10: end if
11: else
12: k← k− 1
13: j← j + 1
14: end if
15: end while
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Figure 5. C(CB) at P = 1 and P = 21 for different N-encoder settings.

Property 2. As probably the most natural strategy, the way of applying modes in the lower bound proof of
Proposition 1, i.e., time-sharing full cooperation of small number of encoders, is not optimal in general. However,
it is sub-optimal when SNR is small as the compound modes that achieve capacity reduce to single modes.
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To visualize each mode evolution from no beamforming to total beamforming, we can illustrate
the power allocation for each cooperating mode as CB increases. By incorporating calculations of β

(given in Appendix A.4) and (37) into Algorithm 1, Figures 6 and 7 show the modes’ power evolution
of the 10-encoder setting for P = 5 and P = 21, respectively. It is shown that the first mode dies faster
when P is relatively small. They also interestingly show that once CB is large enough to approach the
total beamforming, the last mode dominates as other modes all vanish.

Moreover, we can also elaborate the cooperating of encoders in terms of showing optimal
distribution of CB over fronthaul links. Figure 8 illustrates the distribution of the 10-encoder setting
where the bolder curves are for P = 5 while the lighter curves are for P = 21. In each case, the
fronthaul capacity curves for Cm m+1 for m = 1 to m = 9 are located from left to right in the plot. This
result further demonstrates the asymmetric water-pouring assignment of CB over fronthaul links, see
Remark 3.
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Figure 6. Optimal power allocation for modes distribution for 10-encoder Gaussian setting at P = 5.
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Figure 8. Optimal distribution of CB at P = 5 and P = 21 for 10-encoder Gaussian setting.

4.6. 〈1, k〉Mode and Capacity Regimes

Consider the case where 〈1, k〉 mode achieves the capacity for k ≤ N. In this case, the growth rate
of C(CB) is independent of P and N, see the expression of CB in (56) with j = 1. Therefore, we call that
the system works in a fronthaul-capacity-limited regime when a 〈1, k〉mode is used. The reason why
we are interested in the fronthaul-capacity-limited regime is that C(CB) achieves the fast growth rate
regardless of P and N. As a further increase of CB, the first mode dies due to either limited P or limited
N. We then call the system works in a power-limited regime or encoder-limited regime, respectively.
When the system is in either power-limited regime or encoder-limited regime, C(CB) growth is slowed
down compared to when the system works in the fronthaul-capacity-limited regime. This is due to the
discontinuities of the slope λ, see the derived optimal upper and lower bounds of λ. The following
result shows how to determine which regime the system works in for given CB, P, and N.

Property 3. For given P and N, if
P ≤ N − 2, (58)

the capacity growth is limited by P and the system works in a fronthaul-capacity-limited regime if

CB /
1
2

log2
( ((1 + P̃)(2 + P̃))P̃

P̃!(P̃ + 1)!

)
, (59)

where P̃ , dPe. Otherwise it works in a power-limited regime.
On the other hand, if P > N − 2, the capacity growth is limited by N and the system works in a

fronthaul-capacity-limited regime if

CB ≤
1
2

log2
( (N(3 + 2P− N))N−1

(N − 1)!N!
)
. (60)

Otherwise it works in a encoder-number-limited regime.

Proof. Modes dying hampers the growth of C in CB. Consider that the first mode of the compound
mode 〈1, k〉 dies because of constrained P not N. In this case, P must satisfy (58) which is given by
the lower bound of (57). Consequently, at the moment after the first mode dies, i.e., compound mode
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〈2, k〉 is active, we have j = 2 and k ≈ dPe+ 1 given by taking the upper bound of (57). This j, k setting
results in λ = 1

2+2P so that (59) is obtained by evaluating (55).
Similarly, considering the compound mode 〈1, N〉 can be supported by P, the first mode dies

because that no new encoders can be used. At the moment of first mode dying, i.e., compound mode
〈1, N〉 is still active, we thus have j = 1 and k = N, which also result in λ = 1

2+2P . Hence, (60) is
resulted.

Figure 9 plots C(CB) of 10-encoder setting for P = 5 and P = 21, respectively, where the
regime separations are indicated at the first mode dies for both powers. It is illustrated that in the
fronthaul-capacity-limited regime, C has the highest growth rate no matter what its initial value
is (point-to-point communication). In the next subsection, we focus on a system working at the
fronthaul-capacity-limited regime.
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Figure 9. C(CB) at P = 5 and P = 21 for 10-encoder Gaussian setting.

5. Infinitely Many Encoders

Consider designing a system in practice when CB and P are critical resources while available
encoders could be many, for instance, the radio stripe system. Based on the previous study, we should
always try to let the system work in its fronthaul-capacity-limited regime where the fronthaul capacity
is maximally utilized. Hence, we are motivated to determine the number of encoders that are required
to be activated for a given CB by considering infinitely many of them are available when the system is
purely fronthaul constrained.

To directly solve k, the highest active mode that is the number of required encoders, from (55) or
(56) is not trivial. To achieve an accurate approximate result, we first need the following lemma, of
which the proof follows the outline in [20] and is given in Appendix A.6.
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Lemma 2. The non-principle branch of Lambert W function W−1(·) defined in the interval [−e−1, 0), see [21],
can be bounded as follows

W−1(−e−(x+1)) ≥ −x− 3
√

2x− 1 (61)

for x ≥ 0.

Remark 6. Figure A3 shows that for ∀x ≥ 0.5, the lower bound (61) is much tighter than W−1(−e−(x+1)) ≥
−x −

√
2x − 1 given in [20], which is the tightest bound of W−1(·) reported in the literature so far, to our

best knowledge.

Property 4. When the system works in the fornthaul limited regime, the number of required encoders k̃ is
quasi-linear to the available fronthaul capacity as

k̃ = bCB + (2CB + 1)1/3 + 1.5c, (62)

where CB in nats per channel use and b·c is the floor function.

Proof. As the system works in the fronthaul-limited regime, compound mode 〈1, k〉 exists. Thus,
according to (56),

CB =
1
2

ln
( [λ−1k(1− (k− 1)λ)]k−1

∏k−1
l=1 l(l + 1)

)
(63)

in nats. To upper bound k, we lower bound CB by taking λ = 1
2(k−1) , see the bound (52), which gives

CB ≥ 1
2

ln
( kk−2(k− 1)k−1

((k− 1)!)2

)
(a)
≥ 1

2
ln
( e2(k−1)kk−2

e2(k− 1)k

)
= k− 2− ln k +

k
2

ln
( k

k− 1
)

(b)
≥ k− ln k− 1.5 (64)

where (a) follows by applying (k− 1)! ≤ e(k− 1)k− 1
2 e−k+1 derived based on ([22], 6.1.38), and (b)

follows by taking the fact that ( k
k−1 )

k is monotonically decreasing in k and goes to e as k→ ∞.Therefore,
we have

− exp(CB + 1.5) > −k exp(−k). (65)

Now, solving k and applying (61) give

k ≤ −W−1
(
− exp(−(CB + 1.5))

)
≤ CB + 3

√
2CB + 1 + 1.5.

(66)

Finally, since the number of encoders is a integer, (62) is resulted.

In Figure 10, the bound of k given by (66) and the actual number encoders required to be activated
are plotted as a function of CB. It is revealed that the derived result is accurate enough.
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Figure 10. Number of required encoders in relation to CB for fronthaul resource maximum usage.

6. Concluding Remarks

In this paper, the downlink of a cell-free mMIMO in which multiple APs connected in a linear
fronthaul topology serve as a single receiver was studied to reveal relations between the three
fundamental network resources, namely the total fronthaul capacity CB, the total transmit number
P, and the number of available APs N. Specifically, we focused on partial distributed beamforming
where the total available fronthaul capacity is not enough to support full cooperation between all APs,
i.e., beamforming. By formulating the problem as a MAC channel with multiple encoders linked in a
feed-and-forward setting, we derived the channel capacity as a function of the total fronthaul capacity
for both discrete and Gaussian channels. The derivation was started by considering two encoders
and then we extended the analysis multiple encoders. It was demonstrated that capacity is achieved
by multi-layer superposition coding from which the concept of cooperating mode was developed
for the Gaussian channel. This cooperating mode technique leads to optimal cooperation among
encoders. Bounds on the capacity for N-encoder setting demonstrated that this channel capacity grows
logarithmically in CB for a fixed P. The exact capacity solution shows that the capacity is achieved if
and only if by certain compound modes are used. An algorithm was derived for computing which
compound modes should be activated as as function of CB, which grows from zero to the value
obtaining full beamforming. We demonstrated that CB should be water-poured over the fronthaul
links to obtain optimality. Finally, by considering the case where infinitely many encoders are available,
we showed that the number of required encoders is quasi-linear to the available total fronthaul capacity
when the system is purely constrained by fronthaul resources.

Future directions include extending the results to channels with links which do not have unit
gain as is the case here, and considering multiple receivers. Another interesting direction would be the
equivalent uplink case.
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Appendix A. Proofs and Derivations

Appendix A.1. Proof of Theorem 1

(i) Converse. Consider Fano’s inequality H(W|Yn) ≤ 1 + P(n)
e log2 M = F for F ∆

= 1 + P(n)
e log2 M.

Since W → (Xn
1 , Xn

2 )→ Yn forms a Markov chain, we have that

log2 M = H(W) = I(W; Yn) + H(W|Yn) ≤ I(W, Xn
1 , Xn

2 ; Yn) + F

≤ I(Xn
1 , Xn

2 ; Yn) + F ≤
n

∑
i=1

I(X1i, X2i; Yi) + F

≤ nI(X1, X2; Y|Q) + F ≤ nI(X1, X2; Y) + F.

(A1)

Moreover, from the Markovity of (W, W12)→ (Xn
1 , Xn

2 )→ Yn, we obtain that

log2 M = H(W) = I(W; Yn) + H(W|Yn) ≤ I(W, W12; Yn) + F

= I(W12; Yn) + I(W; Yn|W12) + F ≤ log2 M12 + I(Xn
1 ; Yn|Xn

2 ) + F

≤ nC12 + I(Xn
1 ; Yn|Xn

2 ) + F ≤ nC12 +
n

∑
i=1

I(X1i; Yi|X2i) + F

≤ nC12 + nI(X1; Y|X2, Q) + F ≤ nC12 + nI(X1; Y|X2) + F.

(A2)

In the above derivations, the random variable Q is uniformly distributed on [1 : n] and Pr{X1 =

x1, X2 = x2} = 1
N ∑N

i=1 Pr{X1i = x1, X2i = x2} for x1 ∈ X1, x2 ∈ X2. If now both δ→ 0 and n→ ∞ we
obtain that

R ≤ min{I(X1, X2; Y), I(X1; Y|X2) + C12}, (A3)

for some distribution p(x1, x2, y) = p(x1, x2)p(y|x1, x2), for all achievable rate R. This concludes the
converse for the discrete memoryless two-encoder case.

(ii) Achievability. We prove that if the message rate (1/n) log2 M < CB(C12) for a given fronthaul

capacity C12, the message error probability P(n)
e approaches zero if the codeword length n increases.

Our coding method is based on superposition.
Codebook Generation: First fix a joint probability distribution {p(x1, x2), x1 ∈ X1, x2 ∈ X2}. This

distribution determines pX2(x2) = ∑x1∈X1
p(x1, x2) and pX1|X2

(x1|x2) = p(x1, x2)/pX2(x2) for x2

with pX2(x2) > 0. Now generate at random M2 i.i.d. sequences xn
2 ∈ X2

n of length n, each drawn
according to Pr{Xn

2 = xn
2} = ∏n

i=1 pX2(x2i) and index these sequences as xn
2 (w2) as an inner code,

where w2 ∈ [1 : M2]. Then, for each such xn
2 (w2), generate M1 sequences xn

1 (w1, w2) drawn according
to Pr{Xn

1 = xn
1 |Xn

2 = xn
2 (w2)} = ∏n

i=1 pX1|X2
(x1i|x2i(w2)) in an i.i.d. fashion as an outer code, where

w1 ∈ [1 : M1]. The resulting codebook is revealed to both encoders and to the decoder.
Encoding: Split the message W that is uniformly distributed on [1 : M] into (W1, W2) with

M = M1 ×M2, where the first part W1, which is uniformly distributed on [1 : M1], is transmitted
by encoder 1 and the second part W2, which is uniformly distributed on [1 : M2] and is conveyed to
encoder 2 by W12, is transmitted by two encoders cooperatively. Hence, when (W1, W2) = (w1, w2),
encoder 2 sends xn

2 (w2) while encoder 1 inputs xn
1 (w1, w2) into the MAC.

Decoding: Let ε > 0. Based on the observed channel output sequence yn, the decoder finds the
message pair (w1, w2) such that

(xn
1 (w1, w2), xn

2 (w2), yn) ∈ A(n)
ε (X1X2Y), (A4)

where set A(n)
ε (X1X2Y) is the set of jointly ε-typical sequences, see Cover and Thomas [18]. If such a

pair cannot be found, or if there are more than one such pairs, an error is declared.
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Probability of Error: Due to symmetry, the average probability of error is equivalent to the
probability of error for an arbitrary message w ∈ {1, ..., 2nR}. Hence, without loss of generality,
we assume W = w = (w1, w2). Thus, we have

P(n)
e = Pr{Ec(w1, w2) ∪

⋃
(w̃1,w̃2) 6=(w1,w2)

E(w̃1, w̃2)}

≤ Pr{Ec(w1, w2)}+ ∑
(w̃1,w̃2) 6=(w1,w2)

Pr{E(w̃1, w̃2)}

= Pr{Ec(w1, w2)}+ ∑
w̃1 6=w1

Pr{E(w̃1, w2)}+ ∑
(w̃1,w̃2):w̃2 6=w2

Pr{E(w̃1, w̃2)},

(A5)

where
E(w1, w2)

∆
= {(xn

1 (w1, w2), xn
2 (w2), Yn) ∈ A(n)

ε (X1X2Y)}. (A6)

Due to the Asymptotic Equipartition Property (AEP), it can be shown that

Pr{Ec(w1, w2)} ≤ ε, (A7)

for all n large enough. Moreover

∑
w̃1 6=w1

Pr{E(w̃1, w2)} ≤ (M1 − 1) ∑
(xn

1 ,xn
2 ,yn)∈A(n)

ε

P(xn
1 |xn

2 )P(xn
2 )P(yn|xn

2 )

≤ (M1 − 1)2−n(I(X1;Y|X2)−4ε),
(A8)

and
∑

(w̃1,w̃2):w̃2 6=w2

Pr{E(w̃1, w̃2)} = M1(M2 − 1) ∑
(xn

1 ,xn
2 ,yn)∈A(n)

ε

P(xn
1 |xn

2 )P(xn
2 )P(yn)

≤ M1(M2 − 1)2−n(I(X1,X2;Y)−3ε).
(A9)

Now as long as
M1 ≤ 2n(I(X1;Y|X2)−5ε),

M1M2 ≤ 2n(I(X1,X2;Y)−4ε),
(A10)

P(n)
e ≤ 2ε for all n large enough. Therefore we take

log2 M2 = min{n(I(X2; Y) + ε), nC12},
log2 M1 = n(I(X1; Y|X2)− 5ε),

(A11)

then both (9) and (A10) are satisfied. Note that this implies that

log2 M1M2 = min{n(I(X1; Y|X2)− 5ε) + nC12, n(I(X1, X2; Y)− 4ε)}. (A12)

If we now let ε→ 0, the achievability part of the Theorem 1 is thus established.

Appendix A.2. Proof of Theorem 3

The proof is a generalization of the proof of the two-encoder settings. Consider a simplified block
diagram of the N-encoder setting as shown in Figure A1. Now, consider a cut of the fronthaul link
between Xm and Xm+1 for any given m ∈ [1 : N − 1] such that the nodes in the network are separated
in two sets of {Xm

1 } and {XN
m+1, Y}.
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Figure A1. Simplified illustration of the MAC for the N-encoder setting.

(i) Converse. Consider the Markovity of W → (Xn
1 , Xn

2 , . . . , Xn
N) → Yn. By applying Fano’s

inequality, we first have

log2 M ≤ I(W, W12, . . . , WN−1,N ; Yn) + H(W|Yn)

≤ I(Xn
1 , Xn

2 , . . . , Xn
N ; Yn) + F

≤
n

∑
i=1

I(X1i, X2i, . . . , XNi ; Yi) + F

≤ nI(XN
1 ; Y) + F.

(A13)

Then, considering the cut between Xm and Xm+1, we have that

log2 M = I(W, W12, . . . , WN−1,N ; Yn) + H(W|Yn)

≤ I(Wm,m+1; Yn) + I(W, W12, . . . , Wm−1,m; Yn|Wm,m+1, . . . , WN−1,N) + F

≤ log2 Mm,m+1 + I(Xn
1 , Xn

2 , . . . , Xn
m; Yn|Xn

m+1, Xn
N) + F

≤ nCm,m+1 +
n

∑
i=1

I(X1i, X2i, . . . , Xmi ; Yi|Xm+1,i, . . . , XN,i) + F

≤ nCm,m+1 + nI(Xm
1 ; Y|XN

m+1) + F.

(A14)

Note that the above result is valid for any m in [1 : N − 1]. Thus, by letting n → ∞ the converse
follows.

(ii) Achievability. First consider the message W that can be represented by N independent
messages as W = {Wi}N

i=1, where each Wi is uniformly distributed on [1 : Mi] with ∏i=1
N = M.

Then, given by the linear topology of encoders, we distribute {Wi}N
i=1 into the network in the

manner illustrated by Figure A2, i.e., for the link between any Xm and Xm+1, the fronthaul message
Wm,m+1 conveys corresponding messages {Wi}N

i=m. Therefore, for a fixed distribution p(x1, x2, . . . , xN)

and corresponding marginals, we can first generate MN i.i.d. n-sequences xn
N(wN) with wN ∈

[1, MN ] according to Pr(Xn
N = xN

n ) = ∏n
i=1 pXn(xni) and then for each xn

N(wN) generate MN−1

i.i.d. n-sequences xn
N−1(wN−1, wN) with wN−1 ∈ [1, MN−1] according to Pr(Xn

N−1 = xn
N−1|Xn

N =

xN
n (wN)) = ∏n

i=1 pXn−1|Xn(xn−1 i|xni(wN)) and so on. In this way, an N-layer superposition codebook
is generated and revealed at both encoders and decoder.
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W1

...
Wm,m+1

W23

W12

· · ·· · ·W3W2 Wm Wm+1 WN

Figure A2. N-layer superposition coding message structure.

Thus, for sending a message w, encoders transmit sequences {xn
m(wm, wm+1, . . . , wN)}N

m=1 over
the MAC channel. At the decoder, a unique message tuple (w1, w2, . . . , wN) is found by using
simultaneous typicality decoding as performed for the two-encoder case. By taking the similar
probability of error analysis, it gives that, as long as

M1 ≤ 2n(I(X1;Y|XN
2 )−5ε),

M1M2 ≤ 2n(I(X1,X2;Y|XN
3 ))−5ε),

...
N

∏
m=1

Mm ≤ 2n(I(XN
1 ;Y)−4ε),

(A15)

we can have P(n)
e ≤ 2ε for all sufficiently large n and any ε > 0. By further considering MN ≤ 2nCN−1,N ,

MN−1MN ≤ 2nCN−2,N−1 , . . ., and ∏N
m=2 ≤ 2nC12 , we can subsequently take

log2 MN = min{n(I(XN ; Y) + ε), nCN−1,N}
log2 MN−1 = min{nI(XN−1; Y|XN), nCN−2,N−1 − log2 MN}

...

log2 M1 = n(I(X1; Y|XN
2 )− 5ε).

(A16)

Finally, observe that (again subsequently)

log2 MN = min{n(I(XN ; Y) + ε), nCN−1,N}
log2 MN−1MN = min{I(XN−1, XN ; Y) + ε,

I(XN−1; Y|XN) + nCN−1,N , nCN−2,N−1}
...

log2 M = log2

N

∏
m=1

Mm

= min
{

n(I(XN
1 ; Y)− 4ε),

{I(Xm
1 ; Y|XN

m+1) + Cm,m+1}N−1
m=1

}
,

(A17)

which establishes the achievability for n→ ∞ and ε→ 0.

Appendix A.3. Proof of Lemma 1

For any fixed CB ≤ (N − 1)Cfull(N), we first consider a realization of β. Since Im ≤ Im+1 for any
m ∈ [1, N − 1], by distributing CB on top of {Im}N−1

m=1 in a water-filling fashion, we can always have
two possible cases if the equality of all terms on the RHS of (30) can not be achieved, i.e.,

Case (a) : L (CB, β) < Ij, (A18)
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or Case (b) : L (CB, β) > IN , (A19)

where j is the smallest index such that Cm,m+1 = 0 for all m ∈ [j − 1, N − 1], and L (CB, β) =

Im + Cm,m+1 for any m such that Cm,m+1 6= 0, namely the ‘water level’. Once the water-filling is
performed, we fix the corresponding distribution of CB.

For Case (a) where C = L , we now can decrease {βm}N
m=j to increase β1 such that L is increased.

For Case (b) where C = IN , we can look for an m < N with βm > 0 such that by decreasing βm, βN
increases and IN increases as well. Therefore, the β satisfying Case (a) and Case (b) are not optimal.
The equality of the terms on the RHS of (30) is thus necessary.

Appendix A.4. Proof of Proposition 2

Three steps are taken in the proof. In step (1) we show that an active compound mode 〈j, k〉
achieves the capacity if LB ≤ UB is satisfied. In step (2) we show that using any two separated active
modes (all other modes are inactive) does not achieve the capacity. In step (3) we show that exact
solutions of (54) and (55) are resulted.

Step (1) Note that function g given in (42) is convex-∩ when λ ≤ 1
k−1 if the largest activated

mode is k. So, we set the partial derivatives of g with respect to {βi}N
i=1 according to the Kuhn–Tucker

conditions, see ([23], eqn.4.4.10 and eqn.4.4.11), when the active compound mode 〈j, k〉 achieves the
capacity. By considering (42) in nats, the partial derivative of function g with respect to βi is

∂g
∂βi

=
1− (k− 1)λ

2
· iP

1 + ∑N
l=j lβl P

+
λ

2

N−1

∑
m=i

iP
1 + ∑m

l=1 lβl P
,

(A20)

where i ∈ [1 : N].
Step (1.1) Firstly, by only considering that compound mode 〈j, k〉 is active, i.e., all {βi}k

i=j are

nonzero, while the other {βi}j−1
i=1 and {βi}N

i=k+1 are zeros, the partial derivative can be expressed as

∂g
∂βi

=
1− (k− 1)λ

2
· iP

1 + ∑k
l=j lβl P

+
λ

2

k−1

∑
m=i

iP
1 + ∑m

l=j lβl P
.

(A21)

For simplicity, we denote that

D(i) , 1 +
i

∑
l=j

lβl P. (A22)

Now, consider that the partial derivatives corresponding to i ∈ [j : k] should be all identical to
some value µ, i.e.,

∂g
∂β j

=
∂g

∂β j+1
= · · · = ∂g

∂βk
:= µ, (A23)

to find the capacity solution in terms of optimal distribution of β. Note that

∂g
∂βk

=
1− (k− 1)λ

2
· kP

D(k)
= µ. (A24)

For the case of k > j, we can recursively evaluate the equalities in (A23) as ∂g/∂βi = ∂g/∂βi−1 by
taking i from k to j + 1 in a descending order with the use of (A21). In such a way, it is obtained that

λ

2
· i(i + 1)P

D(i)
= µ for i ∈ [j : k− 1]. (A25)
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Now, based on (A24) and (A25), we can derive expressions of {βi}k
i=j by considering two scenarios.

Scenario 1: Consider k ≥ j + 2, i.e., at least three consecutive modes are active. By taking i = j
and i = j + 1, (A25) can be used twice to obtain the equality j

D(j) =
j+2

D(j+1) that gives the relation

β jP =
(1 + j)β j+1P

2
− 1

j
. (A26)

For k > j + 2, expression (A25) allows us to further obtain

i(i + 1)
D(i)

=
(i + 1)(i + 2)

D(i + 1)
(A27)

by taking i in the order of j + 1 to k− 1, which results in an interesting and important relation

βi = β j+1 for i ∈ [j + 2 : k− 1]. (A28)

Therefore, by applying relation (A26), we can express D(k) as

D(k) =
k2 − k

2
β j+1P + kβkP, (A29)

which is valid for the case of k = j + 2 as well. So, by setting (A25) equal to (A24) with i = j as

1− (k− 1)λ
2

· k
D(k)

=
λ

2
· j(j + 1)

D(j)
, (A30)

and substituting D(k) in (A29), we can first derive the power of modes from j + 1 to k− 1 as

β j+1P =
2λ(1 + jP)

j(1− (j− 1)λ)
. (A31)

According to (A26), we can then obtain the power of the first mode as

β jP =
λ(1 + j)(1 + jP)
j(1− (j− 1)λ)

− 1
j
. (A32)

Furthermore, owing to ∑k
i=j βi = 1, we can finally represent the power of the last mode as

βkP = P +
1
j
− 1

2
(2k− j− 1)β j+1P. (A33)

Now, applying the total power constraint, we should have
0 < βkP < P
0 < β j+1P < P
0 < β jP < P.

(A34)

By substituting (A33), (A31), and (A32), the corresponding slope λ should simultaneously satisfy

1
2(k− 1) + jP(2k− j− 1)

< λ <
1

2(k− 1)

0 < λ <
jP

2 + jP + j2P
1

j(2 + (j + 1)P)
< λ <

1
2j

.

(A35)
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Since k > j + 1, it is easy to see that the lower bound of λ is 1
j(2+(j+1)P) . For the upper bound, if

1
2(k−1) >

jP
2+jP+j2P , it leads to P < 2

2jk−j2−3j . Due to j ≤ k− 2, such P results in

j(2 + (j + 1)P) < 2j +
2(j + 1)

2k− j− 3
≤ 2(k− 1), (A36)

which contradicts the lower bound. Therefore, to make the compound mode exist, the slope should be in
the range

1
j(2 + (j + 1)P)

< λ <
1

2(k− 1)
. (A37)

Scenario 2: Consider k = j + 1, i.e., the compound mode only consists of two modes. So, letting (A24)
equal to (A25) gives the relation

β jP =
λ(1 + j)β j+1P

1− 2jλ
− 1

j
. (A38)

By considering β j + β j+1 = 1 now, it is obtained

β j+1P =
(1− 2λj)(1 + jP)

j(1− (j− 1)λ)
(A39)

and a same β jP expression as in (A32). If such compound mode gives optimal solution, the condition
0 < β jP < P should be also satisfied, which gives λ ∈ ( 1

j(2+(1+j)P) , 1
2j ) that is consistent with the result

of (A37).
Step (1.2) Secondly, consider that the derivative ∂g/∂βk+i for ∀i ∈ [1 : N − k] with k < N should

be less than µ as denoted in Step (1.1). Since {βk+i}N−k
i=1 = 0, we have

∂g
∂βk+i

=
1− (k + i− 1)λ

2
· (k + i)P

D(k)
(A40)

≤ ∂g
∂βk

=
1− (k− 1)λ

2
· kP

D(k)
(A41)

which directly gives

λ ≥ 1
2k

. (A42)

Step (1.3) Finally, consider that the derivative ∂g/∂β j−i for ∀i ∈ [1 : j− 1] with j > 1 should be

less than µ as well. Since {β j−i}j−1
i=1 = 0, we have

∂g
∂β j−i

=
1− (k− 1)λ

2
· (j− i)P

D(k)
+

λ

2
(j− i)P +

λ

2

k−1

∑
m=j

(j− i)P
D(m)

. (A43)

Similarly, by upper bounding this derivative by µ given in (A24), we can have

1− (k− 1)λ
2

· iP
D(k)

+
λ

2

k−1

∑
m=j

iP
D(m)

≥ λ

2
(j− i)P, (A44)

where the summation can be computed by using relation of (A25) as

λ

2

k−1

∑
m=j

iP
D(m)

= iµ(
1
j
− 1

k
). (A45)
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By further incorporating µ given by (A24) and D(k) given by (A29) into (A44), the inequality becomes
to

1− (k− 1)λ
j

≥ (j− 1)λ
i

( k− 1
2

β j+1P + βkP
)
. (A46)

By substituting (A31) and (A33) for β j+1P and βkP, it can be easily shown that

λ ≤ i
i(j− i) + (j− 1)(1 + jP)

≤ 1
(j− 1)(2 + jP)

, (A47)

where i ≥ 1 is applied in the bounding for the last step.
Note that, Step (1.2) and (1.3) and resulted bounds of λ also cover the the case of j = k, i.e., only

one mode is active and achieves the capacity. Now, by considering the ranges given by (A37), (A42),
and (A47), the slope bounds in (52) and (53) are resulted.

Step (2) Assume that the capacity can also be achieved by only activating any two separated
modes j′ and k′, where j′ ∈ [1 : k′ − 1] and k′ ∈ [j′ + 1, N]. Then, the Kuhn–Tucker condition requires
∂g/βk′ = ∂g/β j′ , which results in the relation of

1− (k′ − 1)λ
2

1
j′D(k′)

=
λ

2
1

1 + j′β′j
. (A48)

Note that in D(k′) only β′k and β′j are nonzero. Moreover, for ∀i ∈ [1 : k′ − j′ − 1], we have

∂g
∂βk′−i

=
1− (k′ − 1)λ

2
(k′ − i)P

D(k′)
+

λ

2
i(k′ − i)P
1 + j′β′j

(A49)

By substituting the relation (A48) into above derivative, it can be shown that

∂g/βk′−i − ∂g/β′k = P
1− (k′ − 1)λ

2D(k′)
(k′ − i +

i(k′ − i)
j′

− k′)

= P
1− (k′ − 1)λ

2D(k′)
i(

k′ − i
j′
− 1)

> 0

(A50)

where the last step is due to k′ − i > j′. This result contradicts to the Kuhn–Tucker condition. This
demonstrates the only compound modes achieves the capacity.

Step (3) For a slope λ in the range (52) and (53), the obtained optimal β from Step (1.1) can be
used to evaluate (38) and (39) directly. Thus, (54) and (55) are resulted, respectively.

Appendix A.5. Proof of Corollary 3

Consider four possible settings of UB and LB based on (52) and (53) as

Case 1 :
1

2(k− 1)
≤ b(j− 1),

1
2k
≤ b(j), b(j) <

1
2(k− 1)

,

Case 2 :
1

2(k− 1)
≥ b(j− 1),

1
2k
≤ b(j), b(j) < b(j− 1),

Case 3 :
1

2(k− 1)
≤ b(j− 1),

1
2k
≥ b(j),

1
2k

<
1

2(k− 1)
,

Case 4 :
1

2(k− 1)
≥ b(j− 1),

1
2k
≥ b(j),

1
2k
≤ b(j− 1),

where inequalities given by 1
2k are only valid for k < N. By evaluating the inequalities, the power

condition (57) is resulted. Since the LB and UB are derived from the Kuhn–Tucker conditions, the
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derived power condition is a sufficient and necessary condition. This result directly gives that using
compound mode 〈j′, k′〉 with j′ > j and k′ < k is not a capacity solution.

Appendix A.6. Proof of Lemma 2

By following the method in [20], we define f (x) = x− ln(x + 1) and prove

f (x) + 3
√

2 f (x)− x ≥ 0 (A51)

for x ≥ 0. Once this is done, one can take the procedure applied in ([20], Thm. 1) and the lower
bound (61) follows.

Now, we start converting (A51) to an equivalent problem. First, by substituting f (x) in (A51), we
need to prove

3
√

2x− 2 ln(1 + x) ≥ ln(1 + x). (A52)

By denoting t := x + 1 with t ≥ 1 and considering x3 and x
1
3 are monotonically increasing in x for

x ≥ 0, showing (A52) is equivalent to show

2t− 2− ln t− (ln t)3 ≥ 0. (A53)

let v(t) := 2t− 2− ln t− (ln t)3, we can focus on showing

v′(t) = 2− 2t−1 − 3t−1(ln t)2 ≥ 0, (A54)

since v(1) = 0. Considering t ≥ 1, we finally convert proving (A51) to demonstrating

ψ(t) := tv′(t) = 2t− 2− 3(ln t)2 ≥ 0. (A55)

To do so, we take the first derivative of ψ(t) and set it to zero to have

3 ln t = t. (A56)

By solving (A56), we can evaluate the local maxima and/or local minima of ψ(t). It can be seen that
(A56) has only two real roots for t ≥ 1, which are

t1 = −3W0(−
1
3
) and t2 = −3W−1(−

1
3
), (A57)

where W0(·) is the principle branch of the Lambert W function defined over [−e−1, ∞). Based on the
property of the Lambert W function, 1 < t1 < t2. Therefore, since ψ(1) = 0, we can have two scenarios
as

• Scenario 1: if ψ(t1) > 0, we must have ψ(t2) < ψ(t1), i.e., t1 gives a local maxima and t2 gives a
minima;

• Scenario 2: if ψ(t1) < 0, we must have ψ(t2) > ψ(t1), i.e., t1 gives a global minima and t2 gives a
maxima.

Hence, if we can prove that ψ(t1) > 0 and ψ(t2) > 0, both, we can conclude (A55) and thus (A51). We
show this in what follows.

By setting t? = t1 or t2, ψ(t?) can be expressed as

ψ(t?) = ψ(t)|t1,t2 = 2t? − 2− (t?)2

3
. (A58)
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If ψ(t?) > 0, it is equivalent to have (t?)2 − 6t? + 6 < 0, which results in the range of

3−
√

3 < t? < 3 +
√

3 (A59)

must be satisfied. For t2, by applying the bounds given in ([20], Thm. 1) which is −1−
√

2x− x <

W−1(−e−x−1) < −1−
√

2x − 2
3 x, it is easily obtained that 4.53 < t2 < 4.62, which is in the range

(A59). So, ψ(t2) > 0 follows. For t1, we apply an upper bound on W0(·) given in ([24], Thm. 2.3),
which is

W0(x) ≤ ln(
x + y

1 + ln y
) (A60)

for x > −e−1 and y > e−1. By taking y = 0.5, t1 can be bounded as t1 > 1.8. By also considering
t1 < t2, t1 must in the range (A59) as well, which completes showing ψ(t1) > 0.

Numerical evaluation of the bound (61) verifies the proof as illustrated in Figure A3, where the
bound in [20] is plotted as a reference as well.
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